CINXE.COM
Search results for: rocking mechanism
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rocking mechanism</title> <meta name="description" content="Search results for: rocking mechanism"> <meta name="keywords" content="rocking mechanism"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rocking mechanism" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rocking mechanism"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3126</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rocking mechanism</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3126</span> X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minas%20Balyan">Minas Balyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=third%20order%20nonlinearity" title="third order nonlinearity">third order nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bragg%20diffraction" title=" Bragg diffraction"> Bragg diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect" title=" nonlinear Renninger effect"> nonlinear Renninger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=rocking%20curves" title=" rocking curves"> rocking curves</a> </p> <a href="https://publications.waset.org/abstracts/56984/x-ray-dynamical-diffraction-rocking-curves-in-case-of-third-order-nonlinear-renninger-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3125</span> Sustainability of Vernacular Architecture in Zegalli Houses in Northern Iran with Emphasis on Their Seismic Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Zaryoun">Mona Zaryoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Hosseini"> Mahmood Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Hassan%20Khalkhali"> Seyed Mohammad Hassan Khalkhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Haniyeh%20Okhovat"> Haniyeh Okhovat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zegalli houses in Guilan province, northern Iran, are a type of vernacular houses which their foundation, skeleton and walls all have been made of wood. The only houses which could survive the major Manjil-Rudbar earthquake of 1990 with a magnitude of 7.2 were these houses. Regarding this fact, some researchers started thinking of this type of foundations used in these houses to benefit from rocking-wise behavior. On the one hand, the relatively light weight of the houses, have helped these houses to withstand well against seismic excitations. In this paper at first a brief description of Zegalli houses and their architectural features, with emphasis on their foundation is presented. in the next stage foundation of one of these houses is modeled as a sample by a using a computer program, which has been developed in MATLAB environment, and by using the horizontal and vertical accelerograms of a set of selected site compatible earthquakes, a series of time history analysis (THA) are carried out to investigate the behavior of this type of houses against earthquake. Based on numerical results of THA it can be said that even without no sliding at the foundation timbers, only due to the rocking which occurs in various levels of the foundation the seismic response of the house is significantly reduced., which results in their stability subjected to earthquakes with peak ground acceleration of around 0.35g. Therefore, it can be recommended the Zegalli houses are considered as sustainable Iranian vernacular architecture, and it can be recommended that the use of these houses and their architecture and their structural merits are reconsidered by architects as well as civil and structural engineers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20software" title="MATLAB software">MATLAB software</a>, <a href="https://publications.waset.org/abstracts/search?q=rocking%20behavior" title=" rocking behavior"> rocking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Zegalli%20houses" title=" Zegalli houses"> Zegalli houses</a> </p> <a href="https://publications.waset.org/abstracts/63896/sustainability-of-vernacular-architecture-in-zegalli-houses-in-northern-iran-with-emphasis-on-their-seismic-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3124</span> Revealing Single Crystal Quality by Insight Diffraction Imaging Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thu%20Nhi%20Tran%20Caliste">Thu Nhi Tran Caliste</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray Bragg diffraction imaging (“topography”)entered into practical use when Lang designed an “easy” technical setup to characterise the defects / distortions in the high perfection crystals produced for the microelectronics industry. The use of this technique extended to all kind of high quality crystals, and deposited layers, and a series of publications explained, starting from the dynamical theory of diffraction, the contrast of the images of the defects. A quantitative version of “monochromatic topography” known as“Rocking Curve Imaging” (RCI) was implemented, by using synchrotron light and taking advantage of the dramatic improvement of the 2D-detectors and computerised image processing. The rough data is constituted by a number (~300) of images recorded along the diffraction (“rocking”) curve. If the quality of the crystal is such that a one-to-onerelation between a pixel of the detector and a voxel within the crystal can be established (this approximation is very well fulfilled if the local mosaic spread of the voxel is < 1 mradian), a software we developped provides, from the each rocking curve recorded on each of the pixels of the detector, not only the “voxel” integrated intensity (the only data provided by the previous techniques) but also its “mosaic spread” (FWHM) and peak position. We will show, based on many examples, that this new data, never recorded before, open the field to a highly enhanced characterization of the crystal and deposited layers. These examples include the characterization of dislocations and twins occurring during silicon growth, various growth features in Al203, GaNand CdTe (where the diffraction displays the Borrmannanomalous absorption, which leads to a new type of images), and the characterisation of the defects within deposited layers, or their effect on the substrate. We could also observe (due to the very high sensitivity of the setup installed on BM05, which allows revealing these faint effects) that, when dealing with very