CINXE.COM
Search results for: microwave security system
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microwave security system</title> <meta name="description" content="Search results for: microwave security system"> <meta name="keywords" content="microwave security system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microwave security system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microwave security system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19868</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microwave security system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19868</span> Microwave Security System in Museums: Design and Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Elsheakh">Dalia Elsheakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Elsadek"> Hala Elsadek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to propose a competitive microwave security system that can be applied with reasonable price at museums in Egypt, considering the priceless elements in 23 Egyptian museums countrywide and the lack of good recent security systems even in big ones. The system main goal is to detect valuable targets to ensure their presence in the pre-defined positions in order to protect them from being stolen. The system is based on real time microwave scanning for the required space volume through transmitting RF waves at consecutive angles and detecting the back scattered waves from required objects to detect their existence at pre-specified locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system" title="microwave security system">microwave security system</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20locating%20system" title=" object locating system"> object locating system</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20locating%20system%20%28RTLS%29" title=" real time locating system (RTLS)"> real time locating system (RTLS)</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna%20array" title=" antenna array"> antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=array%20electronic%20scanning" title=" array electronic scanning"> array electronic scanning</a> </p> <a href="https://publications.waset.org/abstracts/5673/microwave-security-system-in-museums-design-and-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19867</span> Synthesis of Mg/B Containing Compound in a Modified Microwave Oven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20%C3%87elik%20G%C3%BCl">Gülşah Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=Figen%20Kurtulu%C5%9F"> Figen Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN. Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20containing%20boron%20compounds" title="magnesium containing boron compounds">magnesium containing boron compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20microwave%20synthesis" title=" modified microwave synthesis"> modified microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20X-ray%20diffraction" title=" powder X-ray diffraction"> powder X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/68256/synthesis-of-mgb-containing-compound-in-a-modified-microwave-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19866</span> The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20radiation" title="microwave radiation">microwave radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/3545/the-effect-of-microwave-radiation-on-biogas-production-efficiency-using-different-plant-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19865</span> Recent Development on Application of Microwave Energy on Process Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Omran">Mamdouh Omran</a>, <a href="https://publications.waset.org/abstracts/search?q=Timo%20Fabritius"> Timo Fabritius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing interest in microwave heating has emerged recently. Many researchers have begun to pay attention to microwave energy as an alternative technique for processing various primary and secondary raw materials. Compared to conventional methods, microwave processing offers several advantages, such as selective heating, rapid heating, and volumetric heating. The present study gives a summary on our recent works related to the use of microwave energy for the recovery of valuable metals from primary and secondary raw materials. The research is mainly focusing on: Application of microwave for the recovery and recycling of metals from different metallurgical industries wastes (i.e. electric arc furnace (EAF) dust, blast furnace (BF), basic oxygen furnace (BOF) sludge). Application of microwave for upgrading and recovery of valuable metals from primary raw materials (i.e. iron ore). The results indicated that microwave heating is a promising and effective technique for processing primary and secondary steelmaking wastes. After microwave treatment of iron ore for 60 s and 900 W, about a 28.30% increase in grindability.Wet high intensity magnetic separation (WHIMS) indicated that the magnetic separation increased from 34% to 98% after microwave treatment for 90 s and 900 W. In the case of EAF dust, after microwave processing at 1100 W for 20 min, Zinc removal from 64 % to ~ 97 %, depending on mixture ratio and treatment time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title=" microwave heating"> microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20materials" title=" raw materials"> raw materials</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20raw%20materials" title=" secondary raw materials"> secondary raw materials</a> </p> <a href="https://publications.waset.org/abstracts/156829/recent-development-on-application-of-microwave-energy-on-process-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19864</span> Electromagnetic Interference Shielding Effectiveness of a Corrugated Rectangular Waveguide for a Microwave Conveyor-Belt Drier </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Hyeon%20Bae">Sang-Hyeon Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Yeon%20Kim"> Sung-Yeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Gyo%20Jeong"> Min-Gyo Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Hong%20Kim"> Ji-Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang-Sang%20Lee"> Wang-Sang Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional