CINXE.COM
Search results for: wheeled mobile robot
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wheeled mobile robot</title> <meta name="description" content="Search results for: wheeled mobile robot"> <meta name="keywords" content="wheeled mobile robot"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wheeled mobile robot" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wheeled mobile robot"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2059</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wheeled mobile robot</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2059</span> Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Fareh">Raouf Fareh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarouf%20Saad"> Maarouf Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Khadraoui"> Sofiane Khadraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Rabie"> Tamer Rabie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/50751/lyapunov-based-tracking-control-for-nonholonomic-wheeled-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2058</span> An Inquiry on 2-Mass and Wheeled Mobile Robot Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boguslaw%20Schreyer">Boguslaw Schreyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a general dynamical model is derived using the Lagrange formalism. The two masses: sprang and unsprang are included in a six-degree of freedom model for a sprung mass. The unsprung mass is included and shown only in a simplified model, although its equations have also been derived by an author. The simplified equations, more suitable for the computer model of robot鈥檚 dynamics are also shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamics" title="dynamics">dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robots" title=" wheeled mobile robots"> wheeled mobile robots</a> </p> <a href="https://publications.waset.org/abstracts/48065/an-inquiry-on-2-mass-and-wheeled-mobile-robot-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Vidhyaprakash">D. Vidhyaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elango"> A. Elango</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot鈥檚 ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot" title="wheeled mobile robot">wheeled mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain" title=" terrain"> terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20slippage" title=" wheel slippage"> wheel slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=odometryerror" title=" odometryerror"> odometryerror</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a> </p> <a href="https://publications.waset.org/abstracts/38028/studies-on-affecting-factors-of-wheel-slip-and-odometry-error-on-real-time-of-wheeled-mobile-robots-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Control Law Design of a Wheeled Robot Mobile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghania%20Zidani">Ghania Zidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Drid"> Said Drid</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Chrifi-Alaoui"> Larbi Chrifi-Alaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeslam%20Benmakhlouf"> Abdeslam Benmakhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Souad%20Chaouch"> Souad Chaouch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focus on the study for path tracking control of unicycle-type Wheeled Mobile Robots (WMR), by applying the Backstepping technic. The latter is a relatively new technic for nonlinear systems. To solve the problem of constraints nonholonomics met in the path tracking of such robots, an adaptive Backstepping based nonlinear controller is developed. The stability of the controller is guaranteed, using the Lyapunov theory. Simulation results show that the proposed controller achieves the objective and ensures good path tracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Backstepping%20control" title="Backstepping control">Backstepping control</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20and%20dynamic%20controllers" title=" kinematic and dynamic controllers"> kinematic and dynamic controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20methods" title=" Lyapunov methods"> Lyapunov methods</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control%20systems" title=" nonlinear control systems"> nonlinear control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Wheeled%20Mobile%20Robot%20%28WMR%29." title=" Wheeled Mobile Robot (WMR)."> Wheeled Mobile Robot (WMR).</a> </p> <a href="https://publications.waset.org/abstracts/22322/control-law-design-of-a-wheeled-robot-mobile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Korayem">M. H. Korayem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Ameri"> Sh. Ameri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yousefi%20Lademakhi"> N. Yousefi Lademakhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot" title="wheeled mobile robot">wheeled mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20model%20predictive%20control" title=" nonlinear model predictive control"> nonlinear model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=without%20terminal%20ingredients" title=" without terminal ingredients"> without terminal ingredients</a> </p> <a href="https://publications.waset.org/abstracts/175466/artificial-steady-state-based-nonlinear-mpc-for-wheeled-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> Self-Organizing Map Network for Wheeled Robot Movement Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boguslaw%20Schreyer">Boguslaw Schreyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slip%20control" title="slip control">slip control</a>, <a href="https://publications.waset.org/abstracts/search?q=SOM%20network" title=" SOM