CINXE.COM

Abstracts | Energy and Environmental Engineering

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Abstracts | Energy and Environmental Engineering</title> <meta name="description" content="Abstracts | Energy and Environmental Engineering"> <meta name="keywords" content="Abstracts | Energy and Environmental Engineering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value=""> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 652</div> </div> </div> </div> <div class="mt-3 text-center"> <h1 class="mb-1" style="font-size:1.2rem;">World Academy of Science, Engineering and Technology</h1> <h2 class="mb-1" style="font-size:1.1rem;">[Energy and Environmental Engineering]</h2> <h3 class="mb-1" style="font-size:1rem;">Online ISSN : 1307-6892</h3> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Customized Cow’s Urine Battery Using MnO2 Depolarizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kumar%20Rajak">Raj Kumar Rajak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Mishra"> Bharat Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO<sub>2</sub> in various ways. MnO<sub>2 </sub>is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO<sub>2</sub>. The tests show that it is possible to generate electricity using cow&rsquo;s urine as an electrolyte. After ascertaining the optimum concentration of MnO<sub>2</sub>, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO<sub>2</sub> (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO<sub>2 </sub>to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO<sub>2</sub> is quite suitable to energize the bio-battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-batteries" title="bio-batteries">bio-batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%E2%80%99s%20urine" title=" cow’s urine"> cow’s urine</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20dioxide" title=" manganese dioxide"> manganese dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conventional" title=" non-conventional"> non-conventional</a> </p> <a href="https://publications.waset.org/abstracts/81623/customized-cows-urine-battery-using-mno2-depolarizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Parhizkar">T. Parhizkar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jafarian"> H. Jafarian</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Aramoun"> F. Aramoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Saboohi"> Y. Saboohi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motorized%20shades" title="motorized shades">motorized shades</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight" title=" daylight"> daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a>, <a href="https://publications.waset.org/abstracts/search?q=shade%20control" title=" shade control"> shade control</a>, <a href="https://publications.waset.org/abstracts/search?q=hourly%20simulation" title=" hourly simulation"> hourly simulation</a> </p> <a href="https://publications.waset.org/abstracts/81507/hybrid-dynamic-approach-to-optimize-the-impact-of-shading-design-and-control-on-electrical-energy-demand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> A Model-Based Approach for Energy Performance Assessment of a Spherical Stationary Reflector/Tracking Absorber Solar Concentrator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Christodoulaki">Rosa Christodoulaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Koronaki"> Irene Koronaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Tsekouras"> Panagiotis Tsekouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to analyze the energy performance of a spherical Stationary Reflector / Tracking Absorber (SRTA) solar concentrator. This type of collector consists of a segment of a spherical mirror placed in a stationary position facing the sun and a cylindrical absorber that tracks the sun by a simple pivoting motion about the center of curvature of the reflector. The energy analysis is performed through the development of a dynamic simulation model in TRNSYS software that calculates the annual heat production and the efficiency of the SRTA solar concentrator. The effect of solar concentrator design features and characteristics, such the reflector material, the reflector diameter, the receiver type, the solar radiation level and the concentration ratio, are discussed in details. Moreover, the energy performance curve of the SRTA solar concentrator, for various temperature differences between the mean fluid temperature and the ambient temperature and radiation intensities is drawn. The results are shown in diagrams, visualizing the effect of solar, optical and thermal parameters to the overall performance of the SRTA solar concentrator throughout the year. The analysis indicates that the SRTA solar concentrator can operate efficiently under a wide range of operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrating%20solar%20collector" title="concentrating solar collector">concentrating solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis "> energy analysis </a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20reflector" title=" stationary reflector"> stationary reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20absorber" title=" tracking absorber "> tracking absorber </a> </p> <a href="https://publications.waset.org/abstracts/80900/a-model-based-approach-for-energy-performance-assessment-of-a-spherical-stationary-reflectortracking-absorber-solar-concentrator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Sustainable Solid Waste Management Solutions for Asian Countries Using the Potential in Municipal Solid Waste of Indian Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Babu%20Gurucharan">S. H. Babu Gurucharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Kaushal"> Priyanka Kaushal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Majority of the world's population is expected to live in the Asia and Pacific region by 2050 and thus their cities will generate the maximum waste. India, being the second populous country in the world, is an ideal case study to identify a solution for Asian countries. Waste minimisation and utilisation have always been part of the Indian culture. During rapid urbanisation, our society lost the art of waste minimisation and utilisation habits. Presently, Waste is not considered as a resource, thus wasting an opportunity to tap resources. The technologies in vogue are not suited for effective treatment of large quantities of generated solid waste, without impacting the environment and the population. If not treated efficiently, Waste can become a silent killer. The article is trying to highlight the Indian municipal solid waste scenario as a key indicator of Asian waste management and recommend sustainable waste management and suggest effective solutions to treat the Solid Waste. The methods followed during the research were to analyse the solid waste data on characteristics of solid waste generated in Indian cities, then evaluate the current technologies to identify the most suitable technology in Indian conditions with minimal environmental impact, interact with the technology technical teams, then generate a technical process