perfect crystals, the Kato’s interference fringes predicted by dynamical theory are also associated with very small modifications of the local FWHM and peak position (of the order of the µradian). This rather unexpected (at least for us) result appears to be in keeping with preliminary dynamical theory calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocking%20curve%20imaging" title="rocking curve imaging">rocking curve imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=defect" title=" defect"> defect</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a> </p> <a href="https://publications.waset.org/abstracts/143138/revealing-single-crystal-quality-by-insight-diffraction-imaging-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3123</span> Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gitartha%20Kalita"> Gitartha Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title="ground motion">ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20effects" title=" rotational effects"> rotational effects</a>, <a href="https://publications.waset.org/abstracts/search?q=translational%20effects" title=" translational effects"> translational effects</a> </p> <a href="https://publications.waset.org/abstracts/26464/translational-and-rotational-effect-of-earthquake-ground-motion-on-a-bridge-substructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3122</span> Reflections on Mechanism of Foreign Teachers’ Administration in Colleges and Universities in China </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=YangHui">YangHui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foreign teachers play an important role in the process of internationalization of higher education in China. Based on the method of literature analysis, firstly study the contents about the mechanism of the foreign teachers’ administration in our country, then secondly analyze the main barriers of the foreign teacher’s administration mechanism. Finally, it is suggested that the international exchange department in universities should constantly improve the employment mechanism, training mechanism, appraisal mechanism and incentive mechanism to promote the internationalization of higher education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internationalization%20of%20higher%20education" title="internationalization of higher education">internationalization of higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=administration%20of%20foreign%20teachers" title=" administration of foreign teachers"> administration of foreign teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=colleges%20and%20universities" title=" colleges and universities"> colleges and universities</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/3059/reflections-on-mechanism-of-foreign-teachers-administration-in-colleges-and-universities-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3121</span> Dynamic Synthesis of a Flexible Multibody System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Ben%20Abdallah">Mohamed Amine Ben Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Imed%20Khemili"> Imed Khemili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Aifaoui"> Nizar Aifaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20genetic%20algorithm" title=" evolutionary genetic algorithm"> evolutionary genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20bodies" title=" flexible bodies"> flexible bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/51863/dynamic-synthesis-of-a-flexible-multibody-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3120</span> Proposal of Analytical Model for the Seismic Performance Evaluation of Reinforced Concrete Frames with Coupled Cross-laminated Timber Infill Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vel%C3%A1zquez%20Alejandro">Velázquez Alejandro</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradhan%20Sujan"> Pradhan Sujan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Rokhyun"> Yoon Rokhyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanada%20Yasushi"> Sanada Yasushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of new materials as an alternative solution to decrease the environmental impact of the construction industry has been gaining more relevance in the architectural design and construction industry. One such material is cross-laminated timber (CLT), an engineered timber solution that excels for its faster construction times, workability, lightweight, and capacity for carbon storage. This material is usually used alone for the entire structure or combined with steel frames, but a hybrid with reinforced concrete (RC) is rarer. Since RC is one of the most used materials worldwide, a hybrid with CLT would allow further utilization of the latter, and in the process, it would help reduce the environmental impact of RC construction to achieve a sustainable society, but first, the structural performance of such hybrids must be understood. This paper focuses on proposing a model to predict the seismic performance of RC frames with CLT panels as infills. A series of static horizontal cyclic loading experiments were conducted on two 40% scale specimens of reinforced concrete frames with and without CLT panels at Osaka University, Japan. An analytical model was created to simulate the seismic performance of the RC frame with CLT infill based on the experimental results. The proposed model was verified by comparing the experimental and analytical results, showing that the load-deformation relationship and the failure mechanism agreed well with limited error. Hence, the proposed analytical model can be implemented for the seismic performance evaluation of the RC frames with CLT infill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title="analytical model">analytical model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20spring" title=" multi spring"> multi spring</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism" title=" rocking mechanism"> rocking mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20wall" title=" wooden wall"> wooden wall</a> </p> <a href="https://publications.waset.org/abstracts/159793/proposal-of-analytical-model-for-the-seismic-performance-evaluation-of-reinforced-concrete-frames-with-coupled-cross-laminated-timber-infill-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3119</span> Analysis