CINXE.COM

Search results for: simulated gas stream

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: simulated gas stream</title> <meta name="description" content="Search results for: simulated gas stream"> <meta name="keywords" content="simulated gas stream"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="simulated gas stream" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="simulated gas stream"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2339</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: simulated gas stream</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2069</span> Effect of Aging on Hardness and Corrosion Resistance of WE43 Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziya%20Esen">Ziya Esen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Duygulu"> Özgür Duygulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazl%C4%B1%20S.%20B%C3%BCy%C3%BCkatak"> Nazlı S. Büyükatak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of aging heat treatment on corrosion resistance and mechanical properties of WE43 Magnesium alloy. The heat treatment of alloys was conducted by solutionizing at 525oC for 16 h, followed by aging at 190, 210 and 230oC for up to 48 h. The type and the size of precipitates formed upon aging have influenced both the mechanical properties and corrosion behavior of the alloy. Solutionized alloy displayed the worst corrosion resistance in simulated body fluid, while peak hardness and the best corrosion resistance were observed in the alloy aged at 210oC for 24 h as a result of β’ precipitate formation. Longer aging duration at 210oC decreased the corrosion rate due to the coarsening of the precipitates and formation of precipitate-free zones. The increased corrosion resistance of the peak aged samples was attributed to the slowing down effect of the Mg(OH)₂/MgO corrosion layer by the pinning effect of β’-precipitates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WE43%20magnesium%20alloy" title="WE43 magnesium alloy">WE43 magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20body%20fluid" title=" simulated body fluid"> simulated body fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/186918/effect-of-aging-on-hardness-and-corrosion-resistance-of-we43-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2068</span> A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mousavi">H. Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sharifi"> M. Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pourvaziri"> H. Pourvaziri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redundancy%20allocation%20problem" title="redundancy allocation problem">redundancy allocation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20theory" title=" cloud theory"> cloud theory</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo%20simulation" title=" monte carlo simulation"> monte carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/33681/a-novel-meta-heuristic-algorithm-based-on-cloud-theory-for-redundancy-allocation-problem-under-realistic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2067</span> The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20L.%20DiSantis">Dina L. DiSantis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=place-based" title="place-based">place-based</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20data%20collection" title=" student data collection"> student data collection</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20monitoring" title=" water quality monitoring"> water quality monitoring</a> </p> <a href="https://publications.waset.org/abstracts/84177/the-results-of-longitudinal-water-quality-monitoring-of-the-brandywine-river-chester-county-pennsylvania-by-high-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2066</span> Comparison of FNTD and OSLD Detectors&#039; Responses to Light Ion Beams Using Monte Carlo Simulations and Exprimental Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemi"> A. Ghasemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al2O3:C,Mg fluorescent nuclear track detector (FNTD) and Al2O3:C optically stimulated luminescence detector (OSLD) are becoming two of the applied detectors in ion dosimetry. Therefore, the response of these detectors to hadron beams is highly of interest in radiation therapy (RT) using ion beams. In this study, these detectors' responses to proton and Helium-4 ion beams were compared using Monte Carlo simulations. The calculated data for proton beams were compared with Markus ionization chamber (IC) measurement (in water phantom) from M.D. Anderson proton therapy center. Monte Carlo simulations were performed via the FLUKA code (version 2011.2-17). The detectors were modeled in cylindrical shape at various depths of the water phantom without shading each other for obtaining relative depth dose in the phantom. Mono-energetic parallel ion beams in different incident energies (100 MeV/n to 250 MeV/n) were collided perpendicularly on the phantom surface. For proton beams, the results showed that the simulated detectors have over response relative to IC measurements in water phantom. In all cases, there were good agreements between simulated ion ranges in the water with calculated and experimental results reported by the literature. For proton, maximum peak to entrance dose ratio in the simulated water phantom was 4.3 compared with about 3 obtained from IC measurements. For He-4 ion beams, maximum peak to entrance ratio calculated by both detectors was less than 3.6 in all energies. Generally, it can be said that FLUKA is a good tool to calculate Al2O3:C,Mg FNTD and Al2O3:C OSLD detectors responses to therapeutic proton and He-4 ion beams. It can also calculate proton and He-4 ion ranges with a reasonable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparison" title="comparison">comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=FNTD%20and%20OSLD%20detectors%20response" title=" FNTD and OSLD detectors response"> FNTD and OSLD detectors response</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20ion%20beams" title=" light ion beams"> light ion beams</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulations" title=" Monte Carlo simulations"> Monte Carlo simulations</a> </p> <a href="https://publications.waset.org/abstracts/7133/comparison-of-fntd-and-osld-detectors-responses-to-light-ion-beams-using-monte-carlo-simulations-and-exprimental-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2065</span> Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Tsai">Y. T. Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20H.%20Huang"> Jin H. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title="inverse problem">inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20effective%20area" title=" cone effective area"> cone effective area</a>, <a href="https://publications.waset.org/abstracts/search?q=loudspeaker" title=" loudspeaker"> loudspeaker</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20conjugate%20gradient%20method" title=" nonlinear conjugate gradient method"> nonlinear conjugate gradient method</a> </p> <a href="https://publications.waset.org/abstracts/7816/loudspeaker-parameters-inverse-problem-for-improving-sound-frequency-response-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2064</span> Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Od%C3%B3n%20R.%20S%C3%A1nchez-Ccoyllo">Odón R. Sánchez-Ccoyllo</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Ayma-Choque"> Elizabeth Ayma-Choque</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Llacza"> Alan Llacza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality-WRF-Chem model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground-ozone" title="ground-ozone">ground-ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=lima" title=" lima"> lima</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20dioxide" title=" sulphur dioxide"> sulphur dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=WRF-chem" title=" WRF-chem"> WRF-chem</a> </p> <a href="https://publications.waset.org/abstracts/154756/evaluating-hourly-sulphur-dioxide-and-ground-ozone-simulated-with-the-air-quality-model-in-lima-peru" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2063</span> Preparation and in vitro Characterisation of Chitosan/Hydroxyapatite Injectable Microspheres as Hard Tissue Substitution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Maachou">H. Maachou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chagnes"> A. Chagnes</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Cote"> G. Cote </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work reports the properties of chitosan/hydroxyapatite (Cs/HA: 100/00, 70/30 and 30/70) composite microspheres obtained by emulsification processing route. The morphology of chitosane microspheres was observed by a scanning electron microscope (SEM) which shows an aggregate of spherical microspheres with a particle size, determined by optical microscope, ranged from 4 to 10 µm. Thereafter, a biomimetic approach was used to study the in vitro biomineralization of these composites. It concerns the composites immersion in simulated body fluid (SBF) for different times. The deposited calcium phosphate was studied using X-ray diffraction analysis (XRD), FTIR spectroscopy and ICP analysis of phosphorus. In fact, the mineral formed on Cs/HA microspheres was a mixture of carbonated HA and β-TCP as showed by FTIR peaks at 1419,5 and 871,8 cm-1 and XRD peak at 29,5°. This formation was induced by the presence of HA in chitosan microspheres. These results are confirmed by SEM micrographs which chow the Ca-P crystals growth in form of cauliflowers. So, these materials are of great interest for bone regeneration applications due to their ability to nucleate calcium phosphates in presence of simulated body fluid (SBF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title="hydroxyapatite">hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=microsphere" title=" microsphere"> microsphere</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a> </p> <a href="https://publications.waset.org/abstracts/12735/preparation-and-in-vitro-characterisation-of-chitosanhydroxyapatite-injectable-microspheres-as-hard-tissue-substitution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2062</span> Analysis of Solid Waste Management Practices and the Implications for Human Health and the Environment: A Case Study of Kayamandi Informal Settlement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Iyobosa%20Asemota">Peter Iyobosa Asemota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study on solid waste management practices addressed aspects of environmental and health impacts resulting from poor management of solid waste. The study was occasioned by the observed rate and volume of illegal and indiscriminate dumping of solid waste materials especially in informal settlements. The main focus of this study was to establish the impact of waste management practices on human health and the environment. The study, therefore, presents a critical analysis of the state of solid waste management in the study area and the implications for human health and the environment. The study was carried out in Kayamandi informal settlement within Stellenbosch municipality. The sustainable management of solid waste is very important in order to minimize the environmental and public health risks associated with improper solid waste management. There is no denying the fact that the problems of waste management will become critical as time goes on because of improper and inefficient waste management practices. Towns and cities exhibit the burdens of waste management which is a characteristics feature of most African cities. The study critically assess the implementation of waste management practices by the residents of the informal settlement; identify the factors affecting management issues in the operation of solid waste management system by the municipality; identify factors militating against the implementation of waste management policies and legislation. Furthermore, a waste assessment study was carried out to assess the generation; composition of the waste stream and also determine the attitudes and behavior of the residents with regard to waste management practices. Findings from