specific to Indian conditions and further examining the environmental impact and advantages/ disadvantages of the suggested process. The most important finding from the study was the recognition that most of the current municipal waste treatment technologies being employed, operate sub-optimally in Indian conditions. Therefore, the study using the available data, generated heat and mass balance of processes to arrive at the final technical process, which was broadly divided into Waste processing, Waste Treatment, Power Generation, through various permutations and combinations at each stage to ensure that the process is techno-commercially viable in Indian conditions. Then environmental impact was arrived through secondary sources and a comparison of environmental impact of different technologies was tabulated. The major advantages of the suggested process are the effective use of waste for resource generation both in terms of maximised power output or conversion to eco-friendly products like biofuels or chemicals using advanced technologies, minimum environmental impact and the least landfill requirement. The major drawbacks are the capital, operations and maintenance costs. The existing technologies in use in Indian municipalities have their own limitations and the shortlisted technology is far superior to other technologies in vogue. Treatment of Municipal Solid Waste with an efficient green power generation is possible through a combination of suitable environment-friendly technologies. A combination of bio-reactors and plasma-based gasification technology is most suitable for Indian Waste and in turn for Asian waste conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calorific%20value" title="calorific value">calorific value</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20fermentation" title=" gas fermentation"> gas fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20gasification" title=" plasma gasification"> plasma gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/80689/sustainable-solid-waste-management-solutions-for-asian-countries-using-the-potential-in-municipal-solid-waste-of-indian-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Verma">Pooja Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumana%20Ghosh"> Sumana Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title="OpenFOAM">OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20wave%20tank" title=" numerical wave tank"> numerical wave tank</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20waves" title=" regular waves"> regular waves</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20object" title=" floating object"> floating object</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20absorber" title=" point absorber"> point absorber</a> </p> <a href="https://publications.waset.org/abstracts/80469/numerical-simulation-of-a-point-absorber-wave-energy-converter-using-openfoam-in-indian-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Detection of Glyphosate Using Disposable Sensors for Fast, Inexpensive and Reliable Measurements by Electrochemical Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20S.%20Noori">Jafar S. Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Romano-deGea"> Jan Romano-deGea</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Dimaki"> Maria Dimaki</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Mortensen"> John Mortensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Winnie%20E.%20Svendsen"> Winnie E. Svendsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively. As a consequence of the heavy use of glyphosate, residues of this compound are increasingly observed in food and water. Recent studies reported a direct link between glyphosate and chronic effects such as teratogenic, tumorigenic and hepatorenal effects although the exposure was below the lowest regulatory limit. Today, pesticides are detected in water by complicated and costly manual procedures conducted by highly skilled personnel. It can take up to several days to get an answer regarding the pesticide content in water. An alternative to this demanding procedure is offered by electrochemical measuring techniques. Electrochemistry is an emerging technology that has the potential of identifying and quantifying several compounds in few minutes. It is currently not possible to detect glyphosate directly in water samples, and intensive research is underway to enable direct selective and quantitative detection of glyphosate in water. This study focuses on developing and modifying a sensor chip that has the ability to selectively measure glyphosate and minimize the signal interference from other compounds. The sensor is a silicon-based chip that is fabricated in a cleanroom facility with dimensions of 10×20 mm. The chip is comprised of a three-electrode configuration. The deposited electrodes consist of a 20 nm layer chromium and 200 nm gold. The working electrode is 4 mm in diameter. The working electrodes are modified by creating molecularly imprinted polymers (MIP) using electrodeposition technique that allows the chip to selectively measure glyphosate at low concentrations. The modification included using gold nanoparticles with a diameter of 10 nm functionalized with 4-aminothiophenol. This configuration allows the nanoparticles to bind to the working electrode surface and create the template for the glyphosate. The chip was modified using electrodeposition technique. An initial potential for the identification of glyphosate was estimated to be around -0.2 V. The developed sensor was used on 6 different concentrations and it was able to detect glyphosate down to 0.5 mgL⁻¹. This value is below the accepted pesticide limit of 0.7 mgL⁻¹ set by the US regulation. The current focus is to optimize the functionalizing procedure in order to achieve glyphosate detection at the EU regulatory limit of 0.1 µgL⁻¹. To the best of our knowledge, this is the first attempt to modify miniaturized sensor electrodes with functionalized nanoparticles for glyphosate detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides" title="pesticides">pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=glyphosate" title=" glyphosate"> glyphosate</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid" title=" rapid"> rapid</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=modified" title=" modified"> modified</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/80426/detection-of-glyphosate-using-disposable-sensors-for-fast-inexpensive-and-reliable-measurements-by-electrochemical-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Preparation and Characterization of Modified ZnO Incorporated into Mesoporous MCM-22 Catalysts and Their Catalytic Performances of Crude Jatropha Oil to Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Abubakar%20Abdulkadir">Bashir Abubakar Abdulkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Ramli"> Anita Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Jun%20Wei"> Lim Jun Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshimitsu%20Uemura"> Yoshimitsu Uemura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the ZnO/MCM-22 catalyst with different