of a Single Motor Finger Mechanism for a Prosthetic Hand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaukat%20Ali">Shaukat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanber%20Sedef"> Kanber Sedef</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Yilmaz"> Mustafa Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work analyzes a finger mechanism for a prosthetic hand that will help in improving the living standards of people who have lost their hands for a variety of reasons. The finger mechanism is single degree of freedom and hence has advantages such as compact size, reduced mass and less energy consumption. The proposed finger mechanism is a six bar linkage actuated by a single motor. The kinematic, static and dynamic analyses have been done by using the conventional methods of mechanism analysis. The kinematic results present the motion of the proposed finger mechanism and location of the fingertip. The static and dynamic analyses provide the useful information about the gripping force at the fingertip for various configurations and the selection of motor that will move the finger over its range of configuration. This single motor finger mechanism is simple and resembles the human finger’s motion suitable for grasping operation. This study can be used in the optimization of geometrical parameters of the proposed mechanism to obtain the desired configurations with minimum torque and enhanced griping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamics" title="dynamics">dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=finger%20mechanism" title=" finger mechanism"> finger mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=grasping" title=" grasping"> grasping</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics" title=" kinematics"> kinematics</a> </p> <a href="https://publications.waset.org/abstracts/49855/analysis-of-a-single-motor-finger-mechanism-for-a-prosthetic-hand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3118</span> Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Miaji">Yaser Miaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Aloryani"> Mohammed Aloryani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20classification" title="traffic classification">traffic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=IPv6" title=" IPv6"> IPv6</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20categorization" title=" application categorization"> application categorization</a> </p> <a href="https://publications.waset.org/abstracts/26845/network-traffic-classification-scheme-for-internet-network-based-on-application-categorization-for-ipv6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3117</span> Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hosseini">M. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ghorbani%20Amirabad"> N. Ghorbani Amirabad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zhian"> M. Zhian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism" title="rocking mechanism">rocking mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=see-saw%20motion" title=" see-saw motion"> see-saw motion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteretic%20behavior" title=" hysteretic behavior"> hysteretic behavior</a> </p> <a href="https://publications.waset.org/abstracts/29200/introducing-an-innovative-structural-fuse-for-creation-of-repairable-buildings-with-see-saw-motion-during-earthquake-and-investigating-it-by-nonlinear-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3116</span> Fast Authentication Using User Path Prediction in Wireless Broadband Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gunasekaran%20Raja">Gunasekaran Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajakumar%20Arul"> Rajakumar Arul</a>, <a href="https://publications.waset.org/abstracts/search?q=Kottilingam%20Kottursamy"> Kottilingam Kottursamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20Jayaraman"> Ramkumar Jayaraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathya%20Pavithra"> Sathya Pavithra</a>, <a href="https://publications.waset.org/abstracts/search?q=Swaminathan%20Venkatraman"> Swaminathan Venkatraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Interoperability for Microwave Access (WiMAX) utilizes the IEEE 802.1X mechanism for authentication. However, this mechanism incurs considerable delay during handoffs. This delay during handoffs results in service disruption which becomes a severe bottleneck. To overcome this delay, our article proposes a key caching mechanism based on user path prediction. If the user mobility follows that path, the user bypasses the normal IEEE 802.1X mechanism and establishes the necessary authentication keys directly. Through analytical and simulation modeling, we have proved that our mechanism effectively decreases the handoff delay thereby achieving fast authentication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentication" title="authentication">authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=authorization" title=" authorization"> authorization</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20accounting%20%28AAA%29" title=" and accounting (AAA)"> and accounting (AAA)</a>, <a href="https://publications.waset.org/abstracts/search?q=handoff" title=" handoff"> handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20path%20prediction%20%28UPP%29%20and%20user%20pattern" title=" user path prediction (UPP) and user pattern"> user path prediction (UPP) and user pattern</a> </p> <a href="https://publications.waset.org/abstracts/48859/fast-authentication-using-user-path-prediction-in-wireless-broadband-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3115</span> Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parth%20Prajapati">Parth Prajapati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Srinivas"> A. R. Srinivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamics" title="dynamics">dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectors" title=" reflectors"> reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=statics" title=" statics"> statics</a> </p> <a href="https://publications.waset.org/abstracts/62942/lotus-mechanism-validation-of-deployment-mechanism-using-structural-and-dynamic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3114</span> Design