CINXE.COM
Formula di sommazione di Poisson: differenze tra le versioni - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-disabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Formula di sommazione di Poisson: differenze tra le versioni - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-disabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"c7a39800-b133-4820-95a0-1bbfb88f8522","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Formula_di_sommazione_di_Poisson","wgTitle":"Formula di sommazione di Poisson","wgCurRevisionId":139655326,"wgRevisionId":132810333,"wgArticleId":3656189,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Contestualizzare fonti - matematica","Contestualizzare fonti - aprile 2023","Template Webarchive - collegamenti all'Internet Archive","P2812 letta da Wikidata","Analisi di Fourier"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Formula_di_sommazione_di_Poisson","wgRelevantArticleId":3656189,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"extRevisionSliderTimeOffset":60,"wgDiffOldId":132676297,"wgDiffNewId":132810333,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q387743","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.visualEditor.diffPage.init.styles":"ready","oojs-ui.styles.icons-accessibility":"ready","oojs-ui.styles.icons-editing-advanced":"ready","oojs-ui-core.styles":"ready","oojs-ui.styles.indicators":"ready","mediawiki.widgets.styles":"ready","oojs-ui-core.icons":"ready","ext.RevisionSlider.lazyCss":"ready","mediawiki.interface.helpers.styles":"ready","mediawiki.diff.styles":"ready","ext.math.styles":"ready","ext.cite.styles":"ready","mediawiki.helplink":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready" ,"ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.visualEditor.diffPage.init","ext.RevisionSlider.lazyJs","mediawiki.diff","ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.RevisionSlider.lazyCss%7Cext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.visualEditor.diffPage.init.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.diff.styles%7Cmediawiki.helplink%7Cmediawiki.interface.helpers.styles%7Cmediawiki.widgets.styles%7Coojs-ui-core.icons%2Cstyles%7Coojs-ui.styles.icons-accessibility%2Cicons-editing-advanced%2Cindicators%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.gadget.coloriDarkMode-default&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Formula di sommazione di Poisson: differenze tra le versioni - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Formula_di_sommazione_di_Poisson"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Formula_di_sommazione_di_Poisson"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mw-article-diff skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Formula_di_sommazione_di_Poisson rootpage-Formula_di_sommazione_di_Poisson skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=Formula+di+sommazione+di+Poisson&returntoquery=diff%3Dprev%26oldid%3D132810333" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=Formula+di+sommazione+di+Poisson&returntoquery=diff%3Dprev%26oldid%3D132810333" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=Formula+di+sommazione+di+Poisson&returntoquery=diff%3Dprev%26oldid%3D132810333" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=Formula+di+sommazione+di+Poisson&returntoquery=diff%3Dprev%26oldid%3D132810333" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-La_formula" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#La_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>La formula</span> </div> </a> <ul id="toc-La_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Teorema" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Teorema"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Teorema</span> </div> </a> <button aria-controls="toc-Teorema-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Teorema</span> </button> <ul id="toc-Teorema-sublist" class="vector-toc-list"> <li id="toc-Dimostrazione" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dimostrazione"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Dimostrazione</span> </div> </a> <ul id="toc-Dimostrazione-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Teoria_delle_distribuzioni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Teoria_delle_distribuzioni"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Teoria delle