heating methods such as electric ovens or steam heating are slow and not very efficient. For continuously heating the objects, a microwave conveyor-belt drier is widely used in the industrial microwave heating systems. However, there is a problem in which electromagnetic wave leaks toward outside of the heating cavity through the insertion opening. To achieve the prevention of the leakage of microwaves and improved heating characteristics, the corrugated rectangular waveguide at the entrance and exit openings of a microwave conveyor-belt drier is proposed and its electromagnetic interference (EMI) shielding effectiveness is analyzed and verified. The corrugated waveguides in the proposed microwave heating system achieve at least 20 dB shielding effectiveness while ensuring a sufficient height of the openings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated" title="corrugated">corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20wave" title=" electromagnetic wave"> electromagnetic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20conveyor-belt%20drier" title=" microwave conveyor-belt drier"> microwave conveyor-belt drier</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20waveguide" title=" rectangular waveguide"> rectangular waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effectiveness" title=" shielding effectiveness"> shielding effectiveness</a> </p> <a href="https://publications.waset.org/abstracts/62070/electromagnetic-interference-shielding-effectiveness-of-a-corrugated-rectangular-waveguide-for-a-microwave-conveyor-belt-drier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19863</span> Reflection Performance of Truncated Pyramidal and Truncated Wedge Microwave Absorber Using Sugarcane Bagasse (SCB) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liyana%20Zahid">Liyana Zahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fareq%20Abd%20Malek"> Mohd Fareq Abd Malek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ee%20Meng%20Cheng"> Ee Meng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wen%20Liu"> Wei Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Seng%20Lee"> Yeng Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem%20Iqbal"> Muhammad Nadeem Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fwen%20Hoon%20Wee"> Fwen Hoon Wee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the parameters that affect the performance of microwave absorbers is the shape of the absorbers. This paper shows the performance (reflection loss) of truncated pyramidal and truncated wedge microwave absorbers in the range frequency between 8.2 to 12.4 GHz (X-Band) in simulation. The material used is sugarcane bagasse (SCB) which is one of the new materials that used to fabricate the microwave absorber. The complex permittivity was measured using Agilent dielectric probe technique. The designs were simulated using CST Microwave Studio Software. The reflection losses between these two shapes were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorber" title="microwave absorber">microwave absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20loss" title=" reflection loss"> reflection loss</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse%20%28SCB%29" title=" sugarcane bagasse (SCB)"> sugarcane bagasse (SCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Band" title=" X-Band"> X-Band</a> </p> <a href="https://publications.waset.org/abstracts/1457/reflection-performance-of-truncated-pyramidal-and-truncated-wedge-microwave-absorber-using-sugarcane-bagasse-scb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19862</span> The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Tien">N. P. Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Songsermpong"> S. Songsermpong</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Quan"> T. H. Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mung%20bean%20vermicelli" title="mung bean vermicelli">mung bean vermicelli</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20air" title=" hot air"> hot air</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20continuous" title=" microwave continuous"> microwave continuous</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20vacuum" title=" microwave vacuum"> microwave vacuum</a> </p> <a href="https://publications.waset.org/abstracts/170532/the-effects-of-drying-technology-on-rehydration-time-and-quality-of-mung-bean-vermicelli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19861</span> Developing a Systems Dynamics Model for Security Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuan-Chou%20Chen">Kuan-Chou Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20thinking" title="system thinking">system thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20security%20systems" title=" information security systems"> information security systems</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20management" title=" security management"> security management</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/40859/developing-a-systems-dynamics-model-for-security-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19860</span> Design a Network for Implementation a Hospital Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulqader%20Rasool%20Feqi%20Mohammed">Abdulqader Rasool Feqi Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Er%C3%A7elebi%CC%87"> Ergun Erçelebi̇</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large number of hospitals from developed countries are adopting hospital information system to bring efficiency in hospital information system. The purpose of this project is to research on new network security techniques in order to enhance the current network security structure of save a hospital information system (HIS). This is very important because, it will avoid the system from suffering any attack. Security architecture was optimized but there are need to keep researching on best means to protect the network from future attacks. In this final project research, security techniques were uncovered to produce best network security results when implemented in an integrated framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hospital%20information%20system" title="hospital information system">hospital