and Fabrication of Electricity Generating Speed Breaker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haider%20Aamir">Haider Aamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali%20Khalid"> Muhammad Ali Khalid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity harvesting speed bump (EHSB) is speed breaker of conventional shape, but the difference is that it is not fixed, rather it moves up and down, and electricity can be generated from its vibrating motion. This speed bump consists of an upper cover which will move up and down, a shaft mechanism which will be used to drive the generator and a rack and pinion mechanism which will connect the cover and shaft. There is a spring mechanism to return the cover to its initial state when a vehicle has passed over the bump. Produced energy in the past was up to 80 Watts. For this purpose, a clutch mechanism is used so that both the up-down movements of the cover can be used to drive the generator. Mechanical Motion Rectifier (MMR) mechanism ensures the conversion of both the linear motions into rotational motion which is used to drive the generator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20harvesting" title="electricity harvesting">electricity harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a>, <a href="https://publications.waset.org/abstracts/search?q=rack%20and%20pinion" title=" rack and pinion"> rack and pinion</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft" title=" stainless steel shaft"> stainless steel shaft</a> </p> <a href="https://publications.waset.org/abstracts/83722/design-and-fabrication-of-electricity-generating-speed-breaker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3113</span> Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osman%20Acar">Osman Acar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sun%20tracking" title="sun tracking">sun tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20sun%20trajectory" title=" theoretical sun trajectory"> theoretical sun trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20mechanism" title=" spherical mechanism"> spherical mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematic%20analysis" title=" inverse kinematic analysis"> inverse kinematic analysis</a> </p> <a href="https://publications.waset.org/abstracts/37062/two-degree-of-freedom-spherical-mechanism-design-for-exact-sun-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3112</span> A Summary of the Research on the Driving Mechanism of Space Expansion in China's National New District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qin%20Xia">Qin Xia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ’National New District’ as a regional overall promotion of strategic thinking has become increasingly mature, but its spatial expansion is still chaotic and disorderly, so it is urgent to summarize the complex and unique driving mechanism contained in its spatial expansion to formulate sustainable urban expansion plan. Under the understanding of the general laws of the driving mechanism of China's space expansion, it is found that the existing research on the driving mechanism of the space expansion of national new districts is insufficient. The research area focuses on the research of the driving mechanism of the space expansion of a single new area. In terms of research methods, qualitative description is the main focus. In terms of research content, it is limited to the expansion speed, intensity, and area of the new district itself and does not involve the expansion and utilization efficiency of space and the spillover efficiency to surrounding cities. The specific connotations of social, economic, political, and geographical categories are not thoroughly explored. It is often a general explanation that a certain factor has promoted it. The logic is not rigorous and convincing, and the description is relatively static, with different time and space. There is less literature on scale interaction. Through the reflection on the key and difficult points of the drive mechanism of the space expansion of the national new area, it is clear that the existing research on the drive mechanism of the space expansion of the national new area should be continued to drive the sustainable expansion of space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=national%20new%20district" title="national new district">national new district</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20expansion" title=" space expansion"> space expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20mechanism" title=" driving mechanism"> driving mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=existing%20research" title=" existing research"> existing research</a> </p> <a href="https://publications.waset.org/abstracts/131639/a-summary-of-the-research-on-the-driving-mechanism-of-space-expansion-in-chinas-national-new-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3111</span> Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Dumitru">N. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dumitru"> S. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Copilusi"> C. Copilusi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ploscaru"> N. Ploscaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20dynamic%20analysis" title="modal dynamic analysis">modal dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pump" title=" oil pump"> oil pump</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20elements" title=" flexible elements"> flexible elements</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title=" frequency response"> frequency response</a> </p> <a href="https://publications.waset.org/abstracts/47941/modal-dynamic-analysis-of-a-mechanism-with-deformable-elements-from-an-oil-pump-unit-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3110</span> Research on Contract's Explicit Incentive and Reputation's Implicit Incentive Mechanism towards Construction Contractors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Ma">Li Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Meishuang%20Ma"> Meishuang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengying%20Huang"> Mengying Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of