CINXE.COM
YOLOv1 Explained | Papers With Code
<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <script> const GTAG_ENABLED = true ; const GTAG_TRACKING_ID = "UA-121182717-1"; const SENTRY_DSN_FRONTEND = "".trim(); const GLOBAL_CSRF_TOKEN = 'EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW'; const MEDIA_URL = "https://production-media.paperswithcode.com/"; const ASSETS_URL = "https://production-assets.paperswithcode.com"; run_after_frontend_loaded = window.run_after_frontend_loaded || []; </script> <link rel="preconnect" href="https://production-assets.paperswithcode.com"><link rel="dns-prefetch" href="https://production-assets.paperswithcode.com"><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/65e877e527022735c1a1.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/917632e36982ca7933c8.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/f1405bd8a987c2ea8a67.woff2" crossorigin><script>(()=>{if(GTAG_ENABLED){const t=document.createElement("script");function n(){window.dataLayer.push(arguments)}t.src=`https://www.googletagmanager.com/gtag/js?id=${GTAG_TRACKING_ID}`,document.head.appendChild(t),window.dataLayer=window.dataLayer||[],window.gtag=n,n("js",new Date),n("config",GTAG_TRACKING_ID),window.captureOutboundLink=function(t){n("event","click",{event_category:"outbound",event_label:t})}}else window.captureOutboundLink=function(n){document.location=n}})();</script><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/351.a22a9607.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/814.49dcf06c.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/view_method.e499b4af.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/view_method.c1f0a493.js"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/view_method.e499b4af.css"> <!-- Metadata --> <title>YOLOv1 Explained | Papers With Code</title> <meta name="description" content="YOLOv1 is a single-stage object detection model. Object detection is framed as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. The network uses features from the entire image to predict each bounding box. It also predicts all bounding boxes across all classes for an image simultaneously. This means the network reasons globally about the full image and all the objects in the image." /> <!-- Open Graph protocol metadata --> <meta property="og:title" content="Papers with Code - YOLOv1 Explained"> <meta property="og:description" content="YOLOv1 is a single-stage object detection model. Object detection is framed as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. The network uses features from the entire image to predict each bounding box. It also predicts all bounding boxes across all classes for an image simultaneously. This means the network reasons globally about the full image and all the objects in the image."> <meta property="og:image" content="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-24_at_12.22.30_PM.png"> <meta property="og:url" content="https://paperswithcode.com/method/yolov1"> <!-- Twitter metadata --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@paperswithcode"> <meta name="twitter:title" content="Papers with Code - YOLOv1 Explained"> <meta name="twitter:description" content="YOLOv1 is a single-stage object detection model. Object detection is framed as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. The network uses features from the entire image to predict each bounding box. It also predicts all bounding boxes across all classes for an image simultaneously. This means the network reasons globally about the full image and all the objects in the image."> <meta name="twitter:creator" content="@paperswithcode"> <meta name="twitter:url" content="https://paperswithcode.com/method/yolov1"> <meta name="twitter:domain" content="paperswithcode.com"> <!-- JSON LD --> <script type="application/ld+json">{ "@context": "http://schema.org", "@graph": { "@type": "CreativeWork", "@id": "yolov1", "name": "YOLOv1 Explained", "description": "YOLOv1 is a single-stage object detection model. Object detection is framed as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. \n\nThe network uses features from the entire image to predict each bounding box. It also predicts all bounding boxes across all classes for an image simultaneously. This means the network reasons globally about the full image and all the objects in the image.", "url": "https://paperswithcode.com/method/yolov1", "image": "https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-24_at_12.22.30_PM.png", "headline": "YOLOv1 Explained" } }</script> <meta name="theme-color" content="#fff"/> <link rel="manifest" href="https://production-assets.paperswithcode.com/static/manifest.web.json"> </head> <body> <nav class="navbar navbar-expand-lg navbar-light header"> <a class="navbar-brand" href="/"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> </a> <div class="navbar-mobile-twitter d-lg-none"> <a rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class=" icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-bs-toggle="collapse" data-target="#top-menu" data-bs-target="#top-menu" aria-controls="top-menu" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="top-menu"> <ul class="navbar-nav mr-auto