information system</a>, <a href="https://publications.waset.org/abstracts/search?q=HIS" title=" HIS"> HIS</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security%20techniques" title=" network security techniques"> network security techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20protocol" title=" internet protocol"> internet protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=IP" title=" IP"> IP</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a> </p> <a href="https://publications.waset.org/abstracts/44356/design-a-network-for-implementation-a-hospital-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19859</span> Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Olatujoye">Babatunde Olatujoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Binbin%20Yang"> Binbin Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20propagation" title="back propagation">back propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=monostatic" title=" monostatic"> monostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=vivialdi%20antenna" title=" vivialdi antenna"> vivialdi antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband" title=" ultra wideband"> ultra wideband</a> </p> <a href="https://publications.waset.org/abstracts/192577/implementation-of-a-monostatic-microwave-imaging-system-using-a-uwb-vivaldi-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19858</span> Security Features for Remote Healthcare System: A Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamil%20Chelvi%20Vadivelu">Tamil Chelvi Vadivelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurazean%20Maarop"> Nurazean Maarop</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasimah%20Che%20Yusoff"> Rasimah Che Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhana%20Aini%20Saludin"> Farhana Aini Saludin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementing a remote healthcare system needs to consider many security features. Therefore, before any deployment of the remote healthcare system, a feasibility study from the security perspective is crucial. Remote healthcare system using WBAN technology has been used in other countries for medical purposes but in Malaysia, such projects are still not yet implemented. This study was conducted qualitatively. The interview results involving five healthcare practitioners are further elaborated. The study has addressed four important security features in order to incorporate remote healthcare system using WBAN in Malaysian government hospitals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20healthcare" title="remote healthcare">remote healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=IT%20security" title=" IT security"> IT security</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20features" title=" security features"> security features</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20application" title=" wireless sensor application"> wireless sensor application</a> </p> <a href="https://publications.waset.org/abstracts/20183/security-features-for-remote-healthcare-system-a-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19857</span> Microwave-Assisted Eradication of Wool </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Salama">M. Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Haggag"> K. Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Sayed"> H. El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An environmentally and ecologically acceptable method for eradication of wool fabrics based on microwave irradiation (MWI) was described. The process would be a suitable alternative for mothproofing of wool using toxic degradative chemical or biological methods. The effect of microwave irradiation and exposure time on the extent of eradication of wool fabrics from moth larvae was monitored. The inherent properties of the MW-irradiated wool fabrics; viz. tensile properties, alkali solubility, and yellowing index, were not adversely altered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=moth" title=" moth"> moth</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/8504/microwave-assisted-eradication-of-wool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19856</span> The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Larrousi">A. Larrousi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Amara"> K. Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemouli"> M. Zemouli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20H.%20Coudert"> L. H. Coudert</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20R.%20Medvedev"> I. R. Medvedev</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20De%20Lucia"> F. C. De Lucia</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsuko%20Maeda"> Atsuko Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20W.%20C.%20McKellar"> R. W. C. McKellar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Appadoo"> D. Appadoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CH3COD" title="CH3COD">CH3COD</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20microwave%20spectra" title=" the microwave spectra"> the microwave spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=far%20infrared%20spectra%20high%20resolution" title=" far infrared spectra high resolution"> far infrared spectra high resolution</a> </p> <a href="https://publications.waset.org/abstracts/18891/the-microwave-and-far-infrared-spectra-of-acetaldehyde-d1-in-vt2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19855</span> Atmospheric Pressure Microwave Plasma System and Its Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20A.%20Toor">Waqas A. Toor</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20U.%20Baig"> Anis U. Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuaman%20Shafqat"> Nuaman Shafqat</a>, <a href="https://publications.waset.org/abstracts/search?q=Raafia%20Irfan"> Raafia Irfan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HFSS%20high%20frequency%20structure%20simulator" title="HFSS high frequency structure simulator">HFSS high frequency structure simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=Microwave%20plasma" title=" Microwave plasma"> Microwave plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet" title=" UV ultraviolet"> UV ultraviolet</a>, <a href="https://publications.waset.org/abstracts/search?q=WR%20rectangular%20waveguide" title=" WR rectangular waveguide"> WR rectangular waveguide</a> </p> <a href="https://publications.waset.org/abstracts/91066/atmospheric-pressure-microwave-plasma-system-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19854</span> Efficacy of Microwave against Oryzaephilus Mercator Pest Infesting Dried Figs and Evaluation of the Product Color Changes Using an Image Processing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Sadeghi">Reza Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, microwave heating was employed for controlling Oryzaephilus mercator. adults infesting stored Iranian dried fig. For this purpose, the dried fig samples were artificially infested with O. mercator and then heated in a microwave oven (2450 MHz) at the power outputs of 450, 720, and 900 W for 10, 20, 30, and 40 s, respectively. Subsequently, changes in the colors of the product samples under the effects of the varied microwave applications were investigated in terms of lightness (ΔL*), redness (Δa*), and yellowness (Δb*) using an image processing technique. The results revealed that both parameters of microwave power and exposure time had significant impacts on the pest mortality rates (p<0.01). In fact, a direct positive relationship was obtained between the mortality rate and microwave irradiation power. Complete mortality was achieved for the pest at the power of 900 W and exposure time of 40 s. The dried fig samples experienced fewer changes in their color parameters. Considering the successful pest control and acceptable changes in the product quality, microwave irradiation can be introduced as an appropriate alternative to chemical fumigants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorimetric%20assay" title="colorimetric assay">colorimetric assay</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title=" microwave heating"> microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=Oryzaephilus%20mercator" title=" Oryzaephilus mercator"> Oryzaephilus mercator</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/170388/efficacy-of-microwave-against-oryzaephilus-mercator-pest-infesting-dried-figs-and-evaluation-of-the-product-color-changes-using-an-image-processing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19853</span> Graphene Transistors Based Microwave Amplifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Hosseinioun">Pejman Hosseinioun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Safari"> Ali Safari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Sarbazi"> Hamed Sarbazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20FETs" title=" microwave FETs"> microwave FETs</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20amplifiers" title=" microwave amplifiers"> microwave amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=transistors" title=" transistors "> transistors </a> </p> <a href="https://publications.waset.org/abstracts/20419/graphene-transistors-based-microwave-amplifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19852</span> Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Zhang">Peng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cai%20Liang"> Cai Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste" title="plastic waste">plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a> </p> <a href="https://publications.waset.org/abstracts/167487/microwave-heating-and-catalytic-activity-of-ironcarbon-materials-for-h2-production-from-the-decomposition-of-plastic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19851</span> Microwave-Assisted Extraction of Lycopene from Gac Arils (Momordica cochinchinensis (Lour.) Spreng)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yardfon%20Tanongkankit">Yardfon Tanongkankit</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjana%20Narkprasom"> Kanjana Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Nukrob%20Narkprasom"> Nukrob Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwanruthai%20Saiupparat"> Khwanruthai Saiupparat</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatthareeya%20Siriwat"> Phatthareeya Siriwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gac fruit (Momordica cochinchinensis (Lour.) Spreng) possesses high potential for health food as it contains high lycopene contents. The objective of this study was to optimize the extraction of lycopene from gac arils using the microwave extraction method. Response surface method was used to find the conditions that optimize the extraction of lycopene from gac arils. The parameters of extraction used in this study were extraction time (120-600 seconds), the solvent to sample ratio (10:1, 20:1, 30:1, 40:1 and 50:1 mL/g) and set microwave power (100-800 watts). The results showed that the microwave extraction condition at the extraction time of 360 seconds, the sample ratio of 30:1 mL/g and the microwave power of 450 watts were suggested since it exhibited the highest value of lycopene content of 9.86 mg/gDW. It was also observed that lycopene contents extracted from gac arils by microwave method were higher than that by the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20extraction" title="conventional extraction">conventional extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Gac%20arils" title=" Gac arils"> Gac arils</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20extraction" title=" microwave-assisted extraction"> microwave-assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lycopene" title=" Lycopene"> Lycopene</a> </p> <a href="https://publications.waset.org/abstracts/62117/microwave-assisted-extraction-of-lycopene-from-gac-arils-momordica-cochinchinensis-lour-spreng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19850</span> Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hassan%20Khalil">Muhammad Hassan Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jiadong"> Xu Jiadong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title="microwave imaging">microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20scattering" title=" inverse scattering"> inverse scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=malignant%20tumor%20detection" title=" malignant tumor detection"> malignant tumor detection</a> </p> <a