construction projects reflects the credit and responsibilities of construction contractors for the owners and the whole society. Because the construction contractors master more relevant information about the entrusted engineering project under construction while the owners are in unfavorable position of gaining information, asymmetric information may lead the contractors act against the owners in order to pursue their own interests. Building a powerful motivation mechanism is the key to guarantee investor economic interests and the life and property of users in construction projects. Based on principal-agent theory and game theory, the authors develop relevant mathematical models to analyze and compare the contractor’s utility functions under different combinations of contracts’ explicit incentive mechanism and reputation’s implicit incentive mechanism aiming at finding out the conditions for incentive validity. The research concludes that the most rational motivation way is to combine the explicit and implicit incentive effects of both contracts and reputation mechanism, and puts forth some measures for problems on account of China’s current situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20contractors" title="construction contractors">construction contractors</a>, <a href="https://publications.waset.org/abstracts/search?q=contract" title=" contract"> contract</a>, <a href="https://publications.waset.org/abstracts/search?q=reputation" title=" reputation"> reputation</a>, <a href="https://publications.waset.org/abstracts/search?q=incentive%20mechanism" title=" incentive mechanism"> incentive mechanism</a> </p> <a href="https://publications.waset.org/abstracts/36274/research-on-contracts-explicit-incentive-and-reputations-implicit-incentive-mechanism-towards-construction-contractors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3109</span> Analysis of Structure-Flow Interaction for Water Brake Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Avci">Murat Avci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Kosar"> Fatih Kosar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Yilmaz"> Ismail Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, structure-flow interaction for water brake mechanism is studied with Abaqus CEL approach. The water brake mechanism is used for dynamic systems such as sled system on rail. For the achievement of these system tests, structure-flow interaction should be investigated in detail. This study is about a sled test of an aircraft subsystem which rises to supersonic speeds thanks to rocket engines. To decrease or to stop the thrusting rocket sleds, water brake mechanisms are used. Water brake mechanism provides the deceleration of the structures that have supersonic speeds. Therefore, structure-flow interaction may cause damage to the water brake mechanism. To verify all design revisions with system tests are so costly so that some decisions are taken in accordance with numerical methods. In this study, structure-flow interaction that belongs to water brake mechanism is solved with Abaqus CEL approach. Fluid and deformation on the structure behaviors are modeled at the same time thanks to CEL approach. Provided analysis results are corrected with the dynamic tests. Deformation zones seen in numerical analysis are also observed in dynamic tests. Finally, Johnson-Cook material model parameters used for this analysis are proven, and it is understood that these parameters can be used for dynamic analysis like water brake mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket" title=" rocket"> rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-flow" title=" structure-flow"> structure-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic" title=" supersonic"> supersonic</a> </p> <a href="https://publications.waset.org/abstracts/104502/analysis-of-structure-flow-interaction-for-water-brake-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3108</span> Optimality of Shapley Value Mechanism under Sybil Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Mazorra%20Roig">Bruno Mazorra Roig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the realm of cost-sharing mechanisms, the vulnerability to Sybil strategies, where agents can create fake identities to manipulate outcomes, has not yet been studied. In this paper, we delve into the intricacies of different cost-sharing mechanisms proposed in the literature, highlighting its non-Sybil-resistance nature. Furthermore, we prove that under mild conditions, a Sybil-proof cost-sharing mechanism for public excludable goods is at least (n/2 + 1)−approximate. This finding reveals an exponential increase in the worst-case social cost in environments where agents are restricted from using Sybil strategies. We introduce the concept of Sybil Welfare Invariant mechanisms, where a mechanism maintains its worst-case welfare under Sybil strategies for every set of prior beliefs with full support even when the mechanism is not Sybil-proof. Finally, we prove that the Shapley value mechanism for public excludable goods holds this property and so deduce that the worst-case social cost of this mechanism is the nth harmonic number Hn under the equilibrium of the game with Sybil strategies, matching the worst-case social cost bound for cost-sharing mechanisms. This finding carries important implications for decentralized autonomous organizations (DAOs), indicating that they are capable of funding public excludable goods efficiently, even when the total number of agents is unknown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title="game theory">game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20design" title=" mechanism design"> mechanism design</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20sharing" title=" cost sharing"> cost sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=false-name%20proofness" title=" false-name proofness"> false-name proofness</a> </p> <a href="https://publications.waset.org/abstracts/179872/optimality-of-shapley-value-mechanism-under-sybil-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3107</span> Design and Optimization for a Compliant Gripper with Force Regulation Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nhat%20Linh%20Ho">Nhat