navbar-nav__left light-header"> <li class="nav-item header-search"> <form action="/search" method="get" id="id_global_search_form" autocomplete="off"> <input type="text" name="q_meta" style="display:none" id="q_meta" /> <input type="hidden" name="q_type" id="q_type" /> <input id="id_global_search_input" autocomplete="off" value="" name='q' class="global-search" type="search" placeholder='Search'/> <button type="submit" class="icon"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="search"><svg viewBox="0 0 512.025 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M508.5 482.6c4.7 4.7 4.7 12.3 0 17l-9.9 9.9c-4.7 4.7-12.3 4.7-17 0l-129-129c-2.2-2.3-3.5-5.3-3.5-8.5v-10.2C312 396 262.5 417 208 417 93.1 417 0 323.9 0 209S93.1 1 208 1s208 93.1 208 208c0 54.5-21 104-55.3 141.1H371c3.2 0 6.2 1.2 8.5 3.5zM208 385c97.3 0 176-78.7 176-176S305.3 33 208 33 32 111.7 32 209s78.7 176 176 176z"/></svg></span></button> </form> </li> <li class="nav-item"> <a class="nav-link" href="/sota"> Browse State-of-the-Art </a> </li> <li class="nav-item"> <a class="nav-link" href="/datasets"> Datasets </a> </li> <li class="nav-item"> <a class="nav-link" href="/methods">Methods</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" role="button" id="navbarDropdownRepro" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false" > More </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownRepro"> <a class="dropdown-item" href="/newsletter">Newsletter</a> <a class="dropdown-item" href="/rc2022">RC2022</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="/about">About</a> <a class="dropdown-item" href="/trends">Trends</a> <a class="dropdown-item" href="https://portal.paperswithcode.com/"> Portals </a> <a class="dropdown-item" href="/libraries"> Libraries </a> </div> </li> </ul> <ul class="navbar-nav ml-auto navbar-nav__right navbar-subscribe justify-content-center align-items-center"> <li class="nav-item"> <a class="nav-link" rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class="nav-link-social-icon icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </li> <li class="nav-item"> <a id="signin-link" class="nav-link" href="/accounts/login?next=/method/yolov1">Sign In</a> </li> </ul> </div> </nav> <!-- Page modals --> <div class="modal fade" id="emailModal" tabindex="-1" role="dialog" aria-labelledby="emailModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h3 class="modal-title" id="emailModalLabel">Subscribe to the PwC Newsletter</h3> <button type="button" class="close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <div class="modal-body-info-text"> Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets.<br/><br/> <a href="/newsletter">Read previous issues</a> </div> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input placeholder="Enter your email" type="email" class="form-control pwc-email" name="address" id="id_address" max_length="100" required> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Subscribe</button> </div> </form> </div> </div> </div> <!-- Login --> <div class="modal fade" id="loginModal" tabindex="-1" role="dialog" aria-labelledby="loginModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="loginModalLabel">Join the community</h5> <button type="button" class="close btn-close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="login-modal-message"> You need to <a href="/accounts/login?next=/method/yolov1">log in</a> to edit.<br/> You can <a href="/accounts/register?next=/method/yolov1">create a new account</a> if you don't have one.<br/><br/> </div> </div> </div> </div> <!-- Edit Method --> <div class="modal fade" id="editMethod" role="dialog" aria-labelledby="editMethodLabel" aria-hidden="true"> <div class="modal-dialog modal-lg" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="editMethodLabel">Edit Method</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <form action="" method="post" enctype="multipart/form-data"> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <div id="div_id_name" class="form-group"> <label for="id_name" class=" requiredField"> Method Name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="name" value="YOLOv1" maxlength="200" class="textinput textInput form-control" required id="id_name"> </div> </div> <div id="div_id_full_name" class="form-group"> <label for="id_full_name" class=" requiredField"> Method Full Name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="full_name" value="YOLOv1" maxlength="200" class="textinput textInput form-control" required id="id_full_name"> </div> </div> <div id="div_id_description" class="form-group"> <label for="id_description" class=""> Description with Markdown (optional): </label> <div class=""> <textarea name="description" cols="40" rows="12" class="textarea form-control" id="id_description"> **YOLOv1** is a single-stage object detection model. Object detection is framed as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. The network uses features from the entire image to predict each bounding box. It also predicts all bounding boxes across all classes for an image simultaneously. This means the network reasons globally about the full image and all the objects in the image.