CINXE.COM

Organic solar cell - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Organic solar cell - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"70301d82-974a-442e-8dd6-e5f48c7abcfb","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Organic_solar_cell","wgTitle":"Organic solar cell","wgCurRevisionId":1276780309,"wgRevisionId":1276780309,"wgArticleId":18397250,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with dead external links","Articles with dead external links from March 2018","Articles with permanently dead external links","Articles with short description","Short description matches Wikidata","Commons category link from Wikidata","Articles with dead external links from December 2020","Organic solar cells","Solar cells"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Organic_solar_cell", "wgRelevantArticleId":18397250,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1472888","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.17"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/0/0e/4inchcell.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="901"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/0/0e/4inchcell.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="601"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="481"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Organic solar cell - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Organic_solar_cell"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Organic_solar_cell&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Organic_solar_cell"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Organic_solar_cell rootpage-Organic_solar_cell skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Organic+solar+cell" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Organic+solar+cell" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Organic+solar+cell" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Organic+solar+cell" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Physics</span> </div> </a> <ul id="toc-Physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Junction_types" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Junction_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Junction types</span> </div> </a> <button aria-controls="toc-Junction_types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Junction types subsection</span> </button> <ul id="toc-Junction_types-sublist" class="vector-toc-list"> <li id="toc-Single_layer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Single_layer"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Single layer</span> </div> </a> <ul id="toc-Single_layer-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Issues" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Issues"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Issues</span> </div> </a> <ul id="toc-Issues-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Bilayer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bilayer"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Bilayer</span> </div> </a> <ul id="toc-Bilayer-sublist" class="vector-toc-list"> <li id="toc-Examples_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Issues_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Issues_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>Issues</span> </div> </a> <ul id="toc-Issues_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Discrete_heterojunction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discrete_heterojunction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Discrete heterojunction</span> </div> </a> <ul id="toc-Discrete_heterojunction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bulk_heterojunction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bulk_heterojunction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Bulk heterojunction</span> </div> </a> <ul id="toc-Bulk_heterojunction-sublist" class="vector-toc-list"> <li id="toc-Examples_3" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_3-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Graded_heterojunction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graded_heterojunction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Graded heterojunction</span> </div> </a> <ul id="toc-Graded_heterojunction-sublist" class="vector-toc-list"> <li id="toc-Examples_4" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_4"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_4-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Continuous_junction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Continuous_junction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Continuous junction</span> </div> </a> <ul id="toc-Continuous_junction-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Production" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Production"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Production</span> </div> </a> <button aria-controls="toc-Production-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Production subsection</span> </button> <ul id="toc-Production-sublist" class="vector-toc-list"> <li id="toc-Progress_in_growth_techniques" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Progress_in_growth_techniques"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Progress in growth techniques</span> </div> </a> <ul id="toc-Progress_in_growth_techniques-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vacuum_thermal_evaporation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vacuum_thermal_evaporation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Vacuum thermal evaporation</span> </div> </a> <ul id="toc-Vacuum_thermal_evaporation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Organic_vapor_phase_deposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Organic_vapor_phase_deposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Organic vapor phase deposition</span> </div> </a> <ul id="toc-Organic_vapor_phase_deposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Solvent_effects" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solvent_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Solvent effects</span> </div> </a> <ul id="toc-Solvent_effects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Self-assembled_cells" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Self-assembled_cells"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Self-assembled cells</span> </div> </a> <ul id="toc-Self-assembled_cells-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Transparent_polymer_cells" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Transparent_polymer_cells"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Transparent polymer cells</span> </div> </a> <button aria-controls="toc-Transparent_polymer_cells-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Transparent polymer cells subsection</span> </button> <ul id="toc-Transparent_polymer_cells-sublist" class="vector-toc-list"> <li id="toc-Infrared_polymer_cells" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infrared_polymer_cells"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Infrared polymer cells</span> </div> </a> <ul id="toc-Infrared_polymer_cells-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Typical_Current-Voltage_Behavior_and_Power_Conversion_Efficiency" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Typical_Current-Voltage_Behavior_and_Power_Conversion_Efficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Typical Current-Voltage Behavior and Power Conversion Efficiency</span> </div> </a> <ul id="toc-Typical_Current-Voltage_Behavior_and_Power_Conversion_Efficiency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Commercialization" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Commercialization"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Commercialization</span> </div> </a> <ul id="toc-Commercialization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modeling_organic_solar_cells" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Modeling_organic_solar_cells"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Modeling organic solar cells</span> </div> </a> <ul id="toc-Modeling_organic_solar_cells-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Current_challenges_and_recent_progress" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Current_challenges_and_recent_progress"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Current challenges and recent progress</span> </div> </a> <button aria-controls="toc-Current_challenges_and_recent_progress-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Current challenges and recent progress subsection</span> </button> <ul id="toc-Current_challenges_and_recent_progress-sublist" class="vector-toc-list"> <li id="toc-Charge_carrier_mobility_and_transport" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Charge_carrier_mobility_and_transport"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Charge carrier mobility and transport</span> </div> </a> <ul id="toc-Charge_carrier_mobility_and_transport-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Effect_of_film_morphology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Effect_of_film_morphology"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Effect of film morphology</span> </div> </a> <ul id="toc-Effect_of_film_morphology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Controlled_growth_heterojunction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Controlled_growth_heterojunction"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Controlled growth heterojunction</span> </div> </a> <ul id="toc-Controlled_growth_heterojunction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Light_trapping" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Light_trapping"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Light trapping</span> </div> </a> <ul id="toc-Light_trapping-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Use_in_tandem_photovoltaics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Use_in_tandem_photovoltaics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Use in tandem photovoltaics</span> </div> </a> <ul id="toc-Use_in_tandem_photovoltaics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mechanical_behavior" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mechanical_behavior"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.6</span> <span>Mechanical behavior</span> </div> </a> <ul id="toc-Mechanical_behavior-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Recent_directions_for_bulk_heterojunction_materials_research" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Recent_directions_for_bulk_heterojunction_materials_research"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.7</span> <span>Recent directions for bulk heterojunction materials research</span> </div> </a> <ul id="toc-Recent_directions_for_bulk_heterojunction_materials_research-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Organic solar cell</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 12 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-12" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">12 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/C%C3%A8l%C2%B7lula_solar_org%C3%A0nica" title="Cèl·lula solar orgànica – Catalan" lang="ca" hreflang="ca" data-title="Cèl·lula solar orgànica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Cell_ffotofoltaidd_organig" title="Cell ffotofoltaidd organig – Welsh" lang="cy" hreflang="cy" data-title="Cell ffotofoltaidd organig" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Organische_Solarzelle" title="Organische Solarzelle – German" lang="de" hreflang="de" data-title="Organische Solarzelle" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/C%C3%A9lula_fotovoltaica_org%C3%A1nica" title="Célula fotovoltaica orgánica – Spanish" lang="es" hreflang="es" data-title="Célula fotovoltaica orgánica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B3%D9%84%D9%88%D9%84_%D8%AE%D9%88%D8%B1%D8%B4%DB%8C%D8%AF%DB%8C_%D8%A2%D9%84%DB%8C" title="سلول خورشیدی آلی – Persian" lang="fa" hreflang="fa" data-title="سلول خورشیدی آلی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Cellule_photovolta%C3%AFque_organique" title="Cellule photovoltaïque organique – French" lang="fr" hreflang="fr" data-title="Cellule photovoltaïque organique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Polimerni/organski_fotonaponski_%C4%8Dlanci" title="Polimerni/organski fotonaponski članci – Croatian" lang="hr" hreflang="hr" data-title="Polimerni/organski fotonaponski članci" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Szerves_napelem" title="Szerves napelem – Hungarian" lang="hu" hreflang="hu" data-title="Szerves napelem" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%A4%AA%E9%99%BD%E9%9B%BB%E6%B1%A0#有機系" title="太陽電池 – Japanese" lang="ja" hreflang="ja" data-title="太陽電池" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/C%C3%A9lula_solar_flex%C3%ADvel" title="Célula solar flexível – Portuguese" lang="pt" hreflang="pt" data-title="Célula solar flexível" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-tr badge-Q70893996 mw-list-item" title=""><a href="https://tr.wikipedia.org/wiki/Organik_g%C3%BCne%C5%9F_h%C3%BCcresi" title="Organik güneş hücresi – Turkish" lang="tr" hreflang="tr" data-title="Organik güneş hücresi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9C%89%E6%9C%BA%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0" title="有机太阳能电池 – Chinese" lang="zh" hreflang="zh" data-title="有机太阳能电池" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1472888#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Organic_solar_cell" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Organic_solar_cell" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Organic_solar_cell"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Organic_solar_cell&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Organic_solar_cell"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Organic_solar_cell&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Organic_solar_cell" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Organic_solar_cell" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Organic_solar_cell&amp;oldid=1276780309" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Organic_solar_cell&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Organic_solar_cell&amp;id=1276780309&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOrganic_solar_cell"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOrganic_solar_cell"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Organic_solar_cell&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Organic_solar_cell&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Organic_solar_cells" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1472888" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of photovoltaic</div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Solarcells4.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Solarcells4.gif/300px-Solarcells4.gif" decoding="async" width="300" height="99" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Solarcells4.gif/450px-Solarcells4.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Solarcells4.gif/600px-Solarcells4.gif 2x" data-file-width="1024" data-file-height="339" /></a><figcaption>Fig. 1. Schematic of plastic solar cells. PET – <a href="/wiki/Polyethylene_terephthalate" title="Polyethylene terephthalate">polyethylene terephthalate</a>, ITO – <a href="/wiki/Indium_tin_oxide" title="Indium tin oxide">indium tin oxide</a>, PEDOT:PSS – <a href="/wiki/Poly(3,4-ethylenedioxythiophene)" title="Poly(3,4-ethylenedioxythiophene)">poly(3,4-ethylenedioxythiophene)</a>, active <a href="/wiki/Layer_(electronics)" title="Layer (electronics)">layer</a> (usually a polymer:fullerene blend), Al – <a href="/wiki/Aluminium" title="Aluminium">aluminium</a>.</figcaption></figure> <p>An <b>organic solar cell</b> (<b>OSC</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>) or <b>plastic solar cell</b> is a type of photovoltaic that uses <a href="/wiki/Organic_electronics" title="Organic electronics">organic electronics</a>, a branch of electronics that deals with conductive organic polymers or small organic molecules,<sup id="cite_ref-pulfrey_2-0" class="reference"><a href="#cite_note-pulfrey-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> for light absorption and charge transport to produce <a href="/wiki/Electricity" title="Electricity">electricity</a> from <a href="/wiki/Sunlight" title="Sunlight">sunlight</a> by the <a href="/wiki/Photovoltaic_effect" title="Photovoltaic effect">photovoltaic effect</a>. Most organic photovoltaic cells are <b>polymer solar cells</b>. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:4inchcell.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/4inchcell.jpg/220px-4inchcell.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/4inchcell.jpg/330px-4inchcell.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/0/0e/4inchcell.jpg 2x" data-file-width="402" data-file-height="302" /></a><figcaption>Fig. 2. Organic Photovoltaic manufactured by the company Solarmer.</figcaption></figure> <p>The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Combined with the flexibility of organic <a href="/wiki/Molecules" class="mw-redirect" title="Molecules">molecules</a>, organic solar cells are potentially cost-effective for photovoltaic applications.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Molecular engineering (<i>e.g.,</i> changing the length and <a href="/wiki/Functional_group" title="Functional group">functional group</a> of <a href="/wiki/Polymer" title="Polymer">polymers</a>) can change the <a href="/wiki/Band_gap" title="Band gap">band gap</a>, allowing for electronic tunability. The <a href="/wiki/Attenuation_coefficient" title="Attenuation coefficient">optical absorption coefficient</a> of organic molecules is high, so a large amount of light can be absorbed with a small amount of materials, usually on the order of hundreds of nanometers. The main disadvantages associated with organic photovoltaic cells are low <a href="/wiki/Energy_conversion_efficiency" title="Energy conversion efficiency">efficiency</a>, low stability and low strength compared to inorganic photovoltaic cells such as <a href="/wiki/Crystalline_silicon" title="Crystalline silicon">silicon solar cells</a>. </p><p>Compared to <a href="/wiki/Silicon" title="Silicon">silicon</a>-based devices, polymer solar cells are lightweight (which is important for small autonomous sensors), potentially disposable and inexpensive to fabricate (sometimes using <a href="/wiki/Printed_electronics" title="Printed electronics">printed electronics</a>), flexible, customizable on the molecular level and potentially have less adverse environmental impact. Polymer solar cells also have the potential to exhibit transparency, suggesting applications in windows, walls, flexible electronics, etc. An example device is shown in Fig. 1. The disadvantages of polymer solar cells are also serious: they offer about 1/3 of the efficiency of hard materials, and experience substantial photochemical degradation.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Polymer solar cells' stability problems,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> combined with their promise of low costs<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> and potential for increasing efficiencies<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> have made them a popular field in solar cell research. In 2015, polymer solar cells were achieving efficiencies of more than 10% via a tandem structure.<sup id="cite_ref-ReferenceA_9-0" class="reference"><a href="#cite_note-ReferenceA-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> In 2023, a new record-breaking efficiency of 19.3% was achieved by <a href="/wiki/Hong_Kong_Polytechnic_University" title="Hong Kong Polytechnic University">Hong Kong Polytechnic University</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="Physics">Physics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=1" title="Edit section: Physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Examples_of_organic_photovoltaic_materials.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Examples_of_organic_photovoltaic_materials.svg/380px-Examples_of_organic_photovoltaic_materials.svg.png" decoding="async" width="380" height="316" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Examples_of_organic_photovoltaic_materials.svg/570px-Examples_of_organic_photovoltaic_materials.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Examples_of_organic_photovoltaic_materials.svg/760px-Examples_of_organic_photovoltaic_materials.svg.png 2x" data-file-width="1000" data-file-height="831" /></a><figcaption>Fig. 3: Examples of organic photovoltaic materials</figcaption></figure> <p>A photovoltaic cell is a specialized semiconductor diode that converts light into <a href="/wiki/Direct_current" title="Direct current">direct current</a> (DC) electricity. Depending on the <a href="/wiki/Band_gap" title="Band gap">band gap</a> of the light-absorbing material, photovoltaic cells can also convert low-energy, <a href="/wiki/Infrared" title="Infrared">infrared</a> (IR) or high-energy, <a href="/wiki/Ultraviolet" title="Ultraviolet">ultraviolet</a> (UV) <a href="/wiki/Photon" title="Photon">photons</a> into DC electricity. A common characteristic of both the small molecules and <a href="/wiki/Polymers" class="mw-redirect" title="Polymers">polymers</a> (Fig. 3) used as the light-absorbing material in <a href="/wiki/Photovoltaics" title="Photovoltaics">photovoltaics</a> is that they all have large <a href="/wiki/Conjugated_system" title="Conjugated system">conjugated systems</a>. A conjugated system is formed where <a href="/wiki/Carbon" title="Carbon">carbon</a> atoms <a href="/wiki/Covalent" class="mw-redirect" title="Covalent">covalently</a> bond with alternating single and double bonds. These hydrocarbons' electrons <a href="/wiki/Degenerate_orbitals" class="mw-redirect" title="Degenerate orbitals">pz orbitals</a> <a href="/wiki/Delocalized_electron" title="Delocalized electron">delocalize</a> and form a delocalized bonding π orbital with a π* <a href="/wiki/Antibonding" class="mw-redirect" title="Antibonding">antibonding</a> orbital. The delocalized π orbital is the highest occupied molecular orbital (<a href="/wiki/HOMO/LUMO" class="mw-redirect" title="HOMO/LUMO">HOMO</a>), and the π* orbital is the lowest unoccupied molecular orbital (<a href="/wiki/HOMO/LUMO" class="mw-redirect" title="HOMO/LUMO">LUMO</a>). In organic semiconductor physics, the HOMO takes the role of the <a href="/wiki/Valence_and_conduction_bands" title="Valence and conduction bands">valence band</a> while the LUMO serves as the <a href="/wiki/Valence_and_conduction_bands" title="Valence and conduction bands">conduction band</a>. The energy separation between the HOMO and LUMO energy levels is considered the band gap of organic electronic materials and is typically in the range of 1–4 <a href="/wiki/Electron_volt" class="mw-redirect" title="Electron volt">eV</a>.<sup id="cite_ref-Rivers_11-0" class="reference"><a href="#cite_note-Rivers-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>All light with energy greater than the band gap of the material can be absorbed, though there is a trade-off to reducing the band gap as photons absorbed with energies higher than the band gap will thermally give off their excess energy, resulting in lower voltages and power conversion efficiencies. When these materials absorb a <a href="/wiki/Photon" title="Photon">photon</a>, an <a href="/wiki/Excited_state" title="Excited state">excited state</a> is created and confined to a molecule or a region of a polymer chain. The excited state can be regarded as an <a href="/wiki/Exciton" title="Exciton">exciton</a>, or an electron-hole pair bound together by <a href="/wiki/Electrostatic" class="mw-redirect" title="Electrostatic">electrostatic</a> interactions. In photovoltaic cells, excitons are broken up into free electron-hole pairs by effective fields. The effective fields are set up by creating a heterojunction between two dissimilar materials. In organic photovoltaics, effective fields break up excitons by causing the electron to fall from the conduction band of the absorber to the conduction band of the acceptor molecule. It is necessary that the acceptor material has a conduction band edge that is lower than that of the absorber material.<sup id="cite_ref-McGehee_12-0" class="reference"><a href="#cite_note-McGehee-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nelson_13-0" class="reference"><a href="#cite_note-Nelson-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-HallsFriend_14-0" class="reference"><a href="#cite_note-HallsFriend-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hoppe_15-0" class="reference"><a href="#cite_note-Hoppe-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <table border="0" cellspacing="5" cellpadding="10" style="float:right;"> <tbody><tr> <td> <table border="0" style="background:#f9f9ff;"> <tbody><tr> <td><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><span typeof="mw:File"><a href="/wiki/File:Solarcells2m.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/90px-Solarcells2m.gif" decoding="async" width="90" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/135px-Solarcells2m.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/180px-Solarcells2m.gif 2x" data-file-width="350" data-file-height="350" /></a></span></div> </td> <td><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><span typeof="mw:File"><a href="/wiki/File:Solarcells2m.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/90px-Solarcells2m.gif" decoding="async" width="90" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/135px-Solarcells2m.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/180px-Solarcells2m.gif 2x" data-file-width="350" data-file-height="350" /></a></span></div> </td> <td><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><span typeof="mw:File"><a href="/wiki/File:Solarcells2m.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/90px-Solarcells2m.gif" decoding="async" width="90" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/135px-Solarcells2m.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/180px-Solarcells2m.gif 2x" data-file-width="350" data-file-height="350" /></a></span></div> </td></tr> <tr> <td colspan="4"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Solarcells1.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/5/5a/Solarcells1.gif" decoding="async" width="500" height="31" class="mw-file-element" data-file-width="500" data-file-height="31" /></a></span> </td></tr> <tr> <td><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><span typeof="mw:File"><a href="/wiki/File:Solarcells2m.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/90px-Solarcells2m.gif" decoding="async" width="90" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/135px-Solarcells2m.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/180px-Solarcells2m.gif 2x" data-file-width="350" data-file-height="350" /></a></span></div> </td> <td><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><span typeof="mw:File"><a href="/wiki/File:Solarcells2m.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/90px-Solarcells2m.gif" decoding="async" width="90" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/135px-Solarcells2m.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/180px-Solarcells2m.gif 2x" data-file-width="350" data-file-height="350" /></a></span></div> </td> <td><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><span typeof="mw:File"><a href="/wiki/File:Solarcells2m.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/90px-Solarcells2m.gif" decoding="async" width="90" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/135px-Solarcells2m.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Solarcells2m.gif/180px-Solarcells2m.gif 2x" data-file-width="350" data-file-height="350" /></a></span></div> </td></tr> <tr> <td colspan="4"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Solarcells1.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/5/5a/Solarcells1.gif" decoding="async" width="500" height="31" class="mw-file-element" data-file-width="500" data-file-height="31" /></a></span> </td></tr></tbody></table> Fig. 4: Polymer chain with diffusing <a href="/wiki/Polaron" title="Polaron">polaron</a> surrounded by <a href="/wiki/Fullerene" title="Fullerene">fullerene</a> molecules </td></tr></tbody></table> <p>Polymer solar cells usually consist of an electron- or hole-blocking layer on top of an <a href="/wiki/Indium_tin_oxide" title="Indium tin oxide">indium tin oxide</a> (ITO) conductive glass followed by <a href="/wiki/Electron" title="Electron">electron</a> donor and an electron acceptor (in the case of bulk heterojunction solar cells), a hole or electron blocking layer, and metal <a href="/wiki/Electrode" title="Electrode">electrode</a> on top. The nature and order of the blocking layers – as well as the nature of the metal electrode – depends on whether the cell follows a regular or an inverted device architecture. In an inverted cell, the electric charges exit the device in the opposite direction as in a normal device because the positive and negative electrodes are reversed. Inverted cells can utilize cathodes out of a more suitable material; inverted OPVs enjoy longer lifetimes than regularly structured OPVs, and they usually show higher efficiencies compared with the conventional counterparts.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>In bulk heterojunction polymer solar cells, light generates excitons. Subsequent charge separation in the interface between an electron donor and acceptor blend within the device's active layer. These charges then transport to the device's electrodes where the charges flow outside the cell, perform work and then re-enter the device on the opposite side. The cell's efficiency is limited by several factors, especially <a href="/wiki/Cage_effect" title="Cage effect">non-geminate recombination</a>. Hole mobility leads to faster conduction across the active layer.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>Organic photovoltaics are made of electron donor and electron acceptor materials rather than <a href="/wiki/Semiconductor" title="Semiconductor">semiconductor</a> <a href="/wiki/P-n_junction" class="mw-redirect" title="P-n junction">p-n junctions</a>. The molecules forming the electron donor region of organic PV cells, where <a href="/wiki/Exciton" title="Exciton">exciton</a> electron-hole pairs are generated, are generally conjugated polymers possessing <a href="/wiki/Delocalized" class="mw-redirect" title="Delocalized">delocalized</a> <a href="/wiki/Pi_bond" title="Pi bond">π electrons</a> that result from carbon p orbital hybridization. These π electrons can be excited by light in or near the visible part of the spectrum from the molecule's <a href="/wiki/Highest_occupied_molecular_orbital" class="mw-redirect" title="Highest occupied molecular orbital">highest occupied molecular orbital</a> (HOMO) to the <a href="/wiki/Lowest_unoccupied_molecular_orbital" class="mw-redirect" title="Lowest unoccupied molecular orbital">lowest unoccupied molecular orbital</a> (LUMO), denoted by a π -π* transition. The energy bandgap between these orbitals determines which <a href="/wiki/Wavelength_of_light" class="mw-redirect" title="Wavelength of light">wavelength(s) of light</a> can be <a href="/wiki/Absorption_(electromagnetic_radiation)" title="Absorption (electromagnetic radiation)">absorbed</a>. </p><p>Unlike in an inorganic <a href="/wiki/Crystalline_PV_cell" class="mw-redirect" title="Crystalline PV cell">crystalline PV cell</a> material, with its band structure and delocalized electrons, excitons in organic photovoltaics are strongly bound with an energy between 0.1 and 1.4 <a href="/wiki/Electronvolt" title="Electronvolt">eV</a>. This strong binding occurs because electronic wave functions in organic molecules are more localized, and electrostatic attraction can thus keep the electron and hole together as an exciton. The electron and hole can be dissociated by providing an interface across which the chemical potential of electrons decreases. The material that absorbs the photon is the donor, and the material acquiring the electron is called the acceptor. In Fig. 3, the polymer chain is the donor and the <a href="/wiki/Fullerene" title="Fullerene">fullerene</a> is the acceptor. Even after dissociation, the electron and hole may still be joined as a "<a href="/wiki/Cage_effect" title="Cage effect">geminate pair</a>", and an <a href="/wiki/Electric_field" title="Electric field">electric field</a> is then required to separate them. The electron and hole must be collected at contacts. If <a href="/wiki/Charge_carrier" title="Charge carrier">charge carrier</a> mobility is insufficient, the carriers will not reach the contacts, and instead recombine at trap sites or remain in the device as undesirable space charges that oppose the flow of new carriers. The latter problem can occur if electron and hole mobilities are not matched. In that case, space-charge limited photocurrent (SCLP) hampers device performance. </p><p>Organic photovoltaics can be fabricated with an active polymer and a fullerene-based electron acceptor. Illumination of this system by visible light leads to electron transfer from the polymer to a fullerene molecule. As a result, the formation of a photoinduced <a href="/wiki/Quasiparticle" title="Quasiparticle">quasiparticle</a>, or <a href="/wiki/Polaron" title="Polaron">polaron</a> (P<sup>+</sup>), occurs on the polymer chain and the fullerene becomes a radical <a href="/wiki/Anion" class="mw-redirect" title="Anion">anion</a> (<a href="/wiki/C60_fullerene" class="mw-redirect" title="C60 fullerene">C<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">60</sub></span></span></a>). Polarons are highly mobile and can diffuse away. </p> <div class="mw-heading mw-heading2"><h2 id="Junction_types">Junction types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=2" title="Edit section: Junction types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In organic solar cells, junctions are the interfaces between different layers or materials within the device's structure. These interfaces contribute to the separation and collection of charge carriers (electrons and holes) that are generated when sunlight is absorbed. The properties and structures of these junctions affects the efficiency, stability, and overall performance of organic solar cells. </p><p>The simplest organic PV device features a <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">planar</a> <a href="/wiki/Heterojunction" title="Heterojunction">heterojunction</a> (Fig. 1). A film of organic active material (polymer or small molecule), of electron donor or electron acceptor type is sandwiched between contacts. Excitons created in the active material may diffuse before recombining and separate, hole and electron diffusing to its specific collecting electrode. Because charge carriers have diffusion lengths of just 3–10&#160;nm in typical amorphous <a href="/wiki/Organic_semiconductor" title="Organic semiconductor">organic semiconductors</a>, planar cells must be thin, but the thin cells absorb light less well. Bulk heterojunctions (BHJs) address this shortcoming. In a BHJ, a blend of electron donor and acceptor materials is cast as a mixture, which then phase-separates. Regions of each material in the device are separated by only several nanometers, a distance suited for carrier diffusion. BHJs require sensitive control over materials morphology on the nanoscale. Important variables include materials, solvents and the donor-acceptor weight ratio. </p><p>The next logical step beyond BHJs are ordered <a href="/wiki/Nanomaterials" title="Nanomaterials">nanomaterials</a> for solar cells, or ordered heterojunctions (OHJs). OHJs minimize the variability associated with BHJs. OHJs are generally hybrids of ordered inorganic materials and organic active regions. For example, a photovoltaic polymer can be deposited into pores in a <a href="/wiki/Ceramic" title="Ceramic">ceramic</a> such as <a href="/wiki/Rutile" title="Rutile">TiO<sub>2</sub></a>. Since holes still must diffuse the length of the pore through the polymer to a contact, OHJs suffer similar thickness limitations. Mitigating the hole mobility bottleneck is key to further enhancing device performance of OHJ's. </p> <div class="mw-heading mw-heading3"><h3 id="Single_layer">Single layer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=3" title="Edit section: Single layer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Fig_2._sketch_of_single_layer_organic_photovoltaic_cell.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Fig_2._sketch_of_single_layer_organic_photovoltaic_cell.JPG/220px-Fig_2._sketch_of_single_layer_organic_photovoltaic_cell.JPG" decoding="async" width="220" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Fig_2._sketch_of_single_layer_organic_photovoltaic_cell.JPG/330px-Fig_2._sketch_of_single_layer_organic_photovoltaic_cell.