CINXE.COM

Ridge regression - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ridge regression - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ba46f176-18f3-4d44-a99a-80bc747e0632","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ridge_regression","wgTitle":"Ridge regression","wgCurRevisionId":1258776348,"wgRevisionId":1258776348,"wgArticleId":954328,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia articles needing page number citations from April 2022","Articles with short description","Short description matches Wikidata","Wikipedia articles needing clarification from May 2020","Wikipedia articles needing clarification from November 2022","Linear algebra","Estimation methods","Inverse problems","Regression analysis"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Ridge_regression", "wgRelevantArticleId":954328,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Tikhonov_regularization","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgInternalRedirectTargetUrl":"/wiki/Ridge_regression#Tikhonov_regularization","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId": "Q106091291","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ridge regression - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Ridge_regression#Tikhonov_regularization"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Ridge_regression&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Ridge_regression#Tikhonov_regularization"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ridge_regression rootpage-Ridge_regression skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ridge+regression" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Ridge+regression" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ridge+regression" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Ridge+regression" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Overview</span> </div> </a> <ul id="toc-Overview-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tikhonov_regularization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tikhonov_regularization"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Tikhonov regularization</span> </div> </a> <button aria-controls="toc-Tikhonov_regularization-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Tikhonov regularization subsection</span> </button> <ul id="toc-Tikhonov_regularization-sublist" class="vector-toc-list"> <li id="toc-Application_to_existing_fit_results" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Application_to_existing_fit_results"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Application to existing fit results</span> </div> </a> <ul id="toc-Application_to_existing_fit_results-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalized_Tikhonov_regularization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalized_Tikhonov_regularization"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Generalized Tikhonov regularization</span> </div> </a> <ul id="toc-Generalized_Tikhonov_regularization-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lavrentyev_regularization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lavrentyev_regularization"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Lavrentyev regularization</span> </div> </a> <ul id="toc-Lavrentyev_regularization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Regularization_in_Hilbert_space" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Regularization_in_Hilbert_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Regularization in Hilbert space</span> </div> </a> <ul id="toc-Regularization_in_Hilbert_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_singular-value_decomposition_and_Wiener_filter" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_to_singular-value_decomposition_and_Wiener_filter"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Relation to singular-value decomposition and Wiener filter</span> </div> </a> <ul id="toc-Relation_to_singular-value_decomposition_and_Wiener_filter-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Determination_of_the_Tikhonov_factor" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Determination_of_the_Tikhonov_factor"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Determination of the Tikhonov factor</span> </div> </a> <ul id="toc-Determination_of_the_Tikhonov_factor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_probabilistic_formulation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_to_probabilistic_formulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Relation to probabilistic formulation</span> </div> </a> <ul id="toc-Relation_to_probabilistic_formulation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bayesian_interpretation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bayesian_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Bayesian interpretation</span> </div> </a> <ul id="toc-Bayesian_interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ridge regression</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Regresi%C3%B3n_Ridge" title="Regresión Ridge – Spanish" lang="es" hreflang="es" data-title="Regresión Ridge" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%DA%AF%D8%B1%D8%B3%DB%8C%D9%88%D9%86_%D8%B1%DB%8C%D8%AC" title="رگرسیون ریج – Persian" lang="fa" hreflang="fa" data-title="رگرسیون ریج" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%BF%EC%A7%80_%ED%9A%8C%EA%B7%80" title="릿지 회귀 – Korean" lang="ko" hreflang="ko" data-title="릿지 회귀" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%83%E3%82%B8%E5%9B%9E%E5%B8%B0" title="リッジ回帰 – Japanese" lang="ja" hreflang="ja" data-title="リッジ回帰" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B2%AD%E5%9B%9E%E5%BD%92" title="岭回归 – Chinese" lang="zh" hreflang="zh" data-title="岭回归" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q106091291#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ridge_regression" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Ridge_regression" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ridge_regression"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ridge_regression&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ridge_regression&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ridge_regression"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ridge_regression&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ridge_regression&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Ridge_regression" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Ridge_regression" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ridge_regression&amp;oldid=1258776348" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ridge_regression&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Ridge_regression&amp;id=1258776348&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRidge_regression%23Tikhonov_regularization"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRidge_regression%23Tikhonov_regularization"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Ridge_regression&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ridge_regression&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q106091291" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Tikhonov_regularization&amp;redirect=no" class="mw-redirect" title="Tikhonov regularization">Tikhonov regularization</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Regularization technique for ill-posed problems</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th></tr><tr><th class="sidebar-heading"> Models</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></li> <li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple regression</a></li> <li><a href="/wiki/Polynomial_regression" title="Polynomial regression">Polynomial regression</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></li> <li><a href="/wiki/Vector_generalized_linear_model" title="Vector generalized linear model">Vector generalized linear model</a></li> <li><a href="/wiki/Discrete_choice" title="Discrete choice">Discrete choice</a></li> <li><a href="/wiki/Binomial_regression" title="Binomial regression">Binomial regression</a></li> <li><a href="/wiki/Binary_regression" title="Binary regression">Binary regression</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic regression</a></li> <li><a href="/wiki/Multinomial_logistic_regression" title="Multinomial logistic regression">Multinomial logistic regression</a></li> <li><a href="/wiki/Mixed_logit" title="Mixed logit">Mixed logit</a></li> <li><a href="/wiki/Probit_model" title="Probit model">Probit</a></li> <li><a href="/wiki/Multinomial_probit" title="Multinomial probit">Multinomial probit</a></li> <li><a href="/wiki/Ordered_logit" title="Ordered logit">Ordered logit</a></li> <li><a href="/wiki/Ordered_probit" class="mw-redirect" title="Ordered probit">Ordered probit</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Poisson</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Multilevel_model" title="Multilevel model">Multilevel model</a></li> <li><a href="/wiki/Fixed_effects_model" title="Fixed effects model">Fixed effects</a></li> <li><a href="/wiki/Random_effects_model" title="Random effects model">Random effects</a></li> <li><a href="/wiki/Mixed_model" title="Mixed model">Linear mixed-effects model</a></li> <li><a href="/wiki/Nonlinear_mixed-effects_model" title="Nonlinear mixed-effects model">Nonlinear mixed-effects model</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Quantile_regression" title="Quantile regression">Quantile</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li> <li><a href="/wiki/Principal_component_regression" title="Principal component regression">Principal components</a></li> <li><a href="/wiki/Least-angle_regression" title="Least-angle regression">Least angle</a></li> <li><a href="/wiki/Local_regression" title="Local regression">Local</a></li> <li><a href="/wiki/Segmented_regression" title="Segmented regression">Segmented</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Errors-in-variables_models" title="Errors-in-variables models">Errors-in-variables</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Estimation</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Least_squares" title="Least squares">Least squares</a></li> <li><a href="/wiki/Linear_least_squares" title="Linear least squares">Linear</a></li> <li><a href="/wiki/Non-linear_least_squares" title="Non-linear least squares">Non-linear</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary</a></li> <li><a href="/wiki/Weighted_least_squares" title="Weighted least squares">Weighted</a></li> <li><a href="/wiki/Generalized_least_squares" title="Generalized least squares">Generalized</a></li> <li><a href="/wiki/Generalized_estimating_equation" title="Generalized estimating equation">Generalized estimating equation</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Partial_least_squares_regression" title="Partial least squares regression">Partial</a></li> <li><a href="/wiki/Total_least_squares" title="Total least squares">Total</a></li> <li><a href="/wiki/Non-negative_least_squares" title="Non-negative least squares">Non-negative</a></li> <li><a href="/wiki/Tikhonov_regularization" class="mw-redirect" title="Tikhonov regularization">Ridge regression</a></li> <li><a href="/wiki/Regularized_least_squares" title="Regularized least squares">Regularized</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Least_absolute_deviations" title="Least absolute deviations">Least absolute deviations</a></li> <li><a href="/wiki/Iteratively_reweighted_least_squares" title="Iteratively reweighted least squares">Iteratively reweighted</a></li> <li><a href="/wiki/Bayesian_linear_regression" title="Bayesian linear regression">Bayesian</a></li> <li><a href="/wiki/Bayesian_multivariate_linear_regression" title="Bayesian multivariate linear regression">Bayesian multivariate</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Background</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li> <li><a href="/wiki/Mean_and_predicted_response" class="mw-redirect" title="Mean and predicted response">Mean and predicted response</a></li> <li><a href="/wiki/Errors_and_residuals" title="Errors and residuals">Errors and residuals</a></li> <li><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></li> <li><a href="/wiki/Studentized_residual" title="Studentized residual">Studentized residual</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_theorem" title="Gauss–Markov theorem">Gauss–Markov theorem</a></li></ul></td> </tr><tr><td class="sidebar-below"> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Regression_bar" title="Template:Regression bar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Regression_bar" title="Template talk:Regression bar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Regression_bar" title="Special:EditPage/Template:Regression bar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Ridge regression</b> is a method of estimating the <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> of multiple-<a href="/wiki/Regression_model" class="mw-redirect" title="Regression model">regression models</a> in scenarios where the independent variables are highly correlated.<sup id="cite_ref-Hilt_1-0" class="reference"><a href="#cite_note-Hilt-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> It has been used in many fields including econometrics, chemistry, and engineering.<sup id="cite_ref-Gruber_2-0" class="reference"><a href="#cite_note-Gruber-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Also known as <b>Tikhonov regularization</b>, named for <a href="/wiki/Andrey_Nikolayevich_Tikhonov" class="mw-redirect" title="Andrey Nikolayevich Tikhonov">Andrey Tikhonov</a>, it is a method of <a href="/wiki/Regularization_(mathematics)" title="Regularization (mathematics)">regularization</a> of <a href="/wiki/Ill-posed_problem" class="mw-redirect" title="Ill-posed problem">ill-posed problems</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> It is particularly useful to mitigate the problem of <a href="/wiki/Multicollinearity" title="Multicollinearity">multicollinearity</a> in <a href="/wiki/Linear_regression" title="Linear regression">linear regression</a>, which commonly occurs in models with large numbers of parameters.