network"> SOM network</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20distribution" title=" torque distribution"> torque distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20Robot" title=" wheeled Robot"> wheeled Robot</a> </p> <a href="https://publications.waset.org/abstracts/123015/self-organizing-map-network-for-wheeled-robot-movement-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> Efficient Control of Some Dynamic States of Wheeled Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boguslaw%20Schreyer">Boguslaw Schreyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some types of wheeled robots it is important to secure starting acceleration and deceleration maxima while at the same time maintaining transversal stability. In this paper torque distribution between the front and rear wheels as well as the timing of torque application have been calculated. Both secure an optimum traction coefficient. This paper also identifies required input signals to a control unit, which controls the torque values and timing. Using a three dimensional, two mass model of a robot developed by the author a computer simulation was performed confirming the calculations presented in this paper. These calculations were also implemented and confirmed during military robot testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot%20dynamics" title="robot dynamics">robot dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20distribution" title=" torque distribution"> torque distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20coefficient" title=" traction coefficient"> traction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20robots" title=" wheeled robots"> wheeled robots</a> </p> <a href="https://publications.waset.org/abstracts/69730/efficient-control-of-some-dynamic-states-of-wheeled-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20S.%20Andreev">Alexander S. Andreev</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20A.%20Peregudova"> Olga A. Peregudova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator%20dynamics" title="actuator dynamics">actuator dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20stepping" title=" back stepping"> back stepping</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20controller" title=" discrete-time controller"> discrete-time controller</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot" title=" wheeled mobile robot "> wheeled mobile robot </a> </p> <a href="https://publications.waset.org/abstracts/15632/discrete-tracking-control-of-nonholonomic-mobile-robots-backstepping-design-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Adaptive Cooperative Control of Nonholonomic Mobile Robot Based on Immersion and Invariance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imil%20Hamda%20Imran">Imil Hamda Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20El%20Ferik"> Sami El Ferik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with adaptive cooperative control of non holonomic mobile robot moved together in a given formation. The controller is designed based on the Immersion and Invariance (I&I) approach. I&I is a framework for adaptive stabilization of nonlinear systems with uncertain parameters. We investigate the tracking control of non holonomic mobile robot with uncertainties in The I&I-based adaptive controller regulates the angular and linear velocity of non holonomic mobile robot. The results demonstrate that the ability of I&I-based adaptive cooperative control in tracking the position of non holonomic mobile robot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonholonomic%20mobile%20robot" title="nonholonomic mobile robot">nonholonomic mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=immersion%20and%20invariance" title=" immersion and invariance"> immersion and invariance</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20nonlinear%20systems" title=" uncertain nonlinear systems"> uncertain nonlinear systems</a> </p> <a href="https://publications.waset.org/abstracts/21832/adaptive-cooperative-control-of-nonholonomic-mobile-robot-based-on-immersion-and-invariance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anderson%20Rocha">Anderson Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Miguel%20de%20Figueiredo%20Dinis%20Oliveira%20Gaspar"> Pedro Miguel de Figueiredo Dinis Oliveira Gaspar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20mobile%20robot" title="agricultural mobile robot">agricultural mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20recognition" title=" path recognition"> path recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=hough%20transform" title=" hough transform"> hough transform</a> </p> <a href="https://publications.waset.org/abstracts/96928/algorithm-for-path-recognition-in-between-tree-rows-for-agricultural-wheeled-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> OmniDrive Model of a Holonomic Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Altartouri">Hussein Altartouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange鈥檚 approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino庐 is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino庐 View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=omni-direction%20wheel" title=" omni-direction wheel"> omni-direction wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=holonomic%20mobile%20robot" title=" holonomic mobile robot"> holonomic mobile robot</a> </p> <a href="https://publications.waset.org/abstracts/11200/omnidrive-model-of-a-holonomic-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bogus%C5%82aw%20Schreyer">Bogus艂aw Schreyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=select-high" title="select-high">select-high</a>, <a