the study revealed that Kayamandi is not different from other informal settlements with regards to waste management. People are of the opinion that solid waste management is the sole responsibility of municipal authorities and as such, the government should be responsible for bearing the cost of solid waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20composition" title=" waste composition"> waste composition</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20stream" title=" waste stream"> waste stream</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20categories" title=" waste categories"> waste categories</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitary%20landfill" title=" sanitary landfill"> sanitary landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20collection" title=" waste collection"> waste collection</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20solid%20waste%20management" title=" integrated solid waste management "> integrated solid waste management </a> </p> <a href="https://publications.waset.org/abstracts/20014/analysis-of-solid-waste-management-practices-and-the-implications-for-human-health-and-the-environment-a-case-study-of-kayamandi-informal-settlement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">695</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2061</span> Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kulkarni">Shilpa Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujata%20Patrikar"> Sujata Patrikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20mode%20fiber%20directional%20coupler" title="single mode fiber directional coupler">single mode fiber directional coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation%20of%20fiber%20directional%20coupler%20sensor" title=" modeling and simulation of fiber directional coupler sensor"> modeling and simulation of fiber directional coupler sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing" title=" biomolecular sensing"> biomolecular sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20sensor%20device" title=" medical sensor device"> medical sensor device</a> </p> <a href="https://publications.waset.org/abstracts/84917/modelling-and-simulation-of-single-mode-optical-fiber-directional-coupler-for-medical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2060</span> Skin-to-Skin Contact Simulation: Improving Health Outcomes for Medically Fragile Newborns in the Neonatal Intensive Care Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20Zarlenga">Gabriella Zarlenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20L.%20Hall"> Martha L. Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Premature infants are at risk for neurodevelopmental deficits and hospital readmissions, which can increase the financial burden on the health care system and families. Kangaroo care (skin-to-skin contact) is a practice that can improve preterm infant health outcomes. Preterm infants can acquire adequate body temperature, heartbeat, and breathing regulation through lying directly on the mother’s abdomen and in between her breasts. Due to some infant’s condition, kangaroo care is not a feasible intervention. The purpose of this proof-of-concept research project is to create a device which simulates skin-to-skin contact for pre-term infants not eligible for kangaroo care, with the aim of promoting baby’s health outcomes, reducing the incidence of serious neonatal and early childhood illnesses, and/or improving cognitive, social and emotional aspects of development. Methods: The study design is a proof-of-concept based on a three-phase approach; (1) observational study and data analysis of the standard of care for 2 groups of pre-term infants, (2) design and concept development of a novel device for pre-term infants not currently eligible for standard kangaroo care, and (3) prototyping, laboratory testing, and evaluation of the novel device in comparison to current assessment parameters of kangaroo care. A single center study will be conducted in an area hospital offering Level III neonatal intensive care. Eligible participants include newborns born premature (28-30 weeks of age) admitted to the NICU. The study design includes 2 groups: a control group receiving standard kangaroo care and an experimental group not eligible for kangaroo care. Based on behavioral analysis of observational video data collected in the NICU, the device will be created to simulate mother’s body using electrical components in a thermoplastic polymer housing covered in silicone. It will be designed with a microprocessor that controls simulated respiration, heartbeat, and body temperature of the 'simulated caregiver' by using a pneumatic lung, vibration sensors (heartbeat), pressure sensors (weight/position), and resistive film to measure temperature. A slight contour of the simulator surface may be integrated to help position the infant correctly. Control and monitoring of the skin-to-skin contact simulator would be performed locally by an integrated touchscreen. The unit would have built-in Wi-Fi connectivity as well as an optional Bluetooth connection in which the respiration and heart rate could be synced with a parent or caregiver. A camera would be integrated, allowing a video stream of the infant in the simulator to be streamed to a monitoring location. Findings: Expected outcomes are stabilization of respiratory and cardiac rates, thermoregulation of those infants not eligible for skin to skin contact with their mothers, and real time mother Bluetooth to the device to mimic the experience in the womb. Results of this study will benefit clinical practice by creating a new standard of care for premature neonates in the NICU that are deprived of skin to skin contact due to various health restrictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kangaroo%20care" title="kangaroo care">kangaroo care</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20technology" title=" wearable technology"> wearable technology</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-term%20infants" title=" pre-term infants"> pre-term infants</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20design" title=" medical