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> In general, the method provides improved <a href="/wiki/Efficient_estimator" class="mw-redirect" title="Efficient estimator">efficiency</a> in parameter estimation problems in exchange for a tolerable amount of <a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">bias</a> (see <a href="/wiki/Bias%E2%80%93variance_tradeoff" title="Bias–variance tradeoff">bias–variance tradeoff</a>).<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The theory was first introduced by Hoerl and Kennard in 1970 in their <i><a href="/wiki/Technometrics" title="Technometrics">Technometrics</a></i> papers "Ridge regressions: biased estimation of nonorthogonal problems" and "Ridge regressions: applications in nonorthogonal problems".<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hilt_1-1" class="reference"><a href="#cite_note-Hilt-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Ridge regression was developed as a possible solution to the imprecision of least square estimators when linear regression models have some multicollinear (highly correlated) independent variables—by creating a ridge regression estimator (RR). This provides a more precise ridge parameters estimate, as its variance and mean square estimator are often smaller than the least square estimators previously derived.<sup id="cite_ref-Jolliffe_8-0" class="reference"><a href="#cite_note-Jolliffe-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Gruber_2-1" class="reference"><a href="#cite_note-Gruber-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Overview">Overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=1" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the simplest case, the problem of a <a href="/wiki/Singular_matrices" class="mw-redirect" title="Singular matrices">near-singular</a> <a href="/wiki/Moment_matrix" title="Moment matrix">moment matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} ^{\mathsf {T}}\mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} ^{\mathsf {T}}\mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abf4f570d44b8ad29b9723117343b325bb8992ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.39ex; height:2.676ex;" alt="{\displaystyle \mathbf {X} ^{\mathsf {T}}\mathbf {X} }"></span> is alleviated by adding positive elements to the <a href="/wiki/Main_diagonal" title="Main diagonal">diagonals</a>, thereby decreasing its <a href="/wiki/Condition_number" title="Condition number">condition number</a>. Analogous to the <a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">ordinary least squares</a> estimator, the simple ridge estimator is then given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{R}=\left(\mathbf {X} ^{\mathsf {T}}\mathbf {X} +\lambda \mathbf {I} \right)^{-1}\mathbf {X} ^{\mathsf {T}}\mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}_{R}=\left(\mathbf {X} ^{\mathsf {T}}\mathbf {X} +\lambda \mathbf {I} \right)^{-1}\mathbf {X} ^{\mathsf {T}}\mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6e7e1a4b7b5e782ef60b16e7e56ec4f67464fe3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.874ex; height:3.843ex;" alt="{\displaystyle {\hat {\beta }}_{R}=\left(\mathbf {X} ^{\mathsf {T}}\mathbf {X} +\lambda \mathbf {I} \right)^{-1}\mathbf {X} ^{\mathsf {T}}\mathbf {y} }"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25a040b592282dc2a254c3117e792c3c81161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.411ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} }"></span> is the <a href="/wiki/Regressand" class="mw-redirect" title="Regressand">regressand</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> is the <a href="/wiki/Design_matrix" title="Design matrix">design matrix</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {I} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a458c8aeb096ce732abf346ae8edf3e4f53a126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.014ex; height:2.176ex;" alt="{\displaystyle \mathbf {I} }"></span> is the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>, and the ridge parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c26004859ae51dde7800b3f3a960c73f81cd583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.616ex; height:2.343ex;" alt="{\displaystyle \lambda \geq 0}"></span> serves as the constant shifting the diagonals of the moment matrix.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> It can be shown that this estimator is the solution to the <a href="/wiki/Least_squares" title="Least squares">least squares</a> problem subject to the <a href="/wiki/Constraint_(mathematics)" title="Constraint (mathematics)">constraint</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{\mathsf {T}}\beta =c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{\mathsf {T}}\beta =c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ddd9b98018f428d83a0dab40ae62c96ef6c8d7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.126ex; height:3.009ex;" alt="{\displaystyle \beta ^{\mathsf {T}}\beta =c}"></span>, which can be expressed as a Lagrangian: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \min _{\beta }\,\left(\mathbf {y} -\mathbf {X} \beta \right)^{\mathsf {T}}\left(\mathbf {y} -\mathbf {X} \beta \right)+\lambda \left(\beta ^{\mathsf {T}}\beta -c\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </munder> <mspace width="thinmathspace" /> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mi>&#x03B2;<!-- β --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mi>&#x03B2;<!-- β --></mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \min _{\beta }\,\left(\mathbf {y} -\mathbf {X} \beta \right)^{\mathsf {T}}\left(\mathbf {y} -\mathbf {X} \beta \right)+\lambda \left(\beta ^{\mathsf {T}}\beta -c\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf0ed114a74fd93aec98aa5e4cf9395a1dae02c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.793ex; height:4.843ex;" alt="{\displaystyle \min _{\beta }\,\left(\mathbf {y} -\mathbf {X} \beta \right)^{\mathsf {T}}\left(\mathbf {y} -\mathbf {X} \beta \right)+\lambda \left(\beta ^{\mathsf {T}}\beta -c\right)}"></span> which shows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is nothing but the <a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a> of the constraint.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Typically, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is chosen according to a heuristic criterion, so that the constraint will not be satisfied exactly. Specifically in the case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00c4bba30544017fe76932de5a4e25adb5512d95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.616ex; height:2.176ex;" alt="{\displaystyle \lambda =0}"></span>, in which the <a href="/wiki/Non-binding_constraint" class="mw-redirect" title="Non-binding constraint">constraint is non-binding</a>, the ridge estimator reduces to <a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">ordinary least squares</a>. A more general approach to Tikhonov regularization is discussed below. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=2" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tikhonov regularization was invented independently in many different contexts. It became widely known through its application to integral equations in the works of <a href="/wiki/Andrey_Nikolayevich_Tikhonov" class="mw-redirect" title="Andrey Nikolayevich Tikhonov">Andrey Tikhonov</a><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> and David L. Phillips.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Some authors use the term <b>Tikhonov–Phillips regularization</b>. The finite-dimensional case was expounded by <a href="/w/index.php?title=Arthur_E._Hoerl&amp;action=edit&amp;redlink=1" class="new" title="Arthur E. Hoerl (page does not exist)">Arthur E. Hoerl</a>, who took a statistical approach,<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> and by Manus Foster, who interpreted this method as a <a href="/wiki/Kriging" title="Kriging">Wiener–Kolmogorov (Kriging)</a> filter.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Following Hoerl, it is known in the statistical literature as ridge regression,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> named after ridge analysis ("ridge" refers to the path from the constrained maximum).<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Tikhonov_regularization">Tikhonov regularization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=3" title="Edit section: Tikhonov regularization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that for a known <a href="/wiki/Real_matrix" class="mw-redirect" title="Real matrix">real matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13ebf4628a1adf07133a6009e4a78bdd990c6eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {b} }"></span>, we wish to find a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mathbf {x} =\mathbf {b} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mathbf {x} =\mathbf {b} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31eda60d1cd8ec71dfc7f69760e17bd5bf9ca08f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.385ex; height:2.509ex;" alt="{\displaystyle A\mathbf {x} =\mathbf {b} ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13ebf4628a1adf07133a6009e4a78bdd990c6eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {b} }"></span> may be of different sizes and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> may be non-square. </p><p>The standard approach is <a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">ordinary least squares</a> linear regression.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="does this represent a system of linear equations (i.e. are x and b both of the same dimension as one side of the - supposedly square - matrix? then, as far as I know, the standard approach for solving it is any of a wide range of solvers &#39;&#39;not&#39;&#39; including linear regression (May 2020)">clarification needed</span></a></i>&#93;</sup> However, if no <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> satisfies the equation or more than one <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> does—that is, the solution is not unique—the problem is said to be <a href="/wiki/Well-posed_problem" title="Well-posed problem">ill posed</a>. In such cases, ordinary least squares estimation leads to an <a href="/wiki/Overdetermined_system" title="Overdetermined system">overdetermined</a>, or more often an <a href="/wiki/Underdetermined_system" title="Underdetermined system">underdetermined</a> system of equations. Most real-world phenomena have the effect of <a href="/wiki/Low-pass_filters" class="mw-redirect" title="Low-pass filters">low-pass filters</a><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="If multiplying a matrix by x is a filter, what in A is a frequency, and what values correspond to high or low frequencies? (November 2022)">clarification needed</span></a></i>&#93;</sup> in the forward direction where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13ebf4628a1adf07133a6009e4a78bdd990c6eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {b} }"></span>. Therefore, in solving the inverse-problem, the inverse mapping operates as a <a href="/wiki/High-pass_filter" title="High-pass filter">high-pass filter</a> that has the undesirable tendency of amplifying noise (<a href="/wiki/Eigenvalues" class="mw-redirect" title="Eigenvalues">eigenvalues</a> / singular values are largest in the reverse mapping where they were smallest in the forward mapping). In addition, ordinary least squares implicitly nullifies every element of the reconstructed version of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> that is in the null-space of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, rather than allowing for a model to be used as a prior for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>. Ordinary least squares seeks to minimize the sum of squared <a href="/wiki/Residual_(numerical_analysis)" title="Residual (numerical analysis)">residuals</a>, which can be compactly written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{2}^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{2}^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eda7a120bcf787a5679c0e8182a14f4b25d445d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.506ex; height:3.509ex;" alt="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{2}^{2},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a8e44a2eb980f856968a6357e3d0a7c22c905f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.058ex; height:2.843ex;" alt="{\displaystyle \|\cdot \|_{2}}"></span> is the <a href="/wiki/Norm_(mathematics)#Euclidean_norm" title="Norm (mathematics)">Euclidean norm</a>. </p><p>In order to give preference to a particular solution with desirable properties, a regularization term can be included in this minimization: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{2}^{2}+\left\|\Gamma \mathbf {x} \right\|_{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{2}^{2}+\left\|\Gamma \mathbf {x} \right\|_{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/defaaed60df16ca43e9cf39ba3875518a22af400" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.942ex; height:3.509ex;" alt="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{2}^{2}+\left\|\Gamma \mathbf {x} \right\|_{2}^{2}}"></span> for some suitably chosen <b>Tikhonov matrix</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }"></span>. In many cases, this matrix is chosen as a scalar multiple of the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma =\alpha I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma =\alpha I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4f98625d965adb2214d6e07b6973fca9690a1ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.211ex; height:2.176ex;" alt="{\displaystyle \Gamma =\alpha I}"></span>), giving preference to solutions with smaller <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norms</a>; this is known as <b><span class="texhtml"><i>L</i><sub>2</sub></span> regularization</b>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> In other cases, high-pass operators (e.g., a <a href="/wiki/Difference_operator" class="mw-redirect" title="Difference operator">difference operator</a> or a weighted <a href="/wiki/Discrete_fourier_transform" class="mw-redirect" title="Discrete fourier transform">Fourier operator</a>) may be used to enforce smoothness if the underlying vector is believed to be mostly continuous. This regularization improves the conditioning of the problem, thus enabling a direct numerical solution. An explicit solution, denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d95a7845e4e16ffb7e18ab37a208d0ab18e0e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.176ex;" alt="{\displaystyle {\hat {x}}}"></span>, is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}=\left(A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma \right)^{-1}A^{\mathsf {T}}\mathbf {b} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>A</mi> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}=\left(A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma \right)^{-1}A^{\mathsf {T}}\mathbf {b} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8f8b1c36e31e5b400fe34a8fdcb5bf1cb9b883" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.053ex; height:3.843ex;" alt="{\displaystyle {\hat {x}}=\left(A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma \right)^{-1}A^{\mathsf {T}}\mathbf {b} .