Linh Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh-Phong%20Dao"> Thanh-Phong Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Chour%20Huang"> Shyh-Chour Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hieu%20Giang%20Le"> Hieu Giang Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array <em>L<sub>9</sub></em> is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexure%20hinge" title="flexure hinge">flexure hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20mechanism" title=" compliant mechanism"> compliant mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20gripper" title=" compliant gripper"> compliant gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20regulation%20mechanism" title=" force regulation mechanism"> force regulation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/61596/design-and-optimization-for-a-compliant-gripper-with-force-regulation-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3106</span> Design and Analysis of Flexible Slider Crank Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanh-Phong%20Dao">Thanh-Phong Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Chour%20Huang"> Shyh-Chour Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a Pseudo-Rigid-Body Model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite Element Analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20behavior" title="kinematic behavior">kinematic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-rigid-body%20model" title=" pseudo-rigid-body model"> pseudo-rigid-body model</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20slider%20crank%20mechanism" title=" flexible slider crank mechanism"> flexible slider crank mechanism</a> </p> <a href="https://publications.waset.org/abstracts/4242/design-and-analysis-of-flexible-slider-crank-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3105</span> Effects of Manufacture and Assembly Errors on the Output Error of Globoidal Cam Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuting%20Ji">Shuting Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueming%20Zhang"> Yueming Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhao"> Jing Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The output error of the globoidal cam mechanism can be considered as a relevant indicator of mechanism performance, because it determines kinematic and dynamical behavior of mechanical transmission. Based on the differential geometry and the rigid body transformations, the mathematical model of surface geometry of the globoidal cam is established. Then we present the analytical expression of the output error (including the transmission error and the displacement error along the output axis) by considering different manufacture and assembly errors. The effects of the center distance error, the perpendicular error between input and output axes and the rotational angle error of the globoidal cam on the output error are systematically analyzed. A globoidal cam mechanism which is widely used in automatic tool changer of CNC machines is applied for illustration. Our results show that the perpendicular error and the rotational angle error have little effects on the transmission error but have great effects on the displacement error along the output axis. This study plays an important role in the design, manufacture and assembly of the globoidal cam mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=globoidal%20cam%20mechanism" title="globoidal cam mechanism">globoidal cam mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacture%20error" title=" manufacture error"> manufacture error</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20error" title=" transmission error"> transmission error</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20tool%20changer" title=" automatic tool changer"> automatic tool changer</a> </p> <a href="https://publications.waset.org/abstracts/33472/effects-of-manufacture-and-assembly-errors-on-the-output-error-of-globoidal-cam-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3104</span> Development of a Harvest Mechanism for the Kahramanmaraş Chili Pepper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Akay">O. E. Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G%C3%BCzel"> E. Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20%C3%96zcan"> M. T. Özcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pepper has quite a rich variety. The development of a single harvesting machine for all kinds of peppers is a difficult research topic. By development of harvesting mechanisms, we could be able to facilitate the pepper harvesting problems. In this study, an experimental harvesting machine was designed for chili pepper. Four-bar mechanism was used for the design of the prototype harvesting machine. At the result of harvest trials, 80% of peppers were harvested and 8% foreign materials were collected. These results have provided some tips on how to apply to large-scale pepper Four-bar mechanism of the harvest machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20simulation" title="kinematic simulation">kinematic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20bar%20linkage" title=" four bar linkage"> four bar linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=harvest%20mechanization" title=" harvest mechanization"> harvest mechanization</a>, <a href="https://publications.waset.org/abstracts/search?q=pepper%20harvest" title=" pepper harvest"> pepper harvest</a> </p> <a href="https://publications.waset.org/abstracts/44062/development-of-a-harvest-mechanism-for-the-kahramanmaras-chili-pepper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3103</span> Mechanism of Changing a Product Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiyohiro%20Yamazaki">Kiyohiro Yamazaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to examine the hypothesis explaining the mechanism in the case, where the product is deleted or reduced the fundamental function of the product through the product concept changes in the digital camera industry. This paper points out not owning the fundamental technology might cause the change of the product concept. Casio could create new competitive factor so that this paper discusses a possibility of the mechanism of changing the product concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firm%20without%20fundamental%20technology" title="firm