design "> medical design </a> </p> <a href="https://publications.waset.org/abstracts/123840/skin-to-skin-contact-simulation-improving-health-outcomes-for-medically-fragile-newborns-in-the-neonatal-intensive-care-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2059</span> Direct Approach in Modeling Particle Breakage Using Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Ghasemi%20Ardi">Ebrahim Ghasemi Ardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ai%20Bing%20Yu"> Ai Bing Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Yu%20Yang"> Run Yu Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current study is aimed to develop an available in-house discrete element method (DEM) code and link it with direct breakage event. So, it became possible to determine the particle breakage and then its fragments size distribution, simultaneous with DEM simulation. It directly applies the particle breakage inside the DEM computation algorithm and if any breakage happens the original particle is replaced with daughters. In this way, the calculation will be followed based on a new updated particles list which is very similar to the real grinding environment. To validate developed model, a grinding ball impacting an unconfined particle bed was simulated. Since considering an entire ball mill would be too computationally demanding, this method provided a simplified environment to test the model. Accordingly, a representative volume of the ball mill was simulated inside a box, which could emulate media (ball)–powder bed impacts in a ball mill and during particle bed impact tests. Mono, binary and ternary particle beds were simulated to determine the effects of granular composition on breakage kinetics. The results obtained from the DEM simulations showed a reduction in the specific breakage rate for coarse particles in binary mixtures. The origin of this phenomenon, commonly known as cushioning or decelerated breakage in dry milling processes, was explained by the DEM simulations. Fine particles in a particle bed increase mechanical energy loss, and reduce and distribute interparticle forces thereby inhibiting the breakage of the coarse component. On the other hand, the specific breakage rate of fine particles increased due to contacts associated with coarse particles. Such phenomenon, known as acceleration, was shown to be less significant, but should be considered in future attempts to accurately quantify non-linear breakage kinetics in the modeling of dry milling processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20bed" title="particle bed">particle bed</a>, <a href="https://publications.waset.org/abstracts/search?q=breakage%20models" title=" breakage models"> breakage models</a>, <a href="https://publications.waset.org/abstracts/search?q=breakage%20kinetic" title=" breakage kinetic"> breakage kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/79163/direct-approach-in-modeling-particle-breakage-using-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2058</span> Fault Detection of Pipeline in Water Distribution Network System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shin%20Je%20Lee">Shin Je Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Go%20Bong%20Choi"> Go Bong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Cheol%20Seo"> Jeong Cheol Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibaek%20Lee"> Gibaek Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pipeline%20model" title=" water pipeline model"> water pipeline model</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20Fourier%20transform" title=" fast Fourier transform"> fast Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/5007/fault-detection-of-pipeline-in-water-distribution-network-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olesya%20Bolkhovskaya">Olesya Bolkhovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Maltsev"> Alexander Maltsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GLRT" title="GLRT">GLRT</a>, <a href="https://publications.waset.org/abstracts/search?q=Neumann-Pearson%E2%80%99s%20criterion" title=" Neumann-Pearson’s criterion"> Neumann-Pearson’s criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=Test-statistics" title=" Test-statistics"> Test-statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20processing" title=" spatial processing"> spatial processing</a>, <a href="https://publications.waset.org/abstracts/search?q=multielement%20antenna%20array" title=" multielement antenna array"> multielement antenna array</a> </p> <a href="https://publications.waset.org/abstracts/1985/performance-degradation-for-the-glr-test-statistics-for-spatial-signal-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lim%20Chen%20Kim">Lim Chen Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Kian%20Lam"> Tan Kian Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Yi%20Chee"> Chan Yi Chee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360&deg; panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360&deg; panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360&deg; panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boid%20Algorithm" title="Boid Algorithm">Boid Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Crowd%20Simulation" title=" Crowd Simulation"> Crowd Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobile%20Platform" title=" Mobile Platform"> Mobile Platform</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20Laws" title=" Newtonian Laws"> Newtonian Laws</a>, <a href="https://publications.waset.org/abstracts/search?q=Virtual%20Heritage" title=" Virtual Heritage"> Virtual Heritage</a> </p> <a href="https://publications.waset.org/abstracts/59787/a-multi-modal-virtual-walkthrough-of-the-virtual-past-and-present-based-on-panoramic-view-crowd-simulation-and-acoustic-heritage-on-mobile-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Study, Design, Simulation and Fabrication of Microwave Slot Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20Madi">Khaled A. Madi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rema%20A.%20Mousbahi"> Rema A. Mousbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20B.