</textarea> </div> </div> <div id="div_id_code_snippet_url" class="form-group"> <label for="id_code_snippet_url" class=""> Code Snippet URL (optional): </label> <div class=""> <input type="text" name="code_snippet_url" value="https://github.com/pjreddie/darknet" maxlength="200" class="textinput textInput form-control" id="id_code_snippet_url"> </div> </div> <div id="div_id_image" class="form-group"> <label for="id_image" class=""> Image </label> <div class=""> Currently: <a href="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-24_at_12.22.30_PM.png">methods/Screen_Shot_2020-06-24_at_12.22.30_PM.png</a> <input type="checkbox" name="image-clear" id="image-clear_id"> <label for="image-clear_id">Clear</label><br> Change: <input type="file" name="image" accept="image/*" class="clearablefileinput form-control-file" id="id_image"> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Add Collection --> <div class="modal fade" id="addCollection" role="dialog" aria-labelledby="addCollectionLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addCollectionLabel">Add A Method Collection</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="current-tasks-title">Attached collections:</div> <ul class="list-unstyled"> <li> <a href="/methods/category/object-detection-models"> <span class="badge badge-primary">OBJECT DETECTION MODELS</span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/methods/category/one-stage-object-detection-models"> <span class="badge badge-primary">ONE-STAGE OBJECT DETECTION MODELS</span> </a> </li> </ul> <form action="" method="post"> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <div id="div_id_collection" class="form-group"> <label for="id_collection" class=""> Add: </label> <div class=""> <select name="collection" class="modelselect2 form-control" id="id_collection" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-collection-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div class="modal-help-text"> Not in the list?<br/> <a href="#" id="show-new-collection-form-hidden"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Create a new collection</a>. </div> <div class="new-collection-form-hidden"> <div id="div_id_new_collection_name" class="form-group"> <label for="id_new_collection_name" class=""> New collection name: </label> <div class=""> <input type="text" name="new_collection_name" maxlength="200" class="textinput textInput form-control" id="id_new_collection_name"> </div> </div> <div id="div_id_new_collection_area" class="form-group"> <label for="id_new_collection_area" class=""> Top-level area: </label> <div class=""> <select name="new_collection_area" class="select form-control" id="id_new_collection_area"> <option value="" selected>---------</option> <option value="7">Audio</option> <option value="1">Computer Vision</option> <option value="3">General</option> <option value="4">Graphs</option> <option value="2">Natural Language Processing</option> <option value="5">Reinforcement Learning</option> <option value="6">Sequential</option> </select> </div> </div> <div id="div_id_new_collection_parent" class="form-group"> <label for="id_new_collection_parent" class=""> Parent collection (if any): </label> <div class=""> <select name="new_collection_parent" class="modelselect2 form-control" id="id_new_collection_parent" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-collection-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_new_collection_desc" class="form-group"> <label for="id_new_collection_desc" class=""> Description (optional): </label> <div class=""> <textarea name="new_collection_desc" cols="40" rows="3" class="textarea form-control" id="id_new_collection_desc"> </textarea> </div> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Remove Collection --> <div class="modal fade" id="removeCollection" tabindex="-1" role="dialog" aria-labelledby="removeCollectionLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="removeCollectionLabel">Remove a collection</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/methods/category/object-detection-models"> <span class="badge badge-primary">OBJECT DETECTION MODELS</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_collection_pk" value="11"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/methods/category/one-stage-object-detection-models"> <span class="badge badge-primary">ONE-STAGE OBJECT DETECTION MODELS</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_collection_pk" value="117"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> </div> </form> </div> </div> </div> <!