without fundamental technology">firm without fundamental technology</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20development" title=" product development"> product development</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20concept" title=" product concept"> product concept</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20camera%20industry" title=" digital camera industry"> digital camera industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Casio" title=" Casio"> Casio</a> </p> <a href="https://publications.waset.org/abstracts/16190/mechanism-of-changing-a-product-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3102</span> Explicable Enzymatic Mechanism of H-Ido to Oxidise Tryptophan by Employing Various Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bahri%20Lubis">Ali Bahri Lubis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of dioxygenase enzymatic mechanism on tryptophan oxidation has been a wide interest since the reaction is rate-limiting step of kynurenine pathway. In this research, observation of tryptophan oxidation through h-IDO enzyme along with synthesis of enzyme products was conducted in order to comprehend how the enzyme works on distinct substrates. UV-vis spectrophotometry, LC-MS, H-NMR and HSQC measurement were carried out to characterise enzyme product. It is found that while tryptophan was oxidised to form Nformylkynurenine (NFK) as a major product and hydroxypyrroloindole amine carboxylic acid (HPIC) in cis and trans confirmed in HSQC, N-methyl tryptophan substrate was converted to NFK and trans HPIC only. Other intriguing results showed that 5-hydroxy- tryptophan and Stryptophan was degraded to become NFK and epoxide cyclic respectively. The formation of NFK was considered through dioxygenation pathway, however HPIC was formed via monooxygenation. The epoxide cyclic—considered as intermediate compound in the mechanism— from S-tryptophan was not able to cleave the epoxide ring since bond energy of epoxide was probably much stronger. This validates the enzymatic mechanism where the intermediate compound in the enzymatic mechanism is epoxide cyclic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tryptophan%20oxidation" title="tryptophan oxidation">tryptophan oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=heme-dioxygenases" title=" heme-dioxygenases"> heme-dioxygenases</a>, <a href="https://publications.waset.org/abstracts/search?q=N-formylkynurenine" title=" N-formylkynurenine"> N-formylkynurenine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxypyrrroloindoleamine" title=" hydroxypyrrroloindoleamine"> hydroxypyrrroloindoleamine</a>, <a href="https://publications.waset.org/abstracts/search?q=monooxidation" title=" monooxidation"> monooxidation</a> </p> <a href="https://publications.waset.org/abstracts/170619/explicable-enzymatic-mechanism-of-h-ido-to-oxidise-tryptophan-by-employing-various-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3101</span> A Workable Mechanism to Support Students Who Are at Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Chabi">Mohamed Chabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project of helping students at risk started at the Math department in the new foundation program at Qatar University in the fall 2012 semester. The purpose was to find ways to help students who were struggling with their math courses Elementary algebra or Precalculus course due to many factors. Department had formed the Committee “students at Risk” at the start of 12-13 to assist struggling students in our math courses to get their studies on track. A mechanism was developed to support students who are at risk using a developed E-Monitoring system. E-Monitoring system was developed to manage automatically all transactions relevant to the students’ attendance, Students ‘‘warning Students’’ grading, etc. E-Monitoring System produce various statistics such as, Overall course statistics, Performance, Students at Risk… to help department to develop a higher quality of education in the Foundation Program at Math department. The mechanism was studies and evaluated. Whatever the cause, the sooner we identify students who are not performing well academically, the sooner we can provide, or direct them to the resources that are available to them. In this paper, we outline the mechanism and its effect on students’ performance. The collected data from various exams shows that students had benefited from the mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=students%20at%20risk" title="students at risk">students at risk</a>, <a href="https://publications.waset.org/abstracts/search?q=e-monitoring%20system" title=" e-monitoring system"> e-monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=warning%20students" title=" warning students"> warning students</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance "> performance </a> </p> <a href="https://publications.waset.org/abstracts/31511/a-workable-mechanism-to-support-students-who-are-at-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3100</span> Structured Access Control Mechanism for Mesh-based P2P Live Streaming Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan-Ching%20Sue">Chuan-Ching Sue</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai-Chun%20Chuang"> Kai-Chun Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peer-to-Peer (P2P) live streaming systems still suffer a challenge when thousands of new peers want to join into the system in a short time, called flash crowd, and most of new peers suffer long start-up delay. Recent studies have proposed a slot-based user access control mechanism, which periodically determines a certain number of new peers to enter the system, and a user batch join mechanism, which divides new peers into several tree structures with fixed tree size. However, the slot-based user access control mechanism is difficult for accurately determining the optimal time slot length, and the user batch join mechanism is hard for determining the optimal tree size. In this paper, we propose a structured access control (SAC) mechanism, which constructs new peers to a multi-layer mesh structure. The SAC mechanism constructs new peer connections layer by layer to replace periodical access control, and determines the number of peers