ZnO loading were prepared using conventional wet impregnation process and the catalyst activity was tested for biodiesel production from Jatropha oil. The effects of reaction parameters with regards to catalyst activity were investigated. The synthesized catalysts samples were then characterized by X-ray diffraction (XRD) for crystal phase, Brunauer–Emmett–Teller (BET) for surface area, pore volume and pore size, Field Emission Scanning electron microscope attached to energy dispersive x-ray (FESEM/EDX) for morphology and elemental composition and TPD (NH3 and CO2) for basic and acidic properties of the catalyst. The XRD spectra couple with the EDX result shows the presence of ZnO in the catalyst confirming the positive intercalation of the metal oxide into the mesoporous MCM-22. The synthesized catalyst was confirmed to be mesoporous according to BET findings. Also, the catalysts can be considered as a bifunctional catalyst based on TPD outcomes. Transesterification results showed that the synthesized catalyst was highly efficient and effective to be used for biodiesel production from low grade oil such as Jatropha oil and other industrial application where the high fatty acid methyl ester (FAMEs) yield was achieved at moderate reaction conditions. It was also discovered that the catalyst can be used more than five (5) runs with little deactivation confirming the catalyst to be highly active and stable to the heat of reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MCM-22" title="MCM-22">MCM-22</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/80401/preparation-and-characterization-of-modified-zno-incorporated-into-mesoporous-mcm-22-catalysts-and-their-catalytic-performances-of-crude-jatropha-oil-to-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> The Development of Wind Energy and Its Social Acceptance: The Role of Income Received by Wind Farm Owners, the Case of Galicia, Northwest Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20Simon">X. Simon</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Copena"> D. Copena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Montero"> M. Montero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The last decades have witnessed a significant increase in renewable energy, especially wind energy, to achieve sustainable development. Specialized literature in this field has carried out interesting case studies to extensively analyze both the environmental benefits of this energy and its social acceptance. However, to the best of our knowledge, work to date makes no analysis of the role of private owners of lands with wind potential within a broader territory of strong wind implantation, nor does it estimate their economic incomes relating them to social acceptance. This work fills this gap by focusing on Galicia, territory housing over 4,000 wind turbines and almost 3,400 MW of power. The main difficulty in getting this financial information is that it is classified, not public. We develop methodological techniques (semi- structured interviews and work groups), inserted within the Participatory Research, to overcome this important obstacle. In this manner, the work directly compiles qualitative and quantitative information on the processes as well as the economic results derived from implementing wind energy in Galicia. During the field work, we held 106 semi-structured interviews and 32 workshops with owners of lands occupied by wind farms. The compiled information made it possible to create the socioeconomic database on wind energy in Galicia (SDWEG). This database collects a diversity of quantitative and qualitative information and contains economic information on the income received by the owners of lands occupied by wind farms. In the Galician case, regulatory framework prevented local participation under the community wind farm formula. The possibility of local participation in the new energy model narrowed down to companies wanting to install a wind farm and demanding land occupation. The economic mechanism of local participation begins here, thus explaining the level of acceptance of wind farms. Land owners can receive significant income given that these payments constitute an important source of economic resources, favor local economic activity, allow rural areas to develop productive dynamism projects and improve the standard of living of rural inhabitants. This work estimates that land owners in Galicia perceive about 10 million euros per year in total wind revenues. This represents between 1% and 2% of total wind farm invoicing. On the other hand, relative revenues (Euros per MW), far from the amounts reached in other spaces, show enormous payment variability. This signals the absence of a regulated market, the predominance of partial agreements, and the existence of asymmetric positions between owners and developers. Sustainable development requires the replacement of conventional technologies by low environmental impact technologies, especially those that emit less CO₂. However, this new paradigm also requires rural owners to participate in the income derived from the structural transformation processes linked to sustainable development. This paper demonstrates that regulatory framework may contribute to increasing sustainable technologies with high social acceptance without relevant local economic participation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regulatory%20framework" title="regulatory framework">regulatory framework</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20acceptance" title=" social acceptance"> social acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20income%20for%20landowners" title=" wind income for landowners"> wind income for landowners</a> </p> <a href="https://publications.waset.org/abstracts/77401/the-development-of-wind-energy-and-its-social-acceptance-the-role-of-income-received-by-wind-farm-owners-the-case-of-galicia-northwest-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Paraffin/Expanded Perlite Composite as a Novel Form-Stable Phase Change Material for Latent Heat Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awni%20Alkhazaleh">Awni Alkhazaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Latent heat storage using Phase Change Materials (PCMs) has attracted growing attention recently in the renewable energy utilization and building energy efficiency. Paraffin (PA) of low melting temperature, which is close to human comfort temperature in the range of 24-28 °C has been considered to be used in building applications. A form-stable composite Paraffin/Expanded perlite (PA-EP) has been prepared by retaining PA into porous particles of EP. DSC (Differential scanning calorimeter) is used to measure the thermal properties of PA in the form-stable composite with/without building materials. TGA (Thermal gravimetric analysis) shows that the composite is thermally stable. SEM (Scanning electron microscope) demonstrates that the layer structure of the EP particles is uniformly absorbed by PA. The mechanical properties in flexural mode have been discussed. The thermal energy storage performance has been evaluated using a small test room (100 mm ×100 mm ×100 mm) with thickness 10 mm. The flammability test of modified sample has been discussed using a cone calorimeter. The results confirm that the form-stable composite PA has the function of reducing building energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flammability" title="flammability">flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20storage" title=" latent heat storage"> latent heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin" title=" paraffin"> paraffin</a>, <a href="https://publications.waset.org/abstracts/search?q=plasterboard" title=" plasterboard"> plasterboard</a> </p> <a href="https://publications.waset.org/abstracts/76078/paraffinexpanded-perlite-composite-as-a-novel-form-stable-phase-change-material-for-latent-heat-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Numerical and Experimental Assessment of a PCM Integrated Solar Chimney</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Carlos%20Frutos%20Dordelly">J. Carlos Frutos Dordelly</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Coillot"> M. Coillot</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Mankibi"> M. El Mankibi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Enr%C3%ADquez%20Miranda"> R. Enríquez Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jos%C3%A9%20Jimenez"> M. José Jimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Arce%20Landa"> J. Arce Landa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural ventilation systems have increasingly been the subject of research due to rising energetic consumption within the building sector and increased environmental awareness. In the last two decades, the mounting concern of greenhouse gas emissions and the need for an efficient passive ventilation system have driven the development of new alternative passive technologies such as ventilated facades, trombe walls or solar chimneys. The objective of the study is the assessment of PCM panels in an in situ solar chimney for the establishment of a numerical model. The PCM integrated solar chimney shows slight performance improvement in terms of mass flow rate and external temperature and outlet temperature difference. An increase of 11.3659 m<sup>3</sup>/h can be observed during low wind speed periods. Additionally, the surface temperature across the chimney goes beyond 45 &deg;C and allows the activation of PCM panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title=" natural ventilation"> natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20changing%20materials" title=" phase changing materials"> phase changing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20chimney" title=" solar chimney"> solar chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/75922/numerical-and-experimental-assessment-of-a-pcm-integrated-solar-chimney" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Heat Transfer Augmentation in Solar Air Heater Using Fins and Twisted Tape Inserts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabha%20Chand"> Prabha Chand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fins and twisted tape inserts are widely used passive elements to enhance heat transfer rate in various engineering applications. The present paper describes the theoretical analysis of solar air heater fitted with fins and twisted tape inserts. Mathematical model is develop for this novel design of solar air heater and a MATLAB code is generated for the solution of the model. The effect of twist ratio, mass flow rate and inlet temperature on the thermal efficiency and exit air temperature has been investigated. The results are compared with the results of plane solar air heater. Results show a substantial enhancement in heat transfer rate, efficiency and exit air temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title="solar air heater">solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20tape" title=" twisted tape"> twisted tape</a>, <a href="https://publications.waset.org/abstracts/search?q=twist%20ratio" title=" twist ratio"> twist ratio</a> </p> <a href="https://publications.waset.org/abstracts/70387/heat-transfer-augmentation-in-solar-air-heater-using-fins-and-twisted-tape-inserts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Analysis of a Multiejector Cooling System in a Truck at Different Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20E.%20Pacheco">Leonardo E. Pacheco</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20D%C3%ADaz"> Carlos A. Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ejector%20system" title="ejector system">ejector system</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas" title=" exhaust gas"> exhaust gas</a>, <a href="https://publications.waset.org/abstracts/search?q=multiejector%20cooling%20system" title=" multiejector cooling system"> multiejector cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20energy" title=" recovery energy"> recovery energy</a> </p> <a href="https://publications.waset.org/abstracts/68689/analysis-of-a-multiejector-cooling-system-in-a-truck-at-different-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> The Potential and Economic Viability Analysis of Grid-Connected Solar PV Power in Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remember%20Samu">Remember Samu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathy%20Kiema"> Kathy Kiema</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Fahrioglu"> Murat Fahrioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present study is aimed at minimizing the dependence on fossil fuels thus reducing greenhouse gas (GHG) emissions and also to curb for the rising energy demands in Kenya. In this analysis, 35 locations were each considered for their techno-economic potential of installation of a 10MW grid-connected PV plant. The sites are scattered across the country but are mostly concentrated in the eastern region and were selected based on their accessibility to the national grid and availability of their meteorological parameters from NASA Solar Energy Dataset. RETScreen software 4.0 version will be employed for the analysis in this present paper. The capacity factor, simple payback, equity payback, the net present value (NPV), annual life cycle savings, energy production cost, net annual greenhouse gas emission reduction and the equivalent barrels of crude oil not consumed are outlined. Energy accounting is performed and compared to the existing grid tariff for an effective feasibility argument of this 10MW grid-connected PV power system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title="photovoltaics">photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20viability%20analysis" title=" project viability analysis"> project viability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title=" PV module"> PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/65433/the-potential-and-economic-viability-analysis-of-grid-connected-solar-pv-power-in-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasios%20Georgoulas">Anastasios Georgoulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Manolia%20Andredaki"> Manolia Andredaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Marengo"> Marco Marengo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slug-plug%20flow%20regime" title="slug-plug flow regime">slug-plug flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-channels" title=" micro-channels"> micro-channels</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20method" title=" VOF method"> VOF method</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a> </p> <a href="https://publications.waset.org/abstracts/64079/numerical-investigation-of-flow-boiling-within-micro-channels-in-the-slug-plug-flow-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Graus">M. Graus</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Westhoff"> K. Westhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Xu"> X. Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analytics" title="data analytics">data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20production" title=" green production"> green production</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20energy%20management" title=" industrial energy management"> industrial energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/62395/procedure-model-for-data-driven-decision-support-regarding-the-integration-of-renewable-energies-into-industrial-energy-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Evaluation of a Hybrid System for Renewable Energy in a Small Island in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bertsiou">M. Bertsiou</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Feloni"> E. Feloni</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Baltas"> E. Baltas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proper management of the water supply and electricity is the key issue, especially in small islands, where sustainability has been combined with the autonomy and covering of water needs and the fast development in potential sectors of economy. In this research work a hybrid system in Fournoi island (Icaria), a small island of Aegean, has been evaluated in order to produce hydropower and cover water demands, as it can provide solutions to acute problems, such as the water scarcity or the instability of local power grids. The meaning and the utility of hybrid system and the cooperation with a desalination plant has also been considered. This kind of project has not yet been widely applied, so the consideration will give us valuable information about the storage of water and the controlled distribution of the generated clean energy. This process leads to the conclusions about the functioning of the system and the profitability of this project, covering the demand for water and electricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title="hybrid system">hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=island" title=" island"> island</a> </p> <a href="https://publications.waset.org/abstracts/58608/evaluation-of-a-hybrid-system-for-renewable-energy-in-a-small-island-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmat%20Nawaz">Asmat Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Koray%20Erdinc"> Ali Koray Erdinc</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Gultekin"> Burak Gultekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tayyib"> Muhammad Tayyib</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceylan%20Zafer"> Ceylan Zafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiying%20Wang"> Kaiying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nadeem%20Akram"> M. Nadeem Akram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H<sub>2</sub>O) was added into PbI<sub>2</sub> + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI<sub>2</sub> in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20carrier%20diffusion%20lengths" title="charge carrier diffusion lengths">charge carrier diffusion lengths</a>, <a href="https://publications.waset.org/abstracts/search?q=Methylamonium%20lead%20iodide" title=" Methylamonium lead iodide"> Methylamonium lead iodide</a>, <a href="https://publications.waset.org/abstracts/search?q=precursor%20composition" title=" precursor composition"> precursor composition</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solar%20cell" title=" perovskite solar cell"> perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20deposition" title=" sequential deposition"> sequential deposition</a> </p> <a href="https://publications.waset.org/abstracts/54517/morphology-study-of-inverted-planar-heterojunction-perovskite-solar-cells-in-sequential-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Using Low-Calorie Gas to Generate Heat and Electricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%D0%90ndrey%20Marchenko">Аndrey Marchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Linkov"> Oleg Linkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Osetrov"> Alexander Osetrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergiy%20Kravchenko"> Sergiy Kravchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20engine" title="gas engine">gas engine</a>, <a href="https://publications.waset.org/abstracts/search?q=low-calorie%20gas" title=" low-calorie gas"> low-calorie gas</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-combustion%20chamber" title=" pre-combustion chamber"> pre-combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a> </p> <a href="https://publications.waset.org/abstracts/53460/using-low-calorie-gas-to-generate-heat-and-electricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmat%20Nawaz">Asmat Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceylan%20Zafer"> Ceylan Zafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20K.%20Erdinc"> Ali K. Erdinc</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiying%20Wang"> Kaiying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nadeem%20Akram"> M. Nadeem Akram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methylammonium%20lead%20iodide" title="methylammonium lead iodide">methylammonium lead iodide</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solar%20cell" title=" perovskite solar cell"> perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=precursor%20composition" title=" precursor composition"> precursor composition</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20deposition" title=" sequential deposition"> sequential deposition</a> </p> <a href="https://publications.waset.org/abstracts/51925/improved-morphology-in-sequential-deposition-of-the-inverted-type-planar-heterojunction-solar-cells-using-cheap-additive-di-h2o" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roli%20Saini">Roli Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Kumar"> Pradeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl<sub>3</sub>) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl<sub>3</sub> dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl<sub>3</sub> = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbofuran" title="carbofuran">carbofuran</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation" title=" coagulation"> coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/50421/modeling-of-coagulation-process-for-the-removal-of-carbofuran-in-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> EU-SOLARIS: The European Infrastructure for Concentrated Solar Thermal and Solar Chemistry Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vassiliki%20Drosou">Vassiliki Drosou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theoni%20Oikonomou"> Theoni Oikonomou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> EU-SOLARIS will form a new legal entity to explore and implement improved rules and procedures for Research Infrastructures (RI) for Concentrated Solar Thermal (CST) and solar chemistry technologies, in order to optimize RI development and R&D coordination. It is expected to be the first of its kind, where industrial needs and private funding will play a significant role. The success of EU-SOLARIS initiative will be the establishment of a new governance body, aided by sustainable financial models. EU-SOLARIS is expected to be an important tool, which will provide the most complete, high quality scientific infrastructure portfolio at international level and to facilitate researchers' access to highly specialised research infrastructure through a single access point. This will be accomplished by linking scientific communities, industry and universities involved in the CST sector. The access to be offered by EU-SOLARIS will guarantee the direct contact of experienced scientists with newcomers and interested students. The set of RIs participating in EU-SOLARIS will offer access to state of the art infrastructures, high-quality services, and will enable users to conduct high quality research. Access to these facilities will contribute to the enhancement of the European research area by: -Opening installations to European and non-European scientists, coming from both academia and industry, thus improving co-operation. -Improving scientific critical mass in domains where knowledge is now widely dispersed. -Generating strong Europe-wide R&D project consortia, increasing the competitiveness of each member alone. EU-SOLARIS will be created in the framework of a European project, co-funded by the 7th Framework Programme of the European Union –whose initiative is to foster, contribute and promote the scientific and technological development of the CST and solar chemistry technologies. Primary objective of EU-SOLARIS is to contribute to the improvement of the state of the art of these technologies with the aim of preserving and reinforcing the European leadership in this field, in which EU-SOLARIS is expected to be a valuable instrument. EU-SOLARIS scope, activities, objectives, current status and vision will be given in the article. Moreover, the rules, processes and criteria regulating the access to the research infrastructures included in EU-SOLARIS will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20solar%20thermal%20%28CST%29%20technology" title="concentrated solar thermal (CST) technology">concentrated solar thermal (CST) technology</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20infrastructures" title=" research infrastructures"> research infrastructures</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20chemistry" title=" solar chemistry"> solar chemistry</a> </p> <a href="https://publications.waset.org/abstracts/50398/eu-solaris-the-european-infrastructure-for-concentrated-solar-thermal-and-solar-chemistry-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Assessment of Conditions and Experience for Plantation of Agro-Energy Crops on Degraded Agricultural Land in Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djordjevic%20J.%20Sladjana">Djordjevic J. Sladjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Djordjevic-Milo%C5%A1evi%C4%87%20B.%20Suzana"> Djordjevic-Milošević B. Suzana</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1evi%C4%87%20M.%20Slobodan"> Milošević M. Slobodan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential of biomass as a renewable energy source leads Serbia to be the top of European countries by the amount of available but unused biomass. Technologies for its use are available and ecologically acceptable. Moreover, they are not expensive high-tech solutions even for the poor investment environment of Serbia, while other options seem to be less achievable. From the other point of view, Serbia has a huge percentage of unused agriculture land. Agricultural production in Serbia languishes: a large share of agricultural land therefore remains untreated, and there is a significant proportion of degraded land. From all the above, biomass intended for energy production is becoming an increasingly important factor in the stabilization of agricultural activities. Orientation towards the growing bioenergy crops versus conventional crop cultivation becomes an interesting option. The aim of this paper is to point out the possibility of growing energy crops in accordance with the conditions and cultural practice in rural areas of Serbia. First of all, the cultivation of energy crops on lower quality land is being discussed, in order to revitalize the rural areas of crops through their inclusion into potential energy sector. Next is the theme of throwing more light on the increase in the area under this competitive agricultural production to correct land use in terms of climate change in Serbia. The goal of this paper is to point out the contribution of the share of biomass in energy production and consumption, and the effect of reducing the negative environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-energy%20crops" title="agro-energy crops">agro-energy crops</a>, <a href="https://publications.waset.org/abstracts/search?q=conditions%20for%20plantation" title=" conditions for plantation"> conditions for plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=revitalization%20of%20rural%20areas" title=" revitalization of rural areas"> revitalization of rural areas</a>, <a href="https://publications.waset.org/abstracts/search?q=degraded%20and%20unused%20soils" title=" degraded and unused soils"> degraded and unused soils</a> </p> <a href="https://publications.waset.org/abstracts/48429/assessment-of-conditions-and-experience-for-plantation-of-agro-energy-crops-on-degraded-agricultural-land-in-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Effects of the Quality Construction of Public Construction in Taiwan to Implementation Three Levels Quality Management Institution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsin-Hung%20Lai">Hsin-Hung Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Lo"> Wei Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whether it is in virtue or vice for a construction quality of public construction project, it is one of the important indicators for national economic development and overall construction, the impact on the quality of national life is very deep. In recent years, a number of scandal of public construction project occurred, the requirements of the government agencies and the public require the quality of construction of public construction project are getting stricter than ever, the three-level public construction project construction quality of quality control system implemented by the government has a profound impact. This study mainly aggregated the evolution of