-- Add Component --> <div class="modal fade" id="addComponent" role="dialog" aria-labelledby="addComponentLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addComponentLabel">Add A Method Component</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="current-tasks-title">Attached components:</div> <ul class="list-unstyled"> <li> <a href="/method/1x1-convolution"> <span class="badge badge-primary">1X1 CONVOLUTION</span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/method/convolution"> <span class="badge badge-primary">CONVOLUTION</span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/method/dense-connections"> <span class="badge badge-primary">DENSE CONNECTIONS</span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/method/dropout"> <span class="badge badge-primary">DROPOUT</span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/method/leaky-relu"> <span class="badge badge-primary">LEAKY RELU</span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/method/max-pooling"> <span class="badge badge-primary">MAX POOLING</span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/method/non-maximum-suppression"> <span class="badge badge-primary">NON MAXIMUM SUPPRESSION</span> </a> </li> </ul> <form action="" method="post"> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <div id="div_id_dependency" class="form-group"> <label for="id_dependency" class=" requiredField"> Add:<span class="asteriskField">*</span> </label> <div class=""> <select name="dependency" class="modelselect2 form-control" required id="id_dependency" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div class="form-group"> <div id="div_id_optional" class="form-check"> <input type="checkbox" name="optional" class="checkboxinput form-check-input" id="id_optional"> <label for="id_optional" class="form-check-label"> Tick if this dependency is optional </label> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Remove Component --> <div class="modal fade" id="removeComponent" tabindex="-1" role="dialog" aria-labelledby="removeComponentLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="removeCompoenntnLabel">Remove a method component</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/1x1-convolution"> <span class="badge badge-primary">1X1 CONVOLUTION</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_component_pk" value="137"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/convolution"> <span class="badge badge-primary">CONVOLUTION</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_component_pk" value="315"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/dense-connections"> <span class="badge badge-primary">DENSE CONNECTIONS</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_component_pk" value="374"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/dropout"> <span class="badge badge-primary">DROPOUT</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_component_pk" value="169"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/leaky-relu"> <span class="badge badge-primary">LEAKY RELU</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_component_pk" value="302"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/max-pooling"> <span class="badge badge-primary">MAX POOLING</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_component_pk" value="489"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/non-maximum-suppression"> <span class="badge badge-primary">NON MAXIMUM SUPPRESSION</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="EIz0giSHtHHt2zAfo1Fm6xnotg3U0UW5Wd8qaMWsRXhSMMP6QbC3fQs5DhTzYibW"> <input type="hidden" name="remove_component_pk" value="380"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> </div> </form> </div> </div> </div> <div class="container content content-buffer "> <div class="mobile-width"> <div class="method-header"> <a href="/methods/category/object-detection-models"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/method/c9f8b125-84f6-4d45-b4a2-84eb1b59f311.jpg"> <span>Object Detection Models</span> </span> </a> <div class="method-title"> <div class="row"> <div class="col-md-11"> <h1>YOLOv1</h1> <span class="method-subtitle">Introduced by Redmon et al. in <a href="/paper/you-only-look-once-unified-real-time-object">You Only Look Once: Unified, Real-Time Object Detection</a></span> </div> <div class="col-md-1"> <div class="float-right">聽 <div class="dropdown edit-button"> <a data-bs-toggle="modal" data-bs-target="#loginModal"> <span class="badge badge-method-edit" style="padding-top:10px;"><span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit</span> </a> </div> </div> </div> </div> </div> <div class="method-content" style="margin-top: 2rem;"> <div class="row"> <div class="col-md-8 description"> <p><strong>YOLOv1</strong> is a single-stage object detection model. Object detection is framed as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. </p> <p>The network uses features from the entire image to predict each bounding box. It also predicts all bounding boxes across all classes for an image simultaneously. This means the network reasons globally about the full image and all the objects in the image.</p> <span class="description-source"> Source: <a href="http://arxiv.org/abs/1506.02640v5"><span class=" icon-wrapper icon-ion" data-name="document-outline"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M416 221.25V416a48 48 0 0 1-48 48H144a48 48 0 0 1-48-48V96a48 48 0 0 1 48-48h98.75a32 32 0 0 1 22.62 9.37l141.26 141.26a32 32 0 0 1 9.37 22.62z" fill="none" stroke="#000" stroke-linejoin="round" stroke-width="32"/><path d="M256 56v120a32 32 0 0 0 32 32h120" fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32"/></svg></span> You Only Look Once: Unified, Real-Time Object Detection</a> </span> <div class="context"> <div class="row"> <div class="col-md-12"> <a href="https://arxiv.org/abs/1506.02640v5" onclick="captureOutboundLink('https://arxiv.org/abs/1506.02640v5'); return