CINXE.COM
Search results for: fresh groundwater lens
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fresh groundwater lens</title> <meta name="description" content="Search results for: fresh groundwater lens"> <meta name="keywords" content="fresh groundwater lens"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fresh groundwater lens" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fresh groundwater lens"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2056</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fresh groundwater lens</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Sustainable Use of Fresh Groundwater Lens of Pleistocene Aquifer in Nam Dinh, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Thanh%20Le">Tran Thanh Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Pham%20Trong%20Duc"> Pham Trong Duc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fresh groundwater lens of the Pleistocene aquifer in Nam Dinh was formed since 12,900 years ago. Currently, the Pleistocene aquifer has been continuously exploited on average of 154,163m3/day, distributed mainly in the districts of Nghia Hung, Hai Hau, a part of Truc Ninh, Y Yen, Nam Truc and Giao Thuy. The groundwater level is still on a declining trend, saltwater intrusion in this freshwater lens can occur if the growth rate in exploitation is maintained. This study focused on groundwater sustainable use by means of 4 groups of criteria including: Groundwater quality and pollution; Aquifers’ productivity and capacity; Environment impacts due to exploitation (groundwater level decline, land subsidence due to water exploitation); Social and economic impacts. Using a combination of methods including field surveys, geophysics, hydrogeochemistry, isotope and numerical models to determine safe groundwater exploitation thresholds for the whole study area has been determined to be 544,314m3/day and the actual exploitation amount is currently about 30% compared to the safe exploitation threshold. However, it should also be noted that the current groundwater exploitation threshold and level of its exploitation compared to the safe exploitation threshold of each locality are not the same. From this result, the groundwater exploitation threshold map of the study area was established to serve the management, licensing and orientation of groundwater exploitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria" title="criteria">criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens" title=" fresh groundwater lens"> fresh groundwater lens</a>, <a href="https://publications.waset.org/abstracts/search?q=pleistocene" title=" pleistocene"> pleistocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Dinh" title=" Nam Dinh"> Nam Dinh</a> </p> <a href="https://publications.waset.org/abstracts/145972/sustainable-use-of-fresh-groundwater-lens-of-pleistocene-aquifer-in-nam-dinh-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Freshwater Lens Observation: Case Study of Laura Island, Majuro Atoll, Republic of the Marshall Islands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuhisa%20Koda">Kazuhisa Koda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsutomu%20Kobayashi"> Tsutomu Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Lorennji"> Rebecca Lorennji</a>, <a href="https://publications.waset.org/abstracts/search?q=Alington%20Robert"> Alington Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=Halston%20DeBrum"> Halston DeBrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Julious%20Lucky"> Julious Lucky</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Paul"> Paul Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atolls are low-lying small islands with highly permeable ground that does not allow rivers and lakes to develop. As the water resources on these atolls basically rely on precipitation, groundwater becomes a very important water resource during droughts. Freshwater lenses develop as groundwater on relatively large atoll islands and play a key role in the stable water supply. Atoll islands in the Pacific Ocean sometimes suffer from drought due to El Nino. The global warming effects are noticeable, particularly on atoll islands. The Republic of the Marshall Islands in Oceania is burdened with the problems common to atoll islands. About half of its population lives in the capital, Majuro, and securing water resources for these people is a crucial issue. There is a freshwater lens on the largest, Laura Island, which serves as a water source for the downtown area. A serious drought that occurred in 1998 resulted in excessive water intake from the freshwater lens on Laura Island causing up-coning. Up-coning mixes saltwater into groundwater pumped from water-intake wells. Because up-coning makes the freshwater lens unusable, there was a need to investigate the freshwater lens on Laura Island. In this study, we observed the electrical conductivities of the groundwater at different depths in existing monitoring wells to determine the total storage volume of the freshwater lens on Laura Island from 2010 to 2013. Our results indicated that most of the groundwater that seeped into the freshwater lens had flowed out into the sea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atoll%20islands" title="Atoll islands">Atoll islands</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Nino" title=" El-Nino"> El-Nino</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20lens" title=" freshwater lens"> freshwater lens</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20observation" title=" groundwater observation"> groundwater observation</a> </p> <a href="https://publications.waset.org/abstracts/56405/freshwater-lens-observation-case-study-of-laura-island-majuro-atoll-republic-of-the-marshall-islands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kassem%20Natouf">Kassem Natouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihab%20Jnad"> Ihab Jnad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20aquifers" title="coastal aquifers">coastal aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20intrusion" title=" seawater intrusion"> seawater intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater" title=" fresh groundwater"> fresh groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20increase" title=" salinity increase"> salinity increase</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20region" title=" Arab region"> Arab region</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20management" title=" groundwater