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Fig_2._sketch_of_single_layer_organic_photovoltaic_cell.JPG/440px-Fig_2._sketch_of_single_layer_organic_photovoltaic_cell.JPG 2x" data-file-width="517" data-file-height="443" /></a><figcaption>Fig. 5: Sketch of a single layer organic photovoltaic cell</figcaption></figure> <p>Single layer organic photovoltaic cells are the simplest form. These cells are made by sandwiching a layer of organic electronic materials between two metallic conductors, typically a layer of <a href="/wiki/Indium_tin_oxide" title="Indium tin oxide">indium tin oxide</a> (ITO) with high <a href="/wiki/Work_function" title="Work function">work function</a> and a layer of low work function metal such as Aluminum, Magnesium or Calcium. The basic structure of such a cell is illustrated in Fig. 5. </p><p>The difference of work function between the two conductors sets up an electric field in the organic layer. When the organic layer absorbs light, electrons will be excited to the LUMO and leave holes in the HOMO, thereby forming <a href="/wiki/Exciton" title="Exciton">excitons</a>. The potential created by the different work functions helps to split the exciton pairs, pulling electrons to the positive <a href="/wiki/Electrode" title="Electrode">electrode</a> (an electrical conductor used to make contact with a non-metallic part of a circuit) and holes to the negative electrode.<sup id="cite_ref-McGehee_12-1" class="reference"><a href="#cite_note-McGehee-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nelson_13-1" class="reference"><a href="#cite_note-Nelson-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-HallsFriend_14-1" class="reference"><a href="#cite_note-HallsFriend-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Examples">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1958 the <a href="/wiki/Photovoltaic_effect" title="Photovoltaic effect">photovoltaic effect</a> or the creation of voltage of a cell based on magnesium <a href="/wiki/Phthalocyanine" title="Phthalocyanine">phthalocyanine</a> (MgPc)—a macrocyclic compound having an alternating nitrogen atom-carbon atom ring structure—was discovered to have a photovoltage of 200&#160;mV.<sup id="cite_ref-Kearns_19-0" class="reference"><a href="#cite_note-Kearns-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> An Al/MgPc/Ag cell obtained photovoltaic efficiency of 0.01% under illumination at 690&#160;nm.<sup id="cite_ref-Ghosh_20-0" class="reference"><a href="#cite_note-Ghosh-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Conjugated polymers were also used in this type of photovoltaic cell. One device used polyacetylene (Fig. 1) as the organic layer, with Al and <a href="/wiki/Graphite" title="Graphite">graphite</a>, producing an open-circuit voltage of 0.3&#160;V and a charge collection efficiency of 0.3%.<sup id="cite_ref-Weinberger_21-0" class="reference"><a href="#cite_note-Weinberger-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> An Al/poly(3-nethyl-thiophene)/Pt cell had an external quantum yield of 0.17%, an open-circuit voltage of 0.4&#160;V and a <a href="/wiki/Fill_factor_(solar_cell)" class="mw-redirect" title="Fill factor (solar cell)">fill factor</a> of 0.3.<sup id="cite_ref-Glenis_22-0" class="reference"><a href="#cite_note-Glenis-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> An ITO/PPV/Al cell showed an open-circuit voltage of 1&#160;V and a power conversion efficiency of 0.1% under white-light illumination.<sup id="cite_ref-Karg_23-0" class="reference"><a href="#cite_note-Karg-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Issues">Issues</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=5" title="Edit section: Issues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Single layer organic solar cells do not work well. They have low quantum efficiencies (&lt;1%) and low power conversion efficiencies (&lt;0.1%). A major problem with them is that the electric field resulting from the difference between the two conductive electrodes is seldom sufficient to split the excitons. Often the electrons recombine with the holes without reaching the electrode. </p> <div class="mw-heading mw-heading3"><h3 id="Bilayer">Bilayer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=6" title="Edit section: Bilayer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Fig_3_sketch_of_multilayer_organic_photovoltaic_cell.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Fig_3_sketch_of_multilayer_organic_photovoltaic_cell.JPG/220px-Fig_3_sketch_of_multilayer_organic_photovoltaic_cell.JPG" decoding="async" width="220" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Fig_3_sketch_of_multilayer_organic_photovoltaic_cell.JPG/330px-Fig_3_sketch_of_multilayer_organic_photovoltaic_cell.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Fig_3_sketch_of_multilayer_organic_photovoltaic_cell.JPG/440px-Fig_3_sketch_of_multilayer_organic_photovoltaic_cell.JPG 2x" data-file-width="828" data-file-height="780" /></a><figcaption>Fig. 6: Sketch of a multilayer organic photovoltaic cell.</figcaption></figure> <p>Bilayer cells contain two layers in between the conductive electrodes (Fig. 6). The two layers have different <a href="/wiki/Electron_affinity" title="Electron affinity">electron affinity</a> and <a href="/wiki/Ionization_energy" title="Ionization energy">ionization energies</a>, therefore electrostatic forces are generated at the interface between the two layers. Light must create excitons in this small charged region for an efficient charge separation and collecting. The materials are chosen to make the differences large enough that these local electric fields are strong, which splits excitons much more efficiently than single layer photovoltaic cells. The layer with higher electron affinity and ionization potential is the electron acceptor, and the other layer is the electron donor. This structure is also called a planar donor-acceptor <a href="/wiki/Heterojunction" title="Heterojunction">heterojunction</a>.<sup id="cite_ref-McGehee_12-2" class="reference"><a href="#cite_note-McGehee-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nelson_13-2" class="reference"><a href="#cite_note-Nelson-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-HallsFriend_14-2" class="reference"><a href="#cite_note-HallsFriend-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hoppe_15-1" class="reference"><a href="#cite_note-Hoppe-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Examples_2">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=7" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Buckminsterfullerene" title="Buckminsterfullerene">C<sub>60</sub></a> has high electron affinity, making it a good acceptor. A C<sub>60</sub>/MEH-PPV double layer cell had a relatively high fill factor of 0.48 and a power conversion efficiency of 0.04% under monochromatic illumination.<sup id="cite_ref-Sariciftci_24-0" class="reference"><a href="#cite_note-Sariciftci-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> PPV/C<sub>60</sub> cells displayed a monochromatic external quantum efficiency of 9%, a power conversion efficiency of 1% and a fill factor of 0.48.<sup id="cite_ref-HallsApplPhys_25-0" class="reference"><a href="#cite_note-HallsApplPhys-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Perylene" title="Perylene">Perylene</a> derivatives display high electron affinity and chemical stability. A layer of <a href="/wiki/Copper_phthalocyanine" title="Copper phthalocyanine">copper phthalocyanine</a> (CuPc) as electron donor and perylene tetracarboxylic derivative as electron acceptor, fabricating a cell with a fill factor as high as 0.65 and a power conversion efficiency of 1% under simulated AM2 illumination.<sup id="cite_ref-Tang_26-0" class="reference"><a href="#cite_note-Tang-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Halls et al. fabricated a cell with a layer of bis(phenethylimido) perylene over a layer of PPV as the electron donor. This cell had peak external quantum efficiency of 6% and power conversion efficiency of 1% under monochromatic illumination, and a fill factor of up to 0.6.<sup id="cite_ref-HallsSynth_27-0" class="reference"><a href="#cite_note-HallsSynth-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Issues_2">Issues</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=8" title="Edit section: Issues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The diffusion length of excitons in organic electronic materials is typically on the order of 10&#160;nm. In order for most excitons to diffuse to the interface of layers and split into carriers, the layer thickness should be in the same range as the diffusion length. However, a polymer layer typically needs a thickness of at least 100&#160;nm to absorb enough light. At such a large thickness, only a small fraction of the excitons can reach the heterojunction interface. </p> <div class="mw-heading mw-heading3"><h3 id="Discrete_heterojunction">Discrete heterojunction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=9" title="Edit section: Discrete heterojunction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A three-layer (two acceptor and one donor) <a href="/wiki/Fullerene" title="Fullerene">fullerene</a>-free stack achieved a conversion efficiency of 8.4%. The implementation produced high open-circuit voltages and absorption in the visible spectra and high short-circuit currents. Quantum efficiency was above 75% between 400&#160;nm and 720&#160;nm wavelengths, with an open-circuit voltage around 1 V.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bulk_heterojunction">Bulk heterojunction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=10" title="Edit section: Bulk heterojunction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Fig_4_sketch_of_dispersed_junction_photovoltaic_cell.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Fig_4_sketch_of_dispersed_junction_photovoltaic_cell.JPG/220px-Fig_4_sketch_of_dispersed_junction_photovoltaic_cell.JPG" decoding="async" width="220" height="167" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Fig_4_sketch_of_dispersed_junction_photovoltaic_cell.JPG/330px-Fig_4_sketch_of_dispersed_junction_photovoltaic_cell.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Fig_4_sketch_of_dispersed_junction_photovoltaic_cell.JPG/440px-Fig_4_sketch_of_dispersed_junction_photovoltaic_cell.JPG 2x" data-file-width="963" data-file-height="731" /></a><figcaption>Fig. 7: Sketch of a dispersed junction photovoltaic cell</figcaption></figure> <p>Bulk heterojunctions have an absorption layer consisting of a nanoscale blend of donor and acceptor materials. The domain sizes of this blend are on the order of nanometers, allowing for excitons with short lifetimes to reach an interface and dissociate due to the large donor-acceptor interfacial area.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> However, efficient bulk heterojunctions need to maintain large enough domain sizes to form a percolating network that allows the donor materials to reach the hole transporting electrode (Electrode 1 in Fig. 7) and the acceptor materials to reach the electron transporting electrode (Electrode 2). Without this percolating network, charges might be trapped in a donor or acceptor rich domain and undergo recombination. Bulk heterojunctions have an advantage over layered photoactive structures because they can be made thick enough for effective photon absorption without the difficult processing involved in orienting a layered structure while retaining similar level of performances. </p><p>Bulk heterojunctions are most commonly created by forming a solution containing the two components, casting (<i>e.g.,</i> drop casting and <a href="/wiki/Spin_coating" title="Spin coating">spin coating</a>) and then allowing the two phases to separate, usually with the assistance of an annealing step. The two components will self-assemble into an interpenetrating network connecting the two electrodes.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> They are normally composed of a conjugated molecule based donor and <a href="/wiki/Fullerene" title="Fullerene">fullerene</a> based acceptor. The nanostructural morphology of bulk heterojunctions tends to be difficult to control, but is critical to photovoltaic performance. </p><p>After the capture of a photon, electrons move to the acceptor domains, then are carried through the device and collected by one electrode, and holes move in the opposite direction and collected at the other side. If the dispersion of the two materials is too fine, it will result in poor charge transfer through the layer.<sup id="cite_ref-Nelson_13-3" class="reference"><a href="#cite_note-Nelson-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-HallsFriend_14-3" class="reference"><a href="#cite_note-HallsFriend-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kearns_19-1" class="reference"><a href="#cite_note-Kearns-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Most bulk heterojunction cells use two components, although three-component cells have been explored. The third component, a secondary p-type donor polymer, acts to absorb light in a different region of the solar spectrum. This in theory increases the amount of absorbed light. These ternary cells operate through one of three distinct mechanisms: charge transfer, energy transfer or parallel-linkage. </p><p>In charge transfer, both donors contribute directly to the generation of free charge carriers. Holes pass through only one donor domain before collection at the anode. In energy transfer, only one donor contributes to the production of holes. The second donor acts solely to absorb light, transferring extra energy to the first donor material. In parallel linkage, both donors produce excitons independently, which then migrate to their respective donor/acceptor interfaces and dissociate.<sup id="cite_ref-Yang_32-0" class="reference"><a href="#cite_note-Yang-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Examples_3">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=11" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Fullerene" title="Fullerene">Fullerenes</a> such as C<sub>60</sub> and its derivatives are used as electron acceptor materials in bulk heterojunction photovoltaic cells. A cell with the blend of MEH-PPV and a methano-functionalized C<sub>60</sub> derivative as the heterojunction, ITO and Ca as the electrodes<sup id="cite_ref-YuScience_33-0" class="reference"><a href="#cite_note-YuScience-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> showed a quantum efficiency of 29% and a power conversion efficiency of 2.9% under monochromatic illumination. Replacing MEH-PPV with <a href="/wiki/P3HT" class="mw-redirect" title="P3HT">P3HT</a> produced a quantum yield of 45% under a 10&#160;V reverse bias.<sup id="cite_ref-YuAdv_34-0" class="reference"><a href="#cite_note-YuAdv-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-kaneko_35-0" class="reference"><a href="#cite_note-kaneko-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Further advances in modifying the electron acceptor has resulted in a device with a power conversion efficiency of 10.61% with a blend of PC<sub>71</sub>BM as the electron acceptor and PTB7-Th as the electron donor.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p><p>Polymer/polymer blends are also used in dispersed heterojunction photovoltaic cells. A blend of CN-PPV and MEH-PPV with Al and ITO as the electrodes, yielded peak monochromatic power conversion efficiency of 1% and fill factor of 0.38.<sup id="cite_ref-HallsNature_37-0" class="reference"><a href="#cite_note-HallsNature-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Seraphin_38-0" class="reference"><a href="#cite_note-Seraphin-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Dye-sensitized_solar_cell" title="Dye-sensitized solar cell">Dye sensitized photovoltaic cells</a> can also be considered important examples of this type. </p><p><b>Issues</b> </p><p>Fullerenes such as PC<sub>71</sub>BM are often the electron acceptor materials found in high performing bulk heterojunction solar cells. However, these electron acceptor materials very weakly absorb visible light, decreasing the volume fraction occupied by the strongly absorbing electron donor material. Furthermore, fullerenes have poor electronic tunability, resulting in restrictions placed on the development of conjugated systems with more appealing electronic structures for higher voltages. Recent research has been done on trying to replace these fullerenes with organic molecules that can be electronically tuned and contribute to light absorption.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Graded_heterojunction">Graded heterojunction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=12" title="Edit section: Graded heterojunction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The electron donor and acceptor are mixed in such a way that the gradient is gradual. This architecture combines the short electron travel distance in the dispersed heterojunction with the advantage of the charge gradient of the bilayer technology.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Examples_4">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=13" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A cell with a blend of CuPc and C<sub>60</sub> showed a quantum efficiency of 50% and a power conversion efficiency of 2.1% using 100&#160;mW/cm<sup>2</sup> simulated AM1.5G solar illumination for a graded heterojunction.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Continuous_junction">Continuous junction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=14" title="Edit section: Continuous junction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Similar to the graded heterojunction the continuous junction concept aims at realizing a gradual transition from an electron donor to an electron acceptor. However, the acceptor material is prepared directly from the donor polymer in a post-polymerization modification step.<sup id="cite_ref-Glöcklhofer_43-0" class="reference"><a href="#cite_note-Glöcklhofer-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Production">Production</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=15" title="Edit section: Production"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since its active layer largely determines device efficiency, this component's morphology received much attention.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p><p>If one material is more soluble in the solvent than the other, it will deposit first on top of the <a href="/wiki/Substrate_(materials_science)" title="Substrate (materials science)">substrate</a>, causing a concentration gradient through the film. This has been demonstrated for poly-3-hexyl thiophene (P3HT), phenyl-C<sub>61</sub>-butyric acid methyl ester (<a href="/wiki/PCBM" class="mw-redirect" title="PCBM">PCBM</a>) devices where the PCBM tends to accumulate towards the device's bottom upon <a href="/wiki/Spin_coating" title="Spin coating">spin coating</a> from ODCB solutions.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> This effect is seen because the more soluble component tends to migrate towards the "solvent rich" phase during the coating procedure, accumulating the more soluble component towards the film's bottom, where the solvent remains longer. The thickness of the generated film affects the phases segregation because the dynamics of crystallization and precipitation are different for more concentrated solutions or faster evaporation rates (needed to build thicker devices). Crystalline <a href="/wiki/P3HT" class="mw-redirect" title="P3HT">P3HT</a> enrichment closer to the hole-collecting electrode can only be achieved for relatively thin (100&#160;nm) P3HT/PCBM layers.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p><p>The gradients in the initial morphology are then mainly generated by the solvent evaporation rate and the differences in solubility between the donor and acceptor inside the blend. This dependence on solubility has been clearly demonstrated using fullerene derivatives and P3HT.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> When using solvents which evaporate at a slower rate (as <a href="/wiki/Chlorobenzene" title="Chlorobenzene">chlorobenzene</a> (CB) or <a href="/wiki/Dichlorobenzene" title="Dichlorobenzene">dichlorobenzene</a> (DCB)) you can get larger degrees of vertical separation or aggregation while solvents that evaporate quicker produce a much less effective vertical separation. Larger solubility gradients should lead to more effective vertical separation while smaller gradients should lead to more homogeneous films. These two effects were verified on P3HT:PCBM solar cells.<sup id="cite_ref-j1_48-0" class="reference"><a href="#cite_note-j1-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p><p>The solvent evaporation speed as well as posterior solvent vapor or thermal annealing procedures were also studied.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> Blends such as P3HT:PCBM seem to benefit from thermal annealing procedures, while others, such as PTB7:PCBM, seem to show no benefit.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> In P3HT the benefit seems to come from an increase of crystallinity of the P3HT phase which is generated through an expulsion of PCBM molecules from within these domains. This has been demonstrated through studies of PCBM <a href="/wiki/Miscibility" title="Miscibility">miscibility</a> in P3HT as well as domain composition changes as a function of annealing times.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>The above hypothesis based on miscibility does not fully explain the efficiency of the devices as solely pure amorphous phases of either donor or acceptor materials never exist within bulk heterojunction devices. A 2010 paper<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> suggested that current models that assume pure phases and discrete interfaces might fail given the absence of pure amorphous regions. Since current models assume phase separation at interfaces without any consideration for phase purity, the models might need to be changed. </p><p>The thermal annealing procedure varies depending on precisely when it is applied. Since vertical species migration is partly determined by the <a href="/wiki/Surface_tension" title="Surface tension">surface tension</a> between the active layer and either air or another layer, annealing before or after the deposition of additional layers (most often the metal cathode) affects the result. In the case of P3HT:PCBM solar cells vertical migration is improved when cells are annealed after the deposition of the metal cathode. </p><p>Donor or acceptor accumulation next to the adjacent layers might be beneficial as these accumulations can lead to hole or electron blocking effects which might benefit device performance. In 2009 the difference in vertical distribution on P3HT:PCBM solar cells was shown to cause problems with electron mobility which ends up with the yielding of very poor device efficiencies.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> Simple changes to device architecture – spin coating a thin layer of PCBM on top of the P3HT – greatly enhance cell reproducibility, by providing reproducible vertical separation between device components. Since higher contact between the PCBM and the cathode is required for better efficiencies, this largely increases device reproducibility. </p><p>According to neutron scattering analysis, P3HT:PCBM blends have been described as "rivers" (P3HT regions) interrupted by "streams" (PCBM regions).<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Progress_in_growth_techniques">Progress in growth techniques</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=16" title="Edit section: Progress in growth techniques"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mostly organic films for photovoltaic applications are deposited by <a href="/wiki/Spin_coating" title="Spin coating">spin coating</a> and vapor-phase deposition. However each method has certain draw backs, spin coating technique can coat larger surface areas with high speed but the use of solvent for one layer can degrade the already existing polymer layer. Another problem is related with the patterning of the substrate for device as spin-coating results in coating the entire substrate with a single material. </p> <div class="mw-heading mw-heading3"><h3 id="Vacuum_thermal_evaporation">Vacuum thermal evaporation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=17" title="Edit section: Vacuum thermal evaporation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Fig.6_(a)_Vapor_thermal_Evaporation.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Fig.6_%28a%29_Vapor_thermal_Evaporation.JPG/380px-Fig.6_%28a%29_Vapor_thermal_Evaporation.JPG" decoding="async" width="380" height="424" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Fig.6_%28a%29_Vapor_thermal_Evaporation.JPG/570px-Fig.6_%28a%29_Vapor_thermal_Evaporation.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Fig.6_%28a%29_Vapor_thermal_Evaporation.JPG/760px-Fig.6_%28a%29_Vapor_thermal_Evaporation.JPG 2x" data-file-width="2305" data-file-height="2574" /></a><figcaption>Fig. 9: Vacuum thermal evaporation (a) and organic phase vapor deposition (b)</figcaption></figure> <p>Another deposition technique is vacuum thermal <a href="/wiki/Evaporation_(deposition)" title="Evaporation (deposition)">evaporation</a> (VTE) which involves the heating of an organic material in vacuum. The substrate is placed several centimeters away from the source so that evaporated material may be directly deposited onto the substrate, as shown in Fig. 9(a). This method is useful for depositing many layers of different materials without chemical interaction between different layers. However, there are sometimes problems with film-thickness uniformity and uniform doping over large-area substrates. In addition, the materials that deposit on the wall of the chamber can contaminate later depositions. This "line of sight" technique also can create holes in the film due to shadowing, which causes an increase in the device series-resistance and short circuit.<sup id="cite_ref-Forrest_58-0" class="reference"><a href="#cite_note-Forrest-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Organic_vapor_phase_deposition">Organic vapor phase deposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=18" title="Edit section: Organic vapor phase deposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Organic vapor phase deposition (OVPD), shown in Fig. 9(b), allows better control of the structure and morphology of the film than vacuum thermal evaporation. The process involves evaporation of the organic material over a substrate in the presence of an inert carrier gas. The resulting film morphology can be tuned by changing the gas flow rate and the source temperature. Uniform films can be grown by reducing the carrier gas pressure, which will increase the velocity and mean free path of the gas, and as a result boundary layer thickness decreases. Cells produced by OVPD do not have issues related with contaminations from the flakes coming out of the walls of the chamber, as the walls are warm and do not allow molecules to stick to and produce a film upon them. </p><p>Another advantage over VTE is the uniformity in evaporation rate. This occurs because the carrier gas becomes saturated with the vapors of the organic material coming out of the source and then moves towards the cooled substrate, Fig. 9(b). Depending on the growth parameters (temperature of the source, base pressure and flux of the carrier gas) the deposited film can be crystalline or amorphous in nature. Devices fabricated using OVPD show a higher short-circuit current density than that of devices made using VTE. An extra layer of donor-acceptor hetero-junction at the top of the cell may block excitons, whilst allowing conduction of electron; resulting in improved cell efficiency.<sup id="cite_ref-Forrest_58-1" class="reference"><a href="#cite_note-Forrest-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Solvent_effects">Solvent effects</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=19" title="Edit section: Solvent effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Conditions for spin coating and evaporation affect device efficiency.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> Solvent and additives influence donor-acceptor morphology.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Additives slow down evaporation, leading to more crystalline polymers and thus improved hole conductivities and efficiencies. Typical additives include 1,8-octanedithiol, <a href="/wiki/Ortho-dichlorobenzene" class="mw-redirect" title="Ortho-dichlorobenzene">ortho-dichlorobenzene</a>, 1,8-diiodooctane (DIO), and <a href="/wiki/Nitrobenzene" title="Nitrobenzene">nitrobenzene</a>.<sup id="cite_ref-j1_48-1" class="reference"><a href="#cite_note-j1-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> The DIO effect was attributed to the selective solubilization of PCBM components, modifies fundamentally the average hopping distance of electrons, and thus improves electron mobility.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> Additives can also lead to big increases in efficiency for polymers.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> For HXS-1/PCBM solar cells, the effect was correlated with charge generation, transport and shelf-stability.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> Other polymers such as PTTBO also benefit significantly from DIO, achieving PCE values of more than 5% from around 3.7% without the additive. </p><p>Polymer Solar Cells fabricated from chloronaphthalene (CN) as a co-solvent enjoy a higher efficiency than those fabricated from the more conventional pure chlorobenzene solution. This is because the donor-acceptor morphology changes, which reduces the phase separation between donor polymer and fullerene. As a result, this translates into high hole mobilities. Without co-solvents, large domains of fullerene form, decreasing photovoltaic performance of the cell due to polymer aggregation in solution. This morphology originates from the liquid-liquid phase separation during drying; solve evaporation causes the mixture to enter into the spinodal region, in which there are significant thermal fluctuations. Large domains prevent electrons from being collected efficiently (decreasing PCE).<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>Small differences in polymer structure can also lead to significant changes in crystal packing that inevitably affect device morphology. PCPDTBT differs from PSBTBT caused by the difference in bridging atom between the two polymers (C vs. Si), which implies that better morphologies are achievable with PCPDTBT:PCBM solar cells containing additives as opposed to the Si system which achieves good morphologies without help from additional substances.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Self-assembled_cells">Self-assembled cells</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=20" title="Edit section: Self-assembled cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Supramolecular_chemistry" title="Supramolecular chemistry">Supramolecular chemistry</a> was investigated, using donor and acceptor molecules that assemble upon spin casting and heating. Most <a href="/wiki/Supramolecular_assembly" class="mw-redirect" title="Supramolecular assembly">supramolecular assemblies</a> employ small molecules.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> Donor and acceptor domains in a tubular structure appear ideal for organic solar cells.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> </p><p>Diblock polymers containing fullerene yield stable organic solar cells upon thermal annealing.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> Solar cells with pre-designed morphologies resulted when appropriate supramolecular interactions are introduced.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p><p>Progress on BCPs containing <a href="/wiki/Polythiophene" title="Polythiophene">polythiophene</a> derivatives yield solar cells that assemble into well defined networks.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> This system exhibits a PCE of 2.04%. <a href="/wiki/Hydrogen_bond" title="Hydrogen bond">Hydrogen bonding</a> guides the morphology. </p><p>Device efficiency based on co-polymer approaches have yet to cross the 2% barrier, whereas bulk-heterojunction devices exhibit efficiencies &gt;7% in single junction configurations.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p>Fullerene-grafted rod-coil <a href="/wiki/Block_copolymer" class="mw-redirect" title="Block copolymer">block copolymers</a> have been used to study domain organization.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </p><p>Supramolecular approaches to organic solar cells provide understanding about the macromolecular forces that drive domain separation. </p> <div class="mw-heading mw-heading2"><h2 id="Transparent_polymer_cells">Transparent polymer cells</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=21" title="Edit section: Transparent polymer cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Transparent or semi-transparent PSCs allow for the absorption of low- or high-energy photons outside the visible spectrum, thus optimizing its sunlight harnessing capabilities and covering a broader absorption spectra.<sup id="cite_ref-:4_78-0" class="reference"><a href="#cite_note-:4-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> These types of PSCs are ideal for capturing near-infrared or ultraviolet photons due to its low inherent sensitivity to photons within the visible spectrum. Typical PSCs utilize opaque metal electrodes that limit its transparency, and thus its performance.<sup id="cite_ref-:4_78-1" class="reference"><a href="#cite_note-:4-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> The absorber layer of PSCs are intrinsically semi-transparent.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> Thus, one approach to achieving a visibly transparent PSC is to modify the top electrode to make it more transparent. Materials such as ITO, ultra-thin metals, metal grids, graphene, and carbon nanotubes have been used to fabricate semi-transparent top electrodes.<sup id="cite_ref-:5_81-0" class="reference"><a href="#cite_note-:5-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:6_82-0" class="reference"><a href="#cite_note-:6-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> Yet, the performance of transparent PSCs have shown to be lacking when compared to their opaque electrode PSC counterparts.<sup id="cite_ref-:7_83-0" class="reference"><a href="#cite_note-:7-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> When the top electrode is made transparent, the cell's ability to trap the electromagnetic field in the absorber layer decreases, resulting in a low PCE. An extensive amount of research is currently being conducted to improve the PCE of such cells.<sup id="cite_ref-:5_81-1" class="reference"><a href="#cite_note-:5-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> These types of PSCs have been applied to building-integrated photovoltaics, tandem devices, and portable electronics.<sup id="cite_ref-:4_78-2" class="reference"><a href="#cite_note-:4-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:6_82-1" class="reference"><a href="#cite_note-:6-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:7_83-1" class="reference"><a href="#cite_note-:7-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infrared_polymer_cells">Infrared polymer cells</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=22" title="Edit section: Infrared polymer cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Infrared cells preferentially absorb light in the <a href="/wiki/Infrared" title="Infrared">infrared</a> range rather than visible wavelengths. A 2010 study developed infrared-transparent PSCs with a CNT film top electrode on the back side and an ITO glass layer on the front side allowing for optical transmittance from both sides of the cell. A ZnO layer was placed on top of the ITO with a P3HT:PCBM layer being added to the ZnO, thus creating an ITO/ZnO/P3HT:PCBM/CNT (bottom to top) cell. It was observed that the top CNT electrode and bottom ITO electrode both exhibited 80% transmittance within a 500&#160;nm to 2.5&#160;um spectra. The cell itself had an optical transmittance of 80% in the 670&#160;nm to 1.2&#160;um range, 60% in the 1.2&#160;um to 2.5&#160;um range. Conversely, a control cell with an Ag top electrode resulted in no transmittance within this spectra. Additionally, the cell had a relatively low transmittance in the visible region due to the high visible absorbance of the P3HT:PCBM layer. Such cells can be applied to tandem devices and the vertical assembly of PSCs.