true;" class="badge badge-light"> Read Paper </a> <a href="https://github.com/pjreddie/darknet" onclick="captureOutboundLink('https://github.com/pjreddie/darknet'); return true;" class="badge badge-light"> See Code </a> </div> </div> </div> </div> <div class="col-md-4"> <a href="#" id="pop"> <a href="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-24_at_12.22.30_PM.png" data-lightbox="imageresource"> <img id="imageresource" width=100% src="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-24_at_12.22.30_PM.png"> </a> </a> <div class="modal fade" id="imagemodal" tabindex="-1" role="dialog" aria-labelledby="imagePreview" aria-hidden="true"> <div class="modal-dialog modal-lg"> <div class="modal-content"> <div class="modal-body text-center"> <img class="method-image" src="" id="imagepreview" style="max-width: 750px;"> </div> </div> </div> </div> </div> </div> <div id="papers"> <h4 style="margin-bottom: 0.5rem">Papers</h4> <hr> <div class="sota-table-preview papers-datatable-component"> <table style="width: 100% !important;" id="datatable-papers" class="table-striped table-responsive"> <thead style="width: 100% !important;"> <tr> <th style="text-left"><span>Paper</span></th> <th class="text-center"><span>Code</span></th> <th class="text-center"><span>Results</span></th> <th class="text-right"><span>Date</span></th> <th class="text-center"><span>Stars</span></th> </tr> </thead> </table> </div> <script> const DATATABLE_PAPERS_FILTER_NAME = 'papermethod__method_id'; const DATATABLE_PAPERS_FILTER_VALUE = '218'; </script> </div> <div id="tasks"> <h4 style="margin-bottom: 0.5rem">Tasks</h4> <hr> <div class="row"> <div class="col-lg-6"> <figure class="highcharts-figure"> <div id="usage-container"></div> </figure> </div> <div class="col-lg-6 task-methods"> <table> <tr> <th>Task</th> <th class="text-right">Papers</th> <th class="text-right">Share</th> </tr> <tr> <td><span class="dot" style="background-color: #2f7ed8"></span> <a href="/task/object-detection">Object Detection</a> </td> <td class="text-right">5</td> <td class="text-right">29.41%</td> </tr> <tr> <td><span class="dot" style="background-color: #0d233a"></span> <a href="/task/real-time-object-detection">Real-Time Object Detection</a> </td> <td class="text-right">2</td> <td class="text-right">11.76%</td> </tr> <tr> <td><span class="dot" style="background-color: #8bbc21"></span> <a href="/task/object">Object</a> </td> <td class="text-right">2</td> <td class="text-right">11.76%</td> </tr> <tr> <td><span class="dot" style="background-color: #f28f43"></span> <a href="/task/survey">Survey</a> </td> <td class="text-right">1</td> <td class="text-right">5.88%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(128, 133, 233)"></span> <a href="/task/computational-efficiency">Computational Efficiency</a> </td> <td class="text-right">1</td> <td class="text-right">5.88%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(241, 92, 128)"></span> <a href="/task/machine-learning">BIG-bench Machine Learning</a> </td> <td class="text-right">1</td> <td class="text-right">5.88%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(228, 211, 84)"></span> <a href="/task/blood-cell-count">Blood Cell Count</a> </td> <td class="text-right">1</td> <td class="text-right">5.88%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(43, 144, 143)"></span> <a href="/task/blood-cell-detection">Blood Cell Detection</a> </td> <td class="text-right">1</td> <td class="text-right">5.88%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(255, 116, 116)"></span> <a href="/task/cbc-test">CBC TEST</a> </td> <td class="text-right">1</td> <td class="text-right">5.88%</td> </tr> </table> </div> </div> </div> <div id="trends"> <h4 style="margin-bottom: 0.5rem">Usage Over Time</h4> <hr> <figure style="margin-top: 2.5rem" class="highcharts-figure"> <div id="container"></div> </figure> <span class="experimental-note hidden-element"><span class=" icon-wrapper icon-ion" data-name="flask-outline"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-miterlimit="10" stroke-width="32" d="M176 48h160M118 304h276M208 48v93.48a64.09 64.09 0 0 1-9.88 34.18L73.21 373.49C48.4 412.78 76.63 464 123.08 464h265.84c46.45 0 74.68-51.22 49.87-90.51L313.87 175.66a64.09 64.09 0 0 1-9.87-34.18V48"/></svg></span> This feature is experimental; we are continuously improving our matching algorithm.</span> </div> <div id="components"> <h4 style="margin-bottom: 0.5rem">Components</h4> <hr> <table> <tr> <th>Component</th> <th>Type</th> <th class="hidden-element"> <div class="float-right"> <div class="dropdown edit-button"> <button class="dropdown-toggle badge badge-edit" type="button" id="compEditMenu" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit </button> <div class="dropdown-menu dropdown-menu-end" aria-labelledby="compEditMenu" x-placement="bottom-end" style="position: absolute; transform: translate3d(55px, 35px, 0px); top: 0px; left: 0px; will-change: transform;"> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Add</a> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="remove"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M400 256H112"/></svg></span> Remove</a> </div> </div> </div> </th> </tr> <tr> <td><a