href="https://publications.waset.org/abstracts/2719/microwave-tomography-the-analytical-treatment-for-detecting-malignant-tumor-inside-human-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19849</span> Design and Realization of Computer Network Security Perception Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Miloudi%20Djelloul">El Miloudi Djelloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on analysis on applications by perception control technology in computer network security status and security protection measures, from the angles of network physical environment and network software system environmental security, this paper provides network security system perception control solution using Internet of Things (IOT), telecom and other perception technologies. Security Perception Control System is in the computer network environment, utilizing Radio Frequency Identification (RFID) of IOT and telecom integration technology to carry out integration design for systems. In the network physical security environment, RFID temperature, humidity, gas and perception technologies are used to do surveillance on environmental data, dynamic perception technology is used for network system security environment, user-defined security parameters, security log are used for quick data analysis, extends control on I/O interface, by development of API and AT command, Computer Network Security Perception Control based on Internet and GSM/GPRS is achieved, which enables users to carry out interactive perception and control for network security environment by WEB, E-MAIL as well as PDA, mobile phone short message and Internet. In the system testing, through middle ware server, security information data perception in real time with deviation of 3-5% was achieved; it proves the feasibility of Computer Network Security Perception Control System. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20network" title="computer network">computer network</a>, <a href="https://publications.waset.org/abstracts/search?q=perception%20control%20system%0D%0Asecurity%20strategy" title=" perception control system security strategy"> perception control system security strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=Radio%20Frequency%20Identification%20%28RFID%29" title=" Radio Frequency Identification (RFID) "> Radio Frequency Identification (RFID) </a> </p> <a href="https://publications.waset.org/abstracts/18725/design-and-realization-of-computer-network-security-perception-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19848</span> Microwave Sintering and Its Application on Cemented Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rumman%20M.%20D.%20Raihanuzzaman">Rumman M. D. Raihanuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Chang%20Chuan"> Lee Chang Chuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zonghan%20Xie"> Zonghan Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghomashchi"> Reza Ghomashchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbides" title="cemented carbides">cemented carbides</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20sintering" title=" microwave sintering"> microwave sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties "> mechanical properties </a> </p> <a href="https://publications.waset.org/abstracts/32637/microwave-sintering-and-its-application-on-cemented-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19847</span> An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hassan%20Khalil">Muhammad Hassan Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jiadong"> Xu Jiadong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20detection" title="breast cancer detection">breast cancer detection</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a> </p> <a href="https://publications.waset.org/abstracts/2718/an-insight-into-early-stage-detection-of-malignant-tumor-by-microwave-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19846</span> Sulfamethaxozole (SMX) Removal by Microwave-Assisted Heterogenous Fenton Reaction Involving Synthetic Clay (LDHS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebli%20Derradji">Chebli Derradji</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Bouguettoucha"> Abdallah Bouguettoucha</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoubir%20Manaa"> Zoubir Manaa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nacef"> S. Nacef</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amrane"> A. Amrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotics are major pollutants of wastewater not only due to their stability in biological systems, but also due to their impact on public health. Their degradation by means of hydroxyl radicals generated through the application of microwave in the presence of hydrogen peroxide and two solid catalysts, iron-based synthetic clay (LDHs) and goethite (FeOOH) have been examined. A drastic reduction of the degradation yield was observed above pH 4, and hence the optimal conditions were found to be a pH of 3, 0.1 g/L of clay, a somewhat low amount of H2O2 (1.74 mmol/L) and a microwave intensity of 850 W. It should be observed that to maintain an almost constant temperature, a cooling with cold water was always applied between two microwaves running; and hence the ratio between microwave heating time and cooling time was 1. The obtained SMX degradation was 98.8 ± 0.2% after 30 minutes of microwave treatment. It should be observed that in the absence of the solid catalyst, LDHs, no SMX degradation was observed. From this, the use of microwave in the presence of a solid source of iron (LDHs) appears to be an efficient solution for the treatment of wastewater containing SMX. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=fenton" title=" fenton"> fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogenous%20fenton" title=" heterogenous fenton"> heterogenous fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a> </p> <a href="https://publications.waset.org/abstracts/43666/sulfamethaxozole-smx-removal-by-microwave-assisted-heterogenous-fenton-reaction-involving-synthetic-clay-ldhs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19845</span> Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.H.%20Keshek">M.H. Keshek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.N.