management"> groundwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20effects" title=" climate change effects"> climate change effects</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20practices" title=" sustainable water practices"> sustainable water practices</a>, <a href="https://publications.waset.org/abstracts/search?q=over-pumping" title=" over-pumping"> over-pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20recharge" title=" artificial recharge"> artificial recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20and%20modeling" title=" monitoring and modeling"> monitoring and modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20databases" title=" data databases"> data databases</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20resources" title=" groundwater resources"> groundwater resources</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20effects" title=" negative effects"> negative effects</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20report" title=" technical report"> technical report</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title=" groundwater quality"> groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making" title=" decision-making"> decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20practices" title=" agricultural practices"> agricultural practices</a> </p> <a href="https://publications.waset.org/abstracts/188936/the-phenomenon-of-the-seawater-intrusion-with-fresh-groundwater-in-the-arab-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> Groundwater Potential in the Central Part of Al Jabal Al Akhdar Area, Ne Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20El%20Osta">Maged El Osta</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Masoud"> Milad Masoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al Jabal Al Akhdar in the north-eastern part of Libya represents a region with promising ecological underpinning for grazing and other agricultural developments. The groundwater potential of both Upper Cretaceous and Eocene aquifers was studied based the available literature and a complete database for about 112 water wells drilled in the period 2003-2009. In this research, the hydrogeological methods will be integrated with the Geographic Information System (GIS) that played a main role in highlighting the spatial characteristics of the groundwater system. The results indicate that the depth to water for the Upper Cretaceous aquifer ranges from 150 to 458 m, and the piezometric surface decreases from over 500 m (m.s.l) in the northern parts to -20 m (m.s.l) in southeastern part. Salinity ranges between 303 and 1329 mg/l indicating that groundwater belongs to the slightly fresh water class. In the Eocene aquifer, the depth to groundwater ranges from 120 to 290.5 m and the potentiometric level decreases gradually southwards from 220 to -51 m (m.s.l) and characterized by steep slope in the southeastern part of the study area, where the aquifer characterized by relatively high productivity (specific capacity ranges between 10.08 and 332.3 m2/day). The groundwater salinity within this aquifer ranges between 198 and 2800 mg/l (fresh to brackish water class). The annual average rainfall (from 280 to 500 mm) plays a significant role in the recharge of the two aquifers. The priority of groundwater quality and potentiality increases towards the central and northern portions of the concerned area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eocene%20and%20Upper%20Cretaceous%20aquifers" title="Eocene and Upper Cretaceous aquifers">Eocene and Upper Cretaceous aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiality" title=" potentiality"> potentiality</a>, <a href="https://publications.waset.org/abstracts/search?q=Geographic%20Information%20System%20%28GIS%29" title=" Geographic Information System (GIS)"> Geographic Information System (GIS)</a> </p> <a href="https://publications.waset.org/abstracts/51369/groundwater-potential-in-the-central-part-of-al-jabal-al-akhdar-area-ne-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Shaheen">Asma Shaheen</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Iqbal"> Javed Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistical" title=" geostatistical"> geostatistical</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20effluent" title=" industrial effluent"> industrial effluent</a> </p> <a href="https://publications.waset.org/abstracts/76014/geostatistical-simulation-of-carcinogenic-industrial-effluent-on-the-irrigated-soil-and-groundwater-district-sheikhupura-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Belkhiri">L. Belkhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouni"> L. Mouni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tiri"> A. Tiri</a>, <a href="https://publications.waset.org/abstracts/search?q=T.S.%20Narany"> T.S. Narany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title="groundwater quality">groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20maps" title=" self-organizing maps"> self-organizing maps</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water" title=" irrigation water"> irrigation water</a> </p> <a href="https://publications.waset.org/abstracts/62284/evaluation-of-groundwater-quality-and-its-suitability-for-drinking-and-agricultural-purposes-using-self-organizing-maps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Jumaah%20Mrayeh">Hasan Jumaah Mrayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fue-Sang%20Lien"> Fue-Sang Lien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20lens" title="aerodynamic lens">aerodynamic lens</a>, <a href="https://publications.waset.org/abstracts/search?q=divergent%20nozzle" title=" divergent nozzle"> divergent nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Fluent" title=" ANSYS Fluent"> ANSYS Fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20approach" title=" Lagrange approach"> Lagrange approach</a> </p> <a href="https://publications.waset.org/abstracts/106210/using-divergent-nozzle-with-aerodynamic-lens-to-focus-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Adebo">Babatunde Adebo</a>, <a href="https://publications.waset.org/abstracts/search?q=Adedeji%20Adetoyinbo"> Adedeji Adetoyinbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saltwater%20intrusion" title="saltwater intrusion">saltwater intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20aquifer" title=" coastal aquifer"> coastal aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=nodal%20salinity" title=" nodal salinity"> nodal salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20concentration" title=" chloride concentration"> chloride concentration</a> </p> <a href="https://publications.waset.org/abstracts/92527/saline-water-transgression-into-fresh-coastal-groundwater-in-the-confined-aquifer-of-lagos-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> Urbanization on Green Cover and Groundwater Relationships in Delhi, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiranmay%20Sarma">Kiranmay Sarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cover" title=" green cover"> green cover</a>, <a href="https://publications.waset.org/abstracts/search?q=Delhi" title=" Delhi"> Delhi</a> </p> <a href="https://publications.waset.org/abstracts/63321/urbanization-on-green-cover-and-groundwater-relationships-in-delhi-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> Development of Groundwater Management Model Using Groundwater Sustainability Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Rwanga">S. S. Rwanga</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ndambuki"> J. M. Ndambuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Woyessa"> Y. Woyessa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20sustainability%20index" title=" groundwater sustainability index"> groundwater sustainability index</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a> </p> <a href="https://publications.waset.org/abstracts/94516/development-of-groundwater-management-model-using-groundwater-sustainability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> A Plan of Smart Management for Groundwater Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Chen">Jennifer Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei%20Y.%20Hsu"> Pei Y. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20W.%20Chen"> Yu W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater resources play a vital role in regional water supply because over 1/3 of total demand is satisfied by groundwater resources. Because over-pumpage might cause environmental impact such as land subsidence, a sustainable management of groundwater resource is required. In this study, a blueprint of smart management for groundwater resource is proposed and planned. The framework of the smart management can be divided into two major parts, hardware and software parts. First, an internet of groundwater (IoG) which is inspired by the internet of thing (IoT) is proposed to observe the migration of groundwater usage and the associated response, groundwater levels. Second, algorithms based on data mining and signal analysis are proposed to achieve the goal of providing highly efficient management of groundwater. The entire blueprint is a 4-year plan and this year is the first year. We have finished the installation of 50 flow meters and 17 observation wells. An underground hydrological model is proposed to determine the associated drawdown caused by the measured pumpages. Besides, an alternative to the flow meter is also proposed to decrease the installation cost of IoG. An accelerometer and 3G remote transmission are proposed to detect the on and off of groundwater pumpage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20management" title="groundwater management">groundwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20groundwater" title=" internet of groundwater"> internet of groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20hydrological%20model" title=" underground hydrological model"> underground hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20of%20flow%20meter" title=" alternative of flow meter"> alternative of flow meter</a> </p> <a href="https://publications.waset.org/abstracts/84970/a-plan-of-smart-management-for-groundwater-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> Ground Water Pollution Investigation around Çorum Stream Basin in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Bas">Halil Bas</a>, <a href="https://publications.waset.org/abstracts/search?q=Unal%20Demiray"> Unal Demiray</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukru%20Dursun"> Sukru Dursun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water and ground water pollution at the most of the countries is important problem. Investigation of water pollution source must be carried out to save fresh water. Because fresh water sources are very limited and recent sources are not enough for increasing population of world. In this study, investigation was carried out on pollution factors effecting the quality of the groundwater in Çorum Stream Basin in Turkey. Effect of geological structure of the region and the interaction between the stream and groundwater was researched. For the investigation, stream and groundwater sampling were performed at rainy and dry seasons to see if there is a change on quality parameters. The results were evaluated by the computer programs and then graphics, distribution maps were prepared. Thus, degree of the quality and pollution were tried to understand. According to analysis results, because the results of streams and the ground waters are not so close to each other we can say that there is no interaction between the stream and the groundwater. As the irrigation water, the stream waters are generally in the range between C3S1 region and the ground waters are generally in the range between C3S1 and C4S2 regions according to US Salinity Laboratory Diagram. According to Wilcox diagram stream waters are generally good-permissible and ground waters are generally good permissible, doubtful to unsuitable and unsuitable type. Especially ground waters are doubtful to unsuitable and unsuitable types in dry season. It may be assumed that as the result of relative increase in concentration of salt minerals. Especially samples from groundwater wells bored close to gypsium bearing units have high hardness, electrical conductivity and salinity values. Thus for drinking and irrigation these waters are determined as unsuitable. As a result of these studies, it is understood that the groundwater especially was effected by the lithological contamination rather than the anthropogenic or the other types of pollution. Because the alluvium is covered by the silt and clay lithology it is not affected by the anthropogenic and the other foreign factors. The results of solid waste disposal site leachate indicate that this site would have a risk potential for