%20Abuitbel"> Mostafa B. Abuitbel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdualhakim%20O.%20Nagi"> Abdualhakim O. Nagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antenna perhaps is the most important part of any communication system, it determines the overall efficiency and the direction of radiation of the system. Antennas vary in shape and size on a very wide range. For fast moving vehicles, the antenna should offer as litter aerodynamic resistance as possible. Slot antenna is best suited for this purpose. It offers very little aerodynamic resistance, compact, easy to feed and fabricate. This work presented in this paper deals with the investigation of a half wave slot antenna. The antenna has been studied, analyzed, designed, simulated, fabrication, and tested at the X-band. The field of antenna study is an extremely vast one, and to grasp the fundamentals, two pronged approaches have been used, and the focus was on the fabrication and testing of a slot waveguide directional antenna. Focuses on the design and simulation of slot antennas with an emphasis on optimization of a 9.1 GHz a rectangular waveguide have been used to feed slot antenna. A microwave fed slot antenna used in the communication lab was also simulated. The results have been presented and compared with the expected values, where a good agreement was achieved between the simulation and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20antenna" title=" slot antenna"> slot antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrication" title=" fabrication"> fabrication</a> </p> <a href="https://publications.waset.org/abstracts/152371/study-design-simulation-and-fabrication-of-microwave-slot-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Majumdar">Arnab Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Srimani%20Sen"> Srimani Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p<sup>+</sup>pnn<sup>+</sup> DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5&times;10<sup>8</sup> A/m<sup>2</sup>. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06&times;10<sup>8</sup> A/m<sup>2</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubic%20ZnB-GaN" title="cubic ZnB-GaN">cubic ZnB-GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%204H-SiC" title=" hexagonal 4H-SiC"> hexagonal 4H-SiC</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20drift%20impatt%20diode" title=" double drift impatt diode"> double drift impatt diode</a>, <a href="https://publications.waset.org/abstracts/search?q=millimetre%20wave" title=" millimetre wave"> millimetre wave</a>, <a href="https://publications.waset.org/abstracts/search?q=optimised%20bias%20current%20density" title=" optimised bias current density"> optimised bias current density</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20band%20gap%20semiconductor" title=" wide band gap semiconductor"> wide band gap semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/44725/a-comparative-study-on-optimized-bias-current-density-performance-of-cubic-znb-gan-with-hexagonal-4h-sic-based-impatts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20M.%20Almeshal">Abdullah M. Almeshal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Alenezi"> Mohammad R. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Talal%20H.%20Alzanki"> Talal H. Alzanki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20control" title="fuzzy logic control">fuzzy logic control</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20dynamic%20algorithm" title=" spiral dynamic algorithm "> spiral dynamic algorithm </a> </p> <a href="https://publications.waset.org/abstracts/15205/a-spiral-dynamic-optimised-hybrid-fuzzy-logic-controller-for-a-unicycle-mobile-robot-on-irregular-terrains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> Quantitative Evaluation of Mitral Regurgitation by Using Color Doppler Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shang-Yu%20Chiang">Shang-Yu Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Tsai"> Yu-Shan Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Hsien%20Sung"> Shih-Hsien Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Ming%20Lo"> Chung-Ming Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitral regurgitation (MR) is a heart disorder which the mitral valve does not close properly when the heart pumps out blood. MR is the most common form of valvular heart disease in the adult population. The diagnostic echocardiographic finding of MR is straightforward due to the well-known clinical evidence. In the determination of MR severity, quantification of sonographic findings would be useful for clinical decision making. Clinically, the vena contracta is a standard for MR evaluation. Vena contracta is the point in a blood stream where the diameter of the stream is the least, and the velocity is the maximum. The quantification of vena contracta, i.e. the vena contracta width (VCW) at mitral valve, can be a numeric measurement for severity assessment. However, manually delineating the VCW may not accurate enough. The result highly depends on the operator experience. Therefore, this study proposed an automatic method to quantify VCW to evaluate MR severity. Based on color Doppler ultrasound, VCW can be observed from the blood flows to the probe as the appearance of red or yellow area. The corresponding brightness represents the value of the flow rate. In the experiment, colors were firstly transformed into HSV (hue, saturation and value) to be closely align with the way human vision perceives red and yellow. Using ellipse to fit the high flow rate area in left atrium, the angle between the mitral valve and the ultrasound probe was calculated to get the vertical shortest diameter as the VCW. Taking the manual measurement as the standard, the method achieved only 0.02 (0.38 vs. 0.36) to 0.03 (0.42 vs. 0.45) cm differences. The result showed that the proposed automatic VCW extraction can be efficient and accurate for clinical use. The process also has the potential to reduce intra- or inter-observer variability at measuring subtle distances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mitral%20regurgitation" title="mitral