}"></span> The effect of regularization may be varied by the scale of matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }"></span>. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9896b8ebf4dd4079563aefd15653a9880687480" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.714ex; height:2.176ex;" alt="{\displaystyle \Gamma =0}"></span> this reduces to the unregularized least-squares solution, provided that (<i>A</i><sup>T</sup><i>A</i>)<sup>−1</sup> exists. Note that in case of a <a href="/wiki/Complex_matrix" class="mw-redirect" title="Complex matrix">complex matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, as usual the transpose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mathsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mathsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54bf0331204e30cba9ec7f695dfea97e6745a7c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.095ex; height:2.676ex;" alt="{\displaystyle A^{\mathsf {T}}}"></span> has to be replaced by the <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mathsf {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">H</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mathsf {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9415702ab196cc26f5df37af2d90e07318e93df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.139ex; height:2.676ex;" alt="{\displaystyle A^{\mathsf {H}}}"></span>. </p><p><span class="texhtml"><i>L</i><sub>2</sub></span> regularization is used in many contexts aside from linear regression, such as <a href="/wiki/Statistical_classification" title="Statistical classification">classification</a> with <a href="/wiki/Logistic_regression" title="Logistic regression">logistic regression</a> or <a href="/wiki/Support_vector_machine" title="Support vector machine">support vector machines</a>,<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> and matrix factorization.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Application_to_existing_fit_results">Application to existing fit results</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=4" title="Edit section: Application to existing fit results"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since Tikhonov Regularization simply adds a quadratic term to the objective function in optimization problems, it is possible to do so after the unregularised optimisation has taken place. E.g., if the above problem with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9896b8ebf4dd4079563aefd15653a9880687480" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.714ex; height:2.176ex;" alt="{\displaystyle \Gamma =0}"></span> yields the solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dbf94466e582634cf19ad78009d9c9bbd1d92a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.509ex;" alt="{\displaystyle {\hat {x}}_{0}}"></span>, the solution in the presence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma \neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma \neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ff7ad2e987e345c3f1e434d419bd7eafd5ba558" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.714ex; height:2.676ex;" alt="{\displaystyle \Gamma \neq 0}"></span> can be expressed as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}=B{\hat {x}}_{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>B</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}=B{\hat {x}}_{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06cf490c1e92708822903e90f760fe1a764324d3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.223ex; height:2.509ex;" alt="{\displaystyle {\hat {x}}=B{\hat {x}}_{0},}"></span> with the "regularisation matrix" <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=\left(A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma \right)^{-1}A^{\mathsf {T}}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>A</mi> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=\left(A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma \right)^{-1}A^{\mathsf {T}}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c655ed7e6696af632ed8aacdb45acba5f01dc429" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.098ex; height:3.843ex;" alt="{\displaystyle B=\left(A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma \right)^{-1}A^{\mathsf {T}}A}"></span>. </p><p>If the parameter fit comes with a covariance matrix of the estimated parameter uncertainties <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ae15ff9b845587dc4e1816f59c3fed0e71a132f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.409ex; height:2.509ex;" alt="{\displaystyle V_{0}}"></span>, then the regularisation matrix will be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(V_{0}^{-1}+\Gamma ^{\mathsf {T}}\Gamma )^{-1}V_{0}^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(V_{0}^{-1}+\Gamma ^{\mathsf {T}}\Gamma )^{-1}V_{0}^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8769c158286d3ffc72397fbaa85b02f7fb47196e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.248ex; height:3.343ex;" alt="{\displaystyle B=(V_{0}^{-1}+\Gamma ^{\mathsf {T}}\Gamma )^{-1}V_{0}^{-1},}"></span> and the regularised result will have a new covariance <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=BV_{0}B^{\mathsf {T}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mi>B</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=BV_{0}B^{\mathsf {T}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5dd96852c3e0c033fefb2efb4dc829439f3e276" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.822ex; height:3.009ex;" alt="{\displaystyle V=BV_{0}B^{\mathsf {T}}.}"></span> </p><p>In the context of arbitrary likelihood fits, this is valid, as long as the quadratic approximation of the likelihood function is valid. This means that, as long as the perturbation from the unregularised result is small, one can regularise any result that is presented as a best fit point with a covariance matrix. No detailed knowledge of the underlying likelihood function is needed. <sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Generalized_Tikhonov_regularization">Generalized Tikhonov regularization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=5" title="Edit section: Generalized Tikhonov regularization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For general multivariate normal distributions for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> and the data error, one can apply a transformation of the variables to reduce to the case above. Equivalently, one can seek an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> to minimize <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{P}^{2}+\left\|\mathbf {x} -\mathbf {x} _{0}\right\|_{Q}^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{P}^{2}+\left\|\mathbf {x} -\mathbf {x} _{0}\right\|_{Q}^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/936230ff82aa67e815fa4357f60cdee9824ac20e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.332ex; height:3.676ex;" alt="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{P}^{2}+\left\|\mathbf {x} -\mathbf {x} _{0}\right\|_{Q}^{2},}"></span> where we have used <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {x} \right\|_{Q}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {x} \right\|_{Q}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/857d09895d6b8080fe0d1b0b7ab9c8893b6bdc6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:5.268ex; height:3.676ex;" alt="{\displaystyle \left\|\mathbf {x} \right\|_{Q}^{2}}"></span> to stand for the weighted norm squared <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{\mathsf {T}}Q\mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{\mathsf {T}}Q\mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f594e40ceec99334a16db08a3d6158885ad2abaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.012ex; height:3.009ex;" alt="{\displaystyle \mathbf {x} ^{\mathsf {T}}Q\mathbf {x} }"></span> (compare with the <a href="/wiki/Mahalanobis_distance" title="Mahalanobis distance">Mahalanobis distance</a>). In the Bayesian interpretation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> is the inverse <a href="/wiki/Covariance_matrix" title="Covariance matrix">covariance matrix</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13ebf4628a1adf07133a6009e4a78bdd990c6eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {b} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/799c59f89751f24a2719c4da95f1acdd3e2faf52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {x} _{0}}"></span> is the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is the inverse covariance matrix of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>. The Tikhonov matrix is then given as a factorization of the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q=\Gamma ^{\mathsf {T}}\Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q=\Gamma ^{\mathsf {T}}\Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc436b3df3d2244dfc92be335da94184a8c7a9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.194ex; height:3.009ex;" alt="{\displaystyle Q=\Gamma ^{\mathsf {T}}\Gamma }"></span> (e.g. the <a href="/wiki/Cholesky_factorization" class="mw-redirect" title="Cholesky factorization">Cholesky factorization</a>) and is considered a <a href="/wiki/Whitening_transformation" title="Whitening transformation">whitening filter</a>. </p><p>This generalized problem has an optimal solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7854cd1cbbc521a6d45d17d621a9e4286ced0ddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.465ex; height:2.343ex;" alt="{\displaystyle \mathbf {x} ^{*}}"></span> which can be written explicitly using the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{*}=\left(A^{\mathsf {T}}PA+Q\right)^{-1}\left(A^{\mathsf {T}}P\mathbf {b} +Q\mathbf {x} _{0}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>P</mi> <mi>A</mi> <mo>+</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mi>Q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{*}=\left(A^{\mathsf {T}}PA+Q\right)^{-1}\left(A^{\mathsf {T}}P\mathbf {b} +Q\mathbf {x} _{0}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd2f2938a77ce34783c18469944d9d553eb71e1d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.308ex; height:3.843ex;" alt="{\displaystyle \mathbf {x} ^{*}=\left(A^{\mathsf {T}}PA+Q\right)^{-1}\left(A^{\mathsf {T}}P\mathbf {b} +Q\mathbf {x} _{0}\right),}"></span> or equivalently, when <i>Q</i> is <b>not</b> a null matrix: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{*}=\mathbf {x} _{0}+\left(A^{\mathsf {T}}PA+Q\right)^{-1}\left(A^{\mathsf {T}}P\left(\mathbf {b} -A\mathbf {x} _{0}\right)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>P</mi> <mi>A</mi> <mo>+</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{*}=\mathbf {x} _{0}+\left(A^{\mathsf {T}}PA+Q\right)^{-1}\left(A^{\mathsf {T}}P\left(\mathbf {b} -A\mathbf {x} _{0}\right)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e059bceb99e56009fc761a7b23015028ffaf98be" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.715ex; height:3.843ex;" alt="{\displaystyle \mathbf {x} ^{*}=\mathbf {x} _{0}+\left(A^{\mathsf {T}}PA+Q\right)^{-1}\left(A^{\mathsf {T}}P\left(\mathbf {b} -A\mathbf {x} _{0}\right)\right).