pollution in the future. Although the parameters did not exceed the maximum dangerous values it does not mean that they will not be dangerous in the future, and this case must be taken into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%87orum" title="Çorum">Çorum</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeology" title=" hydrogeology"> hydrogeology</a>, <a href="https://publications.waset.org/abstracts/search?q=geology" title=" geology"> geology</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=stream" title=" stream"> stream</a> </p> <a href="https://publications.waset.org/abstracts/21201/ground-water-pollution-investigation-around-corum-stream-basin-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> Approach to Quantify Groundwater Recharge Using GIS Based Water Balance Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Rwanga">S. S. Rwanga</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ndambuki"> J. M. Ndambuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater quantification needs a method which is not only flexible but also reliable in order to accurately quantify its spatial and temporal variability. As groundwater is dynamic and interdisciplinary in nature, an integrated approach of remote sensing (RS) and GIS technique is very useful in various groundwater management studies. Thus, the GIS water balance model (WetSpass) together with remote sensing (RS) can be used to quantify groundwater recharge. This paper discusses the concept of WetSpass in combination with GIS on the quantification of recharge with a view to managing water resources in an integrated framework. The paper presents the simulation procedures and expected output after simulation. Preliminary data are presented from GIS output only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge" title=" recharge"> recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=WetSpass" title=" WetSpass"> WetSpass</a> </p> <a href="https://publications.waset.org/abstracts/33834/approach-to-quantify-groundwater-recharge-using-gis-based-water-balance-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> Study of Geological Structure for Potential Fresh-Groundwater Aquifer Determination around Cidaun Beach, Cianjur Regency, West Java Province, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Aji%20Dermawan">Ilham Aji Dermawan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sapari%20Dwi%20Hadian"> M. Sapari Dwi Hadian</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Irvan%20Sophian"> R. Irvan Sophian</a>, <a href="https://publications.waset.org/abstracts/search?q=Iyan%20Haryanto"> Iyan Haryanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the geological structure in the surrounding area of Cidaun, Cianjur Regency, West Java Province, Indonesia was conducted around the southern coast of Java Island. This study aims to determine the potentially structural trap deposits of freshwater resources in the study area, according to that the study area is an area directly adjacent to the beach, where the water around it did not seem fresh and brackish due to the exposure of sea water intrusion. This study uses the method of geomorphological analysis and geological mapping by taking the data directly in the field within 10x10 km of the research area. Geomorphological analysis was done by calculating the watershed drainage density value and roundness of watershed value ratio. The goal is to determine the permeability of the sub-soil conditions, rock constituent, and the flow of surface water. While the field geological mapping aims to take the geological structure data and then will do the reconstruction to determine the geological conditions of research area. The result, from geomorphology aspects, that the considered area of potential groundwater consisted of permeable surface material, permeable sub-soil, and low of water run-off flow. It is very good for groundwater recharge area. While the results of geological reconstruction after conducted of geological mapping is joints that present were initiated for the Cipandak Fault that cuts Cipandak River. That fault across until the Cibako Syncline fold through the Cibako River. This syncline is expected to place of influent groundwater aquifer. The tip of Cibako River then united with Cipandak River, where the Cipandak River extends through Cipandak Syncline fold axis in the southern regions close to its estuary. This syncline is expected to place of influent groundwater aquifer too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geological%20structure" title="geological structure">geological structure</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeology" title=" hydrogeology"> hydrogeology</a>, <a href="https://publications.waset.org/abstracts/search?q=influent%20aquifer" title=" influent aquifer"> influent aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20trap" title=" structural trap"> structural trap</a> </p> <a href="https://publications.waset.org/abstracts/70258/study-of-geological-structure-for-potential-fresh-groundwater-aquifer-determination-around-cidaun-beach-cianjur-regency-west-java-province-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2042</span> The Use of Multivariate Statistical and GIS for Characterization Groundwater Quality in Laghouat Region, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouighi%20Mustapha">Rouighi Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzid%20Laghaa%20Souad"> Bouzid Laghaa Souad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouighi%20Tahar"> Rouighi Tahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to rain Shortage and the increase of population in the last years, wells excavation and groundwater use for different purposes had been increased without any planning. This is a great challenge for our country. Moreover, this scarcity of water resources in this region is unfortunately combined with rapid fresh water resources quality deterioration, due to salinity and contamination processes. Therefore, it is necessary to conduct the studies about groundwater quality in Algeria. In this work consists in the identification of the factors which influence the water quality parameters in Laghouat region by using statistical analysis Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and geographic information system (GIS) in an attempt to discriminate the sources of the variation of water quality variations. The results of PCA technique indicate that variables responsible for water