regurgitation">mitral regurgitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vena%20contracta" title=" vena contracta"> vena contracta</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20doppler" title=" color doppler"> color doppler</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/84494/quantitative-evaluation-of-mitral-regurgitation-by-using-color-doppler-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousfi%20Abdelkader">Yousfi Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaker%20Abdelkader"> Chaker Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Bot%20Youcef"> Bot Youcef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=shunt%20active%20power%20filter" title=" shunt active power filter"> shunt active power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20logic%20controller%20%28T2FL%29" title=" interval type-2 fuzzy logic controller (T2FL)"> interval type-2 fuzzy logic controller (T2FL)</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20inverter" title=" multilevel inverter"> multilevel inverter</a> </p> <a href="https://publications.waset.org/abstracts/117014/power-quality-improvement-using-interval-type-2-fuzzy-logic-controller-for-five-level-shunt-active-power-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chuenchooklin">S. Chuenchooklin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Taweepong"> S. Taweepong</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Pangnakorn"> U. Pangnakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20rainfall" title="global rainfall">global rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20forecast" title=" flood forecast"> flood forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrologic%20modeling%20system" title=" hydrologic modeling system"> hydrologic modeling system</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20analysis%20system" title=" river analysis system"> river analysis system</a> </p> <a href="https://publications.waset.org/abstracts/25338/rainfall-and-flood-forecast-models-for-better-flood-relief-plan-of-the-mae-sot-municipality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watcharapan%20Sukkerd">Watcharapan Sukkerd</a>, <a href="https://publications.waset.org/abstracts/search?q=Teeradej%20Wuttipornpun"> Teeradej Wuttipornpun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitated%20MRP" title="capacitated MRP">capacitated MRP</a>, <a href="https://publications.waset.org/abstracts/search?q=tabu%20search" title=" tabu search"> tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20neighborhood%20search" title=" variable neighborhood search"> variable neighborhood search</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flow%20shop" title=" assembly flow shop"> assembly flow shop</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20in%20industry" title=" application in industry"> application in industry</a> </p> <a href="https://publications.waset.org/abstracts/66991/non-population-search-algorithms-for-capacitated-material-requirement-planning-in-multi-stage-assembly-flow-shop-with-alternative-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tooran%20Tavangar">Tooran Tavangar</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Hosseinpoor"> Masoud Hosseinpoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20S.%20Marshall"> Jeffrey S. Marshall</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Yahia"> Ammar Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Henri%20Khayat"> Kamal Henri Khayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pumping" title=" concrete pumping"> concrete pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20CFD-DEM" title=" coupled CFD-DEM"> coupled CFD-DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow" title=" plug flow"> plug flow</a>, <a href="https://publications.waset.org/abstracts/search?q=shear-induced%20particle%20migration." title=" shear-induced particle migration."> shear-induced particle migration.</a> </p> <a href="https://publications.waset.org/abstracts/181486/four-way-coupled-cfd-dem-simulation-of-concrete-pipe-flow-using-a-non-newtonian-rheological-model-investigating-the-simulation-of-lubrication-layer-formation-and-plug-flow-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> Step Height Calibration Using Hamming Window: Band-Pass Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahi%20Ghareab%20Abdelsalam%20Ibrahim">Dahi Ghareab Abdelsalam Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calibration of step heights with high accuracy is needed for many applications in the industry. In general, step height consists of three bands: pass band, transition band (roll-off), and stop band. Abdelsalam used a convolution of the transfer functions of both Chebyshev type 2 and elliptic filters with WFF of the Fresnel transform in the frequency domain for producing a steeper roll-off with the removal of ripples in the pass band- and stop-bands. In this paper, we used a new method based on the Hamming window: band-pass filter for calibration of step heights in terms of perfect adjustment of pass-band, roll-off, and stop-band. The method is applied to calibrate a nominal step height of 40 cm. The step height is measured first by asynchronous dual-wavelength phase-shift interferometry. The measured step height is then calibrated by the simulation of the Hamming window: band-pass filter. The spectrum of the simulated band-pass filter is simulated at N = 881 and f0 = 0.24. We can conclude that the proposed method can calibrate any step height by adjusting only two factors which are N and f0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20metrology" title="optical metrology">optical metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20heights" title=" step heights"> step heights</a>, <a href="https://publications.waset.org/abstracts/search?q=hamming%20window" title=" hamming window"> hamming window</a>, <a href="https://publications.waset.org/abstracts/search?q=band-pass%20filter" title=" band-pass filter"> band-pass filter</a> </p> <a href="https://publications.waset.org/abstracts/168134/step-height-calibration-using-hamming-window-band-pass-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zdravko%20E%C5%A1kinja">Zdravko