<sup id="cite_ref-:4_78-3" class="reference"><a href="#cite_note-:4-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> </p><p>As of 2012, infrared cells were nearly 70% transparent to visible light. The cells allegedly can be made in high volume at low cost using solution processing. The cells employ silver <a href="/wiki/Nanowire" title="Nanowire">nanowire</a>/<a href="/wiki/Titanium_dioxide" title="Titanium dioxide">titanium dioxide</a> composite films as the top <a href="/wiki/Electrode" title="Electrode">electrode</a>, replacing conventional opaque metal electrodes. With this combination, 4% power-conversion efficiency was achieved.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2014, near-infrared polymer solar cells based on a copolymer of naphthodithiophene diimide and bithiophene (PNDTI-BT-DT) were fabricated in combination with PTB7 as an electron donor. Both PNDTI-BT-DT and PTB7 formed a crystalline structure in the blend films similar to in the pristine films, leading to the efficient charge generation contributed from both polymers.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> </p><p>Much research has been focused on developing a transparent top electrode for PSCs. However, a 2017 study explored optimizing the active layer of semi-transparent PSCs. The researchers proposed a semi-transparent PSC with enhanced efficiency that utilizes both narrow bandgap polymer donor, PTB7-Th, and non-fullerene acceptor, IHIC. The results of this study showed that the proposed PSC exhibited high transmittance and absorption in the infrared spectrum but low absorption in the visible spectrum. This cell showed to be relatively stable and have a maximum PCE of 9.77%, which, as of 2017, is the highest reported PCE value.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Typical_Current-Voltage_Behavior_and_Power_Conversion_Efficiency">Typical Current-Voltage Behavior and Power Conversion Efficiency</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=23" title="Edit section: Typical Current-Voltage Behavior and Power Conversion Efficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Organic photovoltaics, similar to inorganic photovoltaics, are generally characterized through current-voltage analysis.<sup id="cite_ref-:0_87-0" class="reference"><a href="#cite_note-:0-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> This analysis provides multiple device metrics values that are used to understand device performance. One of the most crucial metrics is the Power Conversion Efficiency (PCE). </p><p><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Organic_Photovoltaic_Current_Voltage_Curve.png" class="mw-file-description" title="Organic Photovoltaic Current Voltage Curve"><img alt="Organic Photovoltaic Current Voltage Curve" src="//upload.wikimedia.org/wikipedia/commons/6/6e/Organic_Photovoltaic_Current_Voltage_Curve.png" decoding="async" width="720" height="405" class="mw-file-element" data-file-width="720" data-file-height="405" /></a></span> </p><p>PCE (η) is proportional to the product of the <a href="/wiki/Short-circuit_current" class="mw-redirect" title="Short-circuit current">short-circuit current</a> (J<sub>SC</sub>), the <a href="/wiki/Open-circuit_voltage" title="Open-circuit voltage">open-circuit voltage</a> (V<sub>OC</sub>), and the <a href="/wiki/Fill_factor_(solar_cell)" class="mw-redirect" title="Fill factor (solar cell)">fill factor</a> (FF), all of which can be determined from a current-voltage curve. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta ={\frac {V_{\text{OC}}\times J_{\text{SC}}\times FF}{P_{\text{in}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>OC</mtext> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>SC</mtext> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mi>F</mi> <mi>F</mi> </mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>in</mtext> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta ={\frac {V_{\text{OC}}\times J_{\text{SC}}\times FF}{P_{\text{in}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0a7f3fcabf23cca523cbf1de63ed9d1025f4c76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.942ex; height:5.676ex;" alt="{\displaystyle \eta ={\frac {V_{\text{OC}}\times J_{\text{SC}}\times FF}{P_{\text{in}}}}}"></span> </p><p>Where P<sub>in</sub> is the incident solar power. </p><p>The <a href="/wiki/Short-circuit_current" class="mw-redirect" title="Short-circuit current">short circuit current</a> (Jsc), is the maximum photocurrent generation value.<sup id="cite_ref-:1_88-0" class="reference"><a href="#cite_note-:1-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> It corresponds to the y-intercept value of standard current-voltage curve in which current is plotted along the y-axis and voltage is plotted along the x-axis. &#160;Within organic solar cells, the short circuit current can be impacted by a variety of material factors. These include the mobility of charge carriers, the optical absorption profile and general energetic driving forces that lead to a more efficient extraction of charge carriers <sup id="cite_ref-:1_88-1" class="reference"><a href="#cite_note-:1-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Open-circuit_voltage" title="Open-circuit voltage">open-circuit voltage</a> (Voc) is the voltage when there is no current running through the device.<sup id="cite_ref-:1_88-2" class="reference"><a href="#cite_note-:1-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> This corresponds to the x-intercept on a current-voltage curve. Within bulk heterojunction organic photovoltaic devices, this value is highly dependent on HOMO and LUMO energy levels and work functions for the active layer materials <sup id="cite_ref-:1_88-3" class="reference"><a href="#cite_note-:1-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p><p>Since power is the product of voltage and current, the maximum power point occurs when the product between voltage and current is maximized. </p><p>The fill factor, FF, can be thought of as the "squareness" of a current voltage curve.<sup id="cite_ref-:0_87-1" class="reference"><a href="#cite_note-:0-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> It is the quotient of the maximum power value and the product of the open-circuit voltage and short circuit current.<sup id="cite_ref-:0_87-2" class="reference"><a href="#cite_note-:0-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> This is shown in the image above as the ratio of the area of the yellow rectangle to the greater blue rectangle. For organic photovoltaics, this fill factor is essentially a measure of how efficiently generated charges are extracted from the device.<sup id="cite_ref-:1_88-4" class="reference"><a href="#cite_note-:1-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> This can be thought of as a "competition" between charges transporting through the device, and charges that recombine.<sup id="cite_ref-:1_88-5" class="reference"><a href="#cite_note-:1-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p><p>A major issue surrounding polymer solar cells is the low <a href="/wiki/Solar_cell_efficiency" class="mw-redirect" title="Solar cell efficiency">Power Conversion Efficiency</a> (PCE) of fabricated cells. In order to be considered commercially viable, PSCs must be able to achieve at least 10–15% efficiency<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup>—this is already much lower than inorganic PVs. However, due to the low cost of polymer solar cells, a 10–15% efficiency is commercially viable. </p><p>Recent advances in polymer solar cell performance have resulted from compressing the bandgap to enhance short-circuit current while lowering the Highest Occupied Molecular Orbital (HOMO) to increase open-circuit voltage. However, PSCs still suffer from low fill factors (typically below 70%). However, as of 2013, researchers have been able to fabricate PSCs with fill factors of over 75%. Scientists have been able to accomplish via an inverted BHJ and by using nonconventional donor / acceptor combinations.<sup id="cite_ref-ReferenceB_90-0" class="reference"><a href="#cite_note-ReferenceB-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Commercialization">Commercialization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=24" title="Edit section: Commercialization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Polymer_solar_cells_publications_by_year.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Polymer_solar_cells_publications_by_year.jpg/300px-Polymer_solar_cells_publications_by_year.jpg" decoding="async" width="300" height="218" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Polymer_solar_cells_publications_by_year.jpg/450px-Polymer_solar_cells_publications_by_year.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/25/Polymer_solar_cells_publications_by_year.jpg/600px-Polymer_solar_cells_publications_by_year.jpg 2x" data-file-width="911" data-file-height="662" /></a><figcaption>Number of scientific publications contributing to the subject "polymer solar cell(s)" by year. Search done through ISI, <a href="/wiki/Web_of_Science" title="Web of Science">Web of Science</a>.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>Polymer solar cells have yet to commercially compete with <a href="/wiki/Silicon_solar_cell" class="mw-redirect" title="Silicon solar cell">silicon solar cells</a> and other <a href="/wiki/Thin-film_cell" class="mw-redirect" title="Thin-film cell">thin-film cells</a>. The present efficiency of polymer solar cells lies near 10%, well below silicon cells. Polymer solar cells also suffer from environmental degradation, lacking effective protective <a href="/wiki/Coating" title="Coating">coatings</a>. </p><p>Further improvements in performance are needed to promote charge carrier diffusion; transport must be enhanced through control of order and morphology; and interface engineering must be applied to the problem of charge transfer across interfaces. </p><p>Research is being conducted into using tandem architecture in order to increase efficiency of polymer solar cells. Similar to inorganic tandem architecture, organic tandem architecture is expected to increase efficiency. Compared with a single-junction device using low-bandgap materials, the tandem structure can reduce heat loss during photon-to-electron conversion.<sup id="cite_ref-ReferenceA_9-1" class="reference"><a href="#cite_note-ReferenceA-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>Polymer solar cells are not widely produced commercially. Starting in 2008, <a href="/wiki/Konarka_Technologies" title="Konarka Technologies">Konarka Technologies</a> started production of polymer-fullerene solar cells.<sup id="cite_ref-TR_92-0" class="reference"><a href="#cite_note-TR-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> The initial modules were 3–5% efficient, and only last for a few years. Konarka has since filed for bankruptcy, as those polymer solar cells were unable to penetrate the PV market. </p><p>PSCs also still suffer from low fill factors (typically below 70%). However, as of 2013, researchers have been able to fabricate PSCs with fill factors of over 75%. Scientists have been able to accomplish via an inverted BHJ and by using nonconventional donor / acceptor combinations.<sup id="cite_ref-ReferenceB_90-1" class="reference"><a href="#cite_note-ReferenceB-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p><p>However, efforts are being made to upscale manufacturing of polymer solar cells, in order to decrease costs and also advocate for a practical approach for PSC production. Such efforts include full roll-to-roll solution processing. However, roll-to-roll solution processing is ill-suited for on-grid electricity production due to the short lifetime of polymer solar cells. Therefore, commercial applications for polymer solar cells still include primarily consumer electronics and home appliances.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Modeling_organic_solar_cells">Modeling organic solar cells</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=25" title="Edit section: Modeling organic solar cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As discussed above, organic semiconductors are highly disordered materials with no long range order. This means that the conduction band and valence band edges are not well defined. Furthermore, this physical and energetic disorder generates trap states in which photogenerated electrons and holes can become trapped and then eventually recombine. </p><p>Key to accurately describing organic solar cells in a device model is to include carrier trapping and recombination via trap states. A commonly used approach is to use an effective medium model, where by standard drift diffusion equations are used to describe transport across the device. Then, an exponential tail of trap states is introduced which decays into the band gap from the mobility edges.<sup id="cite_ref-mackenzie_94-0" class="reference"><a href="#cite_note-mackenzie-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> To describe capture/escape from these trap states the <a href="/wiki/Carrier_generation_and_recombination#Shockley–Read–Hall_(SRH)_process" title="Carrier generation and recombination">Shockley–Read–Hall (SRH)</a> can be used. The Shockley-Read-Hall mechanism has been shown able to reproduce polymer:fullerene device behavior in both time domain and steady state.<sup id="cite_ref-mackenzie_94-1" class="reference"><a href="#cite_note-mackenzie-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> </p><p>Designing organic solar cells requires optimization of a large number of structural and compositional parameters, such as band gaps and layer thicknesses. Numerical device simulation can provide instrumental insight to identify the optimum stack configuration. This allows reducing the requested time for the development of efficient solar cells. </p> <div class="mw-heading mw-heading2"><h2 id="Current_challenges_and_recent_progress">Current challenges and recent progress</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=26" title="Edit section: Current challenges and recent progress"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Difficulties associated with organic photovoltaic cells include their low external quantum efficiency (up to 70%)<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> compared to inorganic photovoltaic devices, despite having good internal quantum efficiency; this is due to insufficient absorption with active layers on the order of 100 nanometers. Instabilities against oxidation and reduction, recrystallization and temperature variations can also lead to device degradation and decreased performance over time. This occurs to different extents for devices with different compositions, and is an area into which active research is taking place.<sup id="cite_ref-LiB_96-0" class="reference"><a href="#cite_note-LiB-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </p><p>Other important factors include the exciton diffusion length, charge separation and charge collection which are affected by the presence of impurities. </p> <div class="mw-heading mw-heading3"><h3 id="Charge_carrier_mobility_and_transport">Charge carrier mobility and transport</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=27" title="Edit section: Charge carrier mobility and transport"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Especially for bulk heterojunction solar cells, understanding charge carrier transport is vital in improving the efficiencies of organic photovoltaics. Currently, bulk heterojunction devices have imbalanced charge-carrier mobility, with the hole mobility being at least an order of magnitude lower than that of the electron mobility; this results in <a href="/wiki/Space_charge" title="Space charge">space charge</a> build-up and a decrease in the fill factor and power conversion efficiency of a device.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> Due to having low mobility, efficient bulk heterojunction photovoltaics have to be designed with thin active layers to avoid recombination of the charge carriers, which is detrimental to absorption and scalability in processing. Simulations have demonstrated that in order to have a bulk heterojunction solar cell with a fill factor above 0.8 and external quantum efficiency above 90%, there needs to be balanced charge carrier mobility to reduce a space charge effect, as well as an increase in charge carrier mobility and/or a decrease in the <a href="/wiki/Recombination_(physics)" class="mw-redirect" title="Recombination (physics)">bimolecular recombination</a> rate constant.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Effect_of_film_morphology">Effect of film morphology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=28" title="Edit section: Effect of film morphology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Fig_5_(a)-_Highly_folded_Hetero-junction,_(b)-_Hetero-junction_with_controlled_growth.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Fig_5_%28a%29-_Highly_folded_Hetero-junction%2C_%28b%29-_Hetero-junction_with_controlled_growth.JPG/380px-Fig_5_%28a%29-_Highly_folded_Hetero-junction%2C_%28b%29-_Hetero-junction_with_controlled_growth.JPG" decoding="async" width="380" height="393" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Fig_5_%28a%29-_Highly_folded_Hetero-junction%2C_%28b%29-_Hetero-junction_with_controlled_growth.JPG/570px-Fig_5_%28a%29-_Highly_folded_Hetero-junction%2C_%28b%29-_Hetero-junction_with_controlled_growth.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Fig_5_%28a%29-_Highly_folded_Hetero-junction%2C_%28b%29-_Hetero-junction_with_controlled_growth.JPG/760px-Fig_5_%28a%29-_Highly_folded_Hetero-junction%2C_%28b%29-_Hetero-junction_with_controlled_growth.JPG 2x" data-file-width="1413" data-file-height="1461" /></a><figcaption>Fig. 8: Highly folded heterojunction (a); heterojunction with controlled growth (b)</figcaption></figure> <p>As described above, dispersed <a href="/wiki/Heterojunction" title="Heterojunction">heterojunctions</a> of donor-acceptor organic materials have high quantum efficiencies compared to the planar hetero-junction, because in dispersed heterojunctions it is more likely for an exciton to find an interface within its diffusion length. Film morphology can also have a drastic effect on the quantum efficiency of the device. Rough surfaces and the presence of voids can increase the series resistance and also the chance of short-circuiting. Film morphology and, as a result, quantum efficiency can be improved by annealing of a device after covering it by a ~1000 Å thick metal cathode. Metal film on top of the organic film applies stresses on the organic film, which helps to prevent the morphological relaxation in the organic film. This gives more densely packed films and at the same time allows the formation of phase-separated interpenetrating donor-acceptor interface inside the bulk of organic thin film.<sup id="cite_ref-Peumans_99-0" class="reference"><a href="#cite_note-Peumans-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> </p><p>Building upon these advancements, the National Renewable Energy Laboratory (NREL) has been developing roll-to-roll processing techniques ther refine morphological control in Bulk heterojunction layers. by precisely turning phase separation between donor-acceptor materials, these techniques facilitate more efficient charge extraction and transport, ultimately improving overall device performance. Additionally by optimizing deposit conditions and processes the solvent, NREL approach seeks to min morphological defects that contribute to charge recombination, thereby enhancing both efficiency and environmental sustainability in organic solar cells production. <sup id="cite_ref-NREL2022_100-0" class="reference"><a href="#cite_note-NREL2022-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Controlled_growth_heterojunction">Controlled growth heterojunction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=29" title="Edit section: Controlled growth heterojunction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Charge separation occurs at the donor-acceptor interface. Whilst traveling to the electrode, a charge can become trapped and/or recombine in a disordered interpenetrating organic material, resulting in decreased device efficiency. Controlled growth of the heterojunction provides better control over positions of the donor-acceptor materials, resulting in much greater power efficiency (ratio of output power to input power) than that of planar and highly disoriented hetero-junctions (as shown in Fig. 8). Thus, the choice of suitable processing parameters in order to better control the structure and film morphology is highly desirable.<sup id="cite_ref-Yang_32-1" class="reference"><a href="#cite_note-Yang-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Light_trapping">Light trapping</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=30" title="Edit section: Light trapping"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Various type of components are applied to increase light trapping (Light in-coupling) effects in thin organic solar cells.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> In addition to the flexibility of organic solar cells, by using flexible electrodes<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> and substrates<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> instead of ITO and glass respectively, fully flexible organic solar cells can be produced. By these use of flexible substrates and substrates, easier methods to provide light trapping effects to OPVs are introduced such as polymer electrodes with embedded scattering particles,<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> nano imprinted polymer electrodes,<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> patterned PET substrates<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> and even optical display film commercialized for liquid crystal displays (LCD) as substrates.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> Much research will be taken for enhancing the performance of OPVs with the merit of easy light trapping structures processing. </p> <div class="mw-heading mw-heading3"><h3 id="Use_in_tandem_photovoltaics">Use in tandem photovoltaics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=31" title="Edit section: Use in tandem photovoltaics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Recent research and study has been done in utilizing an organic solar cell as the top cell in a hybrid <a href="/wiki/Multi-junction_solar_cell" title="Multi-junction solar cell">tandem solar cell</a> stack. Because organic solar cells have a higher band gap than traditional inorganic photovoltaics like silicon or <a href="/wiki/Copper_indium_gallium_selenide_solar_cells" class="mw-redirect" title="Copper indium gallium selenide solar cells">CIGS</a>, they can absorb higher energy photons without losing much of the energy due to thermalization, and thus operate at a higher voltage. The lower energy photons and higher energy photons that are unabsorbed pass through the top organic solar cell and are then absorbed by the bottom inorganic cell. Organic solar cells are also solution processible at low temperatures with a low cost of 10 dollars per square meter, resulting in a printable top cell that improves the overall efficiencies of existing, inorganic solar cell technologies.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> Much research has been done to enable the formation of such a hybrid tandem solar cell stack, including research in the deposition of semi-transparent electrodes that maintain low contact resistance while having high transparency.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Mechanical_behavior">Mechanical behavior</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=32" title="Edit section: Mechanical behavior"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Understanding the mechanical properties of organic semiconductors and in particular, the wide range of failure mechanisms of operating organic solar cell devices are critical in determining the operational stability of organic solar cells for various applications.The mechanical properties of organic solar cells can be attributed to intermolecular and surface forces present in the material. These attributes are not only influenced by the molecular structure but are also quite sensitive to processing conditions, making the study of mechanical properties of polymer thin films such as tensile modulus, ductility and fracture toughness under strain rather difficult.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> Because of this, it is nontrivial to quantify a "figure of merit" that will predict the mechanical stability of a device and the robustness of a device under strain will depend on many factors. </p><p>Most often, the substrate provides support to the device and mechanical failure of the substrate will lead to suboptimal power conversion efficiency of the device. Hence while it is necessary that the substrate provides mechanical support to the organic active layer, care must be taken to ensure that increasing the tensile strength of the substrate does not come at the cost of the film fracturing at low strains. In general, it is desirable that the active layer deforms in tandem with the substrate. This is made possible with a low elastic modulus and high elastic limit. The ductility of a thin film is commonly measured as the strain at which cracks appear on the film. However, the crack onset strain is also dependent on other factors such as the degree of cohesion/adhesion between the film and the substrate. Various studies have related the cohesive or adhesive fracture energy G<sub>c</sub> , defined as the work required to break separate polymer interfaces to molecular parameters and processing conditions.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> Along with the cohesion, the trajectory of crack propagation following formation depends on the mechanical properties of the material the crack propagates through. In polymers like P3HT that exhibit good plasticity, a plastic zone forms at the crack tip upon the application of a tensile strain normal to the plane of the device and expands until it is confined by either crystalline domains in the film or by a rigid substrate, thus dissipating the deformation energy and decreasing the cohesion between the interfaces.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> The mechanical buckling technique has also proven to be quite successful in determining the elastic moduli of various organic thin films. The method is based on the buckling instability that gives rise to wrinkles in the film under a compressive strain.The wavelength of the wrinkling pattern, can be related to the tensile modulus of the film in terms of the film thickness and elastic modulus of the substrate.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the design of devices incorporating organic solar cells, Gc and strain at fracture have been identified as two metrics that are important to consider. The bulk heterojunction (BHJ) layer is usually the weakest layer of an organic solar cell, so it is necessary to design the BHJ materials to be mechanically stable, with a target G<sub>c</sub> of 5 J m-2 and a target strain at fracture of 20-30%. Polymer-based acceptors have been shown to exhibit superior mechanical properties when compared to small-molecule acceptors and fullerene-based acceptors. Additionally, the mechanical properties of polymer-based acceptors are influenced by M<sub>n</sub>, the number-average molecular weight of the polymer molecules. It was determined that mechanical properties increase with increasing M<sub>n</sub>, but only once Mn has surpassed M<sub>c</sub>, the critical molecular weight at which entanglements cause the rate of viscosity change to increase with increasing M<sub>n</sub>. This phenomenon occurs because the rate of chain entanglement and miscibility between the polymer acceptor and donor both increase. The effect of these characteristics is that the plastic deformation of these materials in reaction to mechanical stress was high, meaning that more of the energy was dissipated, while the materials with less mechanical strength fractured more readily. <sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Recent_directions_for_bulk_heterojunction_materials_research">Recent directions for bulk heterojunction materials research</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=33" title="Edit section: Recent directions for bulk heterojunction materials research"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One major area of current research is the use of <a href="/w/index.php?title=Non-fullerene_acceptors&amp;action=edit&amp;redlink=1" class="new" title="Non-fullerene acceptors (page does not exist)">non-fullerene acceptors</a>. While fullerene acceptors have been the standard for most organic photovoltaics due to their compatibility within bulk heterojunction cell designs as well as their good transport properties, they do have some fallbacks that are leading researchers to attempt to find alternatives.<sup id="cite_ref-:2_118-0" class="reference"><a href="#cite_note-:2-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> Some negatives of fullerene acceptors include their instability, that they are somewhat limited in energy-tunability and they have poor optical absorption.<sup id="cite_ref-:2_118-1" class="reference"><a href="#cite_note-:2-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> Researchers have developed small molecule acceptors that due to their good energy tunability, can exhibit high open-circuit voltages.<sup id="cite_ref-:2_118-2" class="reference"><a href="#cite_note-:2-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> Combining a polymer donor (D18) with a small molecule acceptor (Y6), scientists have fabricated organic solar cells in the laboratory giving high efficiencies over 18%.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> However, there are still major challenges with non-fullerene acceptors, including the low charge carrier mobilities of small molecule acceptors, and that the sheer number of possible molecules is overwhelming for the research community.<sup id="cite_ref-:2_118-3" class="reference"><a href="#cite_note-:2-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> </p><p>A challenge facing the development of organic solar cells utilizing non-fullerene acceptors (NFAs) is the selection of a solvent that has a high boiling point and is environmentally friendly, whereas conventional solvents such as chloroform (CF) tend to exhibit low boiling points and toxicity. Such a solvent is required for further scale-up of organic solar cells, but has also been associated with decreases in PCE due to poor solubility of donor and acceptor materials within the solvent. Appending alkyl chains to NFAs has led to increases in solubility but decreases in molecular packing (π-stacking), which leads to no net impact on PCE. The use of guest assistance has been found to benefit both solubility and molecular packing. A guest molecule named BTO with oligo(ethylene glycol) (OEG) side chains used in conjunction with the NFA Y6 as the acceptor, PM6 as the donor, and paraxylene (PX) as the high-melting-point and sustainable solvent led to an increase in PCE from 11% to over 16%, regarded an acceptable level of efficiency. <sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup> A further modification that has been successful in the development of cleaner organic photovoltaics is the hot-spin coating of substrates by non-halogenated solvents. It was found that the temperature at which hot-spin coating was operated altered the solution to solid phase evolution of the acceptor-donor blends so that higher temperatures resulted in a higher acceptor concentration in the surface of the substrate. This is because higher temperatures facilitated decreased aggregation and precipitation, allowing the substrate to retain a higher acceptor concentration. In an experiment, organic solar cells constructed with ternary blends of PM6 donor and Y6-1O and BO-4Cl acceptors and various non-halogenated solvents including o-xylene and toluene exhibited PCE values of over 18%, which are the most efficient organic photovoltaics constructed with non-halogenated solvents, to date. Further morphological analyses showed that the hot-spun OPVs prepared with non-halogenated solvents exhibited similar morphological characteristics to that of OPVs prepared with halogenated solvents. <sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup> </p><p>Small molecules are also being heavily researched to act as donor materials, potentially replacing polymeric donors. Since small molecules do not vary in molecular weights the way polymers do, they would require less purification steps and are less susceptible to macromolecule defects and kinks that can create trap states leading to recombination.<sup id="cite_ref-:3_122-0" class="reference"><a href="#cite_note-:3-122"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> Recent research has shown that high-performing small molecular donor structures tend to have planar 2-D structures and can aggregate or self assemble.<sup id="cite_ref-:3_122-1" class="reference"><a href="#cite_note-:3-122"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> Sine performance of these devices is highly depended on active layer morphology, present research is continuing to investigate small molecule possibilities, and optimize device morphology through processes such as annealing for various materials.<sup id="cite_ref-:3_122-2" class="reference"><a href="#cite_note-:3-122"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> </p><p>In parallel, advancements in bulk heterojunction materials continue to derive improvements in efficiency and stability. The U.S. Department of Energy (DOE) has supported research into novel-non fullerene acceptors (NFAs) aimed at minimizing energy losses and improving charge separation.<sup id="cite_ref-DOE2023_123-0" class="reference"><a href="#cite_note-DOE2023-123"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=34" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wind-turbine-icon.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Wind-turbine-icon.svg/28px-Wind-turbine-icon.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Wind-turbine-icon.svg/42px-Wind-turbine-icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Wind-turbine-icon.svg/56px-Wind-turbine-icon.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Renewable_energy" title="Portal:Renewable energy">Renewable energy portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal_energy.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/29px-Crystal_energy.svg.png" decoding="async" width="29" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/44px-Crystal_energy.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/59px-Crystal_energy.svg.png 2x" data-file-width="130" data-file-height="124" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Energy" title="Portal:Energy">Energy portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Bioplastic" title="Bioplastic">Bioplastic</a></li> <li><a href="/wiki/Conductive_ink" title="Conductive ink">Conductive ink</a></li> <li><a href="/wiki/Dye-sensitized_solar_cell" title="Dye-sensitized solar cell">Dye-sensitized solar cell</a></li> <li><a href="/wiki/Energy_harvesting" title="Energy harvesting">Energy harvesting</a></li> <li><a href="/wiki/Grid_parity" title="Grid parity">Grid parity</a></li> <li><a href="/wiki/Hybrid_solar_cell" title="Hybrid solar cell">Hybrid solar cell</a></li> <li><a href="/wiki/Inkjet_solar_cell" title="Inkjet solar cell">Inkjet solar cell</a></li> <li><a href="/wiki/Nanocrystal_solar_cell" title="Nanocrystal solar cell">Nanocrystal solar cell</a></li> <li><a href="/wiki/Photoelectrochemical_cell" title="Photoelectrochemical cell">Photoelectrochemical cell</a></li> <li><a href="/wiki/Printed_electronics" title="Printed electronics">Printed electronics</a></li> <li><a href="/wiki/Roll-to-roll" class="mw-redirect" title="Roll-to-roll">Roll-to-roll</a></li></ul> <p><b>Other third-generation solar cells:</b> </p> <ul><li><a href="/wiki/Dye-sensitized_solar_cell" title="Dye-sensitized solar cell">Dye-sensitized solar cell</a></li> <li><a href="/wiki/Hybrid_solar_cell" title="Hybrid solar cell">Hybrid solar cell</a></li> <li><a href="/wiki/Nanocrystal_solar_cell" title="Nanocrystal solar cell">Nanocrystal solar cell</a></li> <li><a href="/wiki/Photoelectrochemical_cell" title="Photoelectrochemical cell">Photoelectrochemical cell</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=35" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 35em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAmeriDennlerLungenschmiedBrabec2009" class="citation journal cs1">Ameri, Tayebeh; Dennler, Gilles; Lungenschmied, Christoph; Brabec, Christoph (2009). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlehtml/2009/ee/b817952b">"Organic tandem solar cells: A review"</a>. <i>Energy &amp; Environmental Science</i>. <b>2</b> (4): 348. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FB817952B">10.1039/B817952B</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-05-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Organic+tandem+solar+cells%3A+A+review&amp;rft.volume=2&amp;rft.issue=4&amp;rft.pages=348&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1039%2FB817952B&amp;rft.aulast=Ameri&amp;rft.aufirst=Tayebeh&amp;rft.au=Dennler%2C+Gilles&amp;rft.au=Lungenschmied%2C+Christoph&amp;rft.au=Brabec%2C+Christoph&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlehtml%2F2009%2Fee%2Fb817952b&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-pulfrey-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-pulfrey_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPulfrey1978" class="citation book cs1">Pulfrey, L.D. (1978). <i>Photovoltaic Power Generation</i>. New York: Van Nostrand Reinhold Co. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780442266400" title="Special:BookSources/9780442266400"><bdi>9780442266400</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Photovoltaic+Power+Generation&amp;rft.place=New+York&amp;rft.pub=Van+Nostrand+Reinhold+Co.&amp;rft.date=1978&amp;rft.isbn=9780442266400&amp;rft.aulast=Pulfrey&amp;rft.aufirst=L.D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNelson2011" class="citation journal cs1">Nelson, Jenny (2011-10-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1369-7021%2811%2970210-3">"Polymer:fullerene bulk heterojunction solar cells"</a>. <i>Materials Today</i>. <b>14</b> (10): <span class="nowrap">462–</span>470. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1369-7021%2811%2970210-3">10.1016/S1369-7021(11)70210-3</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+Today&amp;rft.atitle=Polymer%3Afullerene+bulk+heterojunction+solar+cells&amp;rft.volume=14&amp;rft.issue=10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E462-%3C%2Fspan%3E470&amp;rft.date=2011-10-01&amp;rft_id=info%3Adoi%2F10.1016%2FS1369-7021%2811%2970210-3&amp;rft.aulast=Nelson&amp;rft.aufirst=Jenny&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS1369-7021%252811%252970210-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.greenbiz.com/article/what-can-organic-solar-cells-bring-table">"What can organic solar cells bring to the table?"</a>. 25 March 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">26 March</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=What+can+organic+solar+cells+bring+to+the+table%3F&amp;rft.date=2021-03-25&amp;rft_id=https%3A%2F%2Fwww.greenbiz.com%2Farticle%2Fwhat-can-organic-solar-cells-bring-table&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLutherNastFischChristoffers2000" class="citation book cs1">Luther, Joachim; Nast, Michael; Fisch, M. Norbert; Christoffers, Dirk; Pfisterer, Fritz; Meissner, Dieter; Nitsch, Joachim (2000). "Solar Technology". <i>Ullmann's Encyclopedia of Industrial Chemistry</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F14356007.a24_369">10.1002/14356007.a24_369</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3527306730" title="Special:BookSources/3527306730"><bdi>3527306730</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Solar+Technology&amp;rft.btitle=Ullmann%27s+Encyclopedia+of+Industrial+Chemistry&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1002%2F14356007.a24_369&amp;rft.isbn=3527306730&amp;rft.aulast=Luther&amp;rft.aufirst=Joachim&amp;rft.au=Nast%2C+Michael&amp;rft.au=Fisch%2C+M.+Norbert&amp;rft.au=Christoffers%2C+Dirk&amp;rft.au=Pfisterer%2C+Fritz&amp;rft.au=Meissner%2C+Dieter&amp;rft.au=Nitsch%2C+Joachim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJørgensenNorrmanKrebs2008" class="citation journal cs1">Jørgensen, Mikkel; Norrman, Kion; Krebs, Frederik C. (2008). "Stability/degradation of polymer solar cells". <i>Solar Energy Materials and Solar Cells</i>. <b>92</b> (7): 686. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008SEMSC..92..686J">2008SEMSC..92..686J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2008.01.005">10.1016/j.solmat.2008.01.005</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Stability%2Fdegradation+of+polymer+solar+cells&amp;rft.volume=92&amp;rft.issue=7&amp;rft.pages=686&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2008.01.005&amp;rft_id=info%3Abibcode%2F2008SEMSC..92..686J&amp;rft.aulast=J%C3%B8rgensen&amp;rft.aufirst=Mikkel&amp;rft.au=Norrman%2C+Kion&amp;rft.au=Krebs%2C+Frederik+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoCarboneraBernardiTinti2012" class="citation journal cs1">Po, Riccardo; Carbonera, Chiara; Bernardi, Andrea; Tinti, Francesca; Camaioni, Nadia (2012). "Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area". <i>Solar Energy Materials and Solar Cells</i>. <b>100</b>: 97. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012SEMSC.100...97P">2012SEMSC.100...97P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2011.12.022">10.1016/j.solmat.2011.12.022</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Polymer-+and+carbon-based+electrodes+for+polymer+solar+cells%3A+Toward+low-cost%2C+continuous+fabrication+over+large+area&amp;rft.volume=100&amp;rft.pages=97&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2011.12.022&amp;rft_id=info%3Abibcode%2F2012SEMSC.100...97P&amp;rft.aulast=Po&amp;rft.aufirst=Riccardo&amp;rft.au=Carbonera%2C+Chiara&amp;rft.au=Bernardi%2C+Andrea&amp;rft.au=Tinti%2C+Francesca&amp;rft.au=Camaioni%2C+Nadia&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScharberMühlbacherKoppeDenk2006" class="citation journal cs1">Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. (2006). <a rel="nofollow" class="external text" href="http://home.dei.polimi.it/sampietr/ESO/2006brabec.pdf">"Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10&#160;% Energy-Conversion Efficiency"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Materials</i>. <b>18</b> (6): 789. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006AdM....18..789S">2006AdM....18..789S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.200501717">10.1002/adma.200501717</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13842344">13842344</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Design+Rules+for+Donors+in+Bulk-Heterojunction+Solar+Cells%E2%80%94Towards+10+%25+Energy-Conversion+Efficiency&amp;rft.volume=18&amp;rft.issue=6&amp;rft.pages=789&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13842344%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.200501717&amp;rft_id=info%3Abibcode%2F2006AdM....18..789S&amp;rft.aulast=Scharber&amp;rft.aufirst=M.+C.&amp;rft.au=M%C3%BChlbacher%2C+D.&amp;rft.au=Koppe%2C+M.&amp;rft.au=Denk%2C+P.&amp;rft.au=Waldauf%2C+C.&amp;rft.au=Heeger%2C+A.+J.&amp;rft.au=Brabec%2C+C.+J.&amp;rft_id=http%3A%2F%2Fhome.dei.polimi.it%2Fsampietr%2FESO%2F2006brabec.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceA-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYouDouYoshimuraKato2013" class="citation journal cs1">You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao (5 February 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660643">"A polymer tandem solar cell with 10.6% power conversion efficiency"</a>. <i>Nature Communications</i>. <b>4</b>: 1446. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatCo...4.1446Y">2013NatCo...4.1446Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms2411">10.1038/ncomms2411</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660643">3660643</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23385590">23385590</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=A+polymer+tandem+solar+cell+with+10.6%25+power+conversion+efficiency&amp;rft.volume=4&amp;rft.pages=1446&amp;rft.date=2013-02-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3660643%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23385590&amp;rft_id=info%3Adoi%2F10.1038%2Fncomms2411&amp;rft_id=info%3Abibcode%2F2013NatCo...4.1446Y&amp;rft.aulast=You&amp;rft.aufirst=Jingbi&amp;rft.au=Dou%2C+Letian&amp;rft.au=Yoshimura%2C+Ken&amp;rft.au=Kato%2C+Takehito&amp;rft.au=Ohya%2C+Kenichiro&amp;rft.au=Moriarty%2C+Tom&amp;rft.au=Emery%2C+Keith&amp;rft.au=Chen%2C+Chun-Chao&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3660643&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.polyu.edu.hk/rio/news/2023/20230529---polyu-researchers-achieve-record-1931-efficiency/">"PolyU researchers achieve record 19.31% efficiency with organic solar cells"</a>. <i>Hong Kong Polytechnic University</i>. 25 May 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">7 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Hong+Kong+Polytechnic+University&amp;rft.atitle=PolyU+researchers+achieve+record+19.31%25+efficiency+with+organic+solar+cells&amp;rft.date=2023-05-25&amp;rft_id=https%3A%2F%2Fwww.polyu.edu.hk%2Frio%2Fnews%2F2023%2F20230529---polyu-researchers-achieve-record-1931-efficiency%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Rivers-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rivers_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRivers_P._N.2007" class="citation book cs1">Rivers P. N. (2007). <i>Leading edge research in solar energy</i>. Nova Science Publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1600213366" title="Special:BookSources/978-1600213366"><bdi>978-1600213366</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Leading+edge+research+in+solar+energy&amp;rft.pub=Nova+Science+Publishers&amp;rft.date=2007&amp;rft.isbn=978-1600213366&amp;rft.au=Rivers+P.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-McGehee-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-McGehee_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-McGehee_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-McGehee_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcGehee_D.G.Topinka_M.A.2006" class="citation journal cs1">McGehee D.G.; Topinka M.A. (2006). "Solar cells: Pictures from the blended zone". <i>Nature Materials</i>. <b>5</b> (9): <span class="nowrap">675–</span>676. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006NatMa...5..675M">2006NatMa...5..675M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat1723">10.1038/nmat1723</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16946723">16946723</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43074502">43074502</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Materials&amp;rft.atitle=Solar+cells%3A+Pictures+from+the+blended+zone&amp;rft.volume=5&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E675-%3C%2Fspan%3E676&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1038%2Fnmat1723&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43074502%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16946723&amp;rft_id=info%3Abibcode%2F2006NatMa...5..675M&amp;rft.au=McGehee+D.G.&amp;rft.au=Topinka+M.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Nelson-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nelson_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nelson_13-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Nelson_13-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Nelson_13-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNelson_J.2002" class="citation journal cs1">Nelson J. (2002). "Organic photovoltaic films". <i>Current Opinion in Solid State and Materials Science</i>. <b>6</b> (1): <span class="nowrap">87–</span>95. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002COSSM...6...87N">2002COSSM...6...87N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1359-0286%2802%2900006-2">10.1016/S1359-0286(02)00006-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Opinion+in+Solid+State+and+Materials+Science&amp;rft.atitle=Organic+photovoltaic+films&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E87-%3C%2Fspan%3E95&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1016%2FS1359-0286%2802%2900006-2&amp;rft_id=info%3Abibcode%2F2002COSSM...6...87N&amp;rft.au=Nelson+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-HallsFriend-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-HallsFriend_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HallsFriend_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HallsFriend_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-HallsFriend_14-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalls_J.J.M.Friend_R.H.2001" class="citation book cs1">Halls J.J.M.; Friend R.H. (2001). Archer M.D.; Hill R.D. (eds.). <i>Clean electricity from photovoltaics</i>. London: Imperial College Press. pp.&#160;<span class="nowrap">377–</span>445. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1860941610" title="Special:BookSources/978-1860941610"><bdi>978-1860941610</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Clean+electricity+from+photovoltaics&amp;rft.place=London&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E377-%3C%2Fspan%3E445&amp;rft.pub=Imperial+College+Press&amp;rft.date=2001&amp;rft.isbn=978-1860941610&amp;rft.au=Halls+J.J.M.&amp;rft.au=Friend+R.H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Hoppe-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hoppe_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hoppe_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoppe,_H.Sariciftci,_N._S.2004" class="citation journal cs1">Hoppe, H. &amp; Sariciftci, N. S. (2004). "Organic solar cells: An overview". <i>J. Mater. Res</i>. <b>19</b> (7): <span class="nowrap">1924–</span>1945. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JMatR..19.1924H">2004JMatR..19.1924H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2FJMR.2004.0252">10.1557/JMR.2004.0252</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22455511">22455511</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Mater.+Res.&amp;rft.atitle=Organic+solar+cells%3A+An+overview&amp;rft.volume=19&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1924-%3C%2Fspan%3E1945&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22455511%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1557%2FJMR.2004.0252&amp;rft_id=info%3Abibcode%2F2004JMatR..19.1924H&amp;rft.au=Hoppe%2C+H.&amp;rft.au=Sariciftci%2C+N.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZyga" class="citation web cs1">Zyga, Lisa. <a rel="nofollow" class="external text" href="http://phys.org/news/2012-08-inverted-polymer-solar-cell-efficiency.html">"Inverted polymer solar cell efficiency sets world record"</a>. <i>Phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">18 February</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Phys.org&amp;rft.atitle=Inverted+polymer+solar+cell+efficiency+sets+world+record&amp;rft.aulast=Zyga&amp;rft.aufirst=Lisa&amp;rft_id=http%3A%2F%2Fphys.org%2Fnews%2F2012-08-inverted-polymer-solar-cell-efficiency.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPivrikasSarıçiftçiJuškaÖsterbacka2007" class="citation journal cs1">Pivrikas, A.; <a href="/wiki/Niyazi_Serdar_Sar%C4%B1%C3%A7ift%C3%A7i" title="Niyazi Serdar Sarıçiftçi">Sarıçiftçi, N. S.</a>; Juška, G.; Österbacka, R. (2007). <a rel="nofollow" class="external text" href="http://www.ipc.uni-linz.ac.at/publ/2007/2007-024.pdf">"A review of charge transport and recombination in polymer/fullerene organic solar cells"</a> <span class="cs1-format">(PDF)</span>. <i>Progress in Photovoltaics: Research and Applications</i>. <b>15</b> (8): 677. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpip.791">10.1002/pip.791</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Photovoltaics%3A+Research+and+Applications&amp;rft.atitle=A+review+of+charge+transport+and+recombination+in+polymer%2Ffullerene+organic+solar+cells&amp;rft.volume=15&amp;rft.issue=8&amp;rft.pages=677&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1002%2Fpip.791&amp;rft.aulast=Pivrikas&amp;rft.aufirst=A.&amp;rft.au=Sar%C4%B1%C3%A7ift%C3%A7i%2C+N.+S.&amp;rft.au=Ju%C5%A1ka%2C+G.&amp;rft.au=%C3%96sterbacka%2C+R.&amp;rft_id=http%3A%2F%2Fwww.ipc.uni-linz.ac.at%2Fpubl%2F2007%2F2007-024.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTesslerPreezantRappaportRoichman2009" class="citation journal cs1">Tessler, Nir; Preezant, Yevgeni; Rappaport, Noam; Roichman, Yohai (2009). <a rel="nofollow" class="external text" href="http://physics.usask.ca/~chang/course/phys404/Hopping_Theory.pdf">"Charge Transport in Disordered Organic Materials and Its Relevance to Thin-Film Devices: A Tutorial Review"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Materials</i>. <b>21</b> (27): 2741. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009AdM....21.2741T">2009AdM....21.2741T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.200803541">10.1002/adma.200803541</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:25748928">25748928</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Charge+Transport+in+Disordered+Organic+Materials+and+Its+Relevance+to+Thin-Film+Devices%3A+A+Tutorial+Review&amp;rft.volume=21&amp;rft.issue=27&amp;rft.pages=2741&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A25748928%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.200803541&amp;rft_id=info%3Abibcode%2F2009AdM....21.2741T&amp;rft.aulast=Tessler&amp;rft.aufirst=Nir&amp;rft.au=Preezant%2C+Yevgeni&amp;rft.au=Rappaport%2C+Noam&amp;rft.au=Roichman%2C+Yohai&amp;rft_id=http%3A%2F%2Fphysics.usask.ca%2F~chang%2Fcourse%2Fphys404%2FHopping_Theory.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Kearns-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kearns_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kearns_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKearns_D.Calvin_M.1958" class="citation journal cs1">Kearns D.; Calvin M. (1958). <a rel="nofollow" class="external text" href="https://digital.library.unt.edu/ark:/67531/metadc893304/">"Photovoltaic Effect and Photoconductivity in Laminated Organic Systems"</a>. <i>J. Chem. Phys</i>. <b>29</b> (4): <span class="nowrap">950–</span>951. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1958JChPh..29..950K">1958JChPh..29..950K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1744619">10.1063/1.1744619</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:95918786">95918786</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Chem.+Phys.&amp;rft.atitle=Photovoltaic+Effect+and+Photoconductivity+in+Laminated+Organic+Systems&amp;rft.volume=29&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E950-%3C%2Fspan%3E951&amp;rft.date=1958&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A95918786%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1063%2F1.1744619&amp;rft_id=info%3Abibcode%2F1958JChPh..29..950K&amp;rft.au=Kearns+D.&amp;rft.au=Calvin+M.&amp;rft_id=https%3A%2F%2Fdigital.library.unt.edu%2Fark%3A%2F67531%2Fmetadc893304%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Ghosh-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ghosh_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhosh_A.K.1974" class="citation journal cs1">Ghosh A.K.; et&#160;al. (1974). "Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells". <i>J. Appl. Phys</i>. <b>45</b> (1): <span class="nowrap">230–</span>236. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974JAP....45..230G">1974JAP....45..230G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1662965">10.1063/1.1662965</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Appl.+Phys.&amp;rft.atitle=Photovoltaic+and+rectification+properties+of+Al%2FMg+phthalocyanine%2FAg+Schottky-barrier+cells&amp;rft.volume=45&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E230-%3C%2Fspan%3E236&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.1063%2F1.1662965&amp;rft_id=info%3Abibcode%2F1974JAP....45..230G&amp;rft.au=Ghosh+A.K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Weinberger-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weinberger_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeinberger_B.R.1982" class="citation journal cs1">Weinberger B.R.; et&#160;al. (1982). "Polyacetylene photovoltaic devices". <i>Synth. Met</i>. <b>4</b> (3): <span class="nowrap">187–</span>197. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0379-6779%2882%2990012-1">10.1016/0379-6779(82)90012-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Synth.+Met.&amp;rft.atitle=Polyacetylene+photovoltaic+devices&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E187-%3C%2Fspan%3E197&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1016%2F0379-6779%2882%2990012-1&amp;rft.au=Weinberger+B.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Glenis-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Glenis_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlenis1986" class="citation journal cs1">Glenis S, et&#160;al. (1986). "Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene". <i>Thin Solid Films</i>. <b>139</b> (3): <span class="nowrap">221–</span>231. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986TSF...139..221G">1986TSF...139..221G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0040-6090%2886%2990053-2">10.1016/0040-6090(86)90053-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Thin+Solid+Films&amp;rft.atitle=Influence+of+the+doping+on+the+photovoltaic+properties+of+thin+films+of+poly-3-methylthiophene&amp;rft.volume=139&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E221-%3C%2Fspan%3E231&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1016%2F0040-6090%2886%2990053-2&amp;rft_id=info%3Abibcode%2F1986TSF...139..221G&amp;rft.aulast=Glenis&amp;rft.aufirst=S&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Karg-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-Karg_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarg1993" class="citation journal cs1">Karg S, et&#160;al. (1993). "Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes". <i>Synthetic Metals</i>. <b>54</b> (<span class="nowrap">1–</span>3): <span class="nowrap">427–</span>433. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0379-6779%2893%2991088-J">10.1016/0379-6779(93)91088-J</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Synthetic+Metals&amp;rft.atitle=Electrical+and+optical+characterization+of+poly%28phenylene-vinylene%29+light+emitting+diodes&amp;rft.volume=54&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E427-%3C%2Fspan%3E433&amp;rft.date=1993&amp;rft_id=info%3Adoi%2F10.1016%2F0379-6779%2893%2991088-J&amp;rft.aulast=Karg&amp;rft.aufirst=S&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Sariciftci-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sariciftci_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSariciftciBraunZhangSrdanov1993" class="citation journal cs1">Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. (1993). <a rel="nofollow" class="external text" href="http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1053&amp;context=eeng_fac">"Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells"</a>. <i>Applied Physics Letters</i>. <b>62</b> (6): <span class="nowrap">585–</span>587. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993ApPhL..62..585S">1993ApPhL..62..585S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.108863">10.1063/1.108863</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Physics+Letters&amp;rft.atitle=Semiconducting+polymer-buckminsterfullerene+heterojunctions%3A+Diodes%2C+photodiodes%2C+and+photovoltaic+cells&amp;rft.volume=62&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E585-%3C%2Fspan%3E587&amp;rft.date=1993&amp;rft_id=info%3Adoi%2F10.1063%2F1.108863&amp;rft_id=info%3Abibcode%2F1993ApPhL..62..585S&amp;rft.aulast=Sariciftci&amp;rft.aufirst=N.+S.&amp;rft.au=Braun%2C+D.&amp;rft.au=Zhang%2C+C.&amp;rft.au=Srdanov%2C+V.+I.&amp;rft.au=Heeger%2C+A.+J.&amp;rft.au=Stucky%2C+G.&amp;rft.au=Wudl%2C+F.&amp;rft_id=http%3A%2F%2Fdigitalcommons.calpoly.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1053%26context%3Deeng_fac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-HallsApplPhys-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-HallsApplPhys_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalls_J.J.M.1996" class="citation journal cs1">Halls J.J.M.; et&#160;al. (1996). "Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell". <i>Appl. Phys. Lett</i>. <b>68</b> (22): <span class="nowrap">3120–</span>3122. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996ApPhL..68.3120H">1996ApPhL..68.3120H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.115797">10.1063/1.115797</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Appl.+Phys.+Lett.&amp;rft.atitle=Exciton+diffusion+and+dissociation+in+a+poly%28p-phenylenevinylene%29%2FC60+heterojunction+photovoltaic+cell&amp;rft.volume=68&amp;rft.issue=22&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3120-%3C%2Fspan%3E3122&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1063%2F1.115797&amp;rft_id=info%3Abibcode%2F1996ApPhL..68.3120H&amp;rft.au=Halls+J.J.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Tang-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tang_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTang_C.W.1986" class="citation journal cs1">Tang C.W. (1986). "Two-layer organic photovoltaic cell". <i>Appl. Phys. Lett</i>. <b>48</b> (2): <span class="nowrap">183–</span>185. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986ApPhL..48..183T">1986ApPhL..48..183T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.96937">10.1063/1.96937</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Appl.+Phys.+Lett.&amp;rft.atitle=Two-layer+organic+photovoltaic+cell&amp;rft.volume=48&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E183-%3C%2Fspan%3E185&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1063%2F1.96937&amp;rft_id=info%3Abibcode%2F1986ApPhL..48..183T&amp;rft.au=Tang+C.W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-HallsSynth-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-HallsSynth_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalls_J.J.M.1997" class="citation journal cs1">Halls J.J.M.; et&#160;al. (1997). "The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction". <i>Synth. Met</i>. <b>85</b> (<span class="nowrap">1–</span>3): <span class="nowrap">1307–</span>1308. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0379-6779%2897%2980252-4">10.1016/S0379-6779(97)80252-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Synth.+Met.&amp;rft.atitle=The+photovoltaic+effect+in+a+poly%28p-phenylenevinylene%29%2Fperylene+heterojunction&amp;rft.volume=85&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1307-%3C%2Fspan%3E1308&amp;rft.date=1997&amp;rft_id=info%3Adoi%2F10.1016%2FS0379-6779%2897%2980252-4&amp;rft.au=Halls+J.J.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.rdmag.com/news/2014/03/imec-achieves-record-84-efficiency-fullerene-free-organic-solar-cells">Imec achieves record 8.4% efficiency in fullerene-free organic solar cells</a>. Rdmag.com. Retrieved on 2015-11-12.</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaoXue2014" class="citation journal cs1">Cao, Weiran; Xue, Jiangeng (2014). "Recent progress in organic photovoltaics: device architecture and optical design". <i>Energy &amp; Environmental Science</i>. <b>7</b> (7): 2123. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC4EE00260A">10.1039/C4EE00260A</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Recent+progress+in+organic+photovoltaics%3A+device+architecture+and+optical+design&amp;rft.volume=7&amp;rft.issue=7&amp;rft.pages=2123&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1039%2FC4EE00260A&amp;rft.aulast=Cao&amp;rft.aufirst=Weiran&amp;rft.au=Xue%2C+Jiangeng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeeger2014" class="citation journal cs1">Heeger, Alan J. (January 2014). "25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation". <i>Advanced Materials</i>. <b>26</b> (1): <span class="nowrap">10–</span>28. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014AdM....26...10H">2014AdM....26...10H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201304373">10.1002/adma.201304373</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24311015">24311015</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6693600">6693600</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=25th+Anniversary+Article%3A+Bulk+Heterojunction+Solar+Cells%3A+Understanding+the+Mechanism+of+Operation&amp;rft.volume=26&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E10-%3C%2Fspan%3E28&amp;rft.date=2014-01&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.201304373&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6693600%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F24311015&amp;rft_id=info%3Abibcode%2F2014AdM....26...10H&amp;rft.aulast=Heeger&amp;rft.aufirst=Alan+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScharberSariciftci2013" class="citation journal cs1">Scharber, M.C.; <a href="/wiki/Niyazi_Serdar_Sar%C4%B1%C3%A7ift%C3%A7i" title="Niyazi Serdar Sarıçiftçi">Sariciftci, N.S.</a> (December 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837184">"Efficiency of bulk-heterojunction organic solar cells"</a>. <i>Progress in Polymer Science</i>. <b>38</b> (12): <span class="nowrap">1929–</span>1940. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.progpolymsci.2013.05.001">10.1016/j.progpolymsci.2013.05.001</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837184">3837184</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24302787">24302787</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Polymer+Science&amp;rft.atitle=Efficiency+of+bulk-heterojunction+organic+solar+cells&amp;rft.volume=38&amp;rft.issue=12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1929-%3C%2Fspan%3E1940&amp;rft.date=2013-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3837184%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F24302787&amp;rft_id=info%3Adoi%2F10.1016%2Fj.progpolymsci.2013.05.001&amp;rft.aulast=Scharber&amp;rft.aufirst=M.C.&amp;rft.au=Sariciftci%2C+N.S.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3837184&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Yang-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Yang_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Yang_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYang2005" class="citation journal cs1">Yang F, et&#160;al. (2005). "Controlled growth of a molecular bulk heterojunction photovoltaic cell". <i>Nature Materials</i>. <b>4</b> (1): <span class="nowrap">37–</span>41. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005NatMa...4...37Y">2005NatMa...4...37Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat1285">10.1038/nmat1285</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137668833">137668833</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Materials&amp;rft.atitle=Controlled+growth+of+a+molecular+bulk+heterojunction+photovoltaic+cell&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E37-%3C%2Fspan%3E41&amp;rft.date=2005&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137668833%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fnmat1285&amp;rft_id=info%3Abibcode%2F2005NatMa...4...37Y&amp;rft.aulast=Yang&amp;rft.aufirst=F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-YuScience-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-YuScience_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYu1995" class="citation journal cs1">Yu G, et&#160;al. (1995). "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions". <i>Science</i>. <b>270</b> (5243): <span class="nowrap">1789–</span>1791. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995Sci...270.1789Y">1995Sci...270.1789Y</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.320.7494">10.1.1.320.7494</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.270.5243.1789">10.1126/science.270.5243.1789</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:135489167">135489167</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Polymer+Photovoltaic+Cells%3A+Enhanced+Efficiencies+via+a+Network+of+Internal+Donor-Acceptor+Heterojunctions&amp;rft.volume=270&amp;rft.issue=5243&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1789-%3C%2Fspan%3E1791&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.320.7494%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A135489167%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.270.5243.1789&amp;rft_id=info%3Abibcode%2F1995Sci...270.1789Y&amp;rft.aulast=Yu&amp;rft.aufirst=G&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-YuAdv-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-YuAdv_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYu1998" class="citation journal cs1">Yu G, et&#160;al. (1998). "Large-Area, Full-Color Image Sensors Made with Semiconducting Polymers". <i>Advanced Materials</i>. <b>10</b> (17): <span class="nowrap">1431–</span>1434. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998AdM....10.1431Y">1998AdM....10.1431Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F%28SICI%291521-4095%28199812%2910%3A17%3C1431%3A%3AAID-ADMA1431%3E3.0.CO%3B2-4">10.1002/(SICI)1521-4095(199812)10:17&#60;1431::AID-ADMA1431&#62;3.0.CO&#59;2-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Large-Area%2C+Full-Color+Image+Sensors+Made+with+Semiconducting+Polymers&amp;rft.volume=10&amp;rft.issue=17&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1431-%3C%2Fspan%3E1434&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1002%2F%28SICI%291521-4095%28199812%2910%3A17%3C1431%3A%3AAID-ADMA1431%3E3.0.CO%3B2-4&amp;rft_id=info%3Abibcode%2F1998AdM....10.1431Y&amp;rft.aulast=Yu&amp;rft.aufirst=G&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-kaneko-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-kaneko_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaneko,_MasaoOkura,_Ichiro2002" class="citation book cs1">Kaneko, Masao &amp; Okura, Ichiro (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ttwh4HtVFngC&amp;pg=PA172"><i>Photocatalysis: Science and Technology</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-43473-3" title="Special:BookSources/978-3-540-43473-3"><bdi>978-3-540-43473-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Photocatalysis%3A+Science+and+Technology&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.isbn=978-3-540-43473-3&amp;rft.au=Kaneko%2C+Masao&amp;rft.au=Okura%2C+Ichiro&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTtwh4HtVFngC%26pg%3DPA172&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeXiaoLiuWu2015" class="citation journal cs1">He, Zhicai; Xiao, Biao; Liu, Feng; Wu, Hongbin; Yang, Yali; Xiao, Steven; Wang, Cheng; Russell, Thomas P.; Cao, Yong (2015-03-01). "Single-junction polymer solar cells with high efficiency and photovoltage". <i>Nature Photonics</i>. <b>9</b> (3): <span class="nowrap">174–</span>179. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NaPho...9..174H">2015NaPho...9..174H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphoton.2015.6">10.1038/nphoton.2015.6</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119702307">119702307</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Photonics&amp;rft.atitle=Single-junction+polymer+solar+cells+with+high+efficiency+and+photovoltage&amp;rft.volume=9&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E174-%3C%2Fspan%3E179&amp;rft.date=2015-03-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119702307%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fnphoton.2015.6&amp;rft_id=info%3Abibcode%2F2015NaPho...9..174H&amp;rft.aulast=He&amp;rft.aufirst=Zhicai&amp;rft.au=Xiao%2C+Biao&amp;rft.au=Liu%2C+Feng&amp;rft.au=Wu%2C+Hongbin&amp;rft.au=Yang%2C+Yali&amp;rft.au=Xiao%2C+Steven&amp;rft.au=Wang%2C+Cheng&amp;rft.au=Russell%2C+Thomas+P.&amp;rft.au=Cao%2C+Yong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-HallsNature-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-HallsNature_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalls_J.J.M.1995" class="citation journal cs1">Halls J.J.M.; et&#160;al. (1995). "Efficient photodiodes from interpenetrating polymer networks". <i>Nature</i>. <b>376</b> (6540): <span class="nowrap">498–</span>500. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995Natur.376..498H">1995Natur.376..498H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F376498a0">10.1038/376498a0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4336280">4336280</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Efficient+photodiodes+from+interpenetrating+polymer+networks&amp;rft.volume=376&amp;rft.issue=6540&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E498-%3C%2Fspan%3E500&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4336280%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F376498a0&amp;rft_id=info%3Abibcode%2F1995Natur.376..498H&amp;rft.au=Halls+J.J.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Seraphin-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Seraphin_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeraphin_B.O.1979" class="citation book cs1">Seraphin B.O., ed. (1979). <i>Solar energy conversion: solid-state physics aspects</i>. Topics in applied physics. Vol.&#160;31. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-09224-2">10.1007/3-540-09224-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-35369-0" title="Special:BookSources/978-3-540-35369-0"><bdi>978-3-540-35369-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Solar+energy+conversion%3A+solid-state+physics+aspects&amp;rft.series=Topics+in+applied+physics&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1007%2F3-540-09224-2&amp;rft.isbn=978-3-540-35369-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSauvéFernando2015" class="citation journal cs1">Sauvé, Geneviève; Fernando, Roshan (2015-09-09). "Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics". <i>The Journal of Physical Chemistry Letters</i>. <b>6</b> (18): <span class="nowrap">3770–</span>3780. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.jpclett.5b01471">10.1021/acs.jpclett.5b01471</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26722869">26722869</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+Letters&amp;rft.atitle=Beyond+Fullerenes%3A+Designing+Alternative+Molecular+Electron+Acceptors+for+Solution-Processable+Bulk+Heterojunction+Organic+Photovoltaics&amp;rft.volume=6&amp;rft.issue=18&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3770-%3C%2Fspan%3E3780&amp;rft.date=2015-09-09&amp;rft_id=info%3Adoi%2F10.1021%2Facs.jpclett.5b01471&amp;rft_id=info%3Apmid%2F26722869&amp;rft.aulast=Sauv%C3%A9&amp;rft.aufirst=Genevi%C3%A8ve&amp;rft.au=Fernando%2C+Roshan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPandeyHolmes2010" class="citation journal cs1">Pandey, Richa; Holmes, Russell J. (2010). "Organic Photovoltaic Cells Based on Continuously Graded Donor–Acceptor Heterojunctions". <i>IEEE Journal of Selected Topics in Quantum Electronics</i>. <b>16</b> (6): <span class="nowrap">1537–</span>1543. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010IJSTQ..16.1537P">2010IJSTQ..16.1537P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Fjstqe.2010.2049256">10.1109/jstqe.2010.2049256</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41396369">41396369</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Journal+of+Selected+Topics+in+Quantum+Electronics&amp;rft.atitle=Organic+Photovoltaic+Cells+Based+on+Continuously+Graded+Donor%E2%80%93Acceptor+Heterojunctions&amp;rft.volume=16&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1537-%3C%2Fspan%3E1543&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41396369%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2Fjstqe.2010.2049256&amp;rft_id=info%3Abibcode%2F2010IJSTQ..16.1537P&amp;rft.aulast=Pandey&amp;rft.aufirst=Richa&amp;rft.au=Holmes%2C+Russell+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.license.umn.edu/Products/Organic-Photovoltaic-Solar-Cells-using-Graded-Heterojunction-Technology__Z09174.aspx">"Organic Photovoltaic Solar Cells using Graded Heterojunction Technology"</a>. <i>University of Minnesota</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=University+of+Minnesota&amp;rft.atitle=Organic+Photovoltaic+Solar+Cells+using+Graded+Heterojunction+Technology&amp;rft_id=http%3A%2F%2Fwww.license.umn.edu%2FProducts%2FOrganic-Photovoltaic-Solar-Cells-using-Graded-Heterojunction-Technology&#95;_Z09174.aspx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolmesPandey,_Richa2010" class="citation journal cs1">Holmes, Russel; Pandey, Richa (2010). "Organic Photovoltaic Cells Based on Continuously Graded Donor–Acceptor Heterojunctions". <i>IEEE Journal of Selected Topics in Quantum Electronics</i>. <b>16</b> (6): 7. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010IJSTQ..16.1537P">2010IJSTQ..16.1537P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJSTQE.2010.2049256">10.1109/JSTQE.2010.2049256</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41396369">41396369</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Journal+of+Selected+Topics+in+Quantum+Electronics&amp;rft.atitle=Organic+Photovoltaic+Cells+Based+on+Continuously+Graded+Donor%E2%80%93Acceptor+Heterojunctions&amp;rft.volume=16&amp;rft.issue=6&amp;rft.pages=7&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41396369%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FJSTQE.2010.2049256&amp;rft_id=info%3Abibcode%2F2010IJSTQ..16.1537P&amp;rft.aulast=Holmes&amp;rft.aufirst=Russel&amp;rft.au=Pandey%2C+Richa&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Glöcklhofer-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Glöcklhofer_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlöcklhoferLumpiKohlstädtYurchenko2015" class="citation journal cs1">Glöcklhofer, Florian; Lumpi, Daniel; Kohlstädt, Markus; Yurchenko, Olena; Würfel, Uli; Fröhlich, Johannes (2015). "Towards continuous junction (CJ) organic electronic devices: Fast and clean post-polymerization modification by oxidation using dimethyldioxirane (DMDO)". <i>Reactive and Functional Polymers</i>. <b>86</b>: <span class="nowrap">16–</span>26. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015RFPol..86...16G">2015RFPol..86...16G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.reactfunctpolym.2014.10.006">10.1016/j.reactfunctpolym.2014.10.006</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10044%2F1%2F87961">10044/1/87961</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reactive+and+Functional+Polymers&amp;rft.atitle=Towards+continuous+junction+%28CJ%29+organic+electronic+devices%3A+Fast+and+clean+post-polymerization+modification+by+oxidation+using+dimethyldioxirane+%28DMDO%29&amp;rft.volume=86&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E16-%3C%2Fspan%3E26&amp;rft.date=2015&amp;rft_id=info%3Ahdl%2F10044%2F1%2F87961&amp;rft_id=info%3Adoi%2F10.1016%2Fj.reactfunctpolym.2014.10.006&amp;rft_id=info%3Abibcode%2F2015RFPol..86...16G&amp;rft.aulast=Gl%C3%B6cklhofer&amp;rft.aufirst=Florian&amp;rft.au=Lumpi%2C+Daniel&amp;rft.au=Kohlst%C3%A4dt%2C+Markus&amp;rft.au=Yurchenko%2C+Olena&amp;rft.au=W%C3%BCrfel%2C+Uli&amp;rft.au=Fr%C3%B6hlich%2C+Johannes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarkeBallantyneNelsonBradley2008" class="citation journal cs1">Clarke, Tracey M.; Ballantyne, Amy M.; Nelson, Jenny; Bradley, Donal D. C.; Durrant, James R. (2008). "Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends". <i>Advanced Functional Materials</i>. <b>18</b> (24): 4029. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200800727">10.1002/adfm.200800727</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:96860273">96860273</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Free+Energy+Control+of+Charge+Photogeneration+in+Polythiophene%2FFullerene+Solar+Cells%3A+The+Influence+of+Thermal+Annealing+on+P3HT%2FPCBM+Blends&amp;rft.volume=18&amp;rft.issue=24&amp;rft.pages=4029&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.200800727&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A96860273%23id-name%3DS2CID&amp;rft.aulast=Clarke&amp;rft.aufirst=Tracey+M.&amp;rft.au=Ballantyne%2C+Amy+M.&amp;rft.au=Nelson%2C+Jenny&amp;rft.au=Bradley%2C+Donal+D.+C.&amp;rft.au=Durrant%2C+James+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXuChenYangHuang2009" class="citation journal cs1">Xu, Zheng; Chen, Li-Min; Yang, Guanwen; Huang, Chun-Hao; Hou, Jianhui; Wu, Yue; Li, Gang; Hsu, Chain-Shu; Yang, Yang (2009). <a rel="nofollow" class="external text" href="http://yylab.seas.ucla.edu/papers/vps.pdf">"Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Functional Materials</i>. <b>19</b> (8): 1227. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200801286">10.1002/adfm.200801286</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9366182">9366182</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Vertical+Phase+Separation+in+Poly%283-hexylthiophene%29%3A+Fullerene+Derivative+Blends+and+its+Advantage+for+Inverted+Structure+Solar+Cells&amp;rft.volume=19&amp;rft.issue=8&amp;rft.pages=1227&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.200801286&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9366182%23id-name%3DS2CID&amp;rft.aulast=Xu&amp;rft.aufirst=Zheng&amp;rft.au=Chen%2C+Li-Min&amp;rft.au=Yang%2C+Guanwen&amp;rft.au=Huang%2C+Chun-Hao&amp;rft.au=Hou%2C+Jianhui&amp;rft.au=Wu%2C+Yue&amp;rft.au=Li%2C+Gang&amp;rft.au=Hsu%2C+Chain-Shu&amp;rft.au=Yang%2C+Yang&amp;rft_id=http%3A%2F%2Fyylab.seas.ucla.edu%2Fpapers%2Fvps.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_BavelSourtyDe_WithFrolic2009" class="citation journal cs1">Van Bavel, Svetlana; Sourty, Erwan; De With, Gijsbertus; Frolic, Kai; Loos, Joachim (2009). "Relation between Photoactive Layer Thickness, 3D Morphology, and Device Performance in P3HT/PCBM Bulk-Heterojunction Solar Cells". <i>Macromolecules</i>. <b>42</b> (19): 7396. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009MaMol..42.7396V">2009MaMol..42.7396V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fma900817t">10.1021/ma900817t</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Macromolecules&amp;rft.atitle=Relation+between+Photoactive+Layer+Thickness%2C+3D+Morphology%2C+and+Device+Performance+in+P3HT%2FPCBM+Bulk-Heterojunction+Solar+Cells&amp;rft.volume=42&amp;rft.issue=19&amp;rft.pages=7396&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1021%2Fma900817t&amp;rft_id=info%3Abibcode%2F2009MaMol..42.7396V&amp;rft.aulast=Van+Bavel&amp;rft.aufirst=Svetlana&amp;rft.au=Sourty%2C+Erwan&amp;rft.au=De+With%2C+Gijsbertus&amp;rft.au=Frolic%2C+Kai&amp;rft.au=Loos%2C+Joachim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTroshinHoppeRenzEgginger2009" class="citation journal cs1">Troshin, Pavel A.; Hoppe, Harald; Renz, Joachim; Egginger, Martin; Mayorova, Julia Yu.; Goryachev, Andrey E.; Peregudov, Alexander S.; Lyubovskaya, Rimma N.; Gobsch, Gerhard; Sariciftci, N. Serdar; Razumov, Vladimir F. (2009). <a rel="nofollow" class="external text" href="http://www.ipc.uni-linz.ac.at/Publications/2009/2009-003.pdf">"Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Functional Materials</i>. <b>19</b> (5): 779. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200801189">10.1002/adfm.200801189</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:97354654">97354654</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Material+Solubility-Photovoltaic+Performance+Relationship+in+the+Design+of+Novel+Fullerene+Derivatives+for+Bulk+Heterojunction+Solar+Cells&amp;rft.volume=19&amp;rft.issue=5&amp;rft.pages=779&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.200801189&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A97354654%23id-name%3DS2CID&amp;rft.aulast=Troshin&amp;rft.aufirst=Pavel+A.&amp;rft.au=Hoppe%2C+Harald&amp;rft.au=Renz%2C+Joachim&amp;rft.au=Egginger%2C+Martin&amp;rft.au=Mayorova%2C+Julia+Yu.&amp;rft.au=Goryachev%2C+Andrey+E.&amp;rft.au=Peregudov%2C+Alexander+S.&amp;rft.au=Lyubovskaya%2C+Rimma+N.&amp;rft.au=Gobsch%2C+Gerhard&amp;rft.au=Sariciftci%2C+N.+Serdar&amp;rft.au=Razumov%2C+Vladimir+F.&amp;rft_id=http%3A%2F%2Fwww.ipc.uni-linz.ac.at%2FPublications%2F2009%2F2009-003.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-j1-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-j1_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-j1_48-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoulé,_A.J.K._Meerholz2008" class="citation journal cs1">Moulé, A.J. &amp; K. Meerholz (2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140903130434/http://www.chms.ucdavis.edu/research/web/moule/moule.old/publications/2008%201%20publication.pdf">"Controlling Morphology in Polymer–Fullerene Mixtures"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Materials</i>. <b>20</b> (2): 240. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008AdM....20..240M">2008AdM....20..240M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.200701519">10.1002/adma.200701519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137313225">137313225</a>. Archived from <a rel="nofollow" class="external text" href="http://www.chms.ucdavis.edu/research/web/moule/moule.old/publications/2008%201%20publication.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-09-03<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-02-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Controlling+Morphology+in+Polymer%E2%80%93Fullerene+Mixtures&amp;rft.volume=20&amp;rft.issue=2&amp;rft.pages=240&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137313225%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.200701519&amp;rft_id=info%3Abibcode%2F2008AdM....20..240M&amp;rft.au=Moul%C3%A9%2C+A.J.&amp;rft.au=K.+Meerholz&amp;rft_id=http%3A%2F%2Fwww.chms.ucdavis.edu%2Fresearch%2Fweb%2Fmoule%2Fmoule.old%2Fpublications%2F2008%25201%2520publication.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDangWantzBejboujiUrien2011" class="citation journal cs1">Dang, Minh Trung; Wantz, Guillaume; Bejbouji, Habiba; Urien, Mathieu; Dautel, Olivier J.; Vignau, Laurence; Hirsch, Lionel (2011). "Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent". <i>Solar Energy Materials and Solar Cells</i>. <b>95</b> (12): 3408. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011SEMSC..95.3408D">2011SEMSC..95.3408D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2011.07.039">10.1016/j.solmat.2011.07.039</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Polymeric+solar+cells+based+on+P3HT%3APCBM%3A+Role+of+the+casting+solvent&amp;rft.volume=95&amp;rft.issue=12&amp;rft.pages=3408&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2011.07.039&amp;rft_id=info%3Abibcode%2F2011SEMSC..95.3408D&amp;rft.aulast=Dang&amp;rft.aufirst=Minh+Trung&amp;rft.au=Wantz%2C+Guillaume&amp;rft.au=Bejbouji%2C+Habiba&amp;rft.au=Urien%2C+Mathieu&amp;rft.au=Dautel%2C+Olivier+J.&amp;rft.au=Vignau%2C+Laurence&amp;rft.au=Hirsch%2C+Lionel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNagarjunaVenkataraman2012" class="citation journal cs1">Nagarjuna, Gavvalapalli; Venkataraman, Dhandapani (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpolb.23073">"Strategies for controlling the active layer morphologies in OPVs"</a>. <i>Journal of Polymer Science Part B: Polymer Physics</i>. <b>50</b> (15): <span class="nowrap">1045–</span>1056. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JPoSB..50.1045N">2012JPoSB..50.1045N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpolb.23073">10.1002/polb.23073</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Polymer+Science+Part+B%3A+Polymer+Physics&amp;rft.atitle=Strategies+for+controlling+the+active+layer+morphologies+in+OPVs&amp;rft.volume=50&amp;rft.issue=15&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1045-%3C%2Fspan%3E1056&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1002%2Fpolb.23073&amp;rft_id=info%3Abibcode%2F2012JPoSB..50.1045N&amp;rft.aulast=Nagarjuna&amp;rft.aufirst=Gavvalapalli&amp;rft.au=Venkataraman%2C+Dhandapani&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fpolb.23073&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatthias_A._RudererPeter_Müller-Buschbaum2011" class="citation journal cs1">Matthias A. Ruderer &amp; Peter Müller-Buschbaum (2011). "Morphology of polymer-based bulk heterojunction films for organic photovoltaics". <i>Soft Matter</i>. <b>7</b> (12): 5482. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011SMat....7.5482R">2011SMat....7.5482R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC0SM01502D">10.1039/C0SM01502D</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Soft+Matter&amp;rft.atitle=Morphology+of+polymer-based+bulk+heterojunction+films+for+organic+photovoltaics&amp;rft.volume=7&amp;rft.issue=12&amp;rft.pages=5482&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1039%2FC0SM01502D&amp;rft_id=info%3Abibcode%2F2011SMat....7.5482R&amp;rft.au=Matthias+A.+Ruderer&amp;rft.au=Peter+M%C3%BCller-Buschbaum&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTreatBradySmithToney2011" class="citation journal cs1">Treat, Neil D.; Brady, Michael A.; Smith, Gordon; Toney, Michael F.; Kramer, Edward J.; Hawker, Craig J.; Chabinyc, Michael L. (2011). "Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend". <i>Advanced Energy Materials</i>. <b>1</b> (1): 82. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011AdEnM...1...82T">2011AdEnM...1...82T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201000023">10.1002/aenm.201000023</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:153383">153383</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=Interdiffusion+of+PCBM+and+P3HT+Reveals+Miscibility+in+a+Photovoltaically+Active+Blend&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=82&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A153383%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201000023&amp;rft_id=info%3Abibcode%2F2011AdEnM...1...82T&amp;rft.aulast=Treat&amp;rft.aufirst=Neil+D.&amp;rft.au=Brady%2C+Michael+A.&amp;rft.au=Smith%2C+Gordon&amp;rft.au=Toney%2C+Michael+F.&amp;rft.au=Kramer%2C+Edward+J.&amp;rft.au=Hawker%2C+Craig+J.&amp;rft.au=Chabinyc%2C+Michael+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTreatBradySmithToney2011" class="citation journal cs1">Treat, Neil D.; Brady, Michael A.; Smith, Gordon; Toney, Michael F.; Kramer, Edward J.; Hawker, Craig J.; Chabinyc, Michael L. (2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201190008">"Correction: Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend (Adv. Energy Mater. 2/2011)"</a>. <i>Advanced Energy Materials</i>. <b>1</b> (2): 145. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201190008">10.1002/aenm.201190008</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=Correction%3A+Interdiffusion+of+PCBM+and+P3HT+Reveals+Miscibility+in+a+Photovoltaically+Active+Blend+%28Adv.+Energy+Mater.+2%2F2011%29&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=145&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201190008&amp;rft.aulast=Treat&amp;rft.aufirst=Neil+D.&amp;rft.au=Brady%2C+Michael+A.&amp;rft.au=Smith%2C+Gordon&amp;rft.au=Toney%2C+Michael+F.&amp;rft.au=Kramer%2C+Edward+J.&amp;rft.au=Hawker%2C+Craig+J.&amp;rft.au=Chabinyc%2C+Michael+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Faenm.201190008&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKozubVakhshouriOrmeWang2011" class="citation journal cs1">Kozub, Derek R.; Vakhshouri, Kiarash; Orme, Lisa M.; Wang, Cheng; Hexemer, Alexander; Gomez, Enrique D. (2011). "Polymer Crystallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology". <i>Macromolecules</i>. <b>44</b> (14): 5722. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011MaMol..44.5722K">2011MaMol..44.5722K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fma200855r">10.1021/ma200855r</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Macromolecules&amp;rft.atitle=Polymer+Crystallization+of+Partially+Miscible+Polythiophene%2FFullerene+Mixtures+Controls+Morphology&amp;rft.volume=44&amp;rft.issue=14&amp;rft.pages=5722&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1021%2Fma200855r&amp;rft_id=info%3Abibcode%2F2011MaMol..44.5722K&amp;rft.aulast=Kozub&amp;rft.aufirst=Derek+R.&amp;rft.au=Vakhshouri%2C+Kiarash&amp;rft.au=Orme%2C+Lisa+M.&amp;rft.au=Wang%2C+Cheng&amp;rft.au=Hexemer%2C+Alexander&amp;rft.au=Gomez%2C+Enrique+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoKimNaYu2009" class="citation journal cs1">Jo, Jang; Kim, Seok-Soon; Na, Seok-In; Yu, Byung-Kwan; Kim, Dong-Yu (2009). "Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells". <i>Advanced Functional Materials</i>. <b>19</b> (6): 866. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200800968">10.1002/adfm.200800968</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:94880690">94880690</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Time-Dependent+Morphology+Evolution+by+Annealing+Processes+on+Polymer%3AFullerene+Blend+Solar+Cells&amp;rft.volume=19&amp;rft.issue=6&amp;rft.pages=866&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.200800968&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A94880690%23id-name%3DS2CID&amp;rft.aulast=Jo&amp;rft.aufirst=Jang&amp;rft.au=Kim%2C+Seok-Soon&amp;rft.au=Na%2C+Seok-In&amp;rft.au=Yu%2C+Byung-Kwan&amp;rft.au=Kim%2C+Dong-Yu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollinsGannGuignardHe2010" class="citation journal cs1">Collins, Brian A.; Gann, Eliot; Guignard, Lewis; He, Xiaoxi; McNeill, Christopher R.; Ade, Harald (2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220201150042/http://carbon.physics.ncsu.edu/wp-content/uploads/2010/10/Brians-Miscibility.pdf">"Molecular Miscibility of Polymer−Fullerene Blends"</a> <span class="cs1-format">(PDF)</span>. <i>The Journal of Physical Chemistry Letters</i>. <b>1</b> (21): 3160. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjz101276h">10.1021/jz101276h</a>. Archived from <a rel="nofollow" class="external text" href="http://carbon.physics.ncsu.edu/wp-content/uploads/2010/10/Brians-Miscibility.pdf">the original</a> <span class="cs1-format">(PDF)</span> on February 1, 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+Letters&amp;rft.atitle=Molecular+Miscibility+of+Polymer%E2%88%92Fullerene+Blends&amp;rft.volume=1&amp;rft.issue=21&amp;rft.pages=3160&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1021%2Fjz101276h&amp;rft.aulast=Collins&amp;rft.aufirst=Brian+A.&amp;rft.au=Gann%2C+Eliot&amp;rft.au=Guignard%2C+Lewis&amp;rft.au=He%2C+Xiaoxi&amp;rft.au=McNeill%2C+Christopher+R.&amp;rft.au=Ade%2C+Harald&amp;rft_id=http%3A%2F%2Fcarbon.physics.ncsu.edu%2Fwp-content%2Fuploads%2F2010%2F10%2FBrians-Miscibility.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span> <a rel="nofollow" class="external text" href="http://carbon.physics.ncsu.edu/wp-content/uploads/2010/10/Brians-Miscibility-SI.pdf">Supporting information</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged March 2018">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTremolet_De_VillersTassoneTolbertSchwartz2009" class="citation journal cs1">Tremolet De Villers, Bertrand; Tassone, Christopher J.; Tolbert, Sarah H.; Schwartz, Benjamin J. (2009). "Improving the Reproducibility of P3HT:PCBM Solar Cells by Controlling the PCBM/Cathode Interface". <i>The Journal of Physical Chemistry C</i>. <b>113</b> (44): 18978. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.476.2064">10.1.1.476.2064</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjp9082163">10.1021/jp9082163</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+C&amp;rft.atitle=Improving+the+Reproducibility+of+P3HT%3APCBM+Solar+Cells+by+Controlling+the+PCBM%2FCathode+Interface&amp;rft.volume=113&amp;rft.issue=44&amp;rft.pages=18978&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.476.2064%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1021%2Fjp9082163&amp;rft.aulast=Tremolet+De+Villers&amp;rft.aufirst=Bertrand&amp;rft.au=Tassone%2C+Christopher+J.&amp;rft.au=Tolbert%2C+Sarah+H.&amp;rft.au=Schwartz%2C+Benjamin+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYinDadmun2011" class="citation journal cs1">Yin, W.; Dadmun, M. (2011). "A New Model for the Morphology of P3HT/PCBM Organic Photovoltaics from Small-Angle Neutron Scattering: Rivers and Streams". <i>ACS Nano</i>. <b>5</b> (6): <span class="nowrap">4756–</span>4768. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnn200744q">10.1021/nn200744q</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21563761">21563761</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Nano&amp;rft.atitle=A+New+Model+for+the+Morphology+of+P3HT%2FPCBM+Organic+Photovoltaics+from+Small-Angle+Neutron+Scattering%3A+Rivers+and+Streams&amp;rft.volume=5&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4756-%3C%2Fspan%3E4768&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1021%2Fnn200744q&amp;rft_id=info%3Apmid%2F21563761&amp;rft.aulast=Yin&amp;rft.aufirst=W.&amp;rft.au=Dadmun%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Forrest-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-Forrest_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Forrest_58-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFForrest_S.R.2004" class="citation journal cs1">Forrest S.R. (2004). "The path to ubiquitous and low-cost organic electronic appliances on plastic". <i>Nature</i>. <b>428</b> (6986): <span class="nowrap">911–</span>918. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Natur.428..911F">2004Natur.428..911F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature02498">10.1038/nature02498</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15118718">15118718</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1099780">1099780</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+path+to+ubiquitous+and+low-cost+organic+electronic+appliances+on+plastic&amp;rft.volume=428&amp;rft.issue=6986&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E911-%3C%2Fspan%3E918&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1038%2Fnature02498&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1099780%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F15118718&amp;rft_id=info%3Abibcode%2F2004Natur.428..911F&amp;rft.au=Forrest+S.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNilssonBernasikBudkowskiMoons2007" class="citation journal cs1">Nilsson, Svante; Bernasik, Andrzej; Budkowski, Andrzej; <a href="/wiki/Ellen_Moons" title="Ellen Moons">Moons, Ellen</a> (2007). "Morphology and Phase Segregation of Spin-Casted Films of Polyfluorene/PCBM Blends". <i>Macromolecules</i>. <b>40</b> (23): 8291. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007MaMol..40.8291N">2007MaMol..40.8291N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fma070712a">10.1021/ma070712a</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Macromolecules&amp;rft.atitle=Morphology+and+Phase+Segregation+of+Spin-Casted+Films+of+Polyfluorene%2FPCBM+Blends&amp;rft.volume=40&amp;rft.issue=23&amp;rft.pages=8291&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1021%2Fma070712a&amp;rft_id=info%3Abibcode%2F2007MaMol..40.8291N&amp;rft.aulast=Nilsson&amp;rft.aufirst=Svante&amp;rft.au=Bernasik%2C+Andrzej&amp;rft.au=Budkowski%2C+Andrzej&amp;rft.au=Moons%2C+Ellen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLecoverWilliamsMarkovicReich2012" class="citation journal cs1">Lecover, Rachel; Williams, Nicholas; Markovic, Nina; Reich, Daniel H.; Naiman, Daniel Q.; Katz, Howard E. (2012). "Next-Generation Polymer Solar Cell Materials: Designed Control of Interfacial Variables". <i>ACS Nano</i>. <b>6</b> (4): <span class="nowrap">2865–</span>70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnn301140w">10.1021/nn301140w</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22444948">22444948</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Nano&amp;rft.atitle=Next-Generation+Polymer+Solar+Cell+Materials%3A+Designed+Control+of+Interfacial+Variables&amp;rft.volume=6&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2865-%3C%2Fspan%3E70&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1021%2Fnn301140w&amp;rft_id=info%3Apmid%2F22444948&amp;rft.aulast=Lecover&amp;rft.aufirst=Rachel&amp;rft.au=Williams%2C+Nicholas&amp;rft.au=Markovic%2C+Nina&amp;rft.au=Reich%2C+Daniel+H.&amp;rft.au=Naiman%2C+Daniel+Q.&amp;rft.au=Katz%2C+Howard+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPivrikasNeugebauerSariciftci2011" class="citation journal cs1">Pivrikas, Almantas; Neugebauer, Helmut; Sariciftci, Niyazi Serdar (2011). "Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review". <i>Solar Energy</i>. <b>85</b> (6): 1226. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011SoEn...85.1226P">2011SoEn...85.1226P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solener.2010.10.012">10.1016/j.solener.2010.10.012</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy&amp;rft.atitle=Influence+of+processing+additives+to+nano-morphology+and+efficiency+of+bulk-heterojunction+solar+cells%3A+A+comparative+review&amp;rft.volume=85&amp;rft.issue=6&amp;rft.pages=1226&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solener.2010.10.012&amp;rft_id=info%3Abibcode%2F2011SoEn...85.1226P&amp;rft.aulast=Pivrikas&amp;rft.aufirst=Almantas&amp;rft.au=Neugebauer%2C+Helmut&amp;rft.au=Sariciftci%2C+Niyazi+Serdar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYaoHouXuLi2008" class="citation journal cs1">Yao, Yan; Hou, Jianhui; Xu, Zheng; Li, Gang; Yang, Yang (2008). <a rel="nofollow" class="external text" href="http://yylab.seas.ucla.edu/papers/YangY_Yao2008AFM%20mixture%20solvent.pdf">"Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Functional Materials</i>. <b>18</b> (12): 1783. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200701459">10.1002/adfm.200701459</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:982890">982890</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Effects+of+Solvent+Mixtures+on+the+Nanoscale+Phase+Separation+in+Polymer+Solar+Cells&amp;rft.volume=18&amp;rft.issue=12&amp;rft.pages=1783&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.200701459&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A982890%23id-name%3DS2CID&amp;rft.aulast=Yao&amp;rft.aufirst=Yan&amp;rft.au=Hou%2C+Jianhui&amp;rft.au=Xu%2C+Zheng&amp;rft.au=Li%2C+Gang&amp;rft.au=Yang%2C+Yang&amp;rft_id=http%3A%2F%2Fyylab.seas.ucla.edu%2Fpapers%2FYangY_Yao2008AFM%2520mixture%2520solvent.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeMaBrabecYuen2008" class="citation journal cs1">Lee, Jae Kwan; Ma, Wan Li; Brabec, Christoph J.; Yuen, Jonathan; Moon, Ji Sun; Kim, Jin Young; Lee, Kwanghee; Bazan, Guillermo C.; Heeger, Alan J. (2008). "Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells". <i>Journal of the American Chemical Society</i>. <b>130</b> (11): <span class="nowrap">3619–</span>23. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008JAChS.130.3619L">2008JAChS.130.3619L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja710079w">10.1021/ja710079w</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18288842">18288842</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Chemical+Society&amp;rft.atitle=Processing+Additives+for+Improved+Efficiency+from+Bulk+Heterojunction+Solar+Cells&amp;rft.volume=130&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3619-%3C%2Fspan%3E23&amp;rft.date=2008&amp;rft_id=info%3Apmid%2F18288842&amp;rft_id=info%3Adoi%2F10.1021%2Fja710079w&amp;rft_id=info%3Abibcode%2F2008JAChS.130.3619L&amp;rft.aulast=Lee&amp;rft.aufirst=Jae+Kwan&amp;rft.au=Ma%2C+Wan+Li&amp;rft.au=Brabec%2C+Christoph+J.&amp;rft.au=Yuen%2C+Jonathan&amp;rft.au=Moon%2C+Ji+Sun&amp;rft.au=Kim%2C+Jin+Young&amp;rft.au=Lee%2C+Kwanghee&amp;rft.au=Bazan%2C+Guillermo+C.&amp;rft.au=Heeger%2C+Alan+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRogersSchmidtToneyBazan2012" class="citation journal cs1">Rogers, James T.; Schmidt, Kristin; Toney, Michael F.; Bazan, Guillermo C.; Kramer, Edward J. (2012). "Time-Resolved Structural Evolution of Additive-Processed Bulk Heterojunction Solar Cells". <i>Journal of the American Chemical Society</i>. <b>134</b> (6): <span class="nowrap">2884–</span>7. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JAChS.134.2884R">2012JAChS.134.2884R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja2104747">10.1021/ja2104747</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22276735">22276735</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Chemical+Society&amp;rft.atitle=Time-Resolved+Structural+Evolution+of+Additive-Processed+Bulk+Heterojunction+Solar+Cells&amp;rft.volume=134&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2884-%3C%2Fspan%3E7&amp;rft.date=2012&amp;rft_id=info%3Apmid%2F22276735&amp;rft_id=info%3Adoi%2F10.1021%2Fja2104747&amp;rft_id=info%3Abibcode%2F2012JAChS.134.2884R&amp;rft.aulast=Rogers&amp;rft.aufirst=James+T.&amp;rft.au=Schmidt%2C+Kristin&amp;rft.au=Toney%2C+Michael+F.&amp;rft.au=Bazan%2C+Guillermo+C.&amp;rft.au=Kramer%2C+Edward+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarr_Hoi_Yi_HoQi_DongHang_YinWinky_Wing_Ki_Leung2015" class="citation journal cs1">Carr Hoi Yi Ho; Qi Dong; Hang Yin; Winky Wing Ki Leung; Qingdan Yang; Harrison Ka Hin Lee; Sai Wing Tsang; Shu Kong So (2015). <a rel="nofollow" class="external text" href="https://repository.hkbu.edu.hk/cgi/viewcontent.cgi?article=1214&amp;context=phys_ja">"Impact of Solvent Additive on Carrier Transport in Polymer:Fullerene Bulk Heterojunction Photovoltaic Cells"</a>. <i>Advanced Materials Interfaces</i>. <b>2</b> (12): n/a. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadmi.201500166">10.1002/admi.201500166</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53487971">53487971</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials+Interfaces&amp;rft.atitle=Impact+of+Solvent+Additive+on+Carrier+Transport+in+Polymer%3AFullerene+Bulk+Heterojunction+Photovoltaic+Cells&amp;rft.volume=2&amp;rft.issue=12&amp;rft.pages=n%2Fa&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1002%2Fadmi.201500166&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53487971%23id-name%3DS2CID&amp;rft.au=Carr+Hoi+Yi+Ho&amp;rft.au=Qi+Dong&amp;rft.au=Hang+Yin&amp;rft.au=Winky+Wing+Ki+Leung&amp;rft.au=Qingdan+Yang&amp;rft.au=Harrison+Ka+Hin+Lee&amp;rft.au=Sai+Wing+Tsang&amp;rft.au=Shu+Kong+So&amp;rft_id=https%3A%2F%2Frepository.hkbu.edu.hk%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1214%26context%3Dphys_ja&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiangXuXiaTsai2010" class="citation journal cs1">Liang, Yongye; Xu, Zheng; Xia, Jiangbin; Tsai, Szu-Ting; Wu, Yue; Li, Gang; Ray, Claire; Yu, Luping (2010). "For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%". <i>Advanced Materials</i>. <b>22</b> (20): E135–8. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010AdM....22E.135L">2010AdM....22E.135L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.200903528">10.1002/adma.200903528</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20641094">20641094</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:36190616">36190616</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=For+the+Bright+Future%E2%80%94Bulk+Heterojunction+Polymer+Solar+Cells+with+Power+Conversion+Efficiency+of+7.4%25&amp;rft.volume=22&amp;rft.issue=20&amp;rft.pages=E135-8&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.200903528&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A36190616%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F20641094&amp;rft_id=info%3Abibcode%2F2010AdM....22E.135L&amp;rft.aulast=Liang&amp;rft.aufirst=Yongye&amp;rft.au=Xu%2C+Zheng&amp;rft.au=Xia%2C+Jiangbin&amp;rft.au=Tsai%2C+Szu-Ting&amp;rft.au=Wu%2C+Yue&amp;rft.au=Li%2C+Gang&amp;rft.au=Ray%2C+Claire&amp;rft.au=Yu%2C+Luping&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiZhouViktor_AnderssonMattias_Andersson2011" class="citation journal cs1">Li, Weiwei; Zhou, Yi; Viktor Andersson, B.; Mattias Andersson, L.; Thomann, Yi; Veit, Clemens; Tvingstedt, Kristofer; Qin, Ruiping; Bo, Zhishan; Inganäs, Olle; Würfel, Uli; Zhang, Fengling (2011). <a rel="nofollow" class="external text" href="http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69770">"The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices"</a>. <i>Organic Electronics</i>. <b>12</b> (9): 1544. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.orgel.2011.05.028">10.1016/j.orgel.2011.05.028</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Organic+Electronics&amp;rft.atitle=The+Effect+of+additive+on+performance+and+shelf-stability+of+HSX-1%2FPCBM+photovoltaic+devices&amp;rft.volume=12&amp;rft.issue=9&amp;rft.pages=1544&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.orgel.2011.05.028&amp;rft.aulast=Li&amp;rft.aufirst=Weiwei&amp;rft.au=Zhou%2C+Yi&amp;rft.au=Viktor+Andersson%2C+B.&amp;rft.au=Mattias+Andersson%2C+L.&amp;rft.au=Thomann%2C+Yi&amp;rft.au=Veit%2C+Clemens&amp;rft.au=Tvingstedt%2C+Kristofer&amp;rft.au=Qin%2C+Ruiping&amp;rft.au=Bo%2C+Zhishan&amp;rft.au=Ingan%C3%A4s%2C+Olle&amp;rft.au=W%C3%BCrfel%2C+Uli&amp;rft.au=Zhang%2C+Fengling&amp;rft_id=http%3A%2F%2Furn.kb.se%2Fresolve%3Furn%3Durn%3Anbn%3Ase%3Aliu%3Adiva-69770&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_FranekarTurbiezLiWienk2015" class="citation journal cs1">van Franekar, Jacobus; Turbiez, Mathieu; Li, Weiwei; Wienk, Martijn; Janssen, René (6 February 2015). <a rel="nofollow" class="external text" href="https://pure.tue.nl/ws/files/3759015/924995102508292.pdf">"A real-time study of the benefits of co-solvents in polymer solar cell processing"</a> <span class="cs1-format">(PDF)</span>. <i>Nature Communications</i>. <b>6</b>: 6229. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatCo...6.6229V">2015NatCo...6.6229V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms7229">10.1038/ncomms7229</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25656313">25656313</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=A+real-time+study+of+the+benefits+of+co-solvents+in+polymer+solar+cell+processing&amp;rft.volume=6&amp;rft.pages=6229&amp;rft.date=2015-02-06&amp;rft_id=info%3Apmid%2F25656313&amp;rft_id=info%3Adoi%2F10.1038%2Fncomms7229&amp;rft_id=info%3Abibcode%2F2015NatCo...6.6229V&amp;rft.aulast=van+Franekar&amp;rft.aufirst=Jacobus&amp;rft.au=Turbiez%2C+Mathieu&amp;rft.au=Li%2C+Weiwei&amp;rft.au=Wienk%2C+Martijn&amp;rft.au=Janssen%2C+Ren%C3%A9&amp;rft_id=https%3A%2F%2Fpure.tue.nl%2Fws%2Ffiles%2F3759015%2F924995102508292.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeaujuge,_P.M.J.M.J._Fréchet2011" class="citation journal cs1">Beaujuge, P.M. &amp; J.M.J. Fréchet (2011). "Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications". <i>Journal of the American Chemical Society</i>. <b>133</b> (50): <span class="nowrap">20009–</span>29. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JAChS.13320009B">2011JAChS.13320009B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja2073643">10.1021/ja2073643</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21999757">21999757</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Chemical+Society&amp;rft.atitle=Molecular+Design+and+Ordering+Effects+in+%CF%80-Functional+Materials+for+Transistor+and+Solar+Cell+Applications&amp;rft.volume=133&amp;rft.issue=50&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E20009-%3C%2Fspan%3E29&amp;rft.date=2011&amp;rft_id=info%3Apmid%2F21999757&amp;rft_id=info%3Adoi%2F10.1021%2Fja2073643&amp;rft_id=info%3Abibcode%2F2011JAChS.13320009B&amp;rft.au=Beaujuge%2C+P.M.&amp;rft.au=J.M.J.+Fr%C3%A9chet&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTroshinKoeppePeregudovPeregudova2007" class="citation journal cs1">Troshin, Pavel A.; Koeppe, Robert; Peregudov, Alexander S.; Peregudova, Svetlana M.; Egginger, Martin; Lyubovskaya, Rimma N.; Sariciftci, N. Serdar (2007). "Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells". <i>Chemistry of Materials</i>. <b>19</b> (22): 5363. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcm071243u">10.1021/cm071243u</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemistry+of+Materials&amp;rft.atitle=Supramolecular+Association+of+Pyrrolidinofullerenes+Bearing+Chelating+Pyridyl+Groups+and+Zinc+Phthalocyanine+for+Organic+Solar+Cells&amp;rft.volume=19&amp;rft.issue=22&amp;rft.pages=5363&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1021%2Fcm071243u&amp;rft.aulast=Troshin&amp;rft.aufirst=Pavel+A.&amp;rft.au=Koeppe%2C+Robert&amp;rft.au=Peregudov%2C+Alexander+S.&amp;rft.au=Peregudova%2C+Svetlana+M.&amp;rft.au=Egginger%2C+Martin&amp;rft.au=Lyubovskaya%2C+Rimma+N.&amp;rft.au=Sariciftci%2C+N.+Serdar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTevisTsaiPalmerAytun2012" class="citation journal cs1">Tevis, Ian D.; Tsai, Wei-Wen; Palmer, Liam C.; Aytun, Taner; Stupp, Samuel I. (2012). "Grooved Nanowires from Self-Assembling Hairpin Molecules for Solar Cells". <i>ACS Nano</i>. <b>6</b> (3): <span class="nowrap">2032–</span>40. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnn203328n">10.1021/nn203328n</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22397738">22397738</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Nano&amp;rft.atitle=Grooved+Nanowires+from+Self-Assembling+Hairpin+Molecules+for+Solar+Cells&amp;rft.volume=6&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2032-%3C%2Fspan%3E40&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1021%2Fnn203328n&amp;rft_id=info%3Apmid%2F22397738&amp;rft.aulast=Tevis&amp;rft.aufirst=Ian+D.&amp;rft.au=Tsai%2C+Wei-Wen&amp;rft.au=Palmer%2C+Liam+C.&amp;rft.au=Aytun%2C+Taner&amp;rft.au=Stupp%2C+Samuel+I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDössel,_L.F.KammHowardLaquai2012" class="citation journal cs1">Dössel, L.F.; Kamm, Valentin; Howard, Ian A.; Laquai, Frédéric; Pisula, Wojciech; Feng, Xinliang; Li, Chen; Takase, Masayoshi; et&#160;al. (2012). "Synthesis and Controlled Self-Assembly of Covalently Linked Hexa-peri-hexabenzocoronene/Perylene Diimide Dyads as Models To Study Fundamental Energy and Electron Transfer Processes". <i>Journal of the American Chemical Society</i>. <b>134</b> (13): <span class="nowrap">5876–</span>86. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JAChS.134.5876D">2012JAChS.134.5876D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja211504a">10.1021/ja211504a</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22394147">22394147</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Chemical+Society&amp;rft.atitle=Synthesis+and+Controlled+Self-Assembly+of+Covalently+Linked+Hexa-peri-hexabenzocoronene%2FPerylene+Diimide+Dyads+as+Models+To+Study+Fundamental+Energy+and+Electron+Transfer+Processes&amp;rft.volume=134&amp;rft.issue=13&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E5876-%3C%2Fspan%3E86&amp;rft.date=2012&amp;rft_id=info%3Apmid%2F22394147&amp;rft_id=info%3Adoi%2F10.1021%2Fja211504a&amp;rft_id=info%3Abibcode%2F2012JAChS.134.5876D&amp;rft.au=D%C3%B6ssel%2C+L.F.&amp;rft.au=Kamm%2C+Valentin&amp;rft.au=Howard%2C+Ian+A.&amp;rft.au=Laquai%2C+Fr%C3%A9d%C3%A9ric&amp;rft.au=Pisula%2C+Wojciech&amp;rft.au=Feng%2C+Xinliang&amp;rft.au=Li%2C+Chen&amp;rft.au=Takase%2C+Masayoshi&amp;rft.au=Kudernac%2C+Tibor&amp;rft.au=De+Feyter%2C+Steven&amp;rft.au=M%C3%BCllen%2C+Klaus&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiyanishiZhangTajimaHashimoto2010" class="citation journal cs1">Miyanishi, Shoji; Zhang, Yue; Tajima, Keisuke; Hashimoto, Kazuhito (2010). "Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells". <i>Chemical Communications</i>. <b>46</b> (36): <span class="nowrap">6723–</span>5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC0CC01819H">10.1039/C0CC01819H</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20717605">20717605</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Communications&amp;rft.atitle=Fullerene+attached+all-semiconducting+diblock+copolymers+for+stable+single-component+polymer+solar+cells&amp;rft.volume=46&amp;rft.issue=36&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E6723-%3C%2Fspan%3E5&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1039%2FC0CC01819H&amp;rft_id=info%3Apmid%2F20717605&amp;rft.aulast=Miyanishi&amp;rft.aufirst=Shoji&amp;rft.au=Zhang%2C+Yue&amp;rft.au=Tajima%2C+Keisuke&amp;rft.au=Hashimoto%2C+Kazuhito&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaryRichardBrochonLeclerc2010" class="citation journal cs1">Sary, Nicolas; Richard, Fanny; Brochon, Cyril; Leclerc, Nicolas; Lévêque, Patrick; Audinot, Jean-Nicolas; Berson, Solenn; Heiser, Thomas; et&#160;al. (2010). <a rel="nofollow" class="external text" href="http://doc.rero.ch/record/17365/files/mezzenga_nsr.pdf">"A New Supramolecular Route for Using Rod-Coil Block Copolymers in Photovoltaic Applications"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Materials</i>. <b>22</b> (6): <span class="nowrap">763–</span>8. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010APS..MAR.C1002M">2010APS..MAR.C1002M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.200902645">10.1002/adma.200902645</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20217786">20217786</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205234659">205234659</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=A+New+Supramolecular+Route+for+Using+Rod-Coil+Block+Copolymers+in+Photovoltaic+Applications&amp;rft.volume=22&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E763-%3C%2Fspan%3E8&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.200902645&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205234659%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F20217786&amp;rft_id=info%3Abibcode%2F2010APS..MAR.C1002M&amp;rft.aulast=Sary&amp;rft.aufirst=Nicolas&amp;rft.au=Richard%2C+Fanny&amp;rft.au=Brochon%2C+Cyril&amp;rft.au=Leclerc%2C+Nicolas&amp;rft.au=L%C3%A9v%C3%AAque%2C+Patrick&amp;rft.au=Audinot%2C+Jean-Nicolas&amp;rft.au=Berson%2C+Solenn&amp;rft.au=Heiser%2C+Thomas&amp;rft.au=Hadziioannou%2C+Georges&amp;rft.au=Mezzenga%2C+Raffaele&amp;rft_id=http%3A%2F%2Fdoc.rero.ch%2Frecord%2F17365%2Ffiles%2Fmezzenga_nsr.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinLimWeiMannsfeld2012" class="citation journal cs1">Lin, Ying; Lim, Jung Ah; Wei, Qingshuo; Mannsfeld, Stefan C. B.; Briseno, Alejandro L.; Watkins, James J. (2012). "Cooperative Assembly of Hydrogen-Bonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability". <i>Chemistry of Materials</i>. <b>24</b> (3): 622. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcm203706h">10.1021/cm203706h</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemistry+of+Materials&amp;rft.atitle=Cooperative+Assembly+of+Hydrogen-Bonded+Diblock+Copolythiophene%2FFullerene+Blends+for+Photovoltaic+Devices+with+Well-Defined+Morphologies+and+Enhanced+Stability&amp;rft.volume=24&amp;rft.issue=3&amp;rft.pages=622&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1021%2Fcm203706h&amp;rft.aulast=Lin&amp;rft.aufirst=Ying&amp;rft.au=Lim%2C+Jung+Ah&amp;rft.au=Wei%2C+Qingshuo&amp;rft.au=Mannsfeld%2C+Stefan+C.+B.&amp;rft.au=Briseno%2C+Alejandro+L.&amp;rft.au=Watkins%2C+James+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTophamParnellHiorns2011" class="citation journal cs1">Topham, Paul D.; Parnell, Andrew J.; Hiorns, Roger C. (2011). "Block copolymer strategies for solar cell technology". <i>Journal of Polymer Science Part B: Polymer Physics</i>. <b>49</b> (16): 1131. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JPoSB..49.1131T">2011JPoSB..49.1131T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpolb.22302">10.1002/polb.22302</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Polymer+Science+Part+B%3A+Polymer+Physics&amp;rft.atitle=Block+copolymer+strategies+for+solar+cell+technology&amp;rft.volume=49&amp;rft.issue=16&amp;rft.pages=1131&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1002%2Fpolb.22302&amp;rft_id=info%3Abibcode%2F2011JPoSB..49.1131T&amp;rft.aulast=Topham&amp;rft.aufirst=Paul+D.&amp;rft.au=Parnell%2C+Andrew+J.&amp;rft.au=Hiorns%2C+Roger+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarrauHeiserRichardBrochon2008" class="citation journal cs1">Barrau, Sophie; Heiser, Thomas; Richard, Fanny; Brochon, Cyril; Ngov, Chheng; Van De Wetering, Karin; Hadziioannou, Georges; Anokhin, Denis V.; Ivanov, Dimitri A. (2008). "Self-Assembling of Novel Fullerene-Grafted Donor–Acceptor Rod−Coil Block Copolymers". <i>Macromolecules</i>. <b>41</b> (7): 2701. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008MaMol..41.2701B">2008MaMol..41.2701B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fma7022099">10.1021/ma7022099</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Macromolecules&amp;rft.atitle=Self-Assembling+of+Novel+Fullerene-Grafted+Donor%E2%80%93Acceptor+Rod%E2%88%92Coil+Block+Copolymers&amp;rft.volume=41&amp;rft.issue=7&amp;rft.pages=2701&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1021%2Fma7022099&amp;rft_id=info%3Abibcode%2F2008MaMol..41.2701B&amp;rft.aulast=Barrau&amp;rft.aufirst=Sophie&amp;rft.au=Heiser%2C+Thomas&amp;rft.au=Richard%2C+Fanny&amp;rft.au=Brochon%2C+Cyril&amp;rft.au=Ngov%2C+Chheng&amp;rft.au=Van+De+Wetering%2C+Karin&amp;rft.au=Hadziioannou%2C+Georges&amp;rft.au=Anokhin%2C+Denis+V.&amp;rft.au=Ivanov%2C+Dimitri+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-:4-78"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_78-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_78-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:4_78-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:4_78-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXiaWangJiaBian2010" class="citation journal cs1">Xia, Xinyuan; Wang, Shanshan; Jia, Yi; Bian, Zuqiang; Wu, Dehai; Zhang, Luhui; Cao, Anyuan; Huang, Chunhui (2010). "Infrared-transparent polymer solar cells". <i>Journal of Materials Chemistry</i>. <b>20</b> (39): 8478. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fc0jm02406f">10.1039/c0jm02406f</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0959-9428">0959-9428</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Chemistry&amp;rft.atitle=Infrared-transparent+polymer+solar+cells&amp;rft.volume=20&amp;rft.issue=39&amp;rft.pages=8478&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1039%2Fc0jm02406f&amp;rft.issn=0959-9428&amp;rft.aulast=Xia&amp;rft.aufirst=Xinyuan&amp;rft.au=Wang%2C+Shanshan&amp;rft.au=Jia%2C+Yi&amp;rft.au=Bian%2C+Zuqiang&amp;rft.au=Wu%2C+Dehai&amp;rft.au=Zhang%2C+Luhui&amp;rft.au=Cao%2C+Anyuan&amp;rft.au=Huang%2C+Chunhui&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangPerzonDelgadode_la_Cruz2004" class="citation journal cs1">Wang, Xiangjun; Perzon, Erik; Delgado, Juan Luis; de la Cruz, Pilar; Zhang, Fengling; Langa, Fernando; Andersson, Mats; Inganäs, Olle (2004-11-22). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1825070">"Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative"</a>. <i>Applied Physics Letters</i>. <b>85</b> (21): <span class="nowrap">5081–</span>5083. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004ApPhL..85.5081W">2004ApPhL..85.5081W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1825070">10.1063/1.1825070</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-6951">0003-6951</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Physics+Letters&amp;rft.atitle=Infrared+photocurrent+spectral+response+from+plastic+solar+cell+with+low-band-gap+polyfluorene+and+fullerene+derivative&amp;rft.volume=85&amp;rft.issue=21&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E5081-%3C%2Fspan%3E5083&amp;rft.date=2004-11-22&amp;rft.issn=0003-6951&amp;rft_id=info%3Adoi%2F10.1063%2F1.1825070&amp;rft_id=info%3Abibcode%2F2004ApPhL..85.5081W&amp;rft.aulast=Wang&amp;rft.aufirst=Xiangjun&amp;rft.au=Perzon%2C+Erik&amp;rft.au=Delgado%2C+Juan+Luis&amp;rft.au=de+la+Cruz%2C+Pilar&amp;rft.au=Zhang%2C+Fengling&amp;rft.au=Langa%2C+Fernando&amp;rft.au=Andersson%2C+Mats&amp;rft.au=Ingan%C3%A4s%2C+Olle&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.1825070&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBetancurRomero-GomezMartinez-OteroElias2013" class="citation journal cs1">Betancur, Rafael; Romero-Gomez, Pablo; Martinez-Otero, Alberto; Elias, Xavier; Maymó, Marc; Martorell, Jordi (December 2013). "Transparent polymer solar cells employing a layered light-trapping architecture". <i>Nature Photonics</i>. <b>7</b> (12): <span class="nowrap">995–</span>1000. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NaPho...7..995B">2013NaPho...7..995B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphoton.2013.276">10.1038/nphoton.2013.276</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1749-4885">1749-4885</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16747502">16747502</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Photonics&amp;rft.atitle=Transparent+polymer+solar+cells+employing+a+layered+light-trapping+architecture&amp;rft.volume=7&amp;rft.issue=12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E995-%3C%2Fspan%3E1000&amp;rft.date=2013-12&amp;rft_id=info%3Adoi%2F10.1038%2Fnphoton.2013.276&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16747502%23id-name%3DS2CID&amp;rft.issn=1749-4885&amp;rft_id=info%3Abibcode%2F2013NaPho...7..995B&amp;rft.aulast=Betancur&amp;rft.aufirst=Rafael&amp;rft.au=Romero-Gomez%2C+Pablo&amp;rft.au=Martinez-Otero%2C+Alberto&amp;rft.au=Elias%2C+Xavier&amp;rft.au=Maym%C3%B3%2C+Marc&amp;rft.au=Martorell%2C+Jordi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-:5-81"><span class="mw-cite-backlink">^ <a href="#cite_ref-:5_81-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:5_81-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRomero-GómezPastorelliMantilla-PérezMariano2015" class="citation journal cs1">Romero-Gómez, Pablo; Pastorelli, Francesco; Mantilla-Pérez, Paola; Mariano, Marina; Martínez-Otero, Alberto; Elias, Xavier; Betancur, Rafael; Martorell, Jordi (2015-02-16). <a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F1.JPE.5.057212">"Semi-transparent polymer solar cells"</a>. <i>Journal of Photonics for Energy</i>. <b>5</b> (1): 057212. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F1.JPE.5.057212">10.1117/1.JPE.5.057212</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2117%2F107388">2117/107388</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1947-7988">1947-7988</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Photonics+for+Energy&amp;rft.atitle=Semi-transparent+polymer+solar+cells&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=057212&amp;rft.date=2015-02-16&amp;rft_id=info%3Ahdl%2F2117%2F107388&amp;rft.issn=1947-7988&amp;rft_id=info%3Adoi%2F10.1117%2F1.JPE.5.057212&amp;rft.aulast=Romero-G%C3%B3mez&amp;rft.aufirst=Pablo&amp;rft.au=Pastorelli%2C+Francesco&amp;rft.au=Mantilla-P%C3%A9rez%2C+Paola&amp;rft.au=Mariano%2C+Marina&amp;rft.au=Mart%C3%ADnez-Otero%2C+Alberto&amp;rft.au=Elias%2C+Xavier&amp;rft.au=Betancur%2C+Rafael&amp;rft.au=Martorell%2C+Jordi&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1117%252F1.JPE.5.057212&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-:6-82"><span class="mw-cite-backlink">^ <a href="#cite_ref-:6_82-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:6_82-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenDouZhuChung2012" class="citation journal cs1">Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S.; Yang, Yang (2012-08-28). "Visibly Transparent Polymer Solar Cells Produced by Solution Processing". <i>ACS Nano</i>. <b>6</b> (8): <span class="nowrap">7185–</span>7190. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnn3029327">10.1021/nn3029327</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1936-0851">1936-0851</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22789123">22789123</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Nano&amp;rft.atitle=Visibly+Transparent+Polymer+Solar+Cells+Produced+by+Solution+Processing&amp;rft.volume=6&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E7185-%3C%2Fspan%3E7190&amp;rft.date=2012-08-28&amp;rft.issn=1936-0851&amp;rft_id=info%3Apmid%2F22789123&amp;rft_id=info%3Adoi%2F10.1021%2Fnn3029327&amp;rft.aulast=Chen&amp;rft.aufirst=Chun-Chao&amp;rft.au=Dou%2C+Letian&amp;rft.au=Zhu%2C+Rui&amp;rft.au=Chung%2C+Choong-Heui&amp;rft.au=Song%2C+Tze-Bin&amp;rft.au=Zheng%2C+Yue+Bing&amp;rft.au=Hawks%2C+Steve&amp;rft.au=Li%2C+Gang&amp;rft.au=Weiss%2C+Paul+S.&amp;rft.au=Yang%2C+Yang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-:7-83"><span class="mw-cite-backlink">^ <a href="#cite_ref-:7_83-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:7_83-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenSalinasYipHuo2012" class="citation journal cs1">Chen, Kung-Shih; Salinas, José-Francisco; Yip, Hin-Lap; Huo, Lijun; Hou, Jianhui; Jen, Alex K.-Y. (2012). "Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications". <i>Energy &amp; Environmental Science</i>. <b>5</b> (11): 9551. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fc2ee22623e">10.1039/c2ee22623e</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5692">1754-5692</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Semi-transparent+polymer+solar+cells+with+6%25+PCE%2C+25%25+average+visible+transmittance+and+a+color+rendering+index+close+to+100+for+power+generating+window+applications&amp;rft.volume=5&amp;rft.issue=11&amp;rft.pages=9551&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1039%2Fc2ee22623e&amp;rft.issn=1754-5692&amp;rft.aulast=Chen&amp;rft.aufirst=Kung-Shih&amp;rft.au=Salinas%2C+Jos%C3%A9-Francisco&amp;rft.au=Yip%2C+Hin-Lap&amp;rft.au=Huo%2C+Lijun&amp;rft.au=Hou%2C+Jianhui&amp;rft.au=Jen%2C+Alex+K.-Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarcus2012" class="citation news cs1">Marcus, Jennifer (July 20, 2012). <a rel="nofollow" class="external text" href="http://phys.org/news/2012-07-scientists-highly-transparent-solar-cells.html">"Scientists create highly transparent solar cells for windows that generate electricity"</a>. <i>Phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2012-07-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.org&amp;rft.atitle=Scientists+create+highly+transparent+solar+cells+for+windows+that+generate+electricity&amp;rft.date=2012-07-20&amp;rft.aulast=Marcus&amp;rft.aufirst=Jennifer&amp;rft_id=http%3A%2F%2Fphys.org%2Fnews%2F2012-07-scientists-highly-transparent-solar-cells.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouNakanoIzawaCong2014" class="citation journal cs1">Zhou, Erjun; Nakano, Masahiro; Izawa, Seiichiro; Cong, Junzi; Osaka, Itaru; Takimiya, Kazuo; Tajima, Keisuke (18 August 2014). "All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer". <i>ACS Macro Lett</i>. <b>3</b> (9): <span class="nowrap">872–</span>875. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fmz5004272">10.1021/mz5004272</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35596351">35596351</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Macro+Lett.&amp;rft.atitle=All-Polymer+Solar+Cell+with+High+Near-Infrared+Response+Based+on+a+Naphthodithiophene+Diimide+%28NDTI%29+Copolymer&amp;rft.volume=3&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E872-%3C%2Fspan%3E875&amp;rft.date=2014-08-18&amp;rft_id=info%3Adoi%2F10.1021%2Fmz5004272&amp;rft_id=info%3Apmid%2F35596351&amp;rft.aulast=Zhou&amp;rft.aufirst=Erjun&amp;rft.au=Nakano%2C+Masahiro&amp;rft.au=Izawa%2C+Seiichiro&amp;rft.au=Cong%2C+Junzi&amp;rft.au=Osaka%2C+Itaru&amp;rft.au=Takimiya%2C+Kazuo&amp;rft.au=Tajima%2C+Keisuke&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangYanLauWang2017" class="citation journal cs1">Wang, Wei; Yan, Cenqi; Lau, Tsz-Ki; Wang, Jiayu; Liu, Kuan; Fan, Yan; Lu, Xinhui; Zhan, Xiaowei (2017). "Fused Hexacyclic Nonfullerene Acceptor with Strong Near-Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency". <i>Advanced Materials</i>. <b>29</b> (31): 1701308. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017AdM....2901308W">2017AdM....2901308W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201701308">10.1002/adma.201701308</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28608531">28608531</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205280045">205280045</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Fused+Hexacyclic+Nonfullerene+Acceptor+with+Strong+Near-Infrared+Absorption+for+Semitransparent+Organic+Solar+Cells+with+9.77%25+Efficiency&amp;rft.volume=29&amp;rft.issue=31&amp;rft.pages=1701308&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.201701308&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205280045%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F28608531&amp;rft_id=info%3Abibcode%2F2017AdM....2901308W&amp;rft.aulast=Wang&amp;rft.aufirst=Wei&amp;rft.au=Yan%2C+Cenqi&amp;rft.au=Lau%2C+Tsz-Ki&amp;rft.au=Wang%2C+Jiayu&amp;rft.au=Liu%2C+Kuan&amp;rft.au=Fan%2C+Yan&amp;rft.au=Lu%2C+Xinhui&amp;rft.au=Zhan%2C+Xiaowei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-:0-87"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_87-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_87-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_87-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeibelDyakonov2010" class="citation journal cs1">Deibel, Carsten; Dyakonov, Vladimir (2010-09-01). "Polymer–fullerene bulk heterojunction solar cells". <i>Reports on Progress in Physics</i>. <b>73</b> (9): 096401. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1003.0359">1003.0359</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010RPPh...73i6401D">2010RPPh...73i6401D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0034-4885%2F73%2F9%2F096401">10.1088/0034-4885/73/9/096401</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-4885">0034-4885</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118855668">118855668</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reports+on+Progress+in+Physics&amp;rft.atitle=Polymer%E2%80%93fullerene+bulk+heterojunction+solar+cells&amp;rft.volume=73&amp;rft.issue=9&amp;rft.pages=096401&amp;rft.date=2010-09-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118855668%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2010RPPh...73i6401D&amp;rft_id=info%3Aarxiv%2F1003.0359&amp;rft.issn=0034-4885&amp;rft_id=info%3Adoi%2F10.1088%2F0034-4885%2F73%2F9%2F096401&amp;rft.aulast=Deibel&amp;rft.aufirst=Carsten&amp;rft.au=Dyakonov%2C+Vladimir&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-:1-88"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_88-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_88-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_88-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:1_88-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:1_88-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:1_88-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoppeSariciftci2004" class="citation journal cs1">Hoppe, Harald; Sariciftci, Niyazi Serdar (July 2004). "Organic solar cells: An overview". <i>Journal of Materials Research</i>. <b>19</b> (7): <span class="nowrap">1924–</span>1945. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JMatR..19.1924H">2004JMatR..19.1924H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2FJMR.2004.0252">10.1557/JMR.2004.0252</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0884-2914">0884-2914</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22455511">22455511</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Research&amp;rft.atitle=Organic+solar+cells%3A+An+overview&amp;rft.volume=19&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1924-%3C%2Fspan%3E1945&amp;rft.date=2004-07&amp;rft_id=info%3Adoi%2F10.1557%2FJMR.2004.0252&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22455511%23id-name%3DS2CID&amp;rft.issn=0884-2914&amp;rft_id=info%3Abibcode%2F2004JMatR..19.1924H&amp;rft.aulast=Hoppe&amp;rft.aufirst=Harald&amp;rft.au=Sariciftci%2C+Niyazi+Serdar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXueZhangLiLi2018" class="citation journal cs1">Xue, Rongming; Zhang, Jingwen; Li, Yaowen; Li, Yongfang (2018). "Organic Solar Cell Materials toward Commercialization". <i>Small</i>. <b>14</b> (41): e1801793. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fsmll.201801793">10.1002/smll.201801793</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30106505">30106505</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:51975017">51975017</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Small&amp;rft.atitle=Organic+Solar+Cell+Materials+toward+Commercialization&amp;rft.volume=14&amp;rft.issue=41&amp;rft.pages=e1801793&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51975017%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F30106505&amp;rft_id=info%3Adoi%2F10.1002%2Fsmll.201801793&amp;rft.aulast=Xue&amp;rft.aufirst=Rongming&amp;rft.au=Zhang%2C+Jingwen&amp;rft.au=Li%2C+Yaowen&amp;rft.au=Li%2C+Yongfang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceB-90"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceB_90-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceB_90-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuoZhouLouSmith2013" class="citation journal cs1">Guo, Xugang; Zhou, Nanjia; Lou, Sylvia; Smith, Jeremy; Tice, Daniel; Hennek, Jonathan; Ortiz, Rocío; López Navarrete, Juan; Li, Shuyou; Strzalka, Joseph; Chen, Lin; Chang, Robert; Facchetti, Antonio; Marks, Tobin (11 August 2013). "Polymer solar cells with enhanced fill factors". <i>Nature Photonics</i>. <b>7</b> (10): 825. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NaPho...7..825G">2013NaPho...7..825G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphoton.2013.207">10.1038/nphoton.2013.207</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15817634">15817634</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Photonics&amp;rft.atitle=Polymer+solar+cells+with+enhanced+fill+factors&amp;rft.volume=7&amp;rft.issue=10&amp;rft.pages=825&amp;rft.date=2013-08-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15817634%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fnphoton.2013.207&amp;rft_id=info%3Abibcode%2F2013NaPho...7..825G&amp;rft.aulast=Guo&amp;rft.aufirst=Xugang&amp;rft.au=Zhou%2C+Nanjia&amp;rft.au=Lou%2C+Sylvia&amp;rft.au=Smith%2C+Jeremy&amp;rft.au=Tice%2C+Daniel&amp;rft.au=Hennek%2C+Jonathan&amp;rft.au=Ortiz%2C+Roc%C3%ADo&amp;rft.au=L%C3%B3pez+Navarrete%2C+Juan&amp;rft.au=Li%2C+Shuyou&amp;rft.au=Strzalka%2C+Joseph&amp;rft.au=Chen%2C+Lin&amp;rft.au=Chang%2C+Robert&amp;rft.au=Facchetti%2C+Antonio&amp;rft.au=Marks%2C+Tobin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text">For a similar graph, see: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoppeSariciftci2008" class="citation book cs1">Hoppe, Harald; Sariciftci, N. Serdar (2008). "Polymer Solar Cells". <i>Photoresponsive Polymers II</i>. pp.&#160;1–86 (4). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F12_2007_121">10.1007/12_2007_121</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-69452-6" title="Special:BookSources/978-3-540-69452-6"><bdi>978-3-540-69452-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Polymer+Solar+Cells&amp;rft.btitle=Photoresponsive+Polymers+II&amp;rft.pages=1-86+%284%29&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1007%2F12_2007_121&amp;rft.isbn=978-3-540-69452-6&amp;rft.aulast=Hoppe&amp;rft.aufirst=Harald&amp;rft.au=Sariciftci%2C+N.+Serdar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-TR-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-TR_92-0">^</a></b></span> <span class="reference-text">Kevin Bullis. <a rel="nofollow" class="external text" href="http://www.technologyreview.com/energy/21574/"><i>Mass Production of Plastic Solar Cells</i></a>, <a href="/wiki/Technology_Review" class="mw-redirect" title="Technology Review">Technology Review Magazine</a>, October 17, 2008.</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrebsTromholtJørgensen2010" class="citation journal cs1">Krebs, Frederik; Tromholt, Thomas; Jørgensen, Mikkel (4 May 2010). "Upscaling of polymer solar cell fabrication using full roll-to-roll processing". <i>Nanoscale</i>. <b>2</b> (6): <span class="nowrap">873–</span>86. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010Nanos...2..873K">2010Nanos...2..873K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FB9NR00430K">10.1039/B9NR00430K</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20648282">20648282</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nanoscale&amp;rft.atitle=Upscaling+of+polymer+solar+cell+fabrication+using+full+roll-to-roll+processing&amp;rft.volume=2&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E873-%3C%2Fspan%3E86&amp;rft.date=2010-05-04&amp;rft_id=info%3Apmid%2F20648282&amp;rft_id=info%3Adoi%2F10.1039%2FB9NR00430K&amp;rft_id=info%3Abibcode%2F2010Nanos...2..873K&amp;rft.aulast=Krebs&amp;rft.aufirst=Frederik&amp;rft.au=Tromholt%2C+Thomas&amp;rft.au=J%C3%B8rgensen%2C+Mikkel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-mackenzie-94"><span class="mw-cite-backlink">^ <a href="#cite_ref-mackenzie_94-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mackenzie_94-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacKenzieShuttleChabinycNelson2012" class="citation journal cs1">MacKenzie, Roderick C. I.; Shuttle, Christopher G.; Chabinyc, Michael L.; Nelson, Jenny (2012). "Extracting Microscopic Device Parameters from Transient Photocurrent Measurements of P3HT:PCBM Solar Cells". <i>Advanced Energy Materials</i>. <b>2</b> (6): 662. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AdEnM...2..662M">2012AdEnM...2..662M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201100709">10.1002/aenm.201100709</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98547540">98547540</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=Extracting+Microscopic+Device+Parameters+from+Transient+Photocurrent+Measurements+of+P3HT%3APCBM+Solar+Cells&amp;rft.volume=2&amp;rft.issue=6&amp;rft.pages=662&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98547540%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201100709&amp;rft_id=info%3Abibcode%2F2012AdEnM...2..662M&amp;rft.aulast=MacKenzie&amp;rft.aufirst=Roderick+C.+I.&amp;rft.au=Shuttle%2C+Christopher+G.&amp;rft.au=Chabinyc%2C+Michael+L.&amp;rft.au=Nelson%2C+Jenny&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChiuLin,_L.Y.Lin,_H.W.Chen,_Y.H.2012" class="citation journal cs1">Chiu, S.W.; Lin, L.Y.; Lin, H.W.; Chen, Y.H.; Huang, Z.Y.; Lin, Y.T.; Lin, F.; Liu, Y.H.; Wong, K.T. (2012). "A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%". <i>Chemical Communications</i>. <b>48</b> (13): <span class="nowrap">1857–</span>9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC2CC16390J">10.1039/C2CC16390J</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22167175">22167175</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Communications&amp;rft.atitle=A+donor-acceptor-acceptor+molecule+for+vacuum-processed+organic+solar+cells+with+a+power+conversion+efficiency+of+6.4%25&amp;rft.volume=48&amp;rft.issue=13&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1857-%3C%2Fspan%3E9&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1039%2FC2CC16390J&amp;rft_id=info%3Apmid%2F22167175&amp;rft.aulast=Chiu&amp;rft.aufirst=S.W.&amp;rft.au=Lin%2C+L.Y.&amp;rft.au=Lin%2C+H.W.&amp;rft.au=Chen%2C+Y.H.&amp;rft.au=Huang%2C+Z.Y.&amp;rft.au=Lin%2C+Y.T.&amp;rft.au=Lin%2C+F.&amp;rft.au=Liu%2C+Y.H.&amp;rft.au=Wong%2C+K.T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-LiB-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-LiB_96-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiWangKangWang2006" class="citation journal cs1">Li, Bin; Wang, Liduo; Kang, Bonan; Wang, Peng; Qiu, Yong (2006). "Review of recent progress in solid-state dye-sensitized solar cells". <i>Solar Energy Materials and Solar Cells</i>. <b>90</b> (5): <span class="nowrap">549–</span>573. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006SEMSC..90..549L">2006SEMSC..90..549L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2005.04.039">10.1016/j.solmat.2005.04.039</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Review+of+recent+progress+in+solid-state+dye-sensitized+solar+cells&amp;rft.volume=90&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E549-%3C%2Fspan%3E573&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2005.04.039&amp;rft_id=info%3Abibcode%2F2006SEMSC..90..549L&amp;rft.aulast=Li&amp;rft.aufirst=Bin&amp;rft.au=Wang%2C+Liduo&amp;rft.au=Kang%2C+Bonan&amp;rft.au=Wang%2C+Peng&amp;rft.au=Qiu%2C+Yong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMihailetchiXiede_BoerKoster2006" class="citation journal cs1">Mihailetchi, V. D.; Xie, H. X.; de Boer, B.; Koster, L. J. A.; Blom, P. W. M. (2006-03-20). <a rel="nofollow" class="external text" href="https://pure.rug.nl/ws/files/6694616/2006AdvFunctMaterMihailetchi.pdf">"Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Functional Materials</i>. <b>16</b> (5): <span class="nowrap">699–</span>708. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200500420">10.1002/adfm.200500420</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11370%2Faa761002-7f50-41e4-b6cb-8c908610accd">11370/aa761002-7f50-41e4-b6cb-8c908610accd</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55436282">55436282</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Charge+Transport+and+Photocurrent+Generation+in+Poly%283-hexylthiophene%29%3A+Methanofullerene+Bulk-Heterojunction+Solar+Cells&amp;rft.volume=16&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E699-%3C%2Fspan%3E708&amp;rft.date=2006-03-20&amp;rft_id=info%3Ahdl%2F11370%2Faa761002-7f50-41e4-b6cb-8c908610accd&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55436282%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.200500420&amp;rft.aulast=Mihailetchi&amp;rft.aufirst=V.+D.&amp;rft.au=Xie%2C+H.+X.&amp;rft.au=de+Boer%2C+B.&amp;rft.au=Koster%2C+L.+J.+A.&amp;rft.au=Blom%2C+P.+W.+M.&amp;rft_id=https%3A%2F%2Fpure.rug.nl%2Fws%2Ffiles%2F6694616%2F2006AdvFunctMaterMihailetchi.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarteltLamBurkeSweetnam2015" class="citation journal cs1">Bartelt, Jonathan A.; Lam, David; Burke, Timothy M.; Sweetnam, Sean M.; <a href="/wiki/Michael_D._McGehee" title="Michael D. McGehee">McGehee, Michael D.</a> (2015-08-01). "Charge-Carrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency &gt;90%". <i>Advanced Energy Materials</i>. <b>5</b> (15): 1500577. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015AdEnM...500577B">2015AdEnM...500577B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201500577">10.1002/aenm.201500577</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14735539">14735539</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=Charge-Carrier+Mobility+Requirements+for+Bulk+Heterojunction+Solar+Cells+with+High+Fill+Factor+and+External+Quantum+Efficiency+%3E90%25&amp;rft.volume=5&amp;rft.issue=15&amp;rft.pages=1500577&amp;rft.date=2015-08-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14735539%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201500577&amp;rft_id=info%3Abibcode%2F2015AdEnM...500577B&amp;rft.aulast=Bartelt&amp;rft.aufirst=Jonathan+A.&amp;rft.au=Lam%2C+David&amp;rft.au=Burke%2C+Timothy+M.&amp;rft.au=Sweetnam%2C+Sean+M.&amp;rft.au=McGehee%2C+Michael+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-Peumans-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-Peumans_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeumans2003" class="citation journal cs1">Peumans P, et&#160;al. (2003). "Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films". <i>Nature</i>. <b>425</b> (6954): <span class="nowrap">158–</span>162. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Natur.425..158P">2003Natur.425..158P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature01949">10.1038/nature01949</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12968174">12968174</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4361523">4361523</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Efficient+bulk+heterojunction+photovoltaic+cells+using+small-molecular-weight+organic+thin+films&amp;rft.volume=425&amp;rft.issue=6954&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E158-%3C%2Fspan%3E162&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1038%2Fnature01949&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4361523%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F12968174&amp;rft_id=info%3Abibcode%2F2003Natur.425..158P&amp;rft.aulast=Peumans&amp;rft.aufirst=P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-NREL2022-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-NREL2022_100-0">^</a></b></span> <span class="reference-text">National Renewable Energy Laboratory (NREL). (2022). "Roll-to-roll processing for large-area organic photovoltaics." *Renewable Energy Reports*. Retrieved from <a rel="nofollow" class="external autonumber" href="https://www.nrel.gov/pv/organic-photovoltaic-solar-cells.html">[1]</a>(<a rel="nofollow" class="external free" href="https://www.nrel.gov/pv/organic-photovoltaic-solar-cells.html">https://www.nrel.gov/pv/organic-photovoltaic-solar-cells.html</a>)</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkVandewalLeo2018" class="citation journal cs1">Park, Yoonseok; Vandewal, Koen; Leo, Karl (2018-07-05). "Optical In-Coupling in Organic Solar Cells". <i>Small Methods</i>. <b>2</b> (10): 1800123. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fsmtd.201800123">10.1002/smtd.201800123</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2366-9608">2366-9608</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:139574649">139574649</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Small+Methods&amp;rft.atitle=Optical+In-Coupling+in+Organic+Solar+Cells&amp;rft.volume=2&amp;rft.issue=10&amp;rft.pages=1800123&amp;rft.date=2018-07-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A139574649%23id-name%3DS2CID&amp;rft.issn=2366-9608&amp;rft_id=info%3Adoi%2F10.1002%2Fsmtd.201800123&amp;rft.aulast=Park&amp;rft.aufirst=Yoonseok&amp;rft.au=Vandewal%2C+Koen&amp;rft.au=Leo%2C+Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimSachseMachalaMay2011" class="citation journal cs1">Kim, Yong Hyun; Sachse, Christoph; Machala, Michael L.; May, Christian; Müller-Meskamp, Lars; Leo, Karl (2011-03-22). "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells". <i>Advanced Functional Materials</i>. <b>21</b> (6): <span class="nowrap">1076–</span>1081. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.201002290">10.1002/adfm.201002290</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1616-3028">1616-3028</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:136583700">136583700</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Highly+Conductive+PEDOT%3APSS+Electrode+with+Optimized+Solvent+and+Thermal+Post-Treatment+for+ITO-Free+Organic+Solar+Cells&amp;rft.volume=21&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1076-%3C%2Fspan%3E1081&amp;rft.date=2011-03-22&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A136583700%23id-name%3DS2CID&amp;rft.issn=1616-3028&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.201002290&amp;rft.aulast=Kim&amp;rft.aufirst=Yong+Hyun&amp;rft.au=Sachse%2C+Christoph&amp;rft.au=Machala%2C+Michael+L.&amp;rft.au=May%2C+Christian&amp;rft.au=M%C3%BCller-Meskamp%2C+Lars&amp;rft.au=Leo%2C+Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkBormannMüller-MeskampVandewal2016" class="citation journal cs1">Park, Yoonseok; Bormann, Ludwig; Müller-Meskamp, Lars; Vandewal, Koen; Leo, Karl (2016-09-01). <a rel="nofollow" class="external text" href="https://zenodo.org/record/889852">"Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes"</a>. <i>Organic Electronics</i>. <b>36</b>: <span class="nowrap">68–</span>72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.orgel.2016.05.032">10.1016/j.orgel.2016.05.032</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Organic+Electronics&amp;rft.atitle=Efficient+flexible+organic+photovoltaics+using+silver+nanowires+and+polymer+based+transparent+electrodes&amp;rft.volume=36&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E68-%3C%2Fspan%3E72&amp;rft.date=2016-09-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.orgel.2016.05.032&amp;rft.aulast=Park&amp;rft.aufirst=Yoonseok&amp;rft.au=Bormann%2C+Ludwig&amp;rft.au=M%C3%BCller-Meskamp%2C+Lars&amp;rft.au=Vandewal%2C+Koen&amp;rft.au=Leo%2C+Karl&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F889852&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaltenbrunnerWhiteGłowackiSekitani2012" class="citation journal cs1">Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried (2012-04-03). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337988">"Ultrathin and lightweight organic solar cells with high flexibility"</a>. <i>Nature Communications</i>. <b>3</b>: 770. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatCo...3..770K">2012NatCo...3..770K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms1772">10.1038/ncomms1772</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337988">3337988</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22473014">22473014</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=Ultrathin+and+lightweight+organic+solar+cells+with+high+flexibility&amp;rft.volume=3&amp;rft.pages=770&amp;rft.date=2012-04-03&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3337988%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2012NatCo...3..770K&amp;rft_id=info%3Apmid%2F22473014&amp;rft_id=info%3Adoi%2F10.1038%2Fncomms1772&amp;rft.issn=2041-1723&amp;rft.aulast=Kaltenbrunner&amp;rft.aufirst=Martin&amp;rft.au=White%2C+Matthew+S.&amp;rft.au=G%C5%82owacki%2C+Eric+D.&amp;rft.au=Sekitani%2C+Tsuyoshi&amp;rft.au=Someya%2C+Takao&amp;rft.au=Sariciftci%2C+Niyazi+Serdar&amp;rft.au=Bauer%2C+Siegfried&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3337988&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkMüller-MeskampVandewalLeo2016" class="citation journal cs1">Park, Yoonseok; Müller-Meskamp, Lars; Vandewal, Koen; Leo, Karl (2016-06-20). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.4954902">"PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics"</a>. <i>Applied Physics Letters</i>. <b>108</b> (25): 253302. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016ApPhL.108y3302P">2016ApPhL.108y3302P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.4954902">10.1063/1.4954902</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-6951">0003-6951</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Physics+Letters&amp;rft.atitle=PEDOT%3APSS+with+embedded+TiO2+nanoparticles+as+light+trapping+electrode+for+organic+photovoltaics&amp;rft.volume=108&amp;rft.issue=25&amp;rft.pages=253302&amp;rft.date=2016-06-20&amp;rft.issn=0003-6951&amp;rft_id=info%3Adoi%2F10.1063%2F1.4954902&amp;rft_id=info%3Abibcode%2F2016ApPhL.108y3302P&amp;rft.aulast=Park&amp;rft.aufirst=Yoonseok&amp;rft.au=M%C3%BCller-Meskamp%2C+Lars&amp;rft.au=Vandewal%2C+Koen&amp;rft.au=Leo%2C+Karl&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.4954902&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkBergerWillSoldera2016" class="citation journal cs1">Park, Yoonseok; Berger, Jana; Will, Paul-Anton; Soldera, Marcos; Glatz, Bernhard; Müller-Meskamp, Lars; Taretto, Kurt; Fery, Andreas; Lasagni, Andrés Fabián (2016-01-01). <a href="/wiki/Zakya_Kafafi" title="Zakya Kafafi">Kafafi, Zakya H</a>; Lane, Paul A; Samuel, Ifor D. W (eds.). "Light trapping for flexible organic photovoltaics". <i>Organic Photovoltaics XVII</i>. <b>9942</b>: 994211–994211–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016SPIE.9942E..11P">2016SPIE.9942E..11P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F12.2229582">10.1117/12.2229582</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:138521932">138521932</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Organic+Photovoltaics+XVII&amp;rft.atitle=Light+trapping+for+flexible+organic+photovoltaics&amp;rft.volume=9942&amp;rft.pages=994211-994211-9&amp;rft.date=2016-01-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A138521932%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1117%2F12.2229582&amp;rft_id=info%3Abibcode%2F2016SPIE.9942E..11P&amp;rft.aulast=Park&amp;rft.aufirst=Yoonseok&amp;rft.au=Berger%2C+Jana&amp;rft.au=Will%2C+Paul-Anton&amp;rft.au=Soldera%2C+Marcos&amp;rft.au=Glatz%2C+Bernhard&amp;rft.au=M%C3%BCller-Meskamp%2C+Lars&amp;rft.au=Taretto%2C+Kurt&amp;rft.au=Fery%2C+Andreas&amp;rft.au=Lasagni%2C+Andr%C3%A9s+Fabi%C3%A1n&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkBergerTangMüller-Meskamp2016" class="citation journal cs1">Park, Yoonseok; Berger, Jana; Tang, Zheng; Müller-Meskamp, Lars; Lasagni, Andrés Fabián; Vandewal, Koen; Leo, Karl (2016-08-29). <a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.4962206">"Flexible, light trapping substrates for organic photovoltaics"</a>. <i>Applied Physics Letters</i>. <b>109</b> (9): 093301. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016ApPhL.109i3301P">2016ApPhL.109i3301P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.4962206">10.1063/1.4962206</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-6951">0003-6951</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Physics+Letters&amp;rft.atitle=Flexible%2C+light+trapping+substrates+for+organic+photovoltaics&amp;rft.volume=109&amp;rft.issue=9&amp;rft.pages=093301&amp;rft.date=2016-08-29&amp;rft.issn=0003-6951&amp;rft_id=info%3Adoi%2F10.1063%2F1.4962206&amp;rft_id=info%3Abibcode%2F2016ApPhL.109i3301P&amp;rft.aulast=Park&amp;rft.aufirst=Yoonseok&amp;rft.au=Berger%2C+Jana&amp;rft.au=Tang%2C+Zheng&amp;rft.au=M%C3%BCller-Meskamp%2C+Lars&amp;rft.au=Lasagni%2C+Andr%C3%A9s+Fabi%C3%A1n&amp;rft.au=Vandewal%2C+Koen&amp;rft.au=Leo%2C+Karl&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1063%252F1.4962206&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüller-MeskampKimRochHofmann2012" class="citation journal cs1">Müller-Meskamp, Lars; Kim, Yong Hyun; Roch, Teja; Hofmann, Simone; Scholz, Reinhard; Eckardt, Sebastian; Leo, Karl; Lasagni, Andrés Fabián (2012-02-14). "Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning". <i>Advanced Materials</i>. <b>24</b> (7): <span class="nowrap">906–</span>910. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AdM....24..906M">2012AdM....24..906M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201104331">10.1002/adma.201104331</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1521-4095">1521-4095</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22403830">22403830</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19890510">19890510</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Efficiency+Enhancement+of+Organic+Solar+Cells+by+Fabricating+Periodic+Surface+Textures+using+Direct+Laser+Interference+Patterning&amp;rft.volume=24&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E906-%3C%2Fspan%3E910&amp;rft.date=2012-02-14&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19890510%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2012AdM....24..906M&amp;rft.issn=1521-4095&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.201104331&amp;rft_id=info%3Apmid%2F22403830&amp;rft.aulast=M%C3%BCller-Meskamp&amp;rft.aufirst=Lars&amp;rft.au=Kim%2C+Yong+Hyun&amp;rft.au=Roch%2C+Teja&amp;rft.au=Hofmann%2C+Simone&amp;rft.au=Scholz%2C+Reinhard&amp;rft.au=Eckardt%2C+Sebastian&amp;rft.au=Leo%2C+Karl&amp;rft.au=Lasagni%2C+Andr%C3%A9s+Fabi%C3%A1n&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkNehmMüller-MeskampVandewal2016" class="citation journal cs1">Park, Yoonseok; Nehm, Frederik; Müller-Meskamp, Lars; Vandewal, Koen; Leo, Karl (2016-05-16). <a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOE.24.00A974">"Optical display film as flexible and light trapping substrate for organic photovoltaics"</a>. <i>Optics Express</i>. <b>24</b> (10): A974-80. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016OExpr..24A.974P">2016OExpr..24A.974P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FOE.24.00A974">10.1364/OE.24.00A974</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1094-4087">1094-4087</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27409970">27409970</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Optics+Express&amp;rft.atitle=Optical+display+film+as+flexible+and+light+trapping+substrate+for+organic+photovoltaics&amp;rft.volume=24&amp;rft.issue=10&amp;rft.pages=A974-80&amp;rft.date=2016-05-16&amp;rft_id=info%3Adoi%2F10.1364%2FOE.24.00A974&amp;rft.issn=1094-4087&amp;rft_id=info%3Apmid%2F27409970&amp;rft_id=info%3Abibcode%2F2016OExpr..24A.974P&amp;rft.aulast=Park&amp;rft.aufirst=Yoonseok&amp;rft.au=Nehm%2C+Frederik&amp;rft.au=M%C3%BCller-Meskamp%2C+Lars&amp;rft.au=Vandewal%2C+Koen&amp;rft.au=Leo%2C+Karl&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1364%252FOE.24.00A974&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeileyMcGehee2012" class="citation journal cs1">Beiley, Zach M.; McGehee, Michael D. (2012). "Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%". <i>Energy &amp; Environmental Science</i>. <b>5</b> (11): 9173. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC2EE23073A">10.1039/C2EE23073A</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Modeling+low+cost+hybrid+tandem+photovoltaics+with+the+potential+for+efficiencies+exceeding+20%25&amp;rft.volume=5&amp;rft.issue=11&amp;rft.pages=9173&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1039%2FC2EE23073A&amp;rft.aulast=Beiley&amp;rft.aufirst=Zach+M.&amp;rft.au=McGehee%2C+Michael+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMargulisChristoforoLamBeiley2013" class="citation journal cs1">Margulis, George Y.; Christoforo, M. Greyson; Lam, David; Beiley, Zach M.; Bowring, Andrea R.; Bailie, Colin D.; Salleo, Alberto; McGehee, Michael D. (2013-12-01). "Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells". <i>Advanced Energy Materials</i>. <b>3</b> (12): <span class="nowrap">1657–</span>1663. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013AdEnM...3.1657M">2013AdEnM...3.1657M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201300660">10.1002/aenm.201300660</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8781905">8781905</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=Spray+Deposition+of+Silver+Nanowire+Electrodes+for+Semitransparent+Solid-State+Dye-Sensitized+Solar+Cells&amp;rft.volume=3&amp;rft.issue=12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1657-%3C%2Fspan%3E1663&amp;rft.date=2013-12-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8781905%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201300660&amp;rft_id=info%3Abibcode%2F2013AdEnM...3.1657M&amp;rft.aulast=Margulis&amp;rft.aufirst=George+Y.&amp;rft.au=Christoforo%2C+M.+Greyson&amp;rft.au=Lam%2C+David&amp;rft.au=Beiley%2C+Zach+M.&amp;rft.au=Bowring%2C+Andrea+R.&amp;rft.au=Bailie%2C+Colin+D.&amp;rft.au=Salleo%2C+Alberto&amp;rft.au=McGehee%2C+Michael+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVijayRaoNarayan2011" class="citation journal cs1">Vijay, Venugopalan; Rao, Arun D.; Narayan, K. S. (2011-04-15). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1063/1.3580514">"<i>In situ</i> studies of strain dependent transport properties of conducting polymers on elastomeric substrates"</a>. <i>Journal of Applied Physics</i>. <b>109</b> (8): 084525–084525–6. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JAP...109h4525V">2011JAP...109h4525V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3580514">10.1063/1.3580514</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-8979">0021-8979</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Applied+Physics&amp;rft.atitle=In+situ+studies+of+strain+dependent+transport+properties+of+conducting+polymers+on+elastomeric+substrates&amp;rft.volume=109&amp;rft.issue=8&amp;rft.pages=084525-084525-6&amp;rft.date=2011-04-15&amp;rft.issn=0021-8979&amp;rft_id=info%3Adoi%2F10.1063%2F1.3580514&amp;rft_id=info%3Abibcode%2F2011JAP...109h4525V&amp;rft.aulast=Vijay&amp;rft.aufirst=Venugopalan&amp;rft.au=Rao%2C+Arun+D.&amp;rft.au=Narayan%2C+K.+S.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1063%2F1.3580514&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrunerMillerMcGeheeDauskardt2013" class="citation journal cs1">Bruner, Christopher; Miller, Nichole C.; McGehee, Michael D.; Dauskardt, Reinhold H. (2013-01-17). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1002/adfm.201202969">"Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices"</a>. <i>Advanced Functional Materials</i>. <b>23</b> (22): <span class="nowrap">2863–</span>2871. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.201202969">10.1002/adfm.201202969</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1616-301X">1616-301X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:93941136">93941136</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Molecular+Intercalation+and+Cohesion+of+Organic+Bulk+Heterojunction+Photovoltaic+Devices&amp;rft.volume=23&amp;rft.issue=22&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2863-%3C%2Fspan%3E2871&amp;rft.date=2013-01-17&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A93941136%23id-name%3DS2CID&amp;rft.issn=1616-301X&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.201202969&amp;rft.aulast=Bruner&amp;rft.aufirst=Christopher&amp;rft.au=Miller%2C+Nichole+C.&amp;rft.au=McGehee%2C+Michael+D.&amp;rft.au=Dauskardt%2C+Reinhold+H.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1002%2Fadfm.201202969&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrunerDauskardt2014" class="citation journal cs1">Bruner, Christopher; Dauskardt, Reinhold (2014-01-24). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1021/ma402215j">"Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells"</a>. <i>Macromolecules</i>. <b>47</b> (3): <span class="nowrap">1117–</span>1121. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014MaMol..47.1117B">2014MaMol..47.1117B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fma402215j">10.1021/ma402215j</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0024-9297">0024-9297</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Macromolecules&amp;rft.atitle=Role+of+Molecular+Weight+on+the+Mechanical+Device+Properties+of+Organic+Polymer+Solar+Cells&amp;rft.volume=47&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1117-%3C%2Fspan%3E1121&amp;rft.date=2014-01-24&amp;rft.issn=0024-9297&amp;rft_id=info%3Adoi%2F10.1021%2Fma402215j&amp;rft_id=info%3Abibcode%2F2014MaMol..47.1117B&amp;rft.aulast=Bruner&amp;rft.aufirst=Christopher&amp;rft.au=Dauskardt%2C+Reinhold&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1021%2Fma402215j&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrandBrunerDauskardt2012" class="citation journal cs1">Brand, Vitali; Bruner, Christopher; Dauskardt, Reinhold H. (April 2012). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.solmat.2011.11.035">"Cohesion and device reliability in organic bulk heterojunction photovoltaic cells"</a>. <i>Solar Energy Materials and Solar Cells</i>. <b>99</b>: <span class="nowrap">182–</span>189. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012SEMSC..99..182B">2012SEMSC..99..182B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.solmat.2011.11.035">10.1016/j.solmat.2011.11.035</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0927-0248">0927-0248</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solar+Energy+Materials+and+Solar+Cells&amp;rft.atitle=Cohesion+and+device+reliability+in+organic+bulk+heterojunction+photovoltaic+cells&amp;rft.volume=99&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E182-%3C%2Fspan%3E189&amp;rft.date=2012-04&amp;rft.issn=0927-0248&amp;rft_id=info%3Adoi%2F10.1016%2Fj.solmat.2011.11.035&amp;rft_id=info%3Abibcode%2F2012SEMSC..99..182B&amp;rft.aulast=Brand&amp;rft.aufirst=Vitali&amp;rft.au=Bruner%2C+Christopher&amp;rft.au=Dauskardt%2C+Reinhold+H.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.solmat.2011.11.035&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStaffordHarrisonBeersKarim2004" class="citation journal cs1">Stafford, Christopher M.; Harrison, Christopher; Beers, Kathryn L.; Karim, Alamgir; Amis, Eric J.; VanLandingham, Mark R.; Kim, Ho-Cheol; Volksen, Willi; Miller, Robert D.; Simonyi, Eva E. (2004-07-11). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1038/nmat1175">"A buckling-based metrology for measuring the elastic moduli of polymeric thin films"</a>. <i>Nature Materials</i>. <b>3</b> (8): <span class="nowrap">545–</span>550. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004NatMa...3..545S">2004NatMa...3..545S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat1175">10.1038/nmat1175</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-1122">1476-1122</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15247909">15247909</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6413911">6413911</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Materials&amp;rft.atitle=A+buckling-based+metrology+for+measuring+the+elastic+moduli+of+polymeric+thin+films&amp;rft.volume=3&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E545-%3C%2Fspan%3E550&amp;rft.date=2004-07-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6413911%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2004NatMa...3..545S&amp;rft.issn=1476-1122&amp;rft_id=info%3Adoi%2F10.1038%2Fnmat1175&amp;rft_id=info%3Apmid%2F15247909&amp;rft.aulast=Stafford&amp;rft.aufirst=Christopher+M.&amp;rft.au=Harrison%2C+Christopher&amp;rft.au=Beers%2C+Kathryn+L.&amp;rft.au=Karim%2C+Alamgir&amp;rft.au=Amis%2C+Eric+J.&amp;rft.au=VanLandingham%2C+Mark+R.&amp;rft.au=Kim%2C+Ho-Cheol&amp;rft.au=Volksen%2C+Willi&amp;rft.au=Miller%2C+Robert+D.&amp;rft.au=Simonyi%2C+Eva+E.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1038%2Fnmat1175&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoiKimKimKim2019" class="citation journal cs1">Choi, Joonhyeong; Kim, Wansun; Kim, Seonha; Kim, Taek-Soo; Kim, Bumjoon J. (2019). "Influence of Acceptor Type and Polymer Molecular Weight on the Mechanical Properties of Polymer Solar Cells". <i>Chemistry of Materials</i>. <b>31</b> (21): <span class="nowrap">9057–</span>9069. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemmater.9b03333">10.1021/acs.chemmater.9b03333</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:208694659">208694659</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemistry+of+Materials&amp;rft.atitle=Influence+of+Acceptor+Type+and+Polymer+Molecular+Weight+on+the+Mechanical+Properties+of+Polymer+Solar+Cells&amp;rft.volume=31&amp;rft.issue=21&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E9057-%3C%2Fspan%3E9069&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1021%2Facs.chemmater.9b03333&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A208694659%23id-name%3DS2CID&amp;rft.aulast=Choi&amp;rft.aufirst=Joonhyeong&amp;rft.au=Kim%2C+Wansun&amp;rft.au=Kim%2C+Seonha&amp;rft.au=Kim%2C+Taek-Soo&amp;rft.au=Kim%2C+Bumjoon+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span> </span> </li> <li id="cite_note-:2-118"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_118-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_118-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_118-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_118-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYanFacchettiGuoTan2018" class="citation journal cs1">Yan, He; Facchetti, Antonio; Guo, Xugang; Tan, Huei Shuan; Zhang, Jianquan (September 2018). "Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors". <i>Nature Energy</i>. <b>3</b> (9): <span class="nowrap">720–</span>731. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatEn...3..720Z">2018NatEn...3..720Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41560-018-0181-5">10.1038/s41560-018-0181-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2058-7546">2058-7546</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189046590">189046590</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Energy&amp;rft.atitle=Material+insights+and+challenges+for+non-fullerene+organic+solar+cells+based+on+small+molecular+acceptors&amp;rft.volume=3&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E720-%3C%2Fspan%3E731&amp;rft.date=2018-09&amp;rft_id=info%3Adoi%2F10.1038%2Fs41560-018-0181-5&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189046590%23id-name%3DS2CID&amp;rft.issn=2058-7546&amp;rft_id=info%3Abibcode%2F2018NatEn...3..720Z&amp;rft.aulast=Yan&amp;rft.aufirst=He&amp;rft.au=Facchetti%2C+Antonio&amp;rft.au=Guo%2C+Xugang&amp;rft.au=Tan%2C+Huei+Shuan&amp;rft.au=Zhang%2C+Jianquan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuJiangJinQin2020" class="citation journal cs1">Liu, Qishi; Jiang, Yufan; Jin, Ke; Qin, Jianqiang; Xu, Jingui; Li, Wenting; Xiong, Ji; Liu, Jinfeng; Xiao, Zuo; Sun, Kuan; Yang, Shangfeng; Zhang, Xiaotao; Ding, Liming (2020). "18% Efficiency organic solar cells". <i>Science Bulletin</i>. <b>65</b> (4): <span class="nowrap">272–</span>275. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020SciBu..65..272L">2020SciBu..65..272L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scib.2020.01.001">10.1016/j.scib.2020.01.001</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36659090">36659090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Bulletin&amp;rft.atitle=18%25+Efficiency+organic+solar+cells&amp;rft.volume=65&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E272-%3C%2Fspan%3E275&amp;rft.date=2020&amp;rft_id=info%3Apmid%2F36659090&amp;rft_id=info%3Adoi%2F10.1016%2Fj.scib.2020.01.001&amp;rft_id=info%3Abibcode%2F2020SciBu..65..272L&amp;rft.aulast=Liu&amp;rft.aufirst=Qishi&amp;rft.au=Jiang%2C+Yufan&amp;rft.au=Jin%2C+Ke&amp;rft.au=Qin%2C+Jianqiang&amp;rft.au=Xu%2C+Jingui&amp;rft.au=Li%2C+Wenting&amp;rft.au=Xiong%2C+Ji&amp;rft.au=Liu%2C+Jinfeng&amp;rft.au=Xiao%2C+Zuo&amp;rft.au=Sun%2C+Kuan&amp;rft.au=Yang%2C+Shangfeng&amp;rft.au=Zhang%2C+Xiaotao&amp;rft.au=Ding%2C+Liming&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenZhangChenZeng2021" class="citation journal cs1">Chen, Haiyang; Zhang, Rui; Chen, Xiaobin; Zeng, Guang; Kobera, Libor; Abbrent, Sabina; Zhang, Ben; Chen, Weijie; Xu, Guiying; Oh, Jiyeon; Kang, So-Huei; Chen, ShanShan; Yang, Changduk; Brus, Jiri; Hou, Jianhui; Gao, Feng; Li, Yaowen; Li, Yongfang (November 2021). "A guest-assisted molecular-organization approach for &gt;17% efficiency organic solar cells using environmentally friendly solvents". <i>Nature Energy</i>. <b>6</b> (11): <span class="nowrap">1045–</span>1053. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NatEn...6.1045C">2021NatEn...6.1045C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41560-021-00923-5">10.1038/s41560-021-00923-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:240450956">240450956</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Energy&amp;rft.atitle=A+guest-assisted+molecular-organization+approach+for+%3E17%25+efficiency+organic+solar+cells+using+environmentally+friendly+solvents&amp;rft.volume=6&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1045-%3C%2Fspan%3E1053&amp;rft.date=2021-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A240450956%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41560-021-00923-5&amp;rft_id=info%3Abibcode%2F2021NatEn...6.1045C&amp;rft.aulast=Chen&amp;rft.aufirst=Haiyang&amp;rft.au=Zhang%2C+Rui&amp;rft.au=Chen%2C+Xiaobin&amp;rft.au=Zeng%2C+Guang&amp;rft.au=Kobera%2C+Libor&amp;rft.au=Abbrent%2C+Sabina&amp;rft.au=Zhang%2C+Ben&amp;rft.au=Chen%2C+Weijie&amp;rft.au=Xu%2C+Guiying&amp;rft.au=Oh%2C+Jiyeon&amp;rft.au=Kang%2C+So-Huei&amp;rft.au=Chen%2C+ShanShan&amp;rft.au=Yang%2C+Changduk&amp;rft.au=Brus%2C+Jiri&amp;rft.au=Hou%2C+Jianhui&amp;rft.au=Gao%2C+Feng&amp;rft.au=Li%2C+Yaowen&amp;rft.au=Li%2C+Yongfang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSunWuYangGao2022" class="citation journal cs1">Sun, Rui; Wu, Yao; Yang, Xinrong; Gao, Yuan; Chen, Zeng; Li, Kai; Qiao, Jiawei; Wang, Tao; Guo, Jing; Liu, Chao; Hao, Xiaotao; Zhu, Haiming; Min, Jie (April 2022). "Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor". <i>Advanced Materials</i>. <b>34</b> (26): e2110147. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022AdM....3410147S">2022AdM....3410147S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.202110147">10.1002/adma.202110147</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35438225">35438225</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248242142">248242142</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Single-Junction+Organic+Solar+Cells+with+19.17%25+Efficiency+Enabled+by+Introducing+One+Asymmetric+Guest+Acceptor&amp;rft.volume=34&amp;rft.issue=26&amp;rft.pages=e2110147&amp;rft.date=2022-04&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.202110147&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248242142%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F35438225&amp;rft_id=info%3Abibcode%2F2022AdM....3410147S&amp;rft.aulast=Sun&amp;rft.aufirst=Rui&amp;rft.au=Wu%2C+Yao&amp;rft.au=Yang%2C+Xinrong&amp;rft.au=Gao%2C+Yuan&amp;rft.au=Chen%2C+Zeng&amp;rft.au=Li%2C+Kai&amp;rft.au=Qiao%2C+Jiawei&amp;rft.au=Wang%2C+Tao&amp;rft.au=Guo%2C+Jing&amp;rft.au=Liu%2C+Chao&amp;rft.au=Hao%2C+Xiaotao&amp;rft.au=Zhu%2C+Haiming&amp;rft.au=Min%2C+Jie&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-:3-122"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_122-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_122-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:3_122-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollinsRanHeiberNguyen2017" class="citation journal cs1">Collins, Samuel D.; Ran, Niva A.; Heiber, Michael C.; Nguyen, Thuc-Quyen (May 2017). "Small is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells". <i>Advanced Energy Materials</i>. <b>7</b> (10): 1602242. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017AdEnM...702242C">2017AdEnM...702242C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201602242">10.1002/aenm.201602242</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125931498">125931498</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=Small+is+Powerful%3A+Recent+Progress+in+Solution-Processed+Small+Molecule+Solar+Cells&amp;rft.volume=7&amp;rft.issue=10&amp;rft.pages=1602242&amp;rft.date=2017-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125931498%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201602242&amp;rft_id=info%3Abibcode%2F2017AdEnM...702242C&amp;rft.aulast=Collins&amp;rft.aufirst=Samuel+D.&amp;rft.au=Ran%2C+Niva+A.&amp;rft.au=Heiber%2C+Michael+C.&amp;rft.au=Nguyen%2C+Thuc-Quyen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></span> </li> <li id="cite_note-DOE2023-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-DOE2023_123-0">^</a></b></span> <span class="reference-text">U.S. Department of Energy. (2023). "Advancements in bulk heterojunction solar cells: The role of non-fullerene acceptors." *Energy Research Updates*. Retrieved from <a rel="nofollow" class="external autonumber" href="https://www.energy.gov/eere/solar/organic-photovoltaics-research">[2]</a>(<a rel="nofollow" class="external free" href="https://www.energy.gov/eere/solar/organic-photovoltaics-research">https://www.energy.gov/eere/solar/organic-photovoltaics-research</a>)</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=36" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><i>Electronic Processes in Organic Crystals and Polymers, 2 ed. </i> by Martin Pope and Charles E. Swenberg, Oxford University Press (1999), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-19-512963-6" title="Special:BookSources/0-19-512963-6">0-19-512963-6</a></li> <li><i>Organic Photovoltaics</i> by Christoph Brabec, Vladimir Dyakonov, Jürgen Parisi and Niyazi Serdar Sariciftci (eds.), Springer Verlag (Berlin, 2003), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-00405-X" title="Special:BookSources/3-540-00405-X">3-540-00405-X</a></li> <li><i>Organic Photovoltaics: Mechanisms, Materials, and Devices (Optical Engineering)</i> by Sam-Shajing Sun and Niyazi Serdar Sariciftci (eds.), CRC Press (2005), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8247-5963-X" title="Special:BookSources/0-8247-5963-X">0-8247-5963-X</a></li> <li><i>Handbook of Organic Electronics and Photonics</i> (3-Volume Set) by Hari Singh Nalwa, American Scientific Publishers. (2008), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-58883-095-0" title="Special:BookSources/1-58883-095-0">1-58883-095-0</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreenEmeryHishikawaWarta2010" class="citation journal cs1">Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro; Warta, Wilhelm (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpip.1021">"Solar cell efficiency tables (version 36)"</a>. <i>Progress in Photovoltaics: Research and Applications</i>. <b>18</b> (5): <span class="nowrap">346–</span>352. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpip.1021">10.1002/pip.1021</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Photovoltaics%3A+Research+and+Applications&amp;rft.atitle=Solar+cell+efficiency+tables+%28version+36%29&amp;rft.volume=18&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E346-%3C%2Fspan%3E352&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1002%2Fpip.1021&amp;rft.aulast=Green&amp;rft.aufirst=Martin+A.&amp;rft.au=Emery%2C+Keith&amp;rft.au=Hishikawa%2C+Yoshihiro&amp;rft.au=Warta%2C+Wilhelm&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fpip.1021&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSariciftciSmilowitzHeegerWudl1992" class="citation journal cs1">Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. (1992). "Photoinduced Electron Transfer from Conducting Polymers onto Buckminsterfullerene". <i>Science</i>. <b>258</b> (5087): <span class="nowrap">1474–</span>1476. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992Sci...258.1474S">1992Sci...258.1474S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.258.5087.1474">10.1126/science.258.5087.1474</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17755110">17755110</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:44646344">44646344</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Photoinduced+Electron+Transfer+from+Conducting+Polymers+onto+Buckminsterfullerene&amp;rft.volume=258&amp;rft.issue=5087&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1474-%3C%2Fspan%3E1476&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.258.5087.1474&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A44646344%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17755110&amp;rft_id=info%3Abibcode%2F1992Sci...258.1474S&amp;rft.aulast=Sariciftci&amp;rft.aufirst=N.S.&amp;rft.au=Smilowitz%2C+L.&amp;rft.au=Heeger%2C+A.J.&amp;rft.au=Wudl%2C+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></li> <li>N.S. Sariciftci, A.J. Heeger, Photophysics, charge separation and device applications of conjugated polymer/fullerene composites, in <i>Handbook of Organic Conductive Molecules and Polymers</i>, edited by H.S.Nalwa, <b>1</b>, Wiley, Chichester, New York, 1997, Ch. 8, p.p.&#160;413–455</li> <li>"Plastic Solar Cells" <a href="/wiki/Christoph_J._Brabec" title="Christoph J. Brabec">Christoph J. Brabec</a>, N. Serdar Sariciftci, Jan Kees Hummelen, Advanced Functional Materials, Vol. 11 No: 1, pp.&#160;15–26 (2001)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMayerScullyHardinRowell2007" class="citation journal cs1">Mayer, Alex C.; Scully, Shawn R.; Hardin, Brian E.; Rowell, Michael W.; McGehee, Michael D. (2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1369-7021%2807%2970276-6">"Polymer-based solar cells"</a>. <i>Materials Today</i>. <b>10</b> (11): <span class="nowrap">28–</span>33. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1369-7021%2807%2970276-6">10.1016/S1369-7021(07)70276-6</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+Today&amp;rft.atitle=Polymer-based+solar+cells&amp;rft.volume=10&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E28-%3C%2Fspan%3E33&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1016%2FS1369-7021%2807%2970276-6&amp;rft.aulast=Mayer&amp;rft.aufirst=Alex+C.&amp;rft.au=Scully%2C+Shawn+R.&amp;rft.au=Hardin%2C+Brian+E.&amp;rft.au=Rowell%2C+Michael+W.&amp;rft.au=McGehee%2C+Michael+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS1369-7021%252807%252970276-6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrganic+solar+cell" class="Z3988"></span></li> <li>H. Hoppe and N. S. Sariciftci, Polymer Solar Cells, p.&#160;1–86, in Photoresponsive Polymers II, Eds.: S. R. Marder and K.