ISO 9000 quality control system, the difference between the practice of implementing management of construction quality by many countries and three-level quality control of our country, so we explored and found that almost all projects of enhancing construction quality are dominated by civil organizations in foreign countries, whereas, it is induced by the national power in our country and develop our three-level quality control system and audit mechanism based on IOS system and implement the works by legislation, we also explored its enhancement and relevance with construction quality of public construction project that are intervened by such system and national power, and it really presents the effectiveness of construction quality been enhanced by the audited result. The three-level quality control system of our country to promote the policy of public construction project is almost same with the quality control system of many developed countries; however our country mainly implements such system on public construction project only, we promote the three-level quality control system is for enhancing the quality of public construction project, for establishing effective quality management system, so as to urge, correct and prevent the defects of quality management by manufacturers, whereas, those developed countries is comprehensively promoting (both public construction project and civil construction) such system. Therefore, this study is to explore the scope for public construction project only; the most important is the quality recognition by the executor, either good quality or deterioration is not a single event, there is a certain procedure extends from the demand and feasibility analysis, design, tendering, contracting, construction performance, inspection, continuous improvement, completion and acceptance, transferring and meeting the needs of the users, all of mentioned above have a causal relationship and it is a systemic problems. So the best construction quality would be manufactured and managed by reasonable cost if it is by extensive thinking and be preventive. We aggregated the implemented results in the past 10 years (2005 to 2015), the audited results of both in central units and local ones were slightly increased in A-grade while those listed in B-grade were decreased, although the levels were not evidently upgraded, yet, such result presents that the construction quality of concept of manufacturers are improving, and the construction quality has been established in the design stage, thus it is relatively beneficial to the enhancement of construction quality of overall public construction project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ISO%209000" title="ISO 9000">ISO 9000</a>, <a href="https://publications.waset.org/abstracts/search?q=three-level%20quality%20control%20system" title=" three-level quality control system"> three-level quality control system</a>, <a href="https://publications.waset.org/abstracts/search?q=audit%20and%20review%20mechanism%20for%20construction%20implementation" title=" audit and review mechanism for construction implementation"> audit and review mechanism for construction implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20construction%20implementation" title=" quality of construction implementation"> quality of construction implementation</a> </p> <a href="https://publications.waset.org/abstracts/47670/effects-of-the-quality-construction-of-public-construction-in-taiwan-to-implementation-three-levels-quality-management-institution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20Al-Azri">Nasser A. Al-Azri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioclimatic%20charts" title="bioclimatic charts">bioclimatic charts</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title=" passive cooling"> passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=TMY" title=" TMY"> TMY</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20data" title=" weather data"> weather data</a> </p> <a href="https://publications.waset.org/abstracts/47614/development-of-typical-meteorological-year-for-passive-cooling-applications-using-world-weather-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Le%20Luu">Tran Le Luu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeyong%20Yoon"> Jeyong Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RuO2" title="RuO2">RuO2</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-catalyst" title=" electro-catalyst"> electro-catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine" title=" chlorine"> chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20evolution" title=" oxygen evolution"> oxygen evolution</a> </p> <a href="https://publications.waset.org/abstracts/47602/microwave-assisted-synthesis-of-ruo2-tio2-electrodes-with-improved-chlorine-and-oxygen-evolutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Contribution of the Corn Milling Industry to a Global and Circular Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Moldes">A. B. Moldes</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Vecino"> X. Vecino</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rodriguez-L%C3%B3pez"> L. Rodriguez-López</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Dominguez"> J. M. Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz"> J. M. Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of the circular economy is focus on the importance of providing goods and services sustainably. Thus, in a future it will be necessary to respond to the environmental contamination and to the use of renewables substrates by moving to a more restorative economic system that drives towards the utilization and revalorization of residues to obtain valuable products. During its evolution our industrial economy has hardly moved through one major characteristic, established in the early days of industrialization, based on a linear model of resource consumption. However, this industrial consumption system will not be maintained during long time. On the other hand, there are many industries, like the corn milling industry, that although does not consume high amount of non renewable substrates, they produce valuable streams that treated accurately, they could provide additional, economical and environmental, benefits by the extraction of interesting commercial renewable products, that can replace some of the substances obtained by chemical synthesis, using non renewable substrates. From this point of view, the use of streams from corn milling industry to obtain surface-active compounds will decrease the utilization of non-renewables sources for obtaining this kind of compounds, contributing to a circular and global economy. However, the success of the circular economy depends on the interest of the industrial sectors in the revalorization of their streams by developing relevant and new business models. Thus, it is necessary to invest in the research of new alternatives that reduce the consumption of non-renewable substrates. In this study is proposed the utilization of a corn milling industry stream to obtain an extract with surfactant capacity. Once the biosurfactant is extracted, the corn milling