Eškinja</a>, <a href="https://publications.waset.org/abstracts/search?q=Lovre%20Miljani%C4%87"> Lovre Miljanić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ognjen%20Kulja%C4%8Da"> Ognjen Kuljača</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20fa%C3%A7ade" title="double skin façade">double skin façade</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title=" experimental tests"> experimental tests</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20control" title=" heat control"> heat control</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flow" title=" heat flow"> heat flow</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20tests" title=" simulated tests"> simulated tests</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20tools" title=" simulation tools"> simulation tools</a> </p> <a href="https://publications.waset.org/abstracts/71334/applying-renowned-energy-simulation-engines-to-neural-control-system-of-double-skin-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongyang%20Ye">Chongyang Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Liu"> Rong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20compression%20stockings" title="elastic compression stockings">elastic compression stockings</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-solid%20interaction" title=" fluid-solid interaction"> fluid-solid interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20and%20vein%20properties" title=" tissue and vein properties"> tissue and vein properties</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction "> prediction </a> </p> <a href="https://publications.waset.org/abstracts/128089/biomechanical-prediction-of-veins-and-soft-tissues-beneath-compression-stockings-using-fluid-solid-interaction-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> Interlingual Melodious Constructions: Romanian Translation of References to Songs in James Joyce’s Ulysses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andra-Iulia%20Ursa">Andra-Iulia Ursa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> James Joyce employs several unconventional stylistic features in this landmark novel meant to experiment with language. The episode known as “Sirens” is entirely conceived around music and linguistic structures subordinated to sound. However, the aspiration to the condition of music is reflected throughout this entire literary work, as musical effects are echoed systematically. The numerous melodies scattered across the narrative play an important role in enhancing the thoughts and feelings that pass through the minds of the characters. Often the lyrics are distorted or interweaved with other words, preoccupations or memories, intensifying the stylistic effect. The Victorian song “Love’s old sweet song” is one of the most commonly referred to and meaningful musical allusions in Ulysses, becoming a leitmotif of infidelity. The lyrics of the song “M’appari”, from the opera “Martha”, are compared to an event from Molly and Bloom’s romantic history. Moreover, repeated phrases using words from “The bloom is on the rye” or “The croppy boy” serve as glances into the minds of the characters. Therefore, the central purpose of this study is to shed light on the way musical allusions flit through the episodes from the point of view of the stream of consciousness technique and to compare and analyse how these constructions are rendered into Romanian. Mircea Ivănescu, the single Romanian translator who succeeded in carrying out the translation of the entire ‘stylistic odyssey’, received both praises and disapprovals from the critics. This paper is not meant to call forth eventual flaws of the Romanian translation, but rather to elaborate the complexity of the task. Following an attentive examination and analysis of the two texts, from the point of view of form and meaning of the references to various songs, the conclusions of this study will be able to point out the intricacies of the process of translation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joyce" title="Joyce">Joyce</a>, <a href="https://publications.waset.org/abstracts/search?q=melodious%20constructions" title=" melodious constructions"> melodious constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20of%20consciousness" title=" stream of consciousness"> stream of consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=style" title=" style"> style</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/118197/interlingual-melodious-constructions-romanian-translation-of-references-to-songs-in-james-joyces-ulysses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Kundu">P. M. Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20R.%20Singo"> L. R. Singo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Odiyo"> J. O. Odiyo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catchment" title="catchment">catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title=" digital elevation model"> digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20model" title=" hydrological model"> hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/23083/the-impact-of-land-cover-change-on-stream-discharges-and-water-resources-in-luvuvhu-river-catchment-vhembe-district-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2042</span> Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaouane">M. Kaouane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boukhelifa"> A. Boukhelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cheriti"> A. Cheriti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buck-Boost%20converter" title="Buck-Boost converter">Buck-Boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=switch" title=" switch"> switch</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title=" energy transfer"> energy transfer</a> </p> <a href="https://publications.waset.org/abstracts/34336/regulated-output-voltage-double-switch-buck-boost-converter-for-photovoltaic-energy-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">905</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2041</span> AquaCrop