in each layer according to the system’s remaining upload bandwidth and average video rate. Furthermore, we propose an analytical model to represent the behavior of the system growth if the system can utilize the upload bandwidth efficiently. The analytical result has shown the similar trend in system growth as the SAC mechanism. Additionally, the extensive simulation is conducted to show the SAC mechanism outperforms two previously proposed methods in terms of system growth and start-up delay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peer-to-peer" title="peer-to-peer">peer-to-peer</a>, <a href="https://publications.waset.org/abstracts/search?q=live%20video%20streaming%20system" title=" live video streaming system"> live video streaming system</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20crowd" title=" flash crowd"> flash crowd</a>, <a href="https://publications.waset.org/abstracts/search?q=start-up%20delay" title=" start-up delay"> start-up delay</a>, <a href="https://publications.waset.org/abstracts/search?q=access%20control" title=" access control"> access control</a> </p> <a href="https://publications.waset.org/abstracts/24987/structured-access-control-mechanism-for-mesh-based-p2p-live-streaming-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3099</span> Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Jia">Shan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinbao%20Chen"> Jinbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhua%20Zhou"> Jinhua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiacheng%20Qian"> Jiacheng Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=configuration%20design" title="configuration design">configuration design</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20soft-landing%20device" title=" lunar soft-landing device"> lunar soft-landing device</a>, <a href="https://publications.waset.org/abstracts/search?q=movable" title=" movable"> movable</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/98256/configuration-design-and-optimization-of-the-movable-leg-foot-lunar-soft-landing-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3098</span> Idea Expropriation, Incentives, and Governance within Organizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulseren%20Mutlu">Gulseren Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurupdesh%20Pandher"> Gurupdesh Pandher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the strategic interplay between innovation, incentives, expropriation threat and disputes arising from expropriation from an intra-organization perspective. We present a simple principal-agent model with hidden actions and hidden information in which two employees can choose how much (innovative) effort to exert, whether to expropriate the innovation of the other employee and whether to dispute if innovation is expropriated. The organization maximizes its expected payoff by choosing the optimal reward scheme for both employees as well as whether to encourage or discourage disputes. We analyze two mechanisms under which innovative ideas are not expropriated. First, we show that under a non-contestable mechanism (in which the organization discourages disputes among employees), the organization has to offer a “rent” to the potential expropriator. However, under a contestable mechanism (in which the organization encourages disputes), there is no need for such rent. If the cost of resolving the dispute is negligible, the organization’s expected payoff is higher under a contestable mechanism. Second, we develop a comparable team mechanism in which innovation takes place as a result of the joint efforts of employees and innovation payments are made based on the team outcome. We show that if the innovation value is low and employees have similar productivity, then the organization is better off under a contestable mechanism. On the other hand, if the innovation value is high, the organization is better off under a team mechanism. Our results have important practical implications for the design of innovation reward system for employees, hiring policy and governance for different companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation" title="innovation">innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=incentives" title=" incentives"> incentives</a>, <a href="https://publications.waset.org/abstracts/search?q=expropriation%20threat" title=" expropriation threat"> expropriation threat</a>, <a href="https://publications.waset.org/abstracts/search?q=dispute%20resolution" title=" dispute resolution"> dispute resolution</a> </p> <a href="https://publications.waset.org/abstracts/21629/idea-expropriation-incentives-and-governance-within-organizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3097</span> Soot Formation in the Field of Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nacira%20Mecheri">Nacira Mecheri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boussid"> N. Boussid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new chemical mechanism designed to study the process of forming the first aromatic ring (benzene) and polycyclic aromatic hydrocarbons (PAH) from a flame of acetylene (C2H2) has been developed. The mechanism developed, contains 50 chemical species involved in 268 reversible elementary reactions. The comparison between the results from modelling and experimental measurements allowed us to test the validity of the postulated mechanism in specific experimental conditions. Kinetic analysis of the flame by calculating the maximum rates for each elementary reaction, allowed us to identify key reactions pathways of consumption and formation of main precursors of soot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzene" title="benzene">benzene</a>, <a href="https://publications.waset.org/abstracts/search?q=PAH" title=" PAH"> PAH</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylene" title=" acetylene"> acetylene</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=flame" title=" flame"> flame</a>, <a href="https://publications.waset.org/abstracts/search?q=soot" title=" soot"> soot</a> </p> <a href="https://publications.waset.org/abstracts/40140/soot-formation-in-the-field-of-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=104">104</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>