distribuzioni</span> </div> </a> <ul id="toc-Teoria_delle_distribuzioni-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Somma_periodica" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Somma_periodica"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Somma periodica</span> </div> </a> <ul id="toc-Somma_periodica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applicazioni_della_risommazione_di_Poisson" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applicazioni_della_risommazione_di_Poisson"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Applicazioni della risommazione di Poisson</span> </div> </a> <ul id="toc-Applicazioni_della_risommazione_di_Poisson-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading">Formula di sommazione di Poisson: differenze tra le versioni</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 6 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-6" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">6 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Poissonsche_Summenformel" title="Poissonsche Summenformel - tedesco" lang="de" hreflang="de" data-title="Poissonsche Summenformel" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Poisson_summation_formula" title="Poisson summation formula - inglese" lang="en" hreflang="en" data-title="Poisson summation formula" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Formule_sommatoire_de_Poisson" title="Formule sommatoire de Poisson - francese" lang="fr" hreflang="fr" data-title="Formule sommatoire de Poisson" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9D%E3%82%A2%E3%82%BD%E3%83%B3%E5%92%8C%E5%85%AC%E5%BC%8F" title="ポアソン和公式 - giapponese" lang="ja" hreflang="ja" data-title="ポアソン和公式" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/F%C3%B3rmula_do_somat%C3%B3rio_de_Poisson" title="Fórmula do somatório de Poisson - portoghese" lang="pt" hreflang="pt" data-title="Fórmula do somatório de Poisson" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E6%B1%82%E5%92%8C%E5%85%AC%E5%BC%8F" title="泊松求和公式 - cinese" lang="zh" hreflang="zh" data-title="泊松求和公式" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q387743#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formula_di_sommazione_di_Poisson" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Formula_di_sommazione_di_Poisson" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formula_di_sommazione_di_Poisson"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&oldid=132810333&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=edit&oldid=132810333" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Formula_di_sommazione_di_Poisson"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&oldid=132810333&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=edit&oldid=132810333" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Formula_di_sommazione_di_Poisson" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Formula_di_sommazione_di_Poisson" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&oldid=132810333" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=Formula_di_sommazione_di_Poisson&id=132810333&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&url=https%3A%2F%2Fit.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DFormula_di_sommazione_di_Poisson%26diff%3Dprev%26oldid%3D132810333"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&url=https%3A%2F%2Fit.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DFormula_di_sommazione_di_Poisson%26diff%3Dprev%26oldid%3D132810333"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=Formula+di+sommazione+di+Poisson"><span>Crea un libro</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q387743" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-mw-helplink" class="mw-indicator"><a href="https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Diff" target="_blank" class="mw-helplink"><span class="mw-helplink-icon"></span>Aiuto</a></div> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-revslider-container"><span style='width: 100%; text-align: center;' id='ooui-php-1' class='mw-revslider-toggle-button oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-indicatorElement oo-ui-labelElement oo-ui-buttonWidget' data-ooui='{"_":"OO.ui.ButtonWidget","rel":["nofollow"],"framed":false,"indicator":"down","label":"Naviga nella cronologia in modo interattivo","title":"Apri