-S. Lee, Advances in Polymer Science, Springer, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-69452-6" title="Special:BookSources/978-3-540-69452-6">978-3-540-69452-6</a>, Berlin-Heidelberg (2008)</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Organic_solar_cell&amp;action=edit&amp;section=37" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Organic_solar_cells" class="extiw" title="commons:Category:Organic solar cells">Organic solar cells</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.cam.ac.uk/research/news/electron-spin-key-to-solar-cell-breakthrough-0">"Electron 'spin' key to solar cell breakthrough"</a> (University of Cambridge)</li> <li><a rel="nofollow" class="external free" href="http://search.nrel.gov/query.html?qm=1&amp;charset=utf-8&amp;style=eere&amp;col=eren&amp;qc=eren&amp;ht=815081754&amp;ct=345728017">http://search.nrel.gov/query.html?qm=1&amp;charset=utf-8&amp;style=eere&amp;col=eren&amp;qc=eren&amp;ht=815081754&amp;ct=345728017</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged December 2020">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><a rel="nofollow" class="external text" href="http://www.lios.at/">LIOS – Linzer Institut für Organische Solarzellen, Johannes Kepler Universität Linz, Österreich</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110707004728/http://www.quantsol.unibe.ch/pub/pub_11.htm">Quantsol 1998</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Photovoltaics466" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Photovoltaics" title="Template:Photovoltaics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Photovoltaics" title="Template talk:Photovoltaics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Photovoltaics" title="Special:EditPage/Template:Photovoltaics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Photovoltaics466" style="font-size:114%;margin:0 4em"><a href="/wiki/Photovoltaics" title="Photovoltaics">Photovoltaics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:7em;text-align: left;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Technology</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Photovoltaics" title="Photovoltaics">Photovoltaics</a></li> <li><a href="/wiki/Photoelectric_effect" title="Photoelectric effect">Photoelectric effect</a></li> <li><a href="/wiki/Solar_irradiance" title="Solar irradiance">Solar irradiance</a></li> <li><a href="/wiki/Solar_constant" title="Solar constant">Solar constant</a></li> <li><a href="/wiki/Solar_cell_efficiency" class="mw-redirect" title="Solar cell efficiency">Solar cell efficiency</a> <ul><li><a href="/wiki/Solar_cell_efficiency#Quantum_efficiency" class="mw-redirect" title="Solar cell efficiency">Quantum efficiency</a></li></ul></li> <li><a href="/wiki/Nominal_power_(photovoltaic)" title="Nominal power (photovoltaic)">Nominal power (Watt-peak)</a></li> <li><a href="/wiki/Thin-film_solar_cell" title="Thin-film solar cell">Thin-film solar cell</a></li> <li><a href="/wiki/Multi-junction_solar_cell" title="Multi-junction solar cell">Multi-junction solar cell</a></li> <li><a href="/wiki/Third-generation_photovoltaic_cell" title="Third-generation photovoltaic cell">Third-generation photovoltaic cell</a></li> <li><a href="/wiki/Solar_cell_research" title="Solar cell research">Solar cell research</a></li> <li><a href="/wiki/Thermophotovoltaic" class="mw-redirect" title="Thermophotovoltaic">Thermophotovoltaic</a></li> <li><a href="/wiki/Thermodynamic_efficiency_limit" title="Thermodynamic efficiency limit">Thermodynamic efficiency limit</a></li> <li><a href="/wiki/Sun-free_photovoltaics" title="Sun-free photovoltaics">Sun-free photovoltaics</a></li> <li><a href="/wiki/Polarizing_organic_photovoltaics" title="Polarizing organic photovoltaics">Polarizing organic photovoltaics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Materials</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_semiconductor_materials" title="List of semiconductor materials">List of semiconductor materials</a></li> <li><a href="/wiki/Crystalline_silicon" title="Crystalline silicon">Crystalline silicon (c-Si)</a></li> <li><a href="/wiki/Polycrystalline_silicon" title="Polycrystalline silicon">Polycrystalline silicon (multi-Si)</a></li> <li><a href="/wiki/Monocrystalline_silicon" title="Monocrystalline silicon">Monocrystalline silicon (mono-Si)</a></li> <li><a href="/wiki/Cadmium_telluride" title="Cadmium telluride">Cadmium telluride</a></li> <li><a href="/wiki/Copper_indium_gallium_selenide" title="Copper indium gallium selenide">Copper indium gallium selenide</a></li> <li><a href="/wiki/Amorphous_silicon" title="Amorphous silicon">Amorphous silicon (a-Si)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">History</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Growth_of_photovoltaics" title="Growth of photovoltaics">Growth of photovoltaics</a></li> <li><a href="/wiki/Timeline_of_solar_cells" title="Timeline of solar cells">Timeline of solar cells</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:7em;text-align: left;"><a href="/wiki/Photovoltaic_system" title="Photovoltaic system">Photovoltaic<br />system</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;"><a href="/wiki/Solar_cell" title="Solar cell">Solar cells</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nanocrystal_solar_cell" title="Nanocrystal solar cell">Nanocrystal solar cell</a></li> <li><a class="mw-selflink selflink">Organic solar cell</a></li> <li><a href="/wiki/Quantum_dot_solar_cell" title="Quantum dot solar cell">Quantum dot solar cell</a></li> <li><a href="/wiki/Hybrid_solar_cell" title="Hybrid solar cell">Hybrid solar cell</a></li> <li><a href="/wiki/Plasmonic_solar_cell" title="Plasmonic solar cell">Plasmonic solar cell</a></li> <li><a href="/wiki/Carbon_nanotubes_in_photovoltaics" title="Carbon nanotubes in photovoltaics">Carbon nanotubes in photovoltaics</a></li> <li><a href="/wiki/Dye-sensitized_solar_cell" title="Dye-sensitized solar cell">Dye-sensitized solar cell</a></li> <li><a href="/wiki/Cadmium_telluride_photovoltaics" title="Cadmium telluride photovoltaics">Cadmium telluride photovoltaics</a></li> <li><a href="/wiki/Copper_indium_gallium_selenide_solar_cells" class="mw-redirect" title="Copper indium gallium selenide solar cells">Copper indium gallium selenide solar cells</a></li> <li><a href="/wiki/Printed_solar_panel" class="mw-redirect" title="Printed solar panel">Printed solar panel</a></li> <li><a href="/wiki/Perovskite_solar_cell" title="Perovskite solar cell">Perovskite solar cell</a></li> <li><a href="/wiki/Heterojunction_solar_cell" title="Heterojunction solar cell">Heterojunction solar cell</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">System components</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_panel" title="Solar panel">Solar panel</a></li> <li><a href="/wiki/Balance_of_system" title="Balance of system">Balance of system</a></li> <li><a href="/wiki/Solar_charge_controller" class="mw-redirect" title="Solar charge controller">Solar charge controller</a></li> <li><a href="/wiki/Solar_inverter" title="Solar inverter">Solar inverter</a></li> <li><a href="/wiki/Photovoltaic_mounting_system" title="Photovoltaic mounting system">Photovoltaic mounting system</a></li> <li><a href="/wiki/Solar_tracker" title="Solar tracker">Solar tracker</a></li> <li><a href="/wiki/Solar_shingles" class="mw-redirect" title="Solar shingles">Solar shingles</a></li> <li><a href="/wiki/Solar_mirror#Photovoltaic_augmentation" title="Solar mirror">Solar mirror</a></li> <li><a href="/wiki/Synchronverter" title="Synchronverter">Synchronverter</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">System concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Maximum_power_point_tracking" title="Maximum power point tracking">Maximum power point tracking</a></li> <li><a href="/wiki/Fill_factor_(solar_cell)" class="mw-redirect" title="Fill factor (solar cell)">Fill factor</a></li> <li><a href="/wiki/Concentrated_photovoltaics" class="mw-redirect" title="Concentrated photovoltaics">Concentrated photovoltaics</a></li> <li><a href="/wiki/Photovoltaic_thermal_hybrid_solar_collector" title="Photovoltaic thermal hybrid solar collector">Photovoltaic thermal hybrid solar collector</a></li> <li><a href="/wiki/Space-based_solar_power" title="Space-based solar power">Space-based solar power</a></li> <li><a href="/wiki/Photovoltaic_system_performance" title="Photovoltaic system performance">PV system performance</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:7em;text-align: left;"><a href="/wiki/List_of_solar-powered_products" title="List of solar-powered products">Applications</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Appliances</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar-powered_refrigerator" title="Solar-powered refrigerator">Solar-powered refrigerator</a></li> <li><a href="/wiki/Solar_air_conditioning#Photovoltaic_(PV)_solar_cooling" title="Solar air conditioning">Solar air conditioning</a></li> <li><a href="/wiki/Solar_lamp" title="Solar lamp">Solar lamp</a></li> <li><a href="/wiki/Solar_charger" title="Solar charger">Solar charger</a></li> <li><a href="/wiki/Solar-powered_pump" title="Solar-powered pump">Solar-powered pump</a></li> <li><a href="/wiki/Solar-powered_watch" title="Solar-powered watch">Solar-powered watch</a></li> <li><a href="/wiki/Solar_Tuki" title="Solar Tuki">Solar Tuki</a></li> <li><a href="/wiki/Photovoltaic_keyboard" title="Photovoltaic keyboard">Photovoltaic keyboard</a></li> <li><a href="/wiki/Solar_road_stud" title="Solar road stud">Solar road stud</a></li> <li><a href="/wiki/Solar-powered_calculator" title="Solar-powered calculator">Solar-powered calculator</a></li> <li><a href="/wiki/Solar-powered_radio" title="Solar-powered radio">Solar-powered radio</a></li> <li><a href="/wiki/Solar-powered_flashlight" title="Solar-powered flashlight">Solar-powered flashlight</a></li> <li>Solar-powered fan</li> <li><a href="/wiki/Solar_street_light" title="Solar street light">Solar street light</a></li> <li><a href="/wiki/Solar_traffic_light" title="Solar traffic light">Solar traffic light</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Land transport</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_vehicle" title="Solar vehicle">Solar vehicle</a></li> <li><a href="/wiki/Solar_car" title="Solar car">Solar car</a></li> <li><a href="/wiki/Solar_roadway" class="mw-redirect" title="Solar roadway">Solar roadway</a></li> <li><a href="/wiki/Solar_golf_cart" class="mw-redirect" title="Solar golf cart">Solar golf cart</a></li> <li><a href="/wiki/The_Quiet_Achiever" title="The Quiet Achiever">The Quiet Achiever</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Air transport</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electric_aircraft" title="Electric aircraft">Electric aircraft</a></li> <li><a href="/wiki/Mauro_Solar_Riser" title="Mauro Solar Riser">Mauro Solar Riser</a></li> <li><a href="/wiki/Solar_panels_on_spacecraft" title="Solar panels on spacecraft">Solar panels on spacecraft</a></li> <li><a href="/wiki/Solar-Powered_Aircraft_Developments_Solar_One" title="Solar-Powered Aircraft Developments Solar One">Solar-Powered Aircraft Developments Solar One</a></li> <li><a href="/wiki/Gossamer_Penguin" class="mw-redirect" title="Gossamer Penguin">Gossamer Penguin</a></li> <li><a href="/wiki/Qinetiq_Zephyr" class="mw-redirect" title="Qinetiq Zephyr">Qinetiq Zephyr</a></li> <li><a href="/wiki/Solar_Challenger" class="mw-redirect" title="Solar Challenger">Solar Challenger</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Water transport</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electric_boat#Types" title="Electric boat">Solar boat</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Solar vehicle racing</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_car_racing" title="Solar car racing">Solar car racing</a></li> <li><a href="/wiki/List_of_solar_car_teams" title="List of solar car teams">List of solar car teams</a></li> <li><a href="/wiki/Solar_challenge_(disambiguation)" class="mw-redirect mw-disambig" title="Solar challenge (disambiguation)">Solar challenges</a></li> <li><a href="/wiki/World_Solar_Challenge" title="World Solar Challenge">World Solar Challenge</a></li> <li><a href="/wiki/American_Solar_Challenge" title="American Solar Challenge">American Solar Challenge</a></li> <li><a href="/wiki/Formula_Sun_Grand_Prix" title="Formula Sun Grand Prix">Formula Sun Grand Prix</a></li> <li><a href="/wiki/Solar_Cup" title="Solar Cup">Solar Cup</a></li> <li><a href="/wiki/Frisian_Solar_Challenge" title="Frisian Solar Challenge">Frisian Solar Challenge</a></li> <li><a href="/wiki/Solar_Splash" title="Solar Splash">Solar Splash</a></li> <li><a href="/wiki/South_African_Solar_Challenge" title="South African Solar Challenge">South African Solar Challenge</a></li> <li><a href="/wiki/Tour_de_Sol" title="Tour de Sol">Tour de Sol</a></li> <li><a href="/wiki/Hunt-Winston_School_Solar_Car_Challenge" class="mw-redirect" title="Hunt-Winston School Solar Car Challenge">Hunt-Winston School Solar Car Challenge</a></li> <li><a href="/wiki/Victorian_Model_Solar_Vehicle_Challenge" title="Victorian Model Solar Vehicle Challenge">Victorian Model Solar Vehicle Challenge</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:7em;text-align: left;"><a href="/wiki/Photovoltaic_power_station" title="Photovoltaic power station">Generation<br />systems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="PV_power_station100" scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;"><a href="/wiki/Photovoltaic_power_station" title="Photovoltaic power station">PV power station</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_photovoltaic_power_stations" title="List of photovoltaic power stations">List of photovoltaic power stations</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Building-mounted</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rooftop_photovoltaic_power_station" class="mw-redirect" title="Rooftop photovoltaic power station">Rooftop photovoltaic power station</a></li> <li><a href="/wiki/Building-integrated_photovoltaics" title="Building-integrated photovoltaics">Building-integrated photovoltaics</a></li> <li><a href="/wiki/Solar_Ark" title="Solar Ark">Solar Ark</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;"><a href="/wiki/Solar_power_by_country" title="Solar power by country">By country</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_power_in_Australia" title="Solar power in Australia">Australia</a></li> <li><a href="/wiki/Solar_power_in_Belgium" title="Solar power in Belgium">Belgium</a></li> <li><a href="/wiki/Solar_power_in_Bulgaria" title="Solar power in Bulgaria">Bulgaria</a></li> <li><a href="/wiki/Solar_power_in_Canada" title="Solar power in Canada">Canada</a></li> <li><a href="/wiki/Solar_power_in_Chile" title="Solar power in Chile">Chile</a></li> <li><a href="/wiki/Solar_power_in_China" title="Solar power in China">China</a></li> <li><a href="/wiki/Solar_power_in_the_Czech_Republic" title="Solar power in the Czech Republic">Czech Republic</a></li> <li><a href="/wiki/Solar_power_in_France" title="Solar power in France">France</a></li> <li><a href="/wiki/Solar_power_in_Germany" title="Solar power in Germany">Germany</a></li> <li><a href="/wiki/Solar_power_in_Greece" title="Solar power in Greece">Greece</a></li> <li><a href="/wiki/Solar_power_in_India" title="Solar power in India">India</a></li> <li><a href="/wiki/Solar_power_in_Italy" title="Solar power in Italy">Italy</a></li> <li><a href="/wiki/Solar_power_in_Japan" title="Solar power in Japan">Japan</a></li> <li><a href="/wiki/Solar_power_in_the_Netherlands" title="Solar power in the Netherlands">Netherlands</a></li> <li><a href="/wiki/Solar_power_in_Romania" title="Solar power in Romania">Romania</a></li> <li><a href="/wiki/Solar_power_in_South_Africa" title="Solar power in South Africa">South Africa</a></li> <li><a href="/wiki/Solar_power_in_Spain" title="Solar power in Spain">Spain</a></li> <li><a href="/wiki/Solar_power_in_Switzerland" title="Solar power in Switzerland">Switzerland</a></li> <li><a href="/wiki/Solar_power_in_Thailand" title="Solar power in Thailand">Thailand</a></li> <li><a href="/wiki/Solar_power_in_the_United_Kingdom" title="Solar power in the United Kingdom">United Kingdom</a></li> <li><a href="/wiki/Solar_power_in_the_United_States" title="Solar power in the United States">US</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:7em;text-align: left;"><a href="/wiki/List_of_photovoltaics_companies" title="List of photovoltaics companies">PV companies</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">By country</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_countries_by_photovoltaics_production" class="mw-redirect" title="List of countries by photovoltaics production">List of countries by photovoltaics production</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:11em;text-align: left;background-color: #eee;">Individual producers</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/First_Solar" title="First Solar">First Solar</a></li> <li><a href="/wiki/Hanwha_Q_CELLS" class="mw-redirect" title="Hanwha Q CELLS">Hanwha Q CELLS</a></li> <li><a href="/wiki/JA_Solar" class="mw-redirect" title="JA Solar">JA Solar</a></li> <li><a href="/wiki/Motech_Solar" class="mw-redirect" title="Motech Solar">Motech Solar</a></li> <li><a href="/wiki/Renewable_Energy_Corporation" title="Renewable Energy Corporation">REC</a></li> <li><a href="/wiki/Sharp_Solar" title="Sharp Solar">Sharp</a></li> <li><a href="/wiki/Solar_Frontier" title="Solar Frontier">Solar Frontier</a></li> <li><a href="/wiki/Solyndra" title="Solyndra">Solyndra</a></li> <li><a href="/wiki/SUNGEN_International_Limited" title="SUNGEN International Limited">Sungen Solar</a></li> <li><a href="/wiki/Sunpower" class="mw-redirect" title="Sunpower">Sunpower</a></li> <li><a href="/wiki/Suntech" class="mw-redirect" title="Suntech">Suntech</a></li> <li><a href="/wiki/Trina_Solar" title="Trina Solar">Trina Solar</a></li> <li><a href="/wiki/Yingli_Solar" class="mw-redirect" title="Yingli Solar">Yingli Solar</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Photovoltaics" title="Category:Photovoltaics">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Photovoltaics" class="extiw" title="commons:Category:Photovoltaics"><b>Commons</b></a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Solar_energy448" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Solar_energy" title="Template:Solar energy"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Solar_energy" title="Template talk:Solar energy"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Solar_energy" title="Special:EditPage/Template:Solar energy"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Solar_energy448" style="font-size:114%;margin:0 4em"><a href="/wiki/Solar_energy" title="Solar energy">Solar energy</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Index_of_solar_energy_articles" title="Index of solar energy articles">Index</a></li> <li><a href="/wiki/Outline_of_solar_energy" title="Outline of solar energy">Outline</a></li> <li><a href="/wiki/Timeline_of_solar_cells" title="Timeline of solar cells">Timeline</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sun" title="Sun">The Sun</a></li> <li><a href="/wiki/Solar_irradiance" title="Solar irradiance">Solar irradiance</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="5" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Gemasolar_Thermosolar_Plant_3.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Gemasolar_Thermosolar_Plant_3.jpg/125px-Gemasolar_Thermosolar_Plant_3.jpg" decoding="async" width="125" height="67" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Gemasolar_Thermosolar_Plant_3.jpg/188px-Gemasolar_Thermosolar_Plant_3.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Gemasolar_Thermosolar_Plant_3.jpg/250px-Gemasolar_Thermosolar_Plant_3.jpg 2x" data-file-width="5015" data-file-height="2700" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:PS10_solar_power_tower.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/PS10_solar_power_tower.jpg/125px-PS10_solar_power_tower.jpg" decoding="async" width="125" height="78" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/PS10_solar_power_tower.jpg/188px-PS10_solar_power_tower.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/PS10_solar_power_tower.jpg/250px-PS10_solar_power_tower.jpg 2x" data-file-width="700" data-file-height="436" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:Planta_Solar_PS20.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Planta_Solar_PS20.jpg/125px-Planta_Solar_PS20.jpg" decoding="async" width="125" height="77" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Planta_Solar_PS20.jpg/188px-Planta_Solar_PS20.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Planta_Solar_PS20.jpg/250px-Planta_Solar_PS20.jpg 2x" data-file-width="4715" data-file-height="2900" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Solar_power" title="Solar power">Solar power</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Solar_thermal_energy" title="Solar thermal energy">Thermal</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Passive_solar_building_design" title="Passive solar building design">Passive solar building design</a></li> <li><a href="/wiki/Solar_air_conditioning" title="Solar air conditioning">Solar air conditioning</a></li> <li><a href="/wiki/Solar_chimney" title="Solar chimney">Solar chimney</a></li> <li><a href="/wiki/Solar_pond" title="Solar pond">Solar pond</a></li> <li><a href="/wiki/Solar_water_heating" title="Solar water heating">Solar water heating</a></li> <li><a href="/wiki/Thermal_mass" title="Thermal mass">Thermal mass</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Photovoltaics" title="Photovoltaics">Photovoltaics</a><br />and related topics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Concentrator_photovoltaics" title="Concentrator photovoltaics">Concentrator photovoltaics</a></li> <li><a href="/wiki/Floating_solar" title="Floating solar">Floating solar</a></li> <li><a href="/wiki/Nanocrystal_solar_cell" title="Nanocrystal solar cell">Nanocrystal solar cell</a></li> <li><a class="mw-selflink selflink">Organic solar cell</a></li> <li><a href="/wiki/Photovoltaic_system" title="Photovoltaic system">Photovoltaic array</a> (and systems)</li> <li><a href="/wiki/Photovoltaic_effect" title="Photovoltaic effect">Photovoltaic effect</a></li> <li><a href="/wiki/Solar_panel" title="Solar panel">Photovoltaic module</a> (solar panel)</li> <li><a href="/wiki/Photovoltaic_power_station" title="Photovoltaic power station">Photovoltaic power station</a></li> <li><a href="/wiki/Solar_cell" title="Solar cell">Solar cell</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Concentrated_solar_power" title="Concentrated solar power">Concentrated</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Concentrator_photovoltaics" title="Concentrator photovoltaics">Concentrator photovoltaics</a></li> <li><a href="/wiki/Heliostat" title="Heliostat">Heliostat</a></li> <li><a href="/wiki/Parabolic_trough" title="Parabolic trough">Parabolic trough</a></li> <li><a href="/wiki/Solar_power_tower" title="Solar power tower">Solar power tower</a></li> <li><a href="/wiki/Solar_tracker" title="Solar tracker">Solar tracker</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experimental<br />and proposed</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_chemical" title="Solar chemical">Solar chemical</a> and <a href="/wiki/Artificial_photosynthesis" title="Artificial photosynthesis">artificial photosynthesis</a></li> <li><a href="/wiki/Solar-pumped_laser" title="Solar-pumped laser">Solar-pumped laser</a></li> <li><a href="/wiki/Solar_updraft_tower" title="Solar updraft tower">Solar updraft tower</a></li> <li><a href="/wiki/Thermoelectric_generator" title="Thermoelectric generator">Thermoelectric generator</a></li> <li>Space-related <ul><li><a href="/wiki/Magnetic_sail" title="Magnetic sail">Magnetic sail</a></li> <li><a href="/wiki/Solar_sail" title="Solar sail">Solar sail</a></li> <li><a href="/wiki/Solar_thermal_rocket" title="Solar thermal rocket">Solar thermal rocket</a></li> <li><a href="/wiki/Space-based_solar_power" title="Space-based solar power">Space-based solar power</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Solar_power_by_country" title="Solar power by country">By country</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_power_in_Albania" class="mw-redirect" title="Solar power in Albania">Albania</a></li> <li><a href="/wiki/Solar_power_in_Armenia" title="Solar power in Armenia">Armenia</a></li> <li><a href="/wiki/Solar_power_in_Australia" title="Solar power in Australia">Australia</a></li> <li><a href="/wiki/Solar_power_in_Austria" title="Solar power in Austria">Austria</a></li> <li><a href="/wiki/Solar_power_in_Belgium" title="Solar power in Belgium">Belgium</a></li> <li><a href="/wiki/Solar_power_in_Brazil" title="Solar power in Brazil">Brazil</a></li> <li><a href="/wiki/Solar_power_in_Canada" title="Solar power in Canada">Canada</a></li> <li><a href="/wiki/Solar_power_in_China" title="Solar power in China">China</a></li> <li><a href="/wiki/Solar_power_in_the_Czech_Republic" title="Solar power in the Czech Republic">Czech Republic</a></li> <li><a href="/wiki/Solar_power_in_Denmark" title="Solar power in Denmark">Denmark</a></li> <li><a href="/wiki/Solar_power_in_Georgia_(country)" class="mw-redirect" title="Solar power in Georgia (country)">Georgia</a></li> <li><a href="/wiki/Solar_power_in_Germany" title="Solar power in Germany">Germany</a></li> <li><a href="/wiki/Solar_power_in_Greece" title="Solar power in Greece">Greece</a></li> <li><a href="/wiki/Solar_power_in_India" title="Solar power in India">India</a></li> <li><a href="/wiki/Solar_power_in_Israel" title="Solar power in Israel">Israel</a></li> <li><a href="/wiki/Solar_power_in_Italy" title="Solar power in Italy">Italy</a></li> <li><a href="/wiki/Solar_power_in_Japan" title="Solar power in Japan">Japan</a></li> <li><a href="/wiki/Solar_power_in_Kosovo" class="mw-redirect" title="Solar power in Kosovo">Kosovo</a></li> <li><a href="/wiki/Solar_power_in_Lithuania" class="mw-redirect" title="Solar power in Lithuania">Lithuania</a></li> <li><a href="/wiki/Solar_power_in_Mexico" title="Solar power in Mexico">Mexico</a></li> <li><a href="/wiki/Solar_power_in_Morocco" title="Solar power in Morocco">Morocco</a></li> <li><a href="/wiki/Solar_power_in_Myanmar" title="Solar power in Myanmar">Myanmar</a></li> <li><a href="/wiki/Solar_power_in_the_Netherlands" title="Solar power in the Netherlands">Netherlands</a></li> <li><a href="/wiki/Solar_power_in_New_Zealand" title="Solar power in New Zealand">New Zealand</a></li> <li><a href="/wiki/Solar_power_in_Pakistan" title="Solar power in Pakistan">Pakistan</a></li> <li><a href="/wiki/Solar_power_in_Portugal" title="Solar power in Portugal">Portugal</a></li> <li><a href="/wiki/Solar_power_in_Romania" title="Solar power in Romania">Romania</a></li> <li><a href="/wiki/Solar_power_in_Saudi_Arabia" title="Solar power in Saudi Arabia">Saudi Arabia</a></li> <li><a href="/wiki/Solar_power_in_Somalia" title="Solar power in Somalia">Somalia</a></li> <li><a href="/wiki/Solar_power_in_South_Africa" title="Solar power in South Africa">South Africa</a></li> <li><a href="/wiki/Solar_power_in_Spain" title="Solar power in Spain">Spain</a></li> <li><a href="/wiki/Solar_power_in_Thailand" title="Solar power in Thailand">Thailand</a></li> <li><a href="/wiki/Solar_power_in_Turkey" title="Solar power in Turkey">Turkey</a></li> <li><a href="/wiki/Solar_power_in_Ukraine" title="Solar power in Ukraine">Ukraine</a></li> <li><a href="/wiki/Solar_power_in_the_United_Kingdom" title="Solar power in the United Kingdom">United Kingdom</a></li> <li><a href="/wiki/Solar_power_in_the_United_States" title="Solar power in the United States">United States</a></li> <li><a href="/wiki/Solar_power_in_Yemen" title="Solar power in Yemen">Yemen</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Legal</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_Shade_Control_Act" title="Solar Shade Control Act">Solar Shade Control Act</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Distribution<br />and uses</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Storage</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Grid_energy_storage" title="Grid energy storage">Grid energy storage</a></li> <li><a href="/wiki/Phase-change_material" title="Phase-change material">Phase-change material</a></li> <li><a href="/wiki/Thermal_energy_storage" title="Thermal energy storage">Thermal energy storage</a> <ul><li><a href="/wiki/Seasonal_thermal_energy_storage" title="Seasonal thermal energy storage">seasonal</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Adoption</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cost_of_electricity_by_source" title="Cost of electricity by source">Cost by source</a></li> <li><a href="/wiki/Feed-in_tariff" title="Feed-in tariff">Feed-in tariff</a></li> <li><a href="/wiki/Financial_incentives_for_photovoltaics" title="Financial incentives for photovoltaics">Financial incentives for photovoltaics</a></li> <li><a href="/wiki/Net_metering" title="Net metering">Net metering</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electric_aircraft" title="Electric aircraft">Electric aircraft</a></li> <li><a href="/wiki/Electric_boat" title="Electric boat">Electric boat</a></li> <li><a href="/wiki/Solar_balloon" title="Solar balloon">Solar balloon</a></li> <li><a href="/wiki/Solar_vehicle" title="Solar vehicle">Solar vehicle</a></li> <li><a href="/wiki/Solar_water_heating" title="Solar water heating">Solar water heating</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Agriculture" title="Agriculture">Agriculture</a><br />and <a href="/wiki/Horticulture" title="Horticulture">horticulture</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Agrivoltaics" title="Agrivoltaics">Agrivoltaic</a></li> <li><a href="/wiki/Greenhouse" title="Greenhouse">Greenhouse</a></li> <li><a href="/wiki/Polytunnel" title="Polytunnel">Polytunnel</a></li> <li><a href="/wiki/Row_cover" title="Row cover">Row cover</a></li> <li><a href="/wiki/Solar-powered_pump" title="Solar-powered pump">Solar-powered pump</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Building</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Building-integrated_photovoltaics" title="Building-integrated photovoltaics">Building-integrated photovoltaics</a></li> <li><a href="/wiki/Passive_solar_building_design" title="Passive solar building design">Passive solar building design</a></li> <li><a href="/wiki/Urban_heat_island" title="Urban heat island">Urban heat island</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lighting</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Daylighting_(architecture)" title="Daylighting (architecture)">Daylighting</a></li> <li><a href="/wiki/Hybrid_solar_lighting" title="Hybrid solar lighting">Hybrid solar lighting</a></li> <li><a href="/wiki/Light_tube" title="Light tube">Light tube</a></li> <li><a href="/wiki/Solar_lamp" title="Solar lamp">Solar lamp</a></li> <li><a href="/wiki/Solar_Tuki" title="Solar Tuki">Solar Tuki</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Process heat</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Salt_evaporation_pond" title="Salt evaporation pond">Salt evaporation pond</a></li> <li><a href="/wiki/Solar_furnace" title="Solar furnace">Solar furnace</a></li> <li><a href="/wiki/Solar_pond" title="Solar pond">Solar pond</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Cooking</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_cooker" title="Solar cooker">Solar cooker</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Disinfection</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Soil_solarization" title="Soil solarization">Soil solarization</a></li> <li><a href="/wiki/Solar_water_disinfection" title="Solar water disinfection">Solar water disinfection</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Desalination</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Desalination" title="Desalination">Desalination</a></li> <li><a href="/wiki/Solar_still" title="Solar still">Solar still</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Water heating</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_combisystem" title="Solar combisystem">Solar combisystem</a></li> <li><a href="/wiki/Solar_controller" title="Solar controller">Solar controller</a></li> <li><a href="/wiki/Solar_water_heating" title="Solar water heating">Solar water heating</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Template:Photovoltaics" title="Template:Photovoltaics">Photovoltaics</a></li> <li><a href="/wiki/Template:Solar_power_by_country" title="Template:Solar power by country">Solar power by country</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Solar_energy" title="Category:Solar energy">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Solar_energy" class="extiw" title="commons:Category:Solar energy">Commons</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐778cc5cc6f‐9ctb7 Cached time: 20250220182602 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.602 seconds Real time usage: 1.830 seconds Preprocessor visited node count: 10694/1000000 Post‐expand include size: 432425/2097152 bytes Template argument size: 4371/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 527829/5000000 bytes Lua time usage: 1.056/10.000 seconds Lua memory usage: 6500106/52428800 bytes Lua Profile: ? 180 ms 16.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 120 ms 10.9% dataWrapper <mw.lua:672> 80 ms 7.3% recursiveClone <mwInit.lua:45> 80 ms 7.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 60 ms 5.5% assert 60 ms 5.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 60 ms 5.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 40 ms 3.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::preprocess 40 ms 3.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getEntityStatements 40 ms 3.6% [others] 340 ms 30.9% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1544.129 1 -total 67.81% 1047.075 1 Template:Reflist 54.15% 836.138 111 Template:Cite_journal 10.71% 165.369 10 Template:Navbox 8.50% 131.247 1 Template:Photovoltaics 5.60% 86.436 1 Template:Short_description 4.29% 66.232 2 Template:Dead_link 4.26% 65.802 1 Template:Commons_category 4.06% 62.718 1 Template:Sister_project 3.93% 60.626 1 Template:Side_box --> <!-- Saved in parser cache with key enwiki:pcache:18397250:|#|:idhash:canonical and timestamp 20250220182619 and revision id 1276780309. Rendering was triggered because: page-edit --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Organic_solar_cell&amp;oldid=1276780309">https://en.wikipedia.org/w/index.php?title=Organic_solar_cell&amp;oldid=1276780309</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Organic_solar_cells" title="Category:Organic solar cells">Organic solar cells</a></li><li><a href="/wiki/Category:Solar_cells" title="Category:Solar cells">Solar cells</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_March_2018" title="Category:Articles with dead external links from March 2018">Articles with dead external links from March 2018</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_December_2020" title="Category:Articles with dead external links from December 2020">Articles with dead external links from December 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 February 2025, at 18:26<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Organic_solar_cell&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Organic solar cell</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>12 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-d8647bfd6-lnvxt","wgBackendResponseTime":146,"wgPageParseReport":{"limitreport":{"cputime":"1.602","walltime":"1.830","ppvisitednodes":{"value":10694,"limit":1000000},"postexpandincludesize":{"value":432425,"limit":2097152},"templateargumentsize":{"value":4371,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":527829,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1544.129 1 -total"," 67.81% 1047.075 1 Template:Reflist"," 54.15% 836.138 111 Template:Cite_journal"," 10.71% 165.369 10 Template:Navbox"," 8.50% 131.247 1 Template:Photovoltaics"," 5.60% 86.436 1 Template:Short_description"," 4.29% 66.232 2 Template:Dead_link"," 4.26% 65.802 1 Template:Commons_category"," 4.06% 62.718 1 Template:Sister_project"," 3.93% 60.626 1 Template:Side_box"]},"scribunto":{"limitreport-timeusage":{"value":"1.056","limit":"10.000"},"limitreport-memusage":{"value":6500106,"limit":52428800},"limitreport-profile":[["?","180","16.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","120","10.9"],["dataWrapper \u003Cmw.lua:672\u003E","80","7.3"],["recursiveClone \u003CmwInit.lua:45\u003E","80","7.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","60","5.5"],["assert","60","5.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","60","5.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","40","3.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::preprocess","40","3.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getEntityStatements","40","3.6"],["[others]","340","30.9"]]},"cachereport":{"origin":"mw-api-ext.codfw.main-778cc5cc6f-9ctb7","timestamp":"20250220182602","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Organic solar cell","url":"https:\/\/en.wikipedia.org\/wiki\/Organic_solar_cell","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1472888","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1472888","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-07-11T16:46:13Z","dateModified":"2025-02-20T18:26:00Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/0e\/4inchcell.jpg","headline":"type of photovoltaic"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10