href="/method/1x1-convolution"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/8af57ab4-844d-4f77-93db-f0ad3a582b9c.jpg"> 1x1 Convolution </div> </a> </td> <td> <a href="/methods/category/convolutions"> Convolutions </a> </td> <td class="hidden-element"> </td> </tr> <tr> <td><a href="/method/convolution"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/7aae5df0-922a-4806-beaf-8e49ea229a17.jpg"> Convolution </div> </a> </td> <td> <a href="/methods/category/convolutions"> Convolutions </a> </td> <td class="hidden-element"> </td> </tr> <tr> <td><a href="/method/dense-connections"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/method-0000000009-bc4d4a07_xuCMY0c.jpg"> Dense Connections </div> </a> </td> <td> <a href="/methods/category/feedforward-networks"> Feedforward Networks </a> </td> <td class="hidden-element"> </td> </tr> <tr> <td><a href="/method/dropout"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/method-0000000169-91318315_CHtBAl1.jpg"> Dropout </div> </a> </td> <td> <a href="/methods/category/regularization"> Regularization </a> </td> <td class="hidden-element"> </td> </tr> <tr> <td><a href="/method/leaky-relu"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/1ad67ddd-dc17-4786-8dbb-fa9f383688cb.jpg"> Leaky ReLU </div> </a> </td> <td> <a href="/methods/category/activation-functions"> Activation Functions </a> </td> <td class="hidden-element"> </td> </tr> <tr> <td><a href="/method/max-pooling"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/method-0000036659-3913323a_WdD9TuY.jpg"> Max Pooling </div> </a> </td> <td> <a href="/methods/category/pooling-operation"> Pooling Operations </a> </td> <td class="hidden-element"> </td> </tr> <tr> <td><a href="/method/non-maximum-suppression"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/method-0000054844-107a911f.jpg"> Non Maximum Suppression </div> </a> </td> <td> <a href="/methods/category/proposal-filtering"> Proposal Filtering </a> </td> <td class="hidden-element"> </td> </tr> </table> </div> <div class="collections"> <h4> Categories <div class="float-right"> <div class="dropdown edit-button"> <button class="dropdown-toggle badge badge-edit" type="button" id="evalEditMenu" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit </button> <div class="dropdown-menu dropdown-menu-end" aria-labelledby="evalEditMenu" x-placement="bottom-end" style="position: absolute; transform: translate3d(55px, 35px, 0px); top: 0px; left: 0px; will-change: transform;"> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Add</a> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="remove"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M400 256H112"/></svg></span> Remove</a> </div> </div> </div><hr> </h4> </div> <div class="row"> <div class="col-md-12"> <ul class="list-unstyled"> <li> <a href="/methods/category/object-detection-models"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/method/c9f8b125-84f6-4d45-b4a2-84eb1b59f311.jpg"> <span>Object Detection Models</span> </span> </a> </li> </ul> <ul class="list-unstyled"> <li> <a href="/methods/category/one-stage-object-detection-models"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>One-Stage Object Detection Models</span> </span> </a> </li> </ul> </div> </div> </div> </div> <script id="task_data" type="application/json">[{"name": "Object Detection", "slug": "object-detection", "papers": 5, "y": 29.411764705882355, "dot_color": "#2f7ed8"}, {"name": "Real-Time Object Detection", "slug": "real-time-object-detection", "papers": 2, "y": 11.76470588235294, "dot_color": "#0d233a"}, {"name": "Object", "slug": "object", "papers": 2, "y": 11.76470588235294, "dot_color": "#8bbc21"}, {"name": "Survey", "slug": "survey", "papers": 1, "y": 5.88235294117647, "dot_color": "#f28f43"}, {"name": "Computational Efficiency", "slug": "computational-efficiency", "papers": 1, "y": 5.88235294117647, "dot_color": "rgb(128, 133, 233)"}, {"name": "BIG-bench Machine Learning", "slug": "machine-learning", "papers": 1, "y": 5.88235294117647, "dot_color": "rgb(241, 92, 128)"}, {"name": "Blood Cell Count", "slug": "blood-cell-count", "papers": 1, "y": 5.88235294117647, "dot_color": "rgb(228, 211, 84)"}, {"name": "Blood Cell Detection", "slug": "blood-cell-detection", "papers": 1, "y": 5.88235294117647, "dot_color": "rgb(43, 144, 143)"}, {"name": "CBC TEST", "slug": "cbc-test", "papers": 1, "y": 5.88235294117647, "dot_color": "rgb(255, 116, 116)"}, {"name": "Other", "y": 11.76470588235294, "dot_color": "rgb(170, 255, 250)"}]</script> <script id="time_series_data" type="application/json">[{"name": "YOLOv1", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 0.0}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 2.927486167627858e-05}, {"time": "2019-09-30 00:00:00", "prop": 2.818489289740699e-05}, {"time": "2019-12-31 00:00:00", "prop": 0.0}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 0.0}, {"time": "2020-09-30 00:00:00", "prop": 0.0}, {"time": "2020-12-31 00:00:00", "prop": 0.0}, {"time": "2021-03-31 00:00:00", "prop": 0.0}, {"time": "2021-06-30 00:00:00", "prop": 0.0}, {"time": "2021-09-30 00:00:00", "prop": 0.0}, {"time": "2021-12-31 00:00:00", "prop": 0.0}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 0.0}, {"time": "2022-09-30 00:00:00", "prop": 