Model Simulation for Water Productivity of Teff (Eragrostic tef): A Case Study in the Central Rift Valley of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yenesew%20Mengiste%20Yihun">Yenesew Mengiste Yihun</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Mehari%20Haile"> Abraham Mehari Haile</a>, <a href="https://publications.waset.org/abstracts/search?q=Teklu%20Erkossa"> Teklu Erkossa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%20Schultz"> Bart Schultz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teff (Eragrostic tef) is a staple food in Ethiopia. The local and international demand for the crop is ever increasing pushing the current price five times compared with that in 2006. To meet this escalating demand increasing production including using irrigation is imperative. Optimum application of irrigation water, especially in semi-arid areas is profoundly important. AquaCrop model application in irrigation water scheduling and simulation of water productivity helps both irrigation planners and agricultural water managers. This paper presents simulation and evaluation of AquaCrop model in optimizing the yield and biomass response to variation in timing and rate of irrigation water application. Canopy expansion, canopy senescence and harvest index are the key physiological processes sensitive to water stress. For full irrigation water application treatment there was a strong relationship between the measured and simulated canopy and biomass with r2 and d values of 0.87 and 0.96 for canopy and 0.97 and 0.74 for biomass, respectively. However, the model under estimated the simulated yield and biomass for higher water stress level. For treatment receiving full irrigation the harvest index value obtained were 29%. The harvest index value shows generally a decreasing trend under water stress condition. AquaCrop model calibration and validation using the dry season field experiments of 2010/2011 and 2011/2012 shows that AquaCrop adequately simulated the yield response to different irrigation water scenarios. We conclude that the AquaCrop model can be used in irrigation water scheduling and optimizing water productivity of Teff grown under water scarce semi-arid conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AquaCrop" title="AquaCrop">AquaCrop</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20smart%20agriculture" title=" climate smart agriculture"> climate smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=teff" title=" teff"> teff</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20security" title=" water security"> water security</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20regions" title=" water stress regions"> water stress regions</a> </p> <a href="https://publications.waset.org/abstracts/39238/aquacrop-model-simulation-for-water-productivity-of-teff-eragrostic-tef-a-case-study-in-the-central-rift-valley-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2040</span> Influence of Flight Design on Discharging Profiles of Granular Material in Rotary Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Benhsine">I. Benhsine</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hellou"> M. Hellou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Lomin%C3%A9"> F. Lominé</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Roques"> Y. Roques</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the manufacture of fertilizer, it is necessary to add water for granulation purposes. The water content is then removed or reduced using rotary dryers. They are commonly used to dry wet granular materials and they are usually fitted with lifting flights. The transport of granular materials occurs when particles cascade from the lifting flights and fall into the air stream. Each cascade consists of a lifting and a falling cycle. Lifting flights are thus of great importance for the transport of granular materials along the dryer. They also enhance the contact between solid particles and the air stream. Optimization of the drying process needs an understanding of the behavior of granular materials inside a rotary dryer. Different approaches exist to study the movement of granular materials inside the dryer. Most common of them are based on empirical formulations or on study the movement of the bulk material. In the present work, we are interested in the behavior of each particle in the cross section of the dryer using Discrete Element Method (DEM) to understand. In this paper, we focus on studying the hold-up, the cascade patterns, the falling time and the falling length of the particles leaving the flights. We will be using two segment flights. Three different profiles are used: a straight flight (180° between both segments), an angled flight (with an angle of 150°), and a right-angled flight (90°). The profile of the flight affects significantly the movement of the particles in the dryer. Changing the flight angle changes the flight capacity which leads to different discharging profile of the flight, thus affecting the hold-up in the flight. When the angle of the flight is reduced, the range of the discharge angle increases leading to a more uniformed cascade pattern in time. The falling length and the falling time of the particles also increase up to a maximum value then they start decreasing. Moreover, the results show an increase in the falling length and the falling time up to 70% and 50%, respectively, when using a right-angled flight instead of a straight one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title="discrete element method">discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20materials" title=" granular materials"> granular materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lifting%20flight" title=" lifting flight"> lifting flight</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20dryer" title=" rotary dryer"> rotary dryer</a> </p> <a href="https://publications.waset.org/abstracts/41027/influence-of-flight-design-on-discharging-profiles-of-granular-material-in-rotary-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=77">77</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10