RevisionSlider","classes":["mw-revslider-toggle-button"]}'><a role='button' title='Apri RevisionSlider' tabindex='0' rel='nofollow' class='oo-ui-buttonElement-button'><span class='oo-ui-iconElement-icon oo-ui-iconElement-noIcon'></span><span class='oo-ui-labelElement-label'>Naviga nella cronologia in modo interattivo</span><span class='oo-ui-indicatorElement-indicator oo-ui-indicator-down'></span></a></span><div class="mw-revslider-slider-wrapper" style="display: none;"><div class="mw-revslider-placeholder"><div class="mw-revslider-spinner"><div class="mw-revslider-bounce"></div></div></div></div></div><div class="mw-diff-revision-history-links"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&diff=prev&oldid=132676297" class="mw-diff-revision-history-link-previous" title="Formula di sommazione di Poisson">← Differenza precedente</a><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&diff=next&oldid=132810333" class="mw-diff-revision-history-link-next" title="Formula di sommazione di Poisson">Differenza successiva →</a></div><div class="mw-diff-table-prefix" dir="ltr" lang="it"><div class="mw-diff-inline-legend oo-ui-element-hidden"><span class="mw-diff-inline-legend-del">Contenuto cancellato</span> <span class="mw-diff-inline-legend-ins">Contenuto aggiunto</span></div><div class="ve-init-mw-diffPage-diffMode"><span class='oo-ui-widget oo-ui-widget-enabled oo-ui-buttonGroupWidget'><span aria-disabled='true' class='oo-ui-widget oo-ui-widget-disabled oo-ui-buttonElement oo-ui-buttonElement-framed oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget'><a role='button' tabindex='-1' aria-disabled='true' rel='nofollow' class='oo-ui-buttonElement-button'><span class='oo-ui-iconElement-icon oo-ui-icon-eye oo-ui-image-invert'></span><span class='oo-ui-labelElement-label'>Visuale</span><span class='oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator oo-ui-image-invert'></span></a></span><span class='oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-framed oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget oo-ui-buttonElement-active'><a role='button' tabindex='0' rel='nofollow' class='oo-ui-buttonElement-button'><span class='oo-ui-iconElement-icon oo-ui-icon-wikiText oo-ui-image-invert'></span><span class='oo-ui-labelElement-label'>Wikitesto</span><span class='oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator oo-ui-image-invert'></span></a></span></span></div><div class="mw-diffPage-inlineToggle-container"><div id='mw-diffPage-inline-toggle-switch-layout' class='oo-ui-layout oo-ui-labelElement oo-ui-fieldLayout oo-ui-fieldLayout-align-left' data-ooui='{"_":"OO.ui.FieldLayout","fieldWidget":{"tag":"mw-diffPage-inline-toggle-switch"},"$overlay":true,"label":"In linea","title":"Switches between inline format and two-column format"}'><div class='oo-ui-fieldLayout-body'><span class='oo-ui-fieldLayout-header'><label title='Switches between inline format and two-column format' id='ooui-php-2' class='oo-ui-labelElement-label'>In linea</label></span><div class='oo-ui-fieldLayout-field'><div id='mw-diffPage-inline-toggle-switch' title='Switches between inline format and two-column format' aria-checked='false' tabindex='0' role='switch' aria-labelledby='ooui-php-2' class='oo-ui-widget oo-ui-widget-enabled oo-ui-toggleWidget oo-ui-toggleWidget-off oo-ui-toggleSwitchWidget' data-ooui='{"_":"OO.ui.ToggleSwitchWidget","href":"\/w\/index.php?title=Formula_di_sommazione_di_Poisson&diff=prev&oldid=132810333&diff-type=inline","value":false,"title":"Switches between inline format and two-column format"}'><span class='oo-ui-toggleSwitchWidget-glow'></span><a href='/w/index.php?title=Formula_di_sommazione_di_Poisson&diff=prev&oldid=132810333&diff-type=inline'><span class='oo-ui-toggleSwitchWidget-grip'></span></a></div></div></div></div></div></div><table class="diff diff-type-table diff-contentalign-left diff-editfont-monospace" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="it"> <td colspan="2" class="diff-otitle diff-side-deleted"><div id="mw-diff-otitle1"><strong><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&oldid=132676297" title="Formula di sommazione di Poisson">Versione delle 17:18, 25 mar 2023</a> <span class="mw-diff-edit"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=edit&oldid=132676297" title="Formula di sommazione di Poisson">modifica</a></span><span