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Lavrentyev_regularization">Lavrentyev regularization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=6" title="Edit section: Lavrentyev regularization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In some situations, one can avoid using the transpose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mathsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mathsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54bf0331204e30cba9ec7f695dfea97e6745a7c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.095ex; height:2.676ex;" alt="{\displaystyle A^{\mathsf {T}}}"></span>, as proposed by <a href="/wiki/Mikhail_Lavrentyev" title="Mikhail Lavrentyev">Mikhail Lavrentyev</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is symmetric positive definite, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=A^{\mathsf {T}}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=A^{\mathsf {T}}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/109155494b3cbfaf63247600e7d9adce98bb2792" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.197ex; height:2.676ex;" alt="{\displaystyle A=A^{\mathsf {T}}&gt;0}"></span>, so is its inverse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ba3a7118652cffd5de466dc439ee9184371d50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.076ex; height:2.676ex;" alt="{\displaystyle A^{-1}}"></span>, which can thus be used to set up the weighted norm squared <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {x} \right\|_{P}^{2}=\mathbf {x} ^{\mathsf {T}}A^{-1}\mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {x} \right\|_{P}^{2}=\mathbf {x} ^{\mathsf {T}}A^{-1}\mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dae6de60ef2456b244ecadd48b5d3147845eeb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.55ex; height:3.509ex;" alt="{\displaystyle \left\|\mathbf {x} \right\|_{P}^{2}=\mathbf {x} ^{\mathsf {T}}A^{-1}\mathbf {x} }"></span> in the generalized Tikhonov regularization, leading to minimizing <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{A^{-1}}^{2}+\left\|\mathbf {x} -\mathbf {x} _{0}\right\|_{Q}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{A^{-1}}^{2}+\left\|\mathbf {x} -\mathbf {x} _{0}\right\|_{Q}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0168e5c9c4a819b213c0956ee27681ef2da4bce4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:26.553ex; height:3.676ex;" alt="{\displaystyle \left\|A\mathbf {x} -\mathbf {b} \right\|_{A^{-1}}^{2}+\left\|\mathbf {x} -\mathbf {x} _{0}\right\|_{Q}^{2}}"></span> or, equivalently up to a constant term, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{\mathsf {T}}\left(A+Q\right)\mathbf {x} -2\mathbf {x} ^{\mathsf {T}}\left(\mathbf {b} +Q\mathbf {x} _{0}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mi>Q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{\mathsf {T}}\left(A+Q\right)\mathbf {x} -2\mathbf {x} ^{\mathsf {T}}\left(\mathbf {b} +Q\mathbf {x} _{0}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a75a58d0cf7c813c88cdab357291ea3e493094e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.804ex; height:3.176ex;" alt="{\displaystyle \mathbf {x} ^{\mathsf {T}}\left(A+Q\right)\mathbf {x} -2\mathbf {x} ^{\mathsf {T}}\left(\mathbf {b} +Q\mathbf {x} _{0}\right).}"></span> </p><p>This minimization problem has an optimal solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7854cd1cbbc521a6d45d17d621a9e4286ced0ddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.465ex; height:2.343ex;" alt="{\displaystyle \mathbf {x} ^{*}}"></span> which can be written explicitly using the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{*}=\left(A+Q\right)^{-1}\left(\mathbf {b} +Q\mathbf {x} _{0}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>+</mo> <mi>Q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{*}=\left(A+Q\right)^{-1}\left(\mathbf {b} +Q\mathbf {x} _{0}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2adbc38ec88cf2d2c147d0c024aaf024a5df8237" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.987ex; height:3.343ex;" alt="{\displaystyle \mathbf {x} ^{*}=\left(A+Q\right)^{-1}\left(\mathbf {b} +Q\mathbf {x} _{0}\right),}"></span> which is nothing but the solution of the generalized Tikhonov problem where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=A^{\mathsf {T}}=P^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=A^{\mathsf {T}}=P^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a748d3b34dbe12f76047c65ac5137b1094d8b2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.836ex; height:2.676ex;" alt="{\displaystyle A=A^{\mathsf {T}}=P^{-1}.}"></span> </p><p>The Lavrentyev regularization, if applicable, is advantageous to the original Tikhonov regularization, since the Lavrentyev matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b46b6768f932d094236c4bde5025501253653ba5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.422ex; height:2.509ex;" alt="{\displaystyle A+Q}"></span> can be better conditioned, i.e., have a smaller <a href="/wiki/Condition_number" title="Condition number">condition number</a>, compared to the Tikhonov matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>A</mi> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669ad7da34f1e92369f5f76de4700bc38d7c2d91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.582ex; height:2.843ex;" alt="{\displaystyle A^{\mathsf {T}}A+\Gamma ^{\mathsf {T}}\Gamma .}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Regularization_in_Hilbert_space">Regularization in Hilbert space</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=7" title="Edit section: Regularization in Hilbert space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Typically discrete linear ill-conditioned problems result from discretization of <a href="/wiki/Integral_equation" title="Integral equation">integral equations</a>, and one can formulate a Tikhonov regularization in the original infinite-dimensional context. In the above we can interpret <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> as a <a href="/wiki/Compact_operator" title="Compact operator">compact operator</a> on <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> as elements in the domain and range of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. The operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{*}A+\Gamma ^{\mathsf {T}}\Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>A</mi> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{*}A+\Gamma ^{\mathsf {T}}\Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/095aa9354932f280f58799d748bb31ae463c55a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.638ex; height:2.843ex;" alt="{\displaystyle A^{*}A+\Gamma ^{\mathsf {T}}\Gamma }"></span> is then a <a href="/wiki/Hermitian_adjoint" title="Hermitian adjoint">self-adjoint</a> bounded invertible operator. </p> <div class="mw-heading mw-heading2"><h2 id="Relation_to_singular-value_decomposition_and_Wiener_filter">Relation to singular-value decomposition and Wiener filter</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=8" title="Edit section: Relation to singular-value decomposition and Wiener filter"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma =\alpha I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma =\alpha I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4f98625d965adb2214d6e07b6973fca9690a1ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.211ex; height:2.176ex;" alt="{\displaystyle \Gamma =\alpha I}"></span>, this least-squares solution can be analyzed in a special way using the <a href="/wiki/Singular-value_decomposition" class="mw-redirect" title="Singular-value decomposition">singular-value decomposition</a>. Given the singular value decomposition <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=U\Sigma V^{\mathsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>U</mi> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=U\Sigma V^{\mathsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d6ca1e344e402f7c080a5b8d31a37a7a8b80f14" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.571ex; height:2.676ex;" alt="{\displaystyle A=U\Sigma V^{\mathsf {T}}}"></span> with singular values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ab3208a7d0c634ef720e03ff5a9949e8310edc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.127ex; height:2.009ex;" alt="{\displaystyle \sigma _{i}}"></span>, the Tikhonov regularized solution can be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}=VDU^{\mathsf {T}}b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>V</mi> <mi>D</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}=VDU^{\mathsf {T}}b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4926e22129e4f1e2eb8058d9a8c7f4e7be2898d0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.977ex; height:3.009ex;" alt="{\displaystyle {\hat {x}}=VDU^{\mathsf {T}}b,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> has diagonal values <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{ii}={\frac {\sigma _{i}}{\sigma _{i}^{2}+\alpha ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{ii}={\frac {\sigma _{i}}{\sigma _{i}^{2}+\alpha ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f293104e37a2381034fcf9e3e7801f1fa503511f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.993ex; height:5.843ex;" alt="{\displaystyle D_{ii}={\frac {\sigma _{i}}{\sigma _{i}^{2}+\alpha ^{2}}}}"></span> and is zero elsewhere. This demonstrates the effect of the Tikhonov parameter on the <a href="/wiki/Condition_number" title="Condition number">condition number</a> of the regularized problem. For the generalized case, a similar representation can be derived using a <a href="/wiki/Generalized_singular-value_decomposition" class="mw-redirect" title="Generalized singular-value decomposition">generalized singular-value decomposition</a>.<sup id="cite_ref-Hansen_SIAM_1998_26-0" class="reference"><a href="#cite_note-Hansen_SIAM_1998-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>Finally, it is related to the <a href="/wiki/Wiener_filter" title="Wiener filter">Wiener filter</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}=\sum _{i=1}^{q}f_{i}{\frac {u_{i}^{\mathsf {T}}b}{\sigma _{i}}}v_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msubsup> <mi>b</mi> </mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}=\sum _{i=1}^{q}f_{i}{\frac {u_{i}^{\mathsf {T}}b}{\sigma _{i}}}v_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/994c038175d0d3cbd8e82a2e28752a20c30f4b34" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.198ex; height:7.176ex;" alt="{\displaystyle {\hat {x}}=\sum _{i=1}^{q}f_{i}{\frac {u_{i}^{\mathsf {T}}b}{\sigma _{i}}}v_{i},}"></span> where the Wiener weights are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}={\frac {\sigma _{i}^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i}={\frac {\sigma _{i}^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf0a1bf2c95a3bacc8a5f76fb55844e5f178c2f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.64ex; height:7.009ex;" alt="{\displaystyle f_{i}={\frac {\sigma _{i}^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is the <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Determination_of_the_Tikhonov_factor">Determination of the Tikhonov factor</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=9" title="Edit section: Determination of the Tikhonov factor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The optimal regularization parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> is usually unknown and often in practical problems is determined by an <i>ad hoc</i> method. A possible approach relies on the Bayesian interpretation described below. Other approaches include the <a href="/w/index.php?title=Discrepancy_principle&amp;action=edit&amp;redlink=1" class="new" title="Discrepancy principle (page does not exist)">discrepancy principle</a>, <a href="/wiki/Cross-validation_(statistics)" title="Cross-validation (statistics)">cross-validation</a>, <a href="/w/index.php?title=L-curve_method&amp;action=edit&amp;redlink=1" class="new" title="L-curve method (page does not exist)">L-curve method</a>,<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Restricted_maximum_likelihood" title="Restricted maximum likelihood">restricted maximum likelihood</a> and <a href="/w/index.php?title=Unbiased_predictive_risk_estimator&amp;action=edit&amp;redlink=1" class="new" title="Unbiased predictive risk estimator (page does not exist)">unbiased predictive risk estimator</a>. <a href="/wiki/Grace_Wahba" title="Grace Wahba">Grace Wahba</a> proved that the optimal parameter, in the sense of <a href="/wiki/Cross-validation_(statistics)#Leave-one-out_cross-validation" title="Cross-validation (statistics)">leave-one-out cross-validation</a> minimizes<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G={\frac {\operatorname {RSS} }{\tau ^{2}}}={\frac {\left\|X{\hat {\beta }}-y\right\|^{2}}{\left[\operatorname {Tr} \left(I-X\left(X^{\mathsf {T}}X+\alpha ^{2}I\right)^{-1}X^{\mathsf {T}}\right)\right]^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>RSS</mi> <msup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>[</mo> <mrow> <mi>Tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>X</mi> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>X</mi> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>I</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G={\frac {\operatorname {RSS} }{\tau ^{2}}}={\frac {\left\|X{\hat {\beta }}-y\right\|^{2}}{\left[\operatorname {Tr} \left(I-X\left(X^{\mathsf {T}}X+\alpha ^{2}I\right)^{-1}X^{\mathsf {T}}\right)\right]^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768e443f7ecdf4cefd0d7b9246e9bed9cf7c2b31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:48.618ex; height:10.343ex;" alt="{\displaystyle G={\frac {\operatorname {RSS} }{\tau ^{2}}}={\frac {\left\|X{\hat {\beta }}-y\right\|^{2}}{\left[\operatorname {Tr} \left(I-X\left(X^{\mathsf {T}}X+\alpha ^{2}I\right)^{-1}X^{\mathsf {T}}\right)\right]^{2}}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {RSS} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>RSS</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {RSS} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b97be1027da8dbb49fee7727c1cb19855256fd2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.296ex; height:2.176ex;" alt="{\displaystyle \operatorname {RSS} }"></span> is the <a href="/wiki/Residual_sum_of_squares" title="Residual sum of squares">residual sum of squares</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span> is the <a href="/wiki/Effective_number_of_degrees_of_freedom" class="mw-redirect" title="Effective number of degrees of freedom">effective number of degrees of freedom</a>. </p><p>Using the previous SVD decomposition, we can simplify the above expression: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {RSS} =\left\|y-\sum _{i=1}^{q}(u_{i}'b)u_{i}\right\|^{2}+\left\|\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}(u_{i}'b)u_{i}\right\|^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>RSS</mi> <mo>=</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mi>b</mi> <mo stretchy="false">)</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mi>b</mi> <mo stretchy="false">)</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {RSS} =\left\|y-\sum _{i=1}^{q}(u_{i}'b)u_{i}\right\|^{2}+\left\|\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}(u_{i}'b)u_{i}\right\|^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a332e7ca7395597a72176bfe0fab397e01188132" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:51.467ex; height:7.676ex;" alt="{\displaystyle \operatorname {RSS} =\left\|y-\sum _{i=1}^{q}(u_{i}&#039;b)u_{i}\right\|^{2}+\left\|\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}(u_{i}&#039;b)u_{i}\right\|^{2},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {RSS} =\operatorname {RSS} _{0}+\left\|\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}(u_{i}'b)u_{i}\right\|^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>RSS</mi> <mo>=</mo> <msub> <mi>RSS</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mi>b</mi> <mo stretchy="false">)</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {RSS} =\operatorname {RSS} _{0}+\left\|\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}(u_{i}'b)u_{i}\right\|^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bed0c12cf661746da9a3bea4526ce9e9cec4a467" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.376ex; height:7.676ex;" alt="{\displaystyle \operatorname {RSS} =\operatorname {RSS} _{0}+\left\|\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}(u_{i}&#039;b)u_{i}\right\|^{2},}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =m-\sum _{i=1}^{q}{\frac {\sigma _{i}^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}=m-q+\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =m-\sum _{i=1}^{q}{\frac {\sigma _{i}^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}=m-q+\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aadb5615cdf5a8f317c4ffdc40c642b1048e96c7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.408ex; height:7.009ex;" alt="{\displaystyle \tau =m-\sum _{i=1}^{q}{\frac {\sigma _{i}^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}=m-q+\sum _{i=1}^{q}{\frac {\alpha ^{2}}{\sigma _{i}^{2}+\alpha ^{2}}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Relation_to_probabilistic_formulation">Relation to probabilistic formulation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=10" title="Edit section: Relation to probabilistic formulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The probabilistic formulation of an <a href="/wiki/Inverse_problem" title="Inverse problem">inverse problem</a> introduces (when all uncertainties are Gaussian) a covariance matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b36d6b18ea6be45cbe07fe5fcee599d531ff486" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.621ex; height:2.509ex;" alt="{\displaystyle C_{M}}"></span> representing the <i>a priori</i> uncertainties on the model parameters, and a covariance matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{D}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{D}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0d15598a7c5085c97643aeaa00dcaa98a23975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.255ex; height:2.509ex;" alt="{\displaystyle C_{D}}"></span> representing the uncertainties on the observed parameters.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> In the special case when these two matrices are diagonal and isotropic, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{M}=\sigma _{M}^{2}I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{M}=\sigma _{M}^{2}I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/289650279fa950bf12bba569cb79b7ed4258b17f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.178ex; height:3.176ex;" alt="{\displaystyle C_{M}=\sigma _{M}^{2}I}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{D}=\sigma _{D}^{2}I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{D}=\sigma _{D}^{2}I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2261117f28bcfd364be619d0495afe61ac9a6421" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.445ex; height:3.176ex;" alt="{\displaystyle C_{D}=\sigma _{D}^{2}I}"></span>, and, in this case, the equations of inverse theory reduce to the equations above, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ={\sigma _{D}}/{\sigma _{M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ={\sigma _{D}}/{\sigma _{M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8de6501e3226e2b7266d6c973944f57b7b84d619" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.955ex; height:2.843ex;" alt="{\displaystyle \alpha ={\sigma _{D}}/{\sigma _{M}}}"></span>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> <sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Bayesian_interpretation">Bayesian interpretation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=11" title="Edit section: Bayesian interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bayesian_interpretation_of_regularization" class="mw-redirect" title="Bayesian interpretation of regularization">Bayesian interpretation of regularization</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Minimum_mean_square_error#Linear_MMSE_estimator_for_linear_observation_process" title="Minimum mean square error">Minimum mean square error §&#160;Linear MMSE estimator for linear observation process</a></div> <p>Although at first the choice of the solution to this regularized problem may look artificial, and indeed the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }"></span> seems rather arbitrary, the process can be justified from a <a href="/wiki/Bayesian_probability" title="Bayesian probability">Bayesian point of view</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> Note that for an ill-posed problem one must necessarily introduce some additional assumptions in order to get a unique solution. Statistically, the <a href="/wiki/Prior_probability" title="Prior probability">prior probability</a> distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is sometimes taken to be a <a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">multivariate normal distribution</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> For simplicity here, the following assumptions are made: the means are zero; their components are independent; the components have the same <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebf4ab08fe163a6c495cad6f4d67653287c4044c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \sigma _{x}}"></span>. The data are also subject to errors, and the errors in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> are also assumed to be <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a> with zero mean and standard deviation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d24e9b96d360a83440f8c0e70658b5ec24e6efa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.009ex;" alt="{\displaystyle \sigma _{b}}"></span>. Under these assumptions the Tikhonov-regularized solution is the <a href="/wiki/Maximum_a_posteriori" class="mw-redirect" title="Maximum a posteriori">most probable</a> solution given the data and the <i>a priori</i> distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, according to <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>If the assumption of <a href="/wiki/Normal_distribution" title="Normal distribution">normality</a> is replaced by assumptions of <a href="/wiki/Homoscedasticity" class="mw-redirect" title="Homoscedasticity">homoscedasticity</a> and uncorrelatedness of <a href="/wiki/Errors_and_residuals_in_statistics" class="mw-redirect" title="Errors and residuals in statistics">errors</a>, and if one still assumes zero mean, then the <a href="/wiki/Gauss%E2%80%93Markov_theorem" title="Gauss–Markov theorem">Gauss–Markov theorem</a> entails that the solution is the minimal <a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">unbiased linear estimator</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=12" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Lasso_(statistics)" title="Lasso (statistics)">LASSO estimator</a> is another regularization method in statistics.</li> <li><a href="/wiki/Elastic_net_regularization" title="Elastic net regularization">Elastic net regularization</a></li> <li><a href="/wiki/Matrix_regularization" title="Matrix regularization">Matrix regularization</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=13" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">In <a href="/wiki/Statistics" title="Statistics">statistics</a>, the method is known as <b>ridge regression</b>, in <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> it and its modifications are known as <b>weight decay</b>, and with multiple independent discoveries, it is also variously known as the <b>Tikhonov–Miller method</b>, the <b>Phillips–Twomey method</b>, the <b>constrained linear inversion</b> method, <b><span class="texhtml"><i>L</i><sub>2</sub></span> regularization</b>, and the method of <b>linear regularization</b>. It is related to the <a href="/wiki/Levenberg%E2%80%93Marquardt_algorithm" title="Levenberg–Marquardt algorithm">Levenberg–Marquardt algorithm</a> for <a href="/wiki/Non-linear_least_squares" title="Non-linear least squares">non-linear least-squares</a> problems.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=14" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Hilt-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hilt_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hilt_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHiltSeegrist1977" class="citation book cs1">Hilt, Donald E.; Seegrist, Donald W. (1977). <a rel="nofollow" class="external text" href="https://www.biodiversitylibrary.org/bibliography/68934"><i>Ridge, a computer program for calculating ridge regression estimates</i></a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5962%2Fbhl.title.68934">10.5962/bhl.title.68934</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ridge%2C+a+computer+program+for+calculating+ridge+regression+estimates&amp;rft.date=1977&amp;rft_id=info%3Adoi%2F10.5962%2Fbhl.title.68934&amp;rft.aulast=Hilt&amp;rft.aufirst=Donald+E.&amp;rft.au=Seegrist%2C+Donald+W.&amp;rft_id=https%3A%2F%2Fwww.biodiversitylibrary.org%2Fbibliography%2F68934&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (April 2022)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-Gruber-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gruber_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gruber_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGruber1998" class="citation book cs1">Gruber, Marvin (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wmA_R3ZFrXYC&amp;pg=PA2"><i>Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators</i></a>. CRC Press. p.&#160;2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8247-0156-7" title="Special:BookSources/978-0-8247-0156-7"><bdi>978-0-8247-0156-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Improving+Efficiency+by+Shrinkage%3A+The+James--Stein+and+Ridge+Regression+Estimators&amp;rft.pages=2&amp;rft.pub=CRC+Press&amp;rft.date=1998&amp;rft.isbn=978-0-8247-0156-7&amp;rft.aulast=Gruber&amp;rft.aufirst=Marvin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwmA_R3ZFrXYC%26pg%3DPA2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKennedy2003" class="citation book cs1"><a href="/wiki/Peter_Kennedy_(economist)" title="Peter Kennedy (economist)">Kennedy, Peter</a> (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=B8I5SP69e4kC&amp;pg=PA205"><i>A Guide to Econometrics</i></a> (Fifth&#160;ed.). Cambridge: The MIT Press. pp.&#160;205–206. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-262-61183-X" title="Special:BookSources/0-262-61183-X"><bdi>0-262-61183-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Guide+to+Econometrics&amp;rft.place=Cambridge&amp;rft.pages=205-206&amp;rft.edition=Fifth&amp;rft.pub=The+MIT+Press&amp;rft.date=2003&amp;rft.isbn=0-262-61183-X&amp;rft.aulast=Kennedy&amp;rft.aufirst=Peter&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DB8I5SP69e4kC%26pg%3DPA205&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGruber1998" class="citation book cs1">Gruber, Marvin (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wmA_R3ZFrXYC&amp;pg=PA7"><i>Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators</i></a>. Boca Raton: CRC Press. pp.&#160;7–15. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8247-0156-9" title="Special:BookSources/0-8247-0156-9"><bdi>0-8247-0156-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Improving+Efficiency+by+Shrinkage%3A+The+James%E2%80%93Stein+and+Ridge+Regression+Estimators&amp;rft.place=Boca+Raton&amp;rft.pages=7-15&amp;rft.pub=CRC+Press&amp;rft.date=1998&amp;rft.isbn=0-8247-0156-9&amp;rft.aulast=Gruber&amp;rft.aufirst=Marvin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwmA_R3ZFrXYC%26pg%3DPA7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoerlKennard1970" class="citation journal cs1">Hoerl, Arthur E.; Kennard, Robert W. (1970). "Ridge Regression: Biased Estimation for Nonorthogonal Problems". <i>Technometrics</i>. <b>12</b> (1): 55–67. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1267351">10.2307/1267351</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1267351">1267351</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technometrics&amp;rft.atitle=Ridge+Regression%3A+Biased+Estimation+for+Nonorthogonal+Problems&amp;rft.volume=12&amp;rft.issue=1&amp;rft.pages=55-67&amp;rft.date=1970&amp;rft_id=info%3Adoi%2F10.2307%2F1267351&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1267351%23id-name%3DJSTOR&amp;rft.aulast=Hoerl&amp;rft.aufirst=Arthur+E.