%20Omar"> M.N. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.H.%20Amer"> A.H. Amer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title="microwave drying">microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=eggplant" title=" eggplant"> eggplant</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20rate" title=" drying rate"> drying rate</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20efficiency" title=" drying efficiency"> drying efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/128071/mathematical-modeling-of-eggplant-slices-drying-using-microwave-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19844</span> Microwave Assisted Extractive Desulfurization of Gas Oil Feedstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamida%20Y.%20Mostafa">Hamida Y. Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20E.%20Khedr"> Ghada E. Khedr</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20M.%20Abd%20El-Aty"> Dina M. Abd El-Aty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur compound removal from petroleum fractions is a critical component of environmental protection demands. Solvent extraction, oxidative desulfurization, or hydro-treatment techniques have traditionally been used as the removal processes. While all methods were capable of eliminating sulfur compounds at moderate rates, they had some limitations. A major problem with these routes is their high running expenses, which are caused by their prolonged operation times and high energy consumption. Therefore, new methods for removing sulfur are still necessary. In the current study, a simple assisted desulfurization system for gas oil fraction has been successfully developed using acetonitrile and methanol as a solvent under microwave irradiation. The key variables affecting sulfur removal have been studied, including microwave power, irradiation time, and solvent to gas oil volume ratio. At the conclusion of the research that is being presented, promising results have been found. The results show that a microwave-assisted extractive desulfurization method had remove sulfur with a high degree of efficiency under the suitable conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extractive%20desulfurization" title="extractive desulfurization">extractive desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction" title=" microwave assisted extraction"> microwave assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20fractions" title=" petroleum fractions"> petroleum fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=acetonitrile%20and%20methanol" title=" acetonitrile and methanol"> acetonitrile and methanol</a> </p> <a href="https://publications.waset.org/abstracts/167883/microwave-assisted-extractive-desulfurization-of-gas-oil-feedstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19843</span> Synthesis and Characterization of CaZrTi2O7 from Tartrate Precursor Employing Microwave Heating Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Patil">B. M. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dharwadkar"> S. R. Dharwadkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zirconolite (CaZrTi2O7) is one of the three major phases in the synthetic ceramic 'SYNROC' which is used for immobilization of high-level nuclear waste and also acts as photocatalytic and photophysical properties. In the present work the nanocrystalline CaZrTi2O7 was synthesized from Calcium Zirconyl Titanate tartrate precursor (CZTT) employing two different heating techniques such as Conventional heating (Muffle furnace) and Microwave heating (Microwave Oven). Thermal decomposition of the CZTT precursors in air yielded nanocrystalline CaZrTi2O7 powder as the end product. The products obtained by annealing the CZTT precursor using both heating method were characterized using simultaneous TG-DTA, FTIR, XRD, SEM, TEM, NTA and thermodilatometric study. The physical characteristics such as crystallinity, morphology and particle size of the product obtained by heating the CZTT precursor at the different temperatures in a Muffle furnace and Microwave oven were found to be significantly different. The microwave heating technique considerably lowered the synthesis temperature of CaZrTi2O7. The influence of microwave heating was more pronounced as compared to Muffle furnace heating. The details of the synthesis of CaZrTi2O7 from CZTT precursor are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CZTT" title="CZTT">CZTT</a>, <a href="https://publications.waset.org/abstracts/search?q=CaZrTi2O7" title=" CaZrTi2O7"> CaZrTi2O7</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=SYNROC" title=" SYNROC"> SYNROC</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconolite" title=" zirconolite "> zirconolite </a> </p> <a href="https://publications.waset.org/abstracts/79296/synthesis-and-characterization-of-cazrti2o7-from-tartrate-precursor-employing-microwave-heating-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19842</span> Microwave Assisted Extraction (MAE) of Castor Oil from Castor Bean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Faisal%20Najmuldeen">Ghazi Faisal Najmuldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Mohd%20Yunus"> Rosli Mohd Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurfarahin%20Bt%20Harun"> Nurfarahin Bt Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardhiana%20Binti%20Ismail"> Mardhiana Binti Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave extraction has attracted great interest among the researchers. The main virtue of the microwave technique is cost-effective, time saving and simple handling procedure. Castor beans was chosen because of its high content in fatty acid, especially ricinoleic acid. The purpose of this research is to extract the castor oil by using the microwave assisted extraction (MAE) using ethanol as solvent and to investigate the influence of extraction time on castor oil yield and to characterize the main composition of the produced castor oil by using the GC-MS. It was found that there is a direct dependence between the oil yield and the time of extraction as it increases from 45% to 58% as the time increase from 10 min to 60 min. The major components of castor oil detected by GC-MS were ricinoleic acid, linoleic acid and