href="https://publications.waset.org/abstracts/search?q=select-low" title=" select-low"> select-low</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20distribution" title=" torque distribution"> torque distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20robots" title=" wheeled robots"> wheeled robots</a> </p> <a href="https://publications.waset.org/abstracts/134319/select-low-and-select-high-methods-for-the-wheeled-robot-dynamic-states-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> Energy Management Techniques in Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Gurguze">G. Gurguze</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Turkoglu"> I. Turkoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title="energy management">energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20administration" title=" robot administration"> robot administration</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20management" title=" robot management"> robot management</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20planning" title=" robot planning"> robot planning</a> </p> <a href="https://publications.waset.org/abstracts/75907/energy-management-techniques-in-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption, and Open Cv-Library</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazim%20Abdulsada">Hazim Abdulsada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title="fuzzy logic">fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title=" mobile robots"> mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=Opencv" title=" Opencv"> Opencv</a>, <a href="https://publications.waset.org/abstracts/search?q=subsumption" title=" subsumption"> subsumption</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20vehicle%20inspection" title=" under vehicle inspection "> under vehicle inspection </a> </p> <a href="https://publications.waset.org/abstracts/20775/underneath-vehicle-inspection-using-fuzzy-logic-subsumption-and-open-cv-library" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> Localization of Mobile Robots with Omnidirectional Cameras</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatsuya%20Kato">Tatsuya Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Masanobu%20Nagata"> Masanobu Nagata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Nakashima"> Hidetoshi Nakashima</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazunori%20Matsuo"> Kazunori Matsuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using an omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title="mobile robots">mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=omnidirectional%20camera" title=" omnidirectional camera"> omnidirectional camera</a>, <a href="https://publications.waset.org/abstracts/search?q=estimating%20positions" title=" estimating positions"> estimating positions</a> </p> <a href="https://publications.waset.org/abstracts/11803/localization-of-mobile-robots-with-omnidirectional-cameras" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Mohammadijoo">Abolfazl Mohammadijoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20manipulator" title="mobile manipulator">mobile manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robotics" title=" mobile robotics"> mobile robotics</a> </p> <a href="https://publications.waset.org/abstracts/128498/trajectory-tracking-of-a-2-link-mobile-manipulator-using-sliding-mode-control-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> Mobile Robot Manipulator Kinematics Motion Control Analysis with MATLAB/Simulink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wayan%20Widhiada">Wayan Widhiada</a>, <a href="https://publications.waset.org/abstracts/search?q=Cok%20Indra%20Partha"> Cok Indra Partha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gusti%20Ngurah%20Nitya%20Santhiarsa"> Gusti Ngurah Nitya Santhiarsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the sophistication of the use of Proportional Integral and Derivative Control to control the kinematic motion of the mobile robot manipulator. Simulation and experimental methods will be used to investigate the sophistication of PID control to control the mobile robot arm in the collection and placement of several kinds of objects quickly, accurately and correctly. Mathematical modeling will be done by utilizing the integration of Solidworks and MATLAB / Simmechanics software. This method works by converting the physical model file into the xml file. This method is easy, fast and accurate done in modeling and design robotics. The automatic control design of this robot manipulator will be validated in simulations and experimental in control labs as evidence that the mobile robot manipulator gripper control design can achieve the best performance such as the error signal is lower than 5%, small overshoot and get steady signal response as quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20analysis" title="control analysis">control analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics%20motion" title=" kinematics motion"> kinematics motion</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot%20manipulator" title=" mobile robot manipulator"> mobile robot manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/80909/mobile-robot-manipulator-kinematics-motion-control-analysis-with-matlabsimulink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2042</span> Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayden%20Chivarov">Nayden Chivarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Chikurtev"> Denis Chikurtev</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaloyan%20Yovchev"> Kaloyan Yovchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nedko%20Shivarov"> Nedko Shivarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person鈥檚 needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20robot" title="service robot">service robot</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20navigation" title=" autonomous navigation"> autonomous navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20user%20interface" title=" web user interface"> web user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a> </p> <a href="https://publications.waset.org/abstracts/65573/telecontrolled-service-robots-for-increasing-the-quality-of-life-of-elderly-and-disabled" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2041</span> Two Wheels Differential Type Odometry for Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Jha">Abhishek Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new type of two wheels differential type odometry to estimate the next position and orientation of mobile robots. The proposed odometry is composed for two independent wheels with respective encoders. The two wheels rotate independently, and the change is determined by the difference in the velocity of the two wheels. Angular velocities of the two wheels are measured by rotary encoders. A mathematical model is proposed for the mobile robots to precisely move towards the goal. Using measured values of the two encoders, the current displacement vector of a mobile robot is calculated by kinematics of the mathematical model. Using the displacement vector, the next position and orientation of the mobile robot are estimated by proposed odometry. Result of simulator experiment by the developed odometry is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=odometry" title=" odometry"> odometry</a>, <a href="https://publications.waset.org/abstracts/search?q=unicycle" title=" unicycle"> unicycle</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20type" title=" differential type"> differential type</a>, <a href="https://publications.waset.org/abstracts/search?q=encoders" title=" encoders"> encoders</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20range%20sensors" title=" infrared range sensors"> infrared range sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20model" title=" kinematic model"> kinematic model</a> </p> <a href="https://publications.waset.org/abstracts/12157/two-wheels-differential-type-odometry-for-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2040</span> Hand Controlled Mobile Robot Applied in Virtual Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozsef%20Katona">Jozsef Katona</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20Kovari"> Attila Kovari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Ujbanyi"> Tibor Ujbanyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gergely%20Sziladi"> Gergely Sziladi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the development of IT systems, human-computer interaction is also developing even faster and newer communication methods become available in human-machine interaction. In this article, the application of a hand gesture controlled human-computer interface is being introduced through the example of a mobile robot. The control of the mobile robot is implemented in a realistic virtual environment that is advantageous regarding the aspect of different tests, parallel examinations, so the purchase of expensive equipment is unnecessary. The usability of the implemented hand gesture control has been evaluated by test subjects. According to the opinion of the testing subjects, the system can be well used, and its application would be recommended on other application fields too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interface%20%28HCI%29" title="human-machine interface (HCI)">human-machine interface (HCI)</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20control" title=" hand control"> hand control</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20environment" title=" virtual environment"> virtual environment</a> </p> <a href="https://publications.waset.org/abstracts/75711/hand-controlled-mobile-robot-applied-in-virtual-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2039</span> A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20M.%20Almeshal">Abdullah M. Almeshal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Alenezi"> Mohammad R. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Talal%20H.%20Alzanki"> Talal H. Alzanki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20control" title="fuzzy logic control">fuzzy logic control</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20dynamic%20algorithm" title=" spiral dynamic algorithm "> spiral dynamic algorithm </a> </p> <a href="https://publications.waset.org/abstracts/15205/a-spiral-dynamic-optimised-hybrid-fuzzy-logic-controller-for-a-unicycle-mobile-robot-on-irregular-terrains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2038</span> Design and Motion Control of a Two-Wheel Inverted Pendulum Robot </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiuh-Jer%20Huang">Shiuh-Jer Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Shean%20Chen"> Su-Shean Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheam-Chyun%20Lin"> Sheam-Chyun Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20control" title="balance control">balance control</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20control" title=" speed control"> speed control</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20controller" title=" intelligent controller"> intelligent controller</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20wheel%20inverted%20pendulum" title=" two wheel inverted pendulum"> two wheel inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/90056/design-and-motion-control-of-a-two-wheel-inverted-pendulum-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2037</span> Indoor Robot Positioning with Precise Correlation Computations over Walsh-Coded Lightwave Signal Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jen-Fa%20Huang">Jen-Fa Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Wei%20Chiu"> Yu-Wei Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhe-Ren%20Cheng"> Jhe-Ren Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visible light communication (VLC) technique has become useful method via LED light blinking. Several issues on indoor mobile robot positioning with LED blinking are examined in the paper. In the transmitter, we control the transceivers blinking message. Orthogonal Walsh codes are adopted for such purpose on auto-correlation function (ACF) to detect signal sequences. In the robot receiver, we set the frame of time by 1 ns passing signal from the transceiver to the mobile robot. After going through many periods of time detecting the peak value of ACF in the mobile robot. Moreover, the transceiver transmits signal again immediately. By capturing three times of peak value, we can know the time difference of arrival (TDOA) between two peak value intervals and finally analyze the accuracy of the robot position. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Visible%20Light%20Communication" title="Visible Light Communication">Visible Light Communication</a>, <a href="https://publications.waset.org/abstracts/search?q=Auto-Correlation%20Function%20%28ACF%29" title=" Auto-Correlation Function (ACF)"> Auto-Correlation Function (ACF)</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20value%20of%20ACF" title=" peak value of ACF"> peak value of ACF</a>, <a href="https://publications.waset.org/abstracts/search?q=Time%20difference%20of%20Arrival%20%28TDOA%29" title=" Time difference of Arrival (TDOA)"> Time difference of Arrival (TDOA)</a> </p> <a href="https://publications.waset.org/abstracts/55009/indoor-robot-positioning-with-precise-correlation-computations-over-walsh-coded-lightwave-signal-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2036</span> Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Cetina-Denis">J. J. Cetina-Denis</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20L%C3%B3pez-Guti%C3%A9rrez"> R. M. L贸pez-Guti茅rrez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ram%C3%ADrez-Ram%C3%ADrez"> R. Ram铆rez-Ram铆rez</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cruz-Hern%C3%A1ndez"> C. Cruz-Hern谩ndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaos" title="chaos">chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20trajectories" title=" chaotic trajectories"> chaotic trajectories</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20mobile%20robot" title=" differential mobile robot"> differential mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=Henon%20map" title=" Henon map"> Henon map</a>, <a href="https://publications.waset.org/abstracts/search?q=Khepera%20III%20robot" title=" Khepera III robot"> Khepera III robot</a>, <a href="https://publications.waset.org/abstracts/search?q=patrolling%20applications" title=" patrolling applications"> patrolling applications</a> </p> <a href="https://publications.waset.org/abstracts/99264/design-of-a-chaotic-trajectory-generator-algorithm-for-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2035</span> Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line following Using PIC and ATMEL Microcontrollers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibraheem%20K.%20Ibraheem">Ibraheem K. Ibraheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20sensing" title="color sensing">color sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=H-bridge" title=" H-bridge"> H-bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20following" title=" line following"> line following</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC%20microcontroller" title=" PIC microcontroller"> PIC microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=phototransistor" title=" phototransistor"> phototransistor</a> </p> <a href="https://publications.waset.org/abstracts/7881/design-and-implementation-of-a-control-system-for-a-walking-robot-with-color-sensing-and-line-following-using-pic-and-atmel-microcontrollers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2034</span> Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonqlan%20Lin">Jonqlan Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Tasi"> C. Y. Tasi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Lin"> K. H. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20mobile%20robot" title="autonomous mobile robot">autonomous mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20control%20mode" title=" hybrid control mode"> hybrid control mode</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20control" title=" navigation control"> navigation control</a> </p> <a href="https://publications.waset.org/abstracts/26893/hybrid-control-mode-based-on-multi-sensor-information-by-fuzzy-approach-for-navigation-task-of-autonomous-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2033</span> Multi Objective Near-Optimal Trajectory Planning of Mobile Robot </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Khoukhi">Amar Khoukhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shahab"> Mohamed Shahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the optimal control problem of mobile robot motion as a nonlinear programming problem (NLP) and solved using a direct method of numerical optimal control. The NLP is initialized with a B-Spline for which node locations are optimized using a genetic search. The system