0.0}, {"time": "2022-12-31 00:00:00", "prop": 0.0}, {"time": "2023-03-31 00:00:00", "prop": 0.0}, {"time": "2023-06-30 00:00:00", "prop": 0.0}, {"time": "2023-09-30 00:00:00", "prop": 0.0}, {"time": "2023-12-31 00:00:00", "prop": 0.0}, {"time": "2024-03-31 00:00:00", "prop": 0.0}, {"time": "2024-06-30 00:00:00", "prop": 3.287743293003682e-05}, {"time": "2024-09-30 00:00:00", "prop": 0.0}, {"time": "2024-12-31 00:00:00", "prop": 0.0}]}, {"name": "Faster R-CNN", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0003535928967115861}, {"time": "2018-06-30 00:00:00", "prop": 0.0005802047781569966}, {"time": "2018-09-30 00:00:00", "prop": 0.0007928573890861457}, {"time": "2018-12-31 00:00:00", "prop": 0.0004841364619307362}, {"time": "2019-03-31 00:00:00", "prop": 0.00023694276139863928}, {"time": "2019-06-30 00:00:00", "prop": 0.0006733218185544074}, {"time": "2019-09-30 00:00:00", "prop": 0.0005073280721533258}, {"time": "2019-12-31 00:00:00", "prop": 0.000595689375067692}, {"time": "2020-03-31 00:00:00", "prop": 0.00032866807263564403}, {"time": "2020-06-30 00:00:00", "prop": 0.0005037673033117224}, {"time": "2020-09-30 00:00:00", "prop": 0.00027955185686944926}, {"time": "2020-12-31 00:00:00", "prop": 0.0005779832829450472}, {"time": "2021-03-31 00:00:00", "prop": 0.0005347593582887701}, {"time": "2021-06-30 00:00:00", "prop": 0.0004133854198962403}, {"time": "2021-09-30 00:00:00", "prop": 0.0004636361720511686}, {"time": "2021-12-31 00:00:00", "prop": 0.00029894770408163266}, {"time": "2022-03-31 00:00:00", "prop": 0.0004129447306078981}, {"time": "2022-06-30 00:00:00", "prop": 0.00029174568112197056}, {"time": "2022-09-30 00:00:00", "prop": 0.0003660716208359353}, {"time": "2022-12-31 00:00:00", "prop": 0.0002164715143166388}, {"time": "2023-03-31 00:00:00", "prop": 0.0002703208500551039}, {"time": "2023-06-30 00:00:00", "prop": 5.671828030174125e-05}, {"time": "2023-09-30 00:00:00", "prop": 0.00018863653512412283}, {"time": "2023-12-31 00:00:00", "prop": 0.0002782173225060425}, {"time": "2024-03-31 00:00:00", "prop": 0.00020570488206253428}, {"time": "2024-06-30 00:00:00", "prop": 0.0001643871646501841}, {"time": "2024-09-30 00:00:00", "prop": 0.00010290006688504348}, {"time": "2024-12-31 00:00:00", "prop": 0.00022964221742525145}]}, {"name": "Mask R-CNN", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.00015715857300015716}, {"time": "2018-06-30 00:00:00", "prop": 3.412852803658578e-05}, {"time": "2018-09-30 00:00:00", "prop": 0.0003102485435554483}, {"time": "2018-12-31 00:00:00", "prop": 0.000387309169544589}, {"time": "2019-03-31 00:00:00", "prop": 0.0003046303818034119}, {"time": "2019-06-30 00:00:00", "prop": 0.0005854972335255716}, {"time": "2019-09-30 00:00:00", "prop": 0.0005918994334676851}, {"time": "2019-12-31 00:00:00", "prop": 0.0006498429546193004}, {"time": "2020-03-31 00:00:00", "prop": 0.0005477801210594067}, {"time": "2020-06-30 00:00:00", "prop": 0.00035043914405239065}, {"time": "2020-09-30 00:00:00", "prop": 0.0003655756741645521}, {"time": "2020-12-31 00:00:00", "prop": 0.0006891339142806332}, {"time": "2021-03-31 00:00:00", "prop": 0.0005092946269416857}, {"time": "2021-06-30 00:00:00", "prop": 0.0007440937558132325}, {"time": "2021-09-30 00:00:00", "prop": 0.0005690080293355251}, {"time": "2021-12-31 00:00:00", "prop": 0.00023915816326530612}, {"time": "2022-03-31 00:00:00", "prop": 0.0002608128667680939}, {"time": "2022-06-30 00:00:00", "prop": 0.00022922874945297686}, {"time": "2022-09-30 00:00:00", "prop": 0.0001292017485303301}, {"time": "2022-12-31 00:00:00", "prop": 0.000177113057168159}, {"time": "2023-03-31 00:00:00", "prop": 0.00022873302696970328}, {"time": "2023-06-30 00:00:00", "prop": 0.00020796702777305126}, {"time": "2023-09-30 00:00:00", "prop": 0.0003395457632234211}, {"time": "2023-12-31 00:00:00", "prop": 8.694291328313829e-05}, {"time": "2024-03-31 00:00:00", "prop": 0.00013713893888746035}, {"time": "2024-06-30 00:00:00", "prop": 9.863554167351635e-05}, {"time": "2024-09-30 00:00:00", "prop": 0.00015436068947774633}, {"time": "2024-12-31 00:00:00", "prop": 0.00010717293117966777}]}, {"name": "SSD", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.00019644821625019646}, {"time": "2018-06-30 00:00:00", "prop": 0.0004095423364390294}, {"time": "2018-09-30 00:00:00", "prop": 0.0004136647247405977}, {"time": "2018-12-31 00:00:00", "prop": 0.0004195849336733047}, {"time": "2019-03-31 00:00:00", "prop": 6.769564040075819e-05}, {"time": "2019-06-30 00:00:00", "prop": 0.0002927486167627858}, {"time": "2019-09-30 00:00:00", "prop": 0.00033822824769582006}, {"time": "2019-12-31 00:00:00", "prop": 0.00024369110798223763}, {"time": "2020-03-31 00:00:00", "prop": 0.00016433403631782202}, {"time": "2020-06-30 00:00:00", "prop": 0.000262829358039293}, {"time": "2020-09-30 00:00:00", "prop": 0.00012902670852866545}, {"time": "2020-12-31 00:00:00", "prop": 0.00026676151520540635}, {"time": "2021-03-31 00:00:00", "prop": 0.00025464731347084286}, {"time": "2021-06-30 00:00:00", "prop": 0.00026870052293255617}, {"time": "2021-09-30 00:00:00", "prop": 0.0001685949716549704}, {"time": "2021-12-31 00:00:00", "prop": 0.00027901785714285713}, {"time": "2022-03-31 00:00:00", "prop": 0.0001738752445120626}, {"time": "2022-06-30 