oleic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction%20%28MAE%29" title="microwave assisted extraction (MAE)">microwave assisted extraction (MAE)</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ricinoleic%20acid" title=" ricinoleic acid"> ricinoleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=linoleic%20acid" title=" linoleic acid"> linoleic acid</a> </p> <a href="https://publications.waset.org/abstracts/10844/microwave-assisted-extraction-mae-of-castor-oil-from-castor-bean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19841</span> Optimizing Microwave Assisted Extraction of Anti-Diabetic Plant Tinospora cordifolia Used in Ayush System for Estimation of Berberine Using Taguchi L-9 Orthogonal Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Satija">Saurabh Satija</a>, <a href="https://publications.waset.org/abstracts/search?q=Munish%20Garg"> Munish Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work reports an efficient extraction method using microwaves based solvent–sample duo-heating mechanism, for the extraction of an important anti-diabetic plant Tinospora cordifolia from AYUSH system for estimation of berberine content. The process is based on simultaneous heating of sample matrix and extracting solvent under microwave energy. Methanol was used as the extracting solvent, which has excellent berberine solubilizing power and warms up under microwave attributable to its great dispersal factor. Extraction conditions like time of irradition, microwave power, solute-solvent ratio and temperature were optimized using Taguchi design and berberine was quantified using high performance thin layer chromatography. The ranked optimized parameters were microwave power (rank 1), irradiation time (rank 2) and temperature (rank 3). This kind of extraction mechanism under dual heating provided choice of extraction parameters for better precision and higher yield with significant reduction in extraction time under optimum extraction conditions. This developed extraction protocol will lead to extract higher amounts of berberine which is a major anti-diabetic moiety in Tinospora cordifolia which can lead to development of cheaper formulations of the plant Tinospora cordifolia and can help in rapid prevention of diabetes in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=berberine" title="berberine">berberine</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a> </p> <a href="https://publications.waset.org/abstracts/58304/optimizing-microwave-assisted-extraction-of-anti-diabetic-plant-tinospora-cordifolia-used-in-ayush-system-for-estimation-of-berberine-using-taguchi-l-9-orthogonal-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19840</span> Design and Implementation of a Cross-Network Security Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyong%20Shan">Zhiyong Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Santhanam"> Preethi Santhanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Namboodiri"> Vinod Namboodiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Bagai"> Rajiv Bagai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20security%20management" title="network security management">network security management</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20organization" title=" device organization"> device organization</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20response" title=" emergency response"> emergency response</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-network" title=" cross-network"> cross-network</a> </p> <a href="https://publications.waset.org/abstracts/136743/design-and-implementation-of-a-cross-network-security-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19839</span> Housing Security System and Household Entrepreneurship: Evidence from China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wangshi%20Yong">Wangshi Yong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Shi"> Wei Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zou"> Jing Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilin%20Tian"> Yilin Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advancement of the reform of China’s housing security system, the impact is becoming increasingly profound. This paper explores the relationship between the housing security system and household entrepreneurship on the 2017 China Household Finance Survey (CHFS) and conducts a large number of robustness checks, including PSM and IV estimation. The results show that the assistance of the housing security system will significantly promote family entrepreneurship, increasing the probability of entrepreneurship by 2%. Its internal mechanism is mainly achieved by relaxing liquidity constraints and increasing household social capital. However, the risk preference effect has not existed. Heterogeneity analysis shows that the positive impact of the housing security system on family entrepreneurship is mainly reflected in areas with high housing prices and incomes, as well as households with long-term security and social or commercial insurance. Meanwhile, it also verifies that the positive externalities of the housing security system will also positively affect active entrepreneurial motivation, entrepreneurial intensity, and entrepreneurial innovation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20housing%20security%20system" title="the housing security system">the housing security system</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20entrepreneurship" title=" household entrepreneurship"> household entrepreneurship</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capital" title=" social capital"> social capital</a>, <a href="https://publications.waset.org/abstracts/search?q=liquidity%20constraints" title=" liquidity constraints"> liquidity constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20preference" title=" risk preference"> risk preference</a> </p> <a href="https://publications.waset.org/abstracts/169555/housing-security-system-and-household-entrepreneurship-evidence-from-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=662">662</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=663">663</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20security%20system&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>