quality composition are mainly related to soluble salts variables; natural processes and the nature of the rock which modifies significantly the water chemistry. Inferred from the positive correlation between K+ and NO3-, NO3- is believed to be human induced rather than naturally originated. In this study, the multivariate statistical analysis and GIS allows the hydrogeologist to have supplementary tools in the characterization and evaluating of aquifers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster" title="cluster">cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=laghouat" title=" laghouat"> laghouat</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/38669/the-use-of-multivariate-statistical-and-gis-for-characterization-groundwater-quality-in-laghouat-region-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2041</span> Estimating of Groundwater Recharge Value for Al-Najaf City, Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayder%20H.%20Kareem">Hayder H. Kareem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater recharge is a crucial parameter for any groundwater management system. The variability of the recharge rates and the difficulty in estimating this factor in many processes by direct observation leads to the complexity of estimating the recharge value. Various methods are existing to estimate the groundwater recharge, with some limitations for each method to be able for application. This paper focuses particularly on a real study area, Al-Najaf City, Iraq. In this city, there are few groundwater aquifers, but the aquifer which is considered in this study is the closest one to the ground surface, the Dibdibba aquifer. According to the Aridity Index, which is estimated in the paper, Al-Najaf City is classified as a region located in an arid climate, and this identified that the most appropriate method to estimate the groundwater recharge is Thornthwaite's formula or Thornthwaite's method. From the calculations, the estimated average groundwater recharge over the period 1980-2014 for Al-Najaf City is 40.32 mm/year. Groundwater recharge is completely affected the groundwater table level (groundwater head). Therefore, to make sure that this value of recharge is true, the MODFLOW program has been used to apply this value through finding the relationship between the calculated and observed heads where a groundwater model for the Al-Najaf City study area has been built by MODFLOW to simulate this area for different purposes, one of these purposes is to simulate the groundwater recharge. MODFLOW results show that this value of groundwater recharge is extremely high and needs to be reduced. Therefore, a further sensitivity test has been carried out for the Al-Najaf City study area by the MODFLOW program through changing the recharge value and found that the best estimation of groundwater recharge value for this city is 16.5 mm/year where this value gives the best fitting between the calculated and observed heads with minimum values of RMSE % (13.175) and RSS m² (1454). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Najaf%20City" title="Al-Najaf City">Al-Najaf City</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20modelling" title=" groundwater modelling"> groundwater modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge%20estimation" title=" recharge estimation"> recharge estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20MODFLOW" title=" visual MODFLOW"> visual MODFLOW</a> </p> <a href="https://publications.waset.org/abstracts/131767/estimating-of-groundwater-recharge-value-for-al-najaf-city-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2040</span> A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamakshaiah%20Kolli">Kamakshaiah Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Seshadri"> R. Seshadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20standards" title=" water quality standards"> water quality standards</a>, <a href="https://publications.waset.org/abstracts/search?q=potability" title=" potability"> potability</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=JRIP" title=" JRIP"> JRIP</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/40645/a-novel-approach-for-the-analysis-of-ground-water-quality-by-using-classification-rules-and-water-quality-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2039</span> Groundwater Quality Assessment Using Water Quality Index and Geographical Information System Techniques: A Case Study of Busan City, South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Venkatramanan">S. Venkatramanan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Chung"> S. Y. Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Selvam"> S. Selvam</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Hussam"> E. E. Hussam</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gnanachandrasamy"> G. Gnanachandrasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of groundwater was evaluated by major ions concentration around Busan city, South Korea. The groundwater samples were collected from 40 wells. The order of abundance of major cations concentration in groundwater is Na > Ca > Mg > K, in case of anions are Cl > HCO₃ > SO₄ > NO₃ > F. Based on Piper’s diagram Ca (HCO₃)₂, CaCl₂, and NaCl are the leading groundwater types. While Gibbs diagram suggested that most of groundwater samples belong to rock-weathering zone. Hydrogeochemical condition of groundwater in this city is influenced by evaporation, ion exchange and dissolution of minerals. Water Quality Index (WQI) revealed that 86 % of the samples belong to excellent, 2 % good, 4 % poor to very poor and 8 % unsuitable categories. The results of sodium absorption ratio (SAR), Permeability Index (PI), Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH) exhibit that most of the groundwater samples are suitable for domestic and irrigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WQI%20%28Water%20Quality%20Index%29" title="WQI (Water Quality Index)">WQI (Water Quality Index)</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20index" title=" saturation index"> saturation index</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20types" title=" groundwater types"> groundwater types</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a> </p> <a href="https://publications.waset.org/abstracts/79048/groundwater-quality-assessment-using-water-quality-index-and-geographical-information-system-techniques-a-case-study-of-busan-city-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2038</span> Hydrogeochemical Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Oghenenyoreme%20Eyankware">Moses