&amp;rft.au=Kennard%2C+Robert+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoerlKennard1970" class="citation journal cs1">Hoerl, Arthur E.; Kennard, Robert W. (1970). "Ridge Regression: Applications to Nonorthogonal Problems". <i>Technometrics</i>. <b>12</b> (1): 69–82. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1267352">10.2307/1267352</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1267352">1267352</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technometrics&amp;rft.atitle=Ridge+Regression%3A+Applications+to+Nonorthogonal+Problems&amp;rft.volume=12&amp;rft.issue=1&amp;rft.pages=69-82&amp;rft.date=1970&amp;rft_id=info%3Adoi%2F10.2307%2F1267352&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1267352%23id-name%3DJSTOR&amp;rft.aulast=Hoerl&amp;rft.aufirst=Arthur+E.&amp;rft.au=Kennard%2C+Robert+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-Jolliffe-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jolliffe_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJolliffe2006" class="citation book cs1">Jolliffe, I. T. (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6ZUMBwAAQBAJ&amp;pg=PA178"><i>Principal Component Analysis</i></a>. Springer Science &amp; Business Media. p.&#160;178. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-22440-4" title="Special:BookSources/978-0-387-22440-4"><bdi>978-0-387-22440-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principal+Component+Analysis&amp;rft.pages=178&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-22440-4&amp;rft.aulast=Jolliffe&amp;rft.aufirst=I.+T.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6ZUMBwAAQBAJ%26pg%3DPA178&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">For the choice of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> in practice, see <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhalafShukur2005" class="citation journal cs1">Khalaf, Ghadban; Shukur, Ghazi (2005). "Choosing Ridge Parameter for Regression Problems". <i><a href="/wiki/Communications_in_Statistics_%E2%80%93_Theory_and_Methods" class="mw-redirect" title="Communications in Statistics – Theory and Methods">Communications in Statistics – Theory and Methods</a></i>. <b>34</b> (5): 1177–1182. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1081%2FSTA-200056836">10.1081/STA-200056836</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122983724">122983724</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Statistics+%E2%80%93+Theory+and+Methods&amp;rft.atitle=Choosing+Ridge+Parameter+for+Regression+Problems&amp;rft.volume=34&amp;rft.issue=5&amp;rft.pages=1177-1182&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1081%2FSTA-200056836&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122983724%23id-name%3DS2CID&amp;rft.aulast=Khalaf&amp;rft.aufirst=Ghadban&amp;rft.au=Shukur%2C+Ghazi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_Wieringen2021" class="citation arxiv cs1">van Wieringen, Wessel (2021-05-31). "Lecture notes on ridge regression". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1509.09169">1509.09169</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/stat.ME">stat.ME</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Lecture+notes+on+ridge+regression&amp;rft.date=2021-05-31&amp;rft_id=info%3Aarxiv%2F1509.09169&amp;rft.aulast=van+Wieringen&amp;rft.aufirst=Wessel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTikhonov1943" class="citation journal cs1"><a href="/wiki/Andrey_Nikolayevich_Tikhonov" class="mw-redirect" title="Andrey Nikolayevich Tikhonov">Tikhonov, Andrey Nikolayevich</a> (1943). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20050227163812/http://a-server.math.nsc.ru/IPP/BASE_WORK/tihon_en.html">"Об устойчивости обратных задач"</a> &#91;On the stability of inverse problems&#93;. <i><a href="/wiki/Doklady_Akademii_Nauk_SSSR" class="mw-redirect" title="Doklady Akademii Nauk SSSR">Doklady Akademii Nauk SSSR</a></i>. <b>39</b> (5): 195–198. Archived from <a rel="nofollow" class="external text" href="http://a-server.math.nsc.ru/IPP/BASE_WORK/tihon_en.html">the original</a> on 2005-02-27.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Doklady+Akademii+Nauk+SSSR&amp;rft.atitle=%D0%9E%D0%B1+%D1%83%D1%81%D1%82%D0%BE%D0%B9%D1%87%D0%B8%D0%B2%D0%BE%D1%81%D1%82%D0%B8+%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D1%85+%D0%B7%D0%B0%D0%B4%D0%B0%D1%87&amp;rft.volume=39&amp;rft.issue=5&amp;rft.pages=195-198&amp;rft.date=1943&amp;rft.aulast=Tikhonov&amp;rft.aufirst=Andrey+Nikolayevich&amp;rft_id=http%3A%2F%2Fa-server.math.nsc.ru%2FIPP%2FBASE_WORK%2Ftihon_en.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTikhonov1963" class="citation journal cs1">Tikhonov, A. N. (1963). "О решении некорректно поставленных задач и методе регуляризации". <i>Doklady Akademii Nauk SSSR</i>. <b>151</b>: 501–504.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Doklady+Akademii+Nauk+SSSR&amp;rft.atitle=%D0%9E+%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B8+%D0%BD%D0%B5%D0%BA%D0%BE%D1%80%D1%80%D0%B5%D0%BA%D1%82%D0%BD%D0%BE+%D0%BF%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%BD%D1%8B%D1%85+%D0%B7%D0%B0%D0%B4%D0%B0%D1%87+%D0%B8+%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B5+%D1%80%D0%B5%D0%B3%D1%83%D0%BB%D1%8F%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8&amp;rft.volume=151&amp;rft.pages=501-504&amp;rft.date=1963&amp;rft.aulast=Tikhonov&amp;rft.aufirst=A.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span>. Translated in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1">"Solution of incorrectly formulated problems and the regularization method". <i>Soviet Mathematics</i>. <b>4</b>: 1035–1038.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Soviet+Mathematics&amp;rft.atitle=Solution+of+incorrectly+formulated+problems+and+the+regularization+method&amp;rft.volume=4&amp;rft.pages=1035-1038&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTikhonovV._Y._Arsenin1977" class="citation book cs1">Tikhonov, A. N.; V. Y. Arsenin (1977). <i>Solution of Ill-posed Problems</i>. Washington: Winston &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-470-99124-0" title="Special:BookSources/0-470-99124-0"><bdi>0-470-99124-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Solution+of+Ill-posed+Problems&amp;rft.place=Washington&amp;rft.pub=Winston+%26+Sons&amp;rft.date=1977&amp;rft.isbn=0-470-99124-0&amp;rft.aulast=Tikhonov&amp;rft.aufirst=A.+N.&amp;rft.au=V.+Y.+Arsenin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="TikhonovSpringer1995Numerical" class="citation book cs1">Tikhonov, Andrey Nikolayevich; Goncharsky, A.; Stepanov, V. V.; Yagola, Anatolij Grigorevic (30 June 1995). <a rel="nofollow" class="external text" href="https://www.springer.com/us/book/9780792335832"><i>Numerical Methods for the Solution of Ill-Posed Problems</i></a>. Netherlands: Springer Netherlands. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7923-3583-X" title="Special:BookSources/0-7923-3583-X"><bdi>0-7923-3583-X</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Methods+for+the+Solution+of+Ill-Posed+Problems&amp;rft.place=Netherlands&amp;rft.pub=Springer+Netherlands&amp;rft.date=1995-06-30&amp;rft.isbn=0-7923-3583-X&amp;rft.aulast=Tikhonov&amp;rft.aufirst=Andrey+Nikolayevich&amp;rft.au=Goncharsky%2C+A.&amp;rft.au=Stepanov%2C+V.+V.&amp;rft.au=Yagola%2C+Anatolij+Grigorevic&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fus%2Fbook%2F9780792335832&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="TikhonovChapmanHall1998Nonlinear" class="citation book cs1">Tikhonov, Andrey Nikolaevich; Leonov, Aleksandr S.; Yagola, Anatolij Grigorevic (1998). <a rel="nofollow" class="external text" href="https://www.springer.com/us/book/9789401751698"><i>Nonlinear ill-posed problems</i></a>. London: Chapman &amp; Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-412-78660-5" title="Special:BookSources/0-412-78660-5"><bdi>0-412-78660-5</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nonlinear+ill-posed+problems&amp;rft.place=London&amp;rft.pub=Chapman+%26+Hall&amp;rft.date=1998&amp;rft.isbn=0-412-78660-5&amp;rft.aulast=Tikhonov&amp;rft.aufirst=Andrey+Nikolaevich&amp;rft.au=Leonov%2C+Aleksandr+S.&amp;rft.au=Yagola%2C+Anatolij+Grigorevic&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fus%2Fbook%2F9789401751698&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhillips1962" class="citation journal cs1">Phillips, D. L. (1962). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F321105.321114">"A Technique for the Numerical Solution of Certain Integral Equations of the First Kind"</a>. <i>Journal of the ACM</i>. <b>9</b>: 84–97. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F321105.321114">10.1145/321105.321114</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:35368397">35368397</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+ACM&amp;rft.atitle=A+Technique+for+the+Numerical+Solution+of+Certain+Integral+Equations+of+the+First+Kind&amp;rft.volume=9&amp;rft.pages=84-97&amp;rft.date=1962&amp;rft_id=info%3Adoi%2F10.1145%2F321105.321114&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A35368397%23id-name%3DS2CID&amp;rft.aulast=Phillips&amp;rft.aufirst=D.+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F321105.321114&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="AEHoerl1962V58I3" class="citation journal cs1">Hoerl, Arthur E. (1962). "Application of Ridge Analysis to Regression Problems". <i>Chemical Engineering Progress</i>. <b>58</b> (3): 54–59.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Engineering+Progress&amp;rft.atitle=Application+of+Ridge+Analysis+to+Regression+Problems&amp;rft.volume=58&amp;rft.issue=3&amp;rft.pages=54-59&amp;rft.date=1962&amp;rft.aulast=Hoerl&amp;rft.aufirst=Arthur+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFoster1961" class="citation journal cs1">Foster, M. (1961). "An Application of the Wiener-Kolmogorov Smoothing Theory to Matrix Inversion". <i>Journal of the Society for Industrial and Applied Mathematics</i>. <b>9</b> (3): 387–392. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F0109031">10.1137/0109031</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Society+for+Industrial+and+Applied+Mathematics&amp;rft.atitle=An+Application+of+the+Wiener-Kolmogorov+Smoothing+Theory+to+Matrix+Inversion&amp;rft.volume=9&amp;rft.issue=3&amp;rft.pages=387-392&amp;rft.date=1961&amp;rft_id=info%3Adoi%2F10.1137%2F0109031&amp;rft.aulast=Foster&amp;rft.aufirst=M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoerlR._W._Kennard1970" class="citation journal cs1">Hoerl, A. E.; R. W. Kennard (1970). "Ridge regression: Biased estimation for nonorthogonal problems". <i>Technometrics</i>. <b>12</b> (1): 55–67. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00401706.1970.10488634">10.1080/00401706.1970.10488634</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technometrics&amp;rft.atitle=Ridge+regression%3A+Biased+estimation+for+nonorthogonal+problems&amp;rft.volume=12&amp;rft.issue=1&amp;rft.pages=55-67&amp;rft.date=1970&amp;rft_id=info%3Adoi%2F10.1080%2F00401706.1970.10488634&amp;rft.aulast=Hoerl&amp;rft.aufirst=A.+E.&amp;rft.au=R.+W.+Kennard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoerl2020" class="citation journal cs1">Hoerl, Roger W. (2020-10-01). <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/full/10.1080/00401706.2020.1742207">"Ridge Regression: A Historical Context"</a>. <i>Technometrics</i>. <b>62</b> (4): 420–425. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00401706.2020.1742207">10.1080/00401706.2020.1742207</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0040-1706">0040-1706</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technometrics&amp;rft.atitle=Ridge+Regression%3A+A+Historical+Context&amp;rft.volume=62&amp;rft.issue=4&amp;rft.pages=420-425&amp;rft.date=2020-10-01&amp;rft_id=info%3Adoi%2F10.1080%2F00401706.2020.1742207&amp;rft.issn=0040-1706&amp;rft.aulast=Hoerl&amp;rft.aufirst=Roger+W.&amp;rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Ffull%2F10.1080%2F00401706.2020.1742207&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNg2004" class="citation conference cs1"><a href="/wiki/Andrew_Ng" title="Andrew Ng">Ng, Andrew Y.</a> (2004). <a rel="nofollow" class="external text" href="https://icml.cc/Conferences/2004/proceedings/papers/354.pdf"><i>Feature selection, L1 vs. L2 regularization, and rotational invariance</i></a> <span class="cs1-format">(PDF)</span>. Proc. <a href="/wiki/International_Conference_on_Machine_Learning" title="International Conference on Machine Learning">ICML</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Feature+selection%2C+L1+vs.+L2+regularization%2C+and+rotational+invariance&amp;rft.date=2004&amp;rft.aulast=Ng&amp;rft.aufirst=Andrew+Y.&amp;rft_id=https%3A%2F%2Ficml.cc%2FConferences%2F2004%2Fproceedings%2Fpapers%2F354.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR.-E._FanK.-W._ChangC.-J._HsiehX.-R._Wang2008" class="citation journal cs1">R.-E. Fan; K.-W. Chang; C.-J. Hsieh; X.-R. Wang; C.-J. Lin (2008). "LIBLINEAR: A library for large linear classification". <i><a href="/wiki/Journal_of_Machine_Learning_Research" title="Journal of Machine Learning Research">Journal of Machine Learning Research</a></i>. <b>9</b>: 1871–1874.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Machine+Learning+Research&amp;rft.atitle=LIBLINEAR%3A+A+library+for+large+linear+classification&amp;rft.volume=9&amp;rft.pages=1871-1874&amp;rft.date=2008&amp;rft.au=R.-E.+Fan&amp;rft.au=K.-W.+Chang&amp;rft.au=C.-J.+Hsieh&amp;rft.au=X.-R.+Wang&amp;rft.au=C.-J.+Lin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuanTaoLuoYuan2012" class="citation journal cs1">Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo (2012). "Online nonnegative matrix factorization with robust stochastic approximation". <i>IEEE Transactions on Neural Networks and Learning Systems</i>. <b>23</b> (7): 1087–1099. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTNNLS.2012.2197827">10.1109/TNNLS.2012.2197827</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24807135">24807135</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8755408">8755408</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Neural+Networks+and+Learning+Systems&amp;rft.atitle=Online+nonnegative+matrix+factorization+with+robust+stochastic+approximation&amp;rft.volume=23&amp;rft.issue=7&amp;rft.pages=1087-1099&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8755408%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F24807135&amp;rft_id=info%3Adoi%2F10.1109%2FTNNLS.2012.2197827&amp;rft.aulast=Guan&amp;rft.aufirst=Naiyang&amp;rft.au=Tao%2C+Dacheng&amp;rft.au=Luo%2C+Zhigang&amp;rft.au=Yuan%2C+Bo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoch2022" class="citation journal cs1">Koch, Lukas (2022). "Post-hoc regularisation of unfolded cross-section measurements". <i>Journal of Instrumentation</i>. <b>17</b> (10): 10021. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2207.02125">2207.02125</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022JInst..17P0021K">2022JInst..17P0021K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1748-0221%2F17%2F10%2FP10021">10.1088/1748-0221/17/10/P10021</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Instrumentation&amp;rft.atitle=Post-hoc+regularisation+of+unfolded+cross-section+measurements&amp;rft.volume=17&amp;rft.issue=10&amp;rft.pages=10021&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2207.02125&amp;rft_id=info%3Adoi%2F10.1088%2F1748-0221%2F17%2F10%2FP10021&amp;rft_id=info%3Abibcode%2F2022JInst..17P0021K&amp;rft.aulast=Koch&amp;rft.aufirst=Lukas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLavrentiev1967" class="citation book cs1">Lavrentiev, M. M. (1967). <i>Some Improperly Posed Problems of Mathematical Physics</i>. New York: Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Some+Improperly+Posed+Problems+of+Mathematical+Physics&amp;rft.place=New+York&amp;rft.pub=Springer&amp;rft.date=1967&amp;rft.aulast=Lavrentiev&amp;rft.aufirst=M.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-Hansen_SIAM_1998-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hansen_SIAM_1998_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHansen1998" class="citation book cs1">Hansen, Per Christian (Jan 1, 1998). <i>Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion</i> (1st&#160;ed.). Philadelphia, USA: SIAM. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-403-6" title="Special:BookSources/978-0-89871-403-6"><bdi>978-0-89871-403-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Rank-Deficient+and+Discrete+Ill-Posed+Problems%3A+Numerical+Aspects+of+Linear+Inversion&amp;rft.place=Philadelphia%2C+USA&amp;rft.edition=1st&amp;rft.pub=SIAM&amp;rft.date=1998-01-01&amp;rft.isbn=978-0-89871-403-6&amp;rft.aulast=Hansen&amp;rft.aufirst=Per+Christian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">P. C. Hansen, "The L-curve and its use in the numerical treatment of inverse problems", <a rel="nofollow" class="external autonumber" href="https://www.sintef.no/globalassets/project/evitameeting/2005/lcurve.pdf">[1]</a></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWahba1990" class="citation journal cs1">Wahba, G. (1990). "Spline Models for Observational Data". <i>CBMS-NSF Regional Conference Series in Applied Mathematics</i>. Society for Industrial and Applied Mathematics. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990smod.conf.....W">1990smod.conf.....W</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=CBMS-NSF+Regional+Conference+Series+in+Applied+Mathematics&amp;rft.atitle=Spline+Models+for+Observational+Data&amp;rft.date=1990&amp;rft_id=info%3Abibcode%2F1990smod.conf.....W&amp;rft.aulast=Wahba&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGolubHeathWahba1979" class="citation journal cs1">Golub, G.; Heath, M.; Wahba, G. (1979). <a rel="nofollow" class="external text" href="http://www.stat.wisc.edu/~wahba/ftp1/oldie/golub.heath.wahba.pdf">"Generalized cross-validation as a method for choosing a good ridge parameter"</a> <span class="cs1-format">(PDF)</span>. <i>Technometrics</i>. <b>21</b> (2): 215–223. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00401706.1979.10489751">10.1080/00401706.1979.10489751</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technometrics&amp;rft.atitle=Generalized+cross-validation+as+a+method+for+choosing+a+good+ridge+parameter&amp;rft.volume=21&amp;rft.issue=2&amp;rft.pages=215-223&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1080%2F00401706.1979.10489751&amp;rft.aulast=Golub&amp;rft.aufirst=G.&amp;rft.au=Heath%2C+M.&amp;rft.au=Wahba%2C+G.&amp;rft_id=http%3A%2F%2Fwww.stat.wisc.edu%2F~wahba%2Fftp1%2Foldie%2Fgolub.heath.wahba.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="ATarantolaSIAM2004" class="citation book cs1">Tarantola, Albert (2005). <a rel="nofollow" class="external text" href="http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/SIAM/index.html"><i>Inverse Problem Theory and Methods for Model Parameter Estimation</i></a> (1st&#160;ed.). Philadelphia: Society for Industrial and Applied Mathematics (SIAM). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-89871-792-2" title="Special:BookSources/0-89871-792-2"><bdi>0-89871-792-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Inverse+Problem+Theory+and+Methods+for+Model+Parameter+Estimation&amp;rft.place=Philadelphia&amp;rft.edition=1st&amp;rft.pub=Society+for+Industrial+and+Applied+Mathematics+%28SIAM%29&amp;rft.date=2005&amp;rft.isbn=0-89871-792-2&amp;rft.aulast=Tarantola&amp;rft.aufirst=Albert&amp;rft_id=http%3A%2F%2Fwww.ipgp.jussieu.fr%2F~tarantola%2FFiles%2FProfessional%2FSIAM%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuang2019" class="citation journal cs1">Huang, Yunfei.; et&#160;al. (2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345967">"Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells"</a>. <i>Scientific Reports</i>. <b>9</b> (1): 537. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1810.05848">1810.05848</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatSR...9..539H">2019NatSR...9..539H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41598-018-36896-x">10.1038/s41598-018-36896-x</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345967">6345967</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30679578">30679578</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Traction+force+microscopy+with+optimized+regularization+and+automated+Bayesian+parameter+selection+for+comparing+cells&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=537&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6345967%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2019NatSR...9..539H&amp;rft_id=info%3Aarxiv%2F1810.05848&amp;rft_id=info%3Apmid%2F30679578&amp;rft_id=info%3Adoi%2F10.1038%2Fs41598-018-36896-x&amp;rft.aulast=Huang&amp;rft.aufirst=Yunfei.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6345967&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuangGompperSabass2020" class="citation journal cs1">Huang, Yunfei; Gompper, Gerhard; Sabass, Benedikt (2020). "A Bayesian traction force microscopy method with automated denoising in a user-friendly software package". <i>Computer Physics Communications</i>. <b>256</b>: 107313. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.01377">2005.01377</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cpc.2020.107313">10.1016/j.cpc.2020.107313</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computer+Physics+Communications&amp;rft.atitle=A+Bayesian+traction+force+microscopy+method+with+automated+denoising+in+a+user-friendly+software+package&amp;rft.volume=256&amp;rft.pages=107313&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F2005.01377&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cpc.2020.107313&amp;rft.aulast=Huang&amp;rft.aufirst=Yunfei&amp;rft.au=Gompper%2C+Gerhard&amp;rft.au=Sabass%2C+Benedikt&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreenbergWebster1983" class="citation book cs1">Greenberg, Edward; Webster, Charles E. Jr. (1983). <i>Advanced Econometrics: A Bridge to the Literature</i>. New York: John Wiley &amp; Sons. pp.&#160;207–213. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-09077-8" title="Special:BookSources/0-471-09077-8"><bdi>0-471-09077-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Econometrics%3A+A+Bridge+to+the+Literature&amp;rft.place=New+York&amp;rft.pages=207-213&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1983&amp;rft.isbn=0-471-09077-8&amp;rft.aulast=Greenberg&amp;rft.aufirst=Edward&amp;rft.au=Webster%2C+Charles+E.+Jr.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuang2019" class="citation journal cs1">Huang, Yunfei.; et&#160;al. (2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345967">"Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells"</a>. <i>Scientific Reports</i>. <b>9</b> (1): 537. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1810.05848">1810.05848</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatSR...9..539H">2019NatSR...9..539H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41598-018-36896-x">10.1038/s41598-018-36896-x</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345967">6345967</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30679578">30679578</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Traction+force+microscopy+with+optimized+regularization+and+automated+Bayesian+parameter+selection+for+comparing+cells&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=537&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6345967%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2019NatSR...9..539H&amp;rft_id=info%3Aarxiv%2F1810.05848&amp;rft_id=info%3Apmid%2F30679578&amp;rft_id=info%3Adoi%2F10.1038%2Fs41598-018-36896-x&amp;rft.aulast=Huang&amp;rft.aufirst=Yunfei.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6345967&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVogel,_Curtis_R.2002" class="citation book cs1">Vogel, Curtis R. (2002). <i>Computational methods for inverse problems</i>. Philadelphia: Society for Industrial and Applied Mathematics. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-89871-550-4" title="Special:BookSources/0-89871-550-4"><bdi>0-89871-550-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Computational+methods+for+inverse+problems&amp;rft.place=Philadelphia&amp;rft.pub=Society+for+Industrial+and+Applied+Mathematics&amp;rft.date=2002&amp;rft.isbn=0-89871-550-4&amp;rft.au=Vogel%2C+Curtis+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmemiya1985" class="citation book cs1"><a href="/wiki/Takeshi_Amemiya" title="Takeshi Amemiya">Amemiya, Takeshi</a> (1985). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/advancedeconomet00amem/page/60"><i>Advanced Econometrics</i></a></span>. Harvard University Press. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/advancedeconomet00amem/page/60">60–61</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-674-00560-0" title="Special:BookSources/0-674-00560-0"><bdi>0-674-00560-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Econometrics&amp;rft.pages=60-61&amp;rft.pub=Harvard+University+Press&amp;rft.date=1985&amp;rft.isbn=0-674-00560-0&amp;rft.aulast=Amemiya&amp;rft.aufirst=Takeshi&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fadvancedeconomet00amem%2Fpage%2F60&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ridge_regression&amp;action=edit&amp;section=15" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGruber1998" class="citation book cs1">Gruber, Marvin (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wmA_R3ZFrXYC"><i>Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators</i></a>. Boca Raton: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8247-0156-9" title="Special:BookSources/0-8247-0156-9"><bdi>0-8247-0156-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Improving+Efficiency+by+Shrinkage%3A+The+James%E2%80%93Stein+and+Ridge+Regression+Estimators&amp;rft.place=Boca+Raton&amp;rft.pub=CRC+Press&amp;rft.date=1998&amp;rft.isbn=0-8247-0156-9&amp;rft.aulast=Gruber&amp;rft.aufirst=Marvin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwmA_R3ZFrXYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKress1998" class="citation book cs1">Kress, Rainer (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Jv_ZBwAAQBAJ&amp;pg=PA86">"Tikhonov Regularization"</a>. <i>Numerical Analysis</i>. New York: Springer. pp.&#160;86–90. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-98408-9" title="Special:BookSources/0-387-98408-9"><bdi>0-387-98408-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Tikhonov+Regularization&amp;rft.btitle=Numerical+Analysis&amp;rft.place=New+York&amp;rft.pages=86-90&amp;rft.pub=Springer&amp;rft.date=1998&amp;rft.isbn=0-387-98408-9&amp;rft.aulast=Kress&amp;rft.aufirst=Rainer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJv_ZBwAAQBAJ%26pg%3DPA86&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPressTeukolskyVetterlingFlannery2007" class="citation book cs1">Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007). <a rel="nofollow" class="external text" href="http://apps.nrbook.com/empanel/index.html#pg=1006">"Section 19.5. Linear Regularization Methods"</a>. <i>Numerical Recipes: The Art of Scientific Computing</i> (3rd&#160;ed.). New York: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-88068-8" title="Special:BookSources/978-0-521-88068-8"><bdi>978-0-521-88068-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Section+19.5.+Linear+Regularization+Methods&amp;rft.btitle=Numerical+Recipes%3A+The+Art+of+Scientific+Computing&amp;rft.place=New+York&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-521-88068-8&amp;rft.aulast=Press&amp;rft.aufirst=W.+H.&amp;rft.au=Teukolsky%2C+S.+A.&amp;rft.au=Vetterling%2C+W.+T.&amp;rft.au=Flannery%2C+B.+P.