stream can be commercialized as nutritional media in biotechnological process or as animal feed supplement. Usually this stream is combined with other ingredients obtaining a product namely corn gluten feed or may be sold separately as a liquid protein source for beef and dairy feeding, or as a nutritional pellet binder. Following the productive scheme proposed in this work, the corn milling industry will obtain a biosurfactant extract that could be incorporated in its productive process replacing those chemical detergents, used in some point of its productive chain, or it could be commercialized as a new product of the corn manufacture. The biosurfactants obtained from corn milling industry could replace the chemical surfactants in many formulations, and uses, and it supposes an example of the potential that many industrial streams could offer for obtaining valuable products when they are manage properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactantes" title="biosurfactantes">biosurfactantes</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/46695/contribution-of-the-corn-milling-industry-to-a-global-and-circular-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Potential Applications of Biosurfactants from Corn Steep Liquor in Cosmetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz">J. M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Vec%C4%B1no"> X. Vecıno</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rodr%C4%B1guez-L%C3%B3pez"> L. Rodrıguez-López</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Dominguez"> J. M. Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Moldes"> A. B. Moldes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cosmetic and personal care industry are the fields where biosurfactants could have more possibilities of success because in this kind of products the replacement of synthetic detergents by natural surfactants will provide an additional added value to the product, at the same time that the harmful effects produced by some synthetic surfactants could be avoided or reduced. Therefore, nowadays, consumers are disposed to pay and additional cost if they obtain more natural products. In this work we provide data about the potential of biosurfactants in the cosmetic and personal care industry. Biosurfactants from corn steep liquor, that is a fermented and condensed stream, have showed good surface-active properties, reducing substantially the surface tension of water. The bacteria that usually growth in corn steep liquor comprises Lactobacillus species, generally recognize as safe. The biosurfactant extracted from CSL consists of a lipopeptide, composed by fatty acids, which can reduce the surface tension of water in more than 30 units. It is a yellow and viscous liquid with a density of 1.053 mg/mL and pH=4. By these properties, they could be introduced in the formulation of cosmetic creams, hair conditioners or shampoos. Moreover this biosurfactant extracted from corn steep liquor, have showed a potent antimicrobial effect on different strains of Streptococcus. Some species of Streptococcus are commonly found weakly living in the human respiratory and genitourinary systems, producing several diseases in humans, including skin diseases. For instance, Streptococcus pyogenes produces many toxins and enzymes that help to stabilize skin infections; probably biosurfactants from corn steep liquor can inhibit the mechanisms of the S. pyogenes enzymes. S. pyogenes is an important cause of pharyngitis, impetigo, cellulitis and necrotizing fasciitis. In this work it was observed that 50 mg/L of biosurfactant extract obtained from corn steep liquor is able to inhibit more than 50% the growth of S. pyogenes. Thus, cosmetic and personal care products, formulated with biosurfactants from corn steep liquor, could have prebiotic properties. The natural biosurfactant presented in this work and obtained from corn milling industry streams, have showed a high potential to provide an interesting and sustainable alternative to those, antibacterial and surfactant ingredients used in cosmetic and personal care manufacture, obtained by chemical synthesis, which can cause irritation, and often only show short time effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title=" biosurfactants"> biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmetic" title=" cosmetic"> cosmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20care" title=" personal care"> personal care</a> </p> <a href="https://publications.waset.org/abstracts/46693/potential-applications-of-biosurfactants-from-corn-steep-liquor-in-cosmetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Optimisation of Dyes Decolourisation by Bacillus aryabhattai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Paz">A. Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cort%C3%A9s%20Di%C3%A9guez"> S. Cortés Diéguez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz"> J. M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Moldes"> A. B. Moldes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Dom%C3%ADnguez"> J. M. Domínguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20aryabhattai" title="Bacillus aryabhattai">Bacillus aryabhattai</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=decolourisation" title=" decolourisation"> decolourisation</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design"> central composite design</a> </p> <a href="https://publications.waset.org/abstracts/46645/optimisation-of-dyes-decolourisation-by-bacillus-aryabhattai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P%C3%A9rez-Rodr%C3%ADguez">N. Pérez-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Garc%C3%ADa-Bernet"> D. García-Bernet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Torrado-Agrasar"> A. Torrado-Agrasar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz"> J. M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Moldes"> A. B. Moldes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Dom%C3%ADnguez"> J. M. Domínguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20cob" title=" corn cob"> corn cob</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/46644/effect-of-enzymatic-hydrolysis-and-ultrasounds-pretreatments-on-biogas-production-from-corn-cob" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Energy Conservation in Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Allouache">Nadia Allouache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=second%20law%20approach" title="second law approach">second law approach</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20heat%20exchanger" title=" annular heat exchanger"> annular heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20model" title=" modified model"> modified model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/46348/energy-conservation-in-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=20" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=20">20</a></li> <li class="page-item active"><span class="page-link">21</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/energy-and-environmental-engineering?page=22" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10