Oghenenyoreme Eyankware</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Ogubuchi%20Ede"> Christian Ogubuchi Ede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability" title=" suitability"> suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic" title=" anthropogenic"> anthropogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/140253/hydrogeochemical-assessment-of-groundwater-in-selected-part-of-benue-state-southern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2037</span> Groundwater Recharge Suitability Mapping Using Analytical Hierarchy Process Based-Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziza%20Barrek">Aziza Barrek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haythem%20Msaddek"> Mohamed Haythem Msaddek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Chenini"> Ismail Chenini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive groundwater pumping due to the increasing water demand, especially in the agricultural sector, causes groundwater scarcity. Groundwater recharge is the most important process that contributes to the water's durability. This paper is based on the Analytic Hierarchy Process multicriteria analysis to establish a groundwater recharge susceptibility map. To delineate aquifer suitability for groundwater recharge, eight parameters were used: soil type, land cover, drainage density, lithology, NDVI, slope, transmissivity, and rainfall. The impact of each factor was weighted. This method was applied to the El Fahs plain shallow aquifer. Results suggest that 37% of the aquifer area has very good and good recharge suitability. The results have been validated by the Receiver Operating Characteristics curve. The accuracy of the prediction obtained was 89.3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AHP" title="AHP">AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Fahs%20aquifer" title=" El Fahs aquifer"> El Fahs aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20formula" title=" empirical formula"> empirical formula</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20recharge%20zone" title=" groundwater recharge zone"> groundwater recharge zone</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid%20region" title=" semi-arid region"> semi-arid region</a> </p> <a href="https://publications.waset.org/abstracts/159543/groundwater-recharge-suitability-mapping-using-analytical-hierarchy-process-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2036</span> Geochemical Evaluation Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Oghnennyoreme%20Eyankware">Moses Oghnennyoreme Eyankware</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Ogubuchi%20Ede"> Christian Ogubuchi Ede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability" title=" suitability"> suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic" title=" anthropogenic"> anthropogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/140254/geochemical-evaluation-assessment-of-groundwater-in-selected-part-of-benue-state-southern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2035</span> Effect of Saline Ground Water on Economics of Bitter-Gourd (Momordica charantia L.) Cultivation and Soil Characteristics in Semi Arid Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Baksh%20Soomro">Kamran Baksh Soomro</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Talei"> Amin Talei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Alaghmand"> Sina Alaghmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the declining freshwater availability to agriculture in many areas, the utilization of saline irrigation requires more consideration. For this purpose, the effects of saline irrigation on the economics of crop yield and soil salinity should be understood. A two-year field experiment was carried out during 2017-18 with three replications to investigate the effect of saline groundwater on the economics of bitter gourd production and soil salinity status after harvesting the crop. Two irrigation treatments, i.e., fresh quality irrigation water (IT₁ EC 0.56 dS.m⁻¹ (control) and other is saline groundwater ( IT₂ EC 2.56 dS.m⁻¹) were used under drip system of irrigation. Cost-benefit analysis is often used to assess adaptation approaches. In this study, it has been observed that the salts under IT₁ (fresh quality water) and IT₂ (saline groundwater) did not accumulate in the wetted zone. However, the salts were observed deposited at wetted periphery under both the treatments after the crop end at all the three sampling depths under drip system of irrigation. Moreover, the costs and benefits associated with different irrigation treatments for two consecutive seasons for bitter-gourd cultivation were also investigated, and it was found that the average gross returns per hectare in season 1 were USD 5008.22 and 4454.78 under irrigation treatment IT₁ and IT₂ respectively. Whereas in season 2 the average gross returns per hectare were 3713.47 and 3140.51 under IT₁ and IT₂ respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground-water" title="ground-water">ground-water</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title=" soil salinity"> soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title=" drip irrigation"> drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=wetted%20zone" title=" wetted zone"> wetted zone</a>, <a href="https://publications.waset.org/abstracts/search?q=wetted%20periphery" title=" wetted periphery"> wetted periphery</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20benefit%20analysis" title=" cost benefit analysis"> cost benefit analysis</a> </p> <a href="https://publications.waset.org/abstracts/101836/effect-of-saline-ground-water-on-economics-of-bitter-gourd-momordica-charantia-l-cultivation-and-soil-characteristics-in-semi-arid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2034</span> Groundwater Vulnerability of Halabja-Khurmal Sub-Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanja%20F.%20Rauf">Lanja F. Rauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Salahalddin%20S.%20Ali"> Salahalddin S. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadhir%20Al-Ansari"> Nadhir Al-Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolving groundwater vulnerability from DRASTIC to modified DRASTIC methods helps choose the most accurate areas that are most delicate toward pollution. This study aims to modify DRASTIC with land use and water quality index for groundwater vulnerability assessment in the Halabja-Khurmal sub-basin, NE/Iraq. The Halabja- Khurmal sub-basin groundwater vulnerability index is calculated from nine hydrogeological parameters by the overlay weighting method. As a result, 1.3 % of the total area has a very high vulnerability value and 46.1 % with high vulnerability. The regions with high groundwater vulnerability have a high water table and groundwater recharge. Nitrate concentration was used to validate the result, and the Pearson correlation and recession analysis between the modified DRASTIC index and nitrate concentration depicted a strong relation with 0.76 and 0.7, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20vulnerability" title="groundwater vulnerability">groundwater vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20DRASTIC" title=" modified DRASTIC"> modified DRASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use" title=" land-use"> land-use</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20pollution" title=" nitrate pollution"> nitrate pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index" title=" water quality index"> water quality index</a> </p> <a href="https://publications.waset.org/abstracts/154484/groundwater-vulnerability-of-halabja-khurmal-sub-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2033</span> Complications of Contact Lens-Associated Keratitis: A Refresher for Emergency Departments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Selman">S. Selman</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gout"> T. Gout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial keratitis is a serious complication of contact lens wear that can be vision and eye-threatening. Diverse presentations relating to contact lens wear include dry corneal surface, corneal infiltrate, ulceration, scarring, and complete corneal melt leading to perforation. Contact lens wear is a major risk factor and, as such, is an important consideration in any patient presenting with a red eye in the primary care setting. This paper aims to provide an overview of the risk factors, common organisms, and spectrum of contact lens-associated keratitis (CLAK) complications. It will highlight some of the salient points relevant to the assessment and workup of patients suspected of CLAK in the emergency department based on the recent literature and therapeutic guidelines. An overview of the management principles will also be provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20keratitis" title="microbial keratitis">microbial keratitis</a>, <a href="https://publications.waset.org/abstracts/search?q=corneal%20pathology" title=" corneal pathology"> corneal pathology</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20lens-associated%20complications" title=" contact lens-associated complications"> contact lens-associated complications</a>, <a href="https://publications.waset.org/abstracts/search?q=painful%20vision%20loss" title=" painful vision loss"> painful vision loss</a> </p> <a href="https://publications.waset.org/abstracts/153766/complications-of-contact-lens-associated-keratitis-a-refresher-for-emergency-departments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2032</span> Application of Groundwater Level Data Mining in Aquifer Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng%20Chang">Liang Cheng Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Ju%20Huang"> Wei Ju Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=You%20Cheng%20Chen"> You Cheng Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquifer%20identification" title="aquifer identification">aquifer identification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform" title=" Fourier transform"> Fourier transform</a> </p> <a href="https://publications.waset.org/abstracts/134623/application-of-groundwater-level-data-mining-in-aquifer-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2031</span> A GIS Based Approach in District Peshawar, Pakistan for Groundwater Vulnerability Assessment Using DRASTIC Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Adnan">Syed Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Iqbal"> Javed Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In urban and rural areas groundwater is the most economic natural source of drinking. Groundwater resources of Pakistan are degraded due to high population growth and increased industrial development. A study was conducted in district Peshawar to assess groundwater vulnerable zones using GIS based DRASTIC model. Six input parameters (groundwater depth, groundwater recharge, aquifer material, soil type, slope and hydraulic conductivity) were used in the DRASTIC model to generate the groundwater vulnerable zones. Each parameter was divided into different ranges or media types and a subjective rating from 1-10 was assigned to each factor where 1 represented very low impact on pollution potential and 10 represented very high impact. Weight multiplier from 1-5 was used to balance and enhance the importance of each factor. The DRASTIC model scores obtained varied from 47 to 147. Using quantile classification scheme these values were reclassified into three zones i.e. low, moderate and high vulnerable zones. The areas of these zones were calculated. The final result indicated that about 400 km2, 506 km2, and 375 km2 were classified as low, moderate, and high vulnerable areas, respectively. It is recommended that the most vulnerable zones should be treated on first priority to facilitate the inhabitants for drinking purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DRASTIC%20model" title="DRASTIC model">DRASTIC model</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20vulnerability" title=" groundwater vulnerability"> groundwater vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20in%20groundwater" title=" GIS in groundwater"> GIS in groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20sources" title=" drinking sources "> drinking sources </a> </p> <a href="https://publications.waset.org/abstracts/13875/a-gis-based-approach-in-district-peshawar-pakistan-for-groundwater-vulnerability-assessment-using-drastic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2030</span> Application of Remote Sensing and GIS for Delineating Groundwater Potential Zones of Ariyalur, Southern Part of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Gnanachandrasamy">G. Gnanachandrasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhou"> Y. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Venkatramanan"> S. Venkatramanan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ramkumar"> T. Ramkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Wang"> S. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural resources of groundwater are the most precious resources around the world that balances are shrinking day by day. In connection, there is an urgency need for demarcation of potential groundwater zone. For these rationale integration of geographical information system (GIS) and remote sensing techniques (RS) for the hydrological studies have become a dramatic change in the field of hydrological research. These techniques are provided to locate the potential zone of groundwater. This research has been made to indent groundwater potential zone in Ariyalur of the southern part of India with help of GIS and remote sensing techniques. To identify the groundwater potential zone used by different thematic layers of geology, geomorphology, drainage, drainage density, lineaments, lineaments density, soil and slope with inverse distance weighting (IDW) methods. From the overall result reveals that the potential zone of groundwater in the study area classified into five classes named as very good (12.18 %), good (22.74 %), moderate (32.28 %), poor (27.7 %) and very poor (5.08 %). This technique suggested that very good potential zone of groundwater occurred in patches of northern and central parts of Jayamkondam, Andimadam and Palur regions in Ariyalur district. The result exhibited that inverse distance weighting method offered in this research is an effective tool for interpreting groundwater potential zones for suitable development and management of groundwater resources in different hydrogeological environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20potential%20zone" title=" groundwater potential zone"> groundwater potential zone</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/79645/application-of-remote-sensing-and-gis-for-delineating-groundwater-potential-zones-of-ariyalur-southern-part-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2029</span> Effect of Waste Dumping on Groundwater Quality at Guntun Layi Funtua, Katsina State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isiya%20Aminu%20Dabai">Isiya Aminu Dabai</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Kayode"> Adebola Kayode</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeosun%20Kayode%20Daniel"> Adeosun Kayode Daniel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rural water supply relies mainly on groundwater exploitation, because it is more accessible, reliable, cheaper to develop and maintain, also with good quality compared to the surface water. Despite these advantages, groundwater has come under pollution threats like waste dumps, mineral exploitation, industrialization etc. This study investigates the effects of an open dumping to the surrounding groundwater. Ten hand dug well water samples were collected from the surroundings and tested. The average result shows that temperature, colour and turbidity to be 8.50 c, 6.1 TCU and 3.1 NTU respectively and pH, conductivity, total dissolved solids, chloride content and hardness to be 7.2, 4.78, 1.8, 5.7, and 3.4 respectively while in the bacteriological test well no. 1, 2, 3, and 5 shows the presence of coliforms and E. Coli bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=dump%20site" title=" dump site"> dump site</a>, <a href="https://publications.waset.org/abstracts/search?q=unsafe" title=" unsafe"> unsafe</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality "> quality </a> </p> <a href="https://publications.waset.org/abstracts/18514/effect-of-waste-dumping-on-groundwater-quality-at-guntun-layi-funtua-katsina-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">683</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2028</span> Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tawfik">M. Tawfik</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Tonnellier"> X. Tonnellier</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sansom"> C. Sansom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fresnel%20lens" title="Fresnel lens">Fresnel lens</a>, <a href="https://publications.waset.org/abstracts/search?q=LLBG" title=" LLBG"> LLBG</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20concentrator" title=" solar concentrator"> solar concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tracking" title=" solar tracking"> solar tracking</a> </p> <a href="https://publications.waset.org/abstracts/57002/parameters-influencing-the-output-precision-of-a-lens-lens-beam-generator-solar-concentrator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2027</span> Mapping of Potential Areas for Groundwater Storage in the Sais Plateau and Its Middle Atlas Borders, Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Qadem">Abdelghani Qadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohair%20Qadem"> Zohair Qadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Lasri"> Mohamed Lasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the level of the Moroccan Sais Plateau, groundwater constitutes strategic natural resources for agricultural, industrial, and domestic use. Today, due to climate change and population growth, the pressure on groundwater has increased considerably. This contribution aims to delineate and map potential areas for groundwater storage in the area in question using GIS and remote sensing. The methodology adopted is based on the identification of the thematic layers used to assess the potential recharge of the aquifer. The mapping of potential areas for groundwater storage is developed through the method of modeling and weighted overlay using the spatial analysis tool on the Geographic Information System. The results obtained can be used for the planning of future artificial recharge projects in the study area in order to ensure the good sustainable use of this underground gift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morocco" title="Morocco">Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge" title=" recharge"> recharge</a> </p> <a href="https://publications.waset.org/abstracts/165794/mapping-of-potential-areas-for-groundwater-storage-in-the-sais-plateau-and-its-middle-atlas-borders-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>