&amp;rft_id=http%3A%2F%2Fapps.nrbook.com%2Fempanel%2Findex.html%23pg%3D1006&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalehArashiKibria2019" class="citation book cs1">Saleh, A. K. Md. Ehsanes; Arashi, Mohammad; Kibria, B. M. Golam (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v0KCDwAAQBAJ"><i>Theory of Ridge Regression Estimation with Applications</i></a>. New York: John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-64461-4" title="Special:BookSources/978-1-118-64461-4"><bdi>978-1-118-64461-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Ridge+Regression+Estimation+with+Applications&amp;rft.place=New+York&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2019&amp;rft.isbn=978-1-118-64461-4&amp;rft.aulast=Saleh&amp;rft.aufirst=A.+K.+Md.+Ehsanes&amp;rft.au=Arashi%2C+Mohammad&amp;rft.au=Kibria%2C+B.+M.+Golam&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv0KCDwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaddy2019" class="citation book cs1">Taddy, Matt (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yPOUDwAAQBAJ&amp;pg=PA69">"Regularization"</a>. <i>Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions</i>. New York: McGraw-Hill. pp.&#160;69–104. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-260-45277-8" title="Special:BookSources/978-1-260-45277-8"><bdi>978-1-260-45277-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Regularization&amp;rft.btitle=Business+Data+Science%3A+Combining+Machine+Learning+and+Economics+to+Optimize%2C+Automate%2C+and+Accelerate+Business+Decisions&amp;rft.place=New+York&amp;rft.pages=69-104&amp;rft.pub=McGraw-Hill&amp;rft.date=2019&amp;rft.isbn=978-1-260-45277-8&amp;rft.aulast=Taddy&amp;rft.aufirst=Matt&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyPOUDwAAQBAJ%26pg%3DPA69&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARidge+regression" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Least_squares_and_regression_analysis" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Least_squares_and_regression_analysis" title="Template:Least squares and regression analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Least_squares_and_regression_analysis" title="Template talk:Least squares and regression analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Least_squares_and_regression_analysis" title="Special:EditPage/Template:Least squares and regression analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Least_squares_and_regression_analysis" style="font-size:114%;margin:0 4em"><a href="/wiki/Least_squares" title="Least squares">Least squares</a> and <a href="/wiki/Regression_analysis" title="Regression analysis">regression analysis</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computational_statistics" title="Computational statistics">Computational statistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Least_squares" title="Least squares">Least squares</a></li> <li><a href="/wiki/Linear_least_squares_(mathematics)" class="mw-redirect" title="Linear least squares (mathematics)">Linear least squares</a></li> <li><a href="/wiki/Non-linear_least_squares" title="Non-linear least squares">Non-linear least squares</a></li> <li><a href="/wiki/Iteratively_reweighted_least_squares" title="Iteratively reweighted least squares">Iteratively reweighted least squares</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation and dependence</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">Pearson product-moment correlation</a></li> <li><a href="/wiki/Rank_correlation" title="Rank correlation">Rank correlation</a> (<a href="/wiki/Spearman%27s_rank_correlation_coefficient" title="Spearman&#39;s rank correlation coefficient">Spearman's rho</a></li> <li><a href="/wiki/Kendall_tau_rank_correlation_coefficient" class="mw-redirect" title="Kendall tau rank correlation coefficient">Kendall's tau</a>)</li> <li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Confounding" title="Confounding">Confounding variable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary least squares</a></li> <li><a href="/wiki/Partial_least_squares_regression" title="Partial least squares regression">Partial least squares</a></li> <li><a href="/wiki/Total_least_squares" title="Total least squares">Total least squares</a></li> <li><a href="/wiki/Tikhonov_regularization" class="mw-redirect" title="Tikhonov regularization">Ridge regression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Regression as a <br /><a href="/wiki/Statistical_model" title="Statistical model">statistical model</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple linear regression</a></li> <li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary least squares</a></li> <li><a href="/wiki/Generalized_least_squares" title="Generalized least squares">Generalized least squares</a></li> <li><a href="/wiki/Weighted_least_squares" title="Weighted least squares">Weighted least squares</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Predictor structure</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Polynomial_regression" title="Polynomial regression">Polynomial regression</a></li> <li><a href="/wiki/Growth_curve_(statistics)" title="Growth curve (statistics)">Growth curve (statistics)</a></li> <li><a href="/wiki/Segmented_regression" title="Segmented regression">Segmented regression</a></li> <li><a href="/wiki/Local_regression" title="Local regression">Local regression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Non-standard</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Quantile_regression" title="Quantile regression">Quantile</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Non-normal errors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></li> <li><a href="/wiki/Binomial_regression" title="Binomial regression">Binomial</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Poisson</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Partition_of_sums_of_squares" title="Partition of sums of squares">Decomposition of variance</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analysis_of_variance" title="Analysis of variance">Analysis of variance</a></li> <li><a href="/wiki/Analysis_of_covariance" title="Analysis of covariance">Analysis of covariance</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Multivariate AOV</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Model exploration</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Stepwise_regression" title="Stepwise regression">Stepwise regression</a></li> <li><a href="/wiki/Model_selection" title="Model selection">Model selection</a> <ul><li><a href="/wiki/Mallows%27s_Cp" title="Mallows&#39;s Cp">Mallows's <i>C<sub>p</sub></i></a></li> <li><a href="/wiki/Akaike_information_criterion" title="Akaike information criterion">AIC</a></li> <li><a href="/wiki/Bayesian_information_criterion" title="Bayesian information criterion">BIC</a></li></ul></li> <li><a href="/wiki/Model_specification" class="mw-redirect" title="Model specification">Model specification</a></li> <li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mean_and_predicted_response" class="mw-redirect" title="Mean and predicted response">Mean and predicted response</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_theorem" title="Gauss–Markov theorem">Gauss–Markov theorem</a></li> <li><a href="/wiki/Errors_and_residuals_in_statistics" class="mw-redirect" title="Errors and residuals in statistics">Errors and residuals</a></li> <li><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></li> <li><a href="/wiki/Studentized_residual" title="Studentized residual">Studentized residual</a></li> <li><a href="/wiki/Minimum_mean-square_error" class="mw-redirect" title="Minimum mean-square error">Minimum mean-square error</a></li> <li><a href="/wiki/Frisch%E2%80%93Waugh%E2%80%93Lovell_theorem" title="Frisch–Waugh–Lovell theorem">Frisch–Waugh–Lovell theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Design_of_experiments" title="Design of experiments">Design of experiments</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Response_surface_methodology" title="Response surface methodology">Response surface methodology</a></li> <li><a href="/wiki/Optimal_design" class="mw-redirect" title="Optimal design">Optimal design</a></li> <li><a href="/wiki/Bayesian_experimental_design" title="Bayesian experimental design">Bayesian design</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_analysis" title="Numerical analysis">Numerical</a> <a href="/wiki/Approximation_theory" title="Approximation theory">approximation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Numerical_analysis" title="Numerical analysis">Numerical analysis</a></li> <li><a href="/wiki/Approximation_theory" title="Approximation theory">Approximation theory</a></li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></li> <li><a href="/wiki/Gaussian_quadrature" title="Gaussian quadrature">Gaussian quadrature</a></li> <li><a href="/wiki/Orthogonal_polynomials" title="Orthogonal polynomials">Orthogonal polynomials</a></li> <li><a href="/wiki/Chebyshev_polynomials" title="Chebyshev polynomials">Chebyshev polynomials</a></li> <li><a href="/wiki/Chebyshev_nodes" title="Chebyshev nodes">Chebyshev nodes</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Curve_fitting" title="Curve fitting">Curve fitting</a></li> <li><a href="/wiki/Calibration_curve" title="Calibration curve">Calibration curve</a></li> <li><a href="/wiki/Numerical_smoothing_and_differentiation" class="mw-redirect" title="Numerical smoothing and differentiation">Numerical smoothing and differentiation</a></li> <li><a href="/wiki/System_identification" title="System identification">System identification</a></li> <li><a href="/wiki/Moving_least_squares" title="Moving least squares">Moving least squares</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Category:Regression_analysis" title="Category:Regression analysis">Regression analysis category</a></li> <li><a href="/wiki/Category:Statistics" title="Category:Statistics">Statistics category</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></li> <li><a href="/wiki/Outline_of_statistics" title="Outline of statistics">Statistics outline</a></li> <li><a href="/wiki/List_of_statistics_articles" title="List of statistics articles">Statistics topics</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐qvkwc Cached time: 20241122142229 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.981 seconds Real time usage: 1.275 seconds Preprocessor visited node count: 3727/1000000 Post‐expand include size: 123056/2097152 bytes Template argument size: 3649/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 161907/5000000 bytes Lua time usage: 0.593/10.000 seconds Lua memory usage: 6981917/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 958.352 1 -total 46.01% 440.933 2 Template:Reflist 24.81% 237.799 19 Template:Cite_book 14.96% 143.335 1 Template:Regression_bar 14.65% 140.351 1 Template:Sidebar 14.01% 134.309 19 Template:Cite_journal 13.23% 126.830 1 Template:Short_description 7.07% 67.715 2 Template:Clarify 6.86% 65.756 2 Template:Pagetype 6.33% 60.652 2 Template:Fix-span --> <!-- Saved in parser cache with key enwiki:pcache:idhash:954328-0!canonical and timestamp 20241122142229 and revision id 1258776348. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Ridge_regression&amp;oldid=1258776348#Tikhonov_regularization">https://en.wikipedia.org/w/index.php?title=Ridge_regression&amp;oldid=1258776348#Tikhonov_regularization</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Linear algebra</a></li><li><a href="/wiki/Category:Estimation_methods" title="Category:Estimation methods">Estimation methods</a></li><li><a href="/wiki/Category:Inverse_problems" title="Category:Inverse problems">Inverse problems</a></li><li><a href="/wiki/Category:Regression_analysis" title="Category:Regression analysis">Regression analysis</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_April_2022" title="Category:Wikipedia articles needing page number citations from April 2022">Wikipedia articles needing page number citations from April 2022</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_May_2020" title="Category:Wikipedia articles needing clarification from May 2020">Wikipedia articles needing clarification from May 2020</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_November_2022" title="Category:Wikipedia articles needing clarification from November 2022">Wikipedia articles needing clarification from November 2022</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 15:43<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Ridge_regression&amp;mobileaction=toggle_view_mobile#Tikhonov_regularization" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gfg4b","wgBackendResponseTime":187,"wgPageParseReport":{"limitreport":{"cputime":"0.981","walltime":"1.275","ppvisitednodes":{"value":3727,"limit":1000000},"postexpandincludesize":{"value":123056,"limit":2097152},"templateargumentsize":{"value":3649,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":161907,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 958.352 1 -total"," 46.01% 440.933 2 Template:Reflist"," 24.81% 237.799 19 Template:Cite_book"," 14.96% 143.335 1 Template:Regression_bar"," 14.65% 140.351 1 Template:Sidebar"," 14.01% 134.309 19 Template:Cite_journal"," 13.23% 126.830 1 Template:Short_description"," 7.07% 67.715 2 Template:Clarify"," 6.86% 65.756 2 Template:Pagetype"," 6.33% 60.652 2 Template:Fix-span"]},"scribunto":{"limitreport-timeusage":{"value":"0.593","limit":"10.000"},"limitreport-memusage":{"value":6981917,"limit":52428800},"limitreport-logs":"table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-qvkwc","timestamp":"20241122142229","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ridge regression","url":"https:\/\/en.wikipedia.org\/wiki\/Ridge_regression#Tikhonov_regularization","sameAs":"http:\/\/www.wikidata.org\/entity\/Q106091291","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q106091291","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-09-03T11:16:35Z","dateModified":"2024-11-21T15:43:29Z","headline":"regularization technique for ill-posed problems"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10