class="mw-diff-timestamp" data-timestamp="2023-03-25T16:18:21Z"></span></strong></div><div id="mw-diff-otitle2"><a href="/w/index.php?title=Utente:VB876&action=edit&redlink=1" class="new mw-userlink" title="Utente:VB876 (la pagina non esiste)" data-mw-revid="132676297"><bdi>VB876</bdi></a> <span class="mw-usertoollinks">(<a href="/wiki/Discussioni_utente:VB876" class="mw-usertoollinks-talk" title="Discussioni utente:VB876">discussione</a> | <a href="/wiki/Speciale:Contributi/VB876" class="mw-usertoollinks-contribs" title="Speciale:Contributi/VB876">contributi</a>)</span><div class="mw-diff-usermetadata"><div class="mw-diff-userroles"></div><div class="mw-diff-usereditcount"><span>669</span> modifiche</div></div></div><div id="mw-diff-otitle3"> <span class="comment comment--without-parentheses">Funzionalità collegamenti suggeriti: 3 collegamenti inseriti.</span></div><div id="mw-diff-otitle5"><span class="mw-tag-markers"><a href="/wiki/Speciale:Etichette" title="Speciale:Etichette">Etichette</a>: <span class="mw-tag-marker mw-tag-marker-visualeditor"><a href="/wiki/Wikipedia:VisualEditor">Modifica visuale</a></span> <span class="mw-tag-marker mw-tag-marker-newcomer_task"><a class="external text" href="https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Growth/Tools/Newcomer_Tasks">Attività per i nuovi utenti</a></span> <span class="mw-tag-marker mw-tag-marker-newcomer_task_add_link"><a class="external text" href="https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Growth/Tools/Newcomer_Tasks#s-link">Suggerito: aggiungi collegamenti</a></span></span></div><div id="mw-diff-otitle4"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&diff=prev&oldid=132676297" title="Formula di sommazione di Poisson" id="differences-prevlink">← Differenza precedente</a></div></td> <td colspan="2" class="diff-ntitle diff-side-added"><div id="mw-diff-ntitle1"><strong><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&oldid=132810333" title="Formula di sommazione di Poisson">Versione delle 08:09, 2 apr 2023</a> <span class="mw-diff-edit"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=edit&oldid=132810333" title="Formula di sommazione di Poisson">modifica</a></span><span class="mw-diff-timestamp" data-timestamp="2023-04-02T07:09:17Z"></span> <span class="mw-diff-undo"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&action=edit&undoafter=132676297&undo=132810333" title=""Annulla" permette di annullare questa modifica e apre il modulo di modifica in modalità di anteprima. Permette di inserire una motivazione nell'oggetto della modifica.">annulla</a></span></strong></div><div id="mw-diff-ntitle2"><a href="/wiki/Utente:Zaminex" class="mw-userlink" title="Utente:Zaminex" data-mw-revid="132810333"><bdi>Zaminex</bdi></a> <span class="mw-usertoollinks">(<a href="/wiki/Discussioni_utente:Zaminex" class="mw-usertoollinks-talk" title="Discussioni utente:Zaminex">discussione</a> | <a href="/wiki/Speciale:Contributi/Zaminex" class="mw-usertoollinks-contribs" title="Speciale:Contributi/Zaminex">contributi</a>)</span><div class="mw-diff-usermetadata"><div class="mw-diff-userroles"><a href="/wiki/Wikipedia:Autoverificati" title="Wikipedia:Autoverificati">Utenti autoverificati</a></div><div class="mw-diff-usereditcount"><span>8 103</span> modifiche</div></div></div><div id="mw-diff-ntitle3"> <span class="comment comment--without-parentheses">+NN</span></div><div id="mw-diff-ntitle5"><span class="mw-tag-markers"><a href="/wiki/Speciale:Etichette" title="Speciale:Etichette">Etichetta</a>: <span class="mw-tag-marker mw-tag-marker-visualeditor"><a href="/wiki/Wikipedia:VisualEditor">Modifica visuale</a></span></span></div><div id="mw-diff-ntitle4"><a href="/w/index.php?title=Formula_di_sommazione_di_Poisson&diff=next&oldid=132810333" title="Formula di sommazione di Poisson" id="differences-nextlink">Differenza successiva →</a></div></td> </tr><tr> <td colspan="2" class="diff-lineno">Riga 1:</td> <td colspan="2" class="diff-lineno">Riga 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td class="diff-addedline diff-side-added"><div>{{NN|matematica|aprile 2023}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td class="diff-addedline diff-side-added"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td class="diff-context diff-side-deleted"><div>La '''formula di sommazione di Poisson''', anche detta '''risommazione di Poisson