00:00:00", "prop": 0.00014587284056098528}, {"time": "2022-09-30 00:00:00", "prop": 8.613449902022007e-05}, {"time": "2022-12-31 00:00:00", "prop": 5.903768572271967e-05}, {"time": "2023-03-31 00:00:00", "prop": 8.31756461708012e-05}, {"time": "2023-06-30 00:00:00", "prop": 0.00013234265403739626}, {"time": "2023-09-30 00:00:00", "prop": 0.0001131819210744737}, {"time": "2023-12-31 00:00:00", "prop": 0.00012172007859639361}, {"time": "2024-03-31 00:00:00", "prop": 0.00013713893888746035}, {"time": "2024-06-30 00:00:00", "prop": 0.00021371034029261878}, {"time": "2024-09-30 00:00:00", "prop": 0.00012005831403824714}, {"time": "2024-12-31 00:00:00", "prop": 9.186251243971522e-05}]}, {"name": "YOLOv3", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 3.412852803658578e-05}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 6.455152825743149e-05}, {"time": "2019-03-31 00:00:00", "prop": 6.769564040075819e-05}, {"time": "2019-06-30 00:00:00", "prop": 0.0001463743083813929}, {"time": "2019-09-30 00:00:00", "prop": 0.00016911412384791003}, {"time": "2019-12-31 00:00:00", "prop": 0.0002707678977580418}, {"time": "2020-03-31 00:00:00", "prop": 0.00019172304237079237}, {"time": "2020-06-30 00:00:00", "prop": 0.0003066342510458418}, {"time": "2020-09-30 00:00:00", "prop": 0.00021504451421444239}, {"time": "2020-12-31 00:00:00", "prop": 0.00046683265160946114}, {"time": "2021-03-31 00:00:00", "prop": 0.00035650623885918}, {"time": "2021-06-30 00:00:00", "prop": 0.00026870052293255617}, {"time": "2021-09-30 00:00:00", "prop": 0.00031611557185306946}, {"time": "2021-12-31 00:00:00", "prop": 0.00023915816326530612}, {"time": "2022-03-31 00:00:00", "prop": 0.0003260160834601174}, {"time": "2022-06-30 00:00:00", "prop": 0.0003334236355679663}, {"time": "2022-09-30 00:00:00", "prop": 0.00030147074657077024}, {"time": "2022-12-31 00:00:00", "prop": 0.00027550920003935846}, {"time": "2023-03-31 00:00:00", "prop": 0.00018714520388430267}, {"time": "2023-06-30 00:00:00", "prop": 0.00013234265403739626}, {"time": "2023-09-30 00:00:00", "prop": 0.00015090922809929828}, {"time": "2023-12-31 00:00:00", "prop": 0.00019127440922290425}, {"time": "2024-03-31 00:00:00", "prop": 6.856946944373017e-05}, {"time": "2024-06-30 00:00:00", "prop": 4.9317770836758175e-05}, {"time": "2024-09-30 00:00:00", "prop": 0.00012005831403824714}, {"time": "2024-12-31 00:00:00", "prop": 0.00010717293117966777}]}, {"name": "YOLOv8", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 3.4129692832764505e-05}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 0.0}, {"time": "2019-09-30 00:00:00", "prop": 0.0}, {"time": "2019-12-31 00:00:00", "prop": 0.0}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 0.0}, {"time": "2020-09-30 00:00:00", "prop": 0.0}, {"time": "2020-12-31 00:00:00", "prop": 0.0}, {"time": "2021-03-31 00:00:00", "prop": 0.0}, {"time": "2021-06-30 00:00:00", "prop": 0.0}, {"time": "2021-09-30 00:00:00", "prop": 0.0}, {"time": "2021-12-31 00:00:00", "prop": 0.0}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 0.0}, {"time": "2022-09-30 00:00:00", "prop": 0.0}, {"time": "2022-12-31 00:00:00", "prop": 0.0}, {"time": "2023-03-31 00:00:00", "prop": 0.0}, {"time": "2023-06-30 00:00:00", "prop": 0.00026468530807479253}, {"time": "2023-09-30 00:00:00", "prop": 0.00030181845619859656}, {"time": "2023-12-31 00:00:00", "prop": 0.0002956059051626702}, {"time": "2024-03-31 00:00:00", "prop": 0.000359983543609435}, {"time": "2024-06-30 00:00:00", "prop": 0.0005260389268805891}, {"time": "2024-09-30 00:00:00", "prop": 0.0008232005350803478}, {"time": "2024-12-31 00:00:00", "prop": 0.0007348550957608046}]}]</script> </div> <div class="footer"> <div class="footer-contact"> <span class="footer-contact-item">Contact us on:</span> <a class="footer-contact-item" href="mailto:hello@paperswithcode.com"> <span class=" icon-wrapper icon-ion" data-name="mail"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M424 80H88a56.06 56.06 0 0 0-56 56v240a56.06 56.06 0 0 0 56 56h336a56.06 56.06 0 0 0 56-56V136a56.06 56.06 0 0 0-56-56zm-14.18 92.63l-144 112a16 16 0 0 1-19.64 0l-144-112a16 16 0 1 1 19.64-25.26L256 251.73l134.18-104.36a16 16 0 0 1 19.64 25.26z"/></svg></span> hello@paperswithcode.com </a>. <span class="footer-contact-item"> Papers With Code is a free resource with all data licensed under <a rel="noreferrer" href="https://creativecommons.org/licenses/by-sa/4.0/">CC-BY-SA</a>. </span> </div> <div class="footer-links"> <a href="/site/terms">Terms</a> <a href="/site/data-policy">Data policy</a> <a href="/site/cookies-policy">Cookies policy</a> <a href="/about#team" class="fair-logo"> from <img src=""> </a> </div> </div> <script> // MathJax window.MathJax = { tex: { inlineMath: [ ["$", "$"], ["\\(", "\\)"], ], }, }; const mathjaxScript = document.createElement("script"); mathjaxScript.src = "https://production-assets.paperswithcode.com/static/js/mathjax/tex-chtml.js"; document.head.appendChild(mathjaxScript); </script> <script src="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/351.a22a9607.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/814.49dcf06c.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/view_method.c1f0a493.js" defer></script> </body> </html>