acceleration inputs and sampling periods are considered as optimization variables. Different scenarios with different objectives weights are implemented and investigated. Interesting results are found in terms of complying with the expected behavior of a mobile robot system and time-energy minimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20control" title="multi-objective control">multi-objective control</a>, <a href="https://publications.waset.org/abstracts/search?q=non-holonomic%20systems" title=" non-holonomic systems"> non-holonomic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title=" mobile robots"> mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20programming" title=" nonlinear programming"> nonlinear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title=" motion planning"> motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=B-spline" title=" B-spline"> B-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/14286/multi-objective-near-optimal-trajectory-planning-of-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2032</span> Development of a Weed Suppression Robot for Rice Cultivation Weed Suppression and Posture Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Nakai">Shohei Nakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Yamada"> Yasuhiro Yamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weed suppression and weeding are necessary measures for rice cultivation. Weed suppression precedes the process of weeding. It means suppressing the growth of young weeds and creating a weed-less environment. If we suppress the growth of weeds, we can reduce the number of weeds in a paddy field. This would result in a reduction of the weeding work load. In this paper, we will show how we developed a weed suppression robot for the purpose of reducing the weeding work load. The robot has a laser range finder for autonomous mobility and a robot arm for weed suppression. It travels along the rice rows without stepping on and injuring the rice plants in a paddy field. The robot arm applies force to the weed seedlings and thereby suppresses the growth of weeds. This paper will explain the methodology of the autonomous mobile, the experiment in weed suppression, and the method of controlling the robot鈥檚 posture on uneven ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy%20field" title=" paddy field"> paddy field</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20arm" title=" robot arm"> robot arm</a>, <a href="https://publications.waset.org/abstracts/search?q=weed" title=" weed"> weed</a> </p> <a href="https://publications.waset.org/abstracts/18414/development-of-a-weed-suppression-robot-for-rice-cultivation-weed-suppression-and-posture-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2031</span> The Follower Robots Tested in Different Lighting Condition and Improved Capabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Muhammed%20Fatih%20Apaydin">Sultan Muhammed Fatih Apaydin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, two types of robot were examined as being pioneer robot and follower robot for improving of the capabilities of tracking robots. Robots continue to tracking each other and measurement of the follow-up distance between them is very important for improvements to be applied. It was achieved that the follower robot follows the pioneer robot in line with intended goals. The tests were applied to the robots in various grounds and environments in point of performance and necessary improvements were implemented by measuring the results of these tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20and%20autonomous%20control" title=" remote and autonomous control"> remote and autonomous control</a>, <a href="https://publications.waset.org/abstracts/search?q=infra-red%20sensors" title=" infra-red sensors"> infra-red sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=arduino" title=" arduino"> arduino</a> </p> <a href="https://publications.waset.org/abstracts/34758/the-follower-robots-tested-in-different-lighting-condition-and-improved-capabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2030</span> Application of Fuzzy Logic to Design and Coordinate Parallel Behaviors for a Humanoid Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Chan%20Hung">Nguyen Chan Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20Ngoc%20Anh"> Mai Ngoc Anh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Xuan%20Ha"> Nguyen Xuan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Xuan%20Duc"> Tran Xuan Duc</a>, <a href="https://publications.waset.org/abstracts/search?q=Dang%20Bao%20Lam"> Dang Bao Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Hoang%20Viet"> Nguyen Hoang Viet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and implementation of a navigation controller for a humanoid mobile robot platform to operate in indoor office environments. In order to fulfil the requirement of recognizing and approaching human to provide service while avoiding random obstacles, a behavior-based fuzzy logic controller was designed to simultaneously coordinate multiple behaviors. Experiments in real office environment showed that the fuzzy controller deals well with complex scenarios without colliding with random objects and human. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior%20control" title="behavior control">behavior control</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=humanoid%20robot" title=" humanoid robot"> humanoid robot</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a> </p> <a href="https://publications.waset.org/abstracts/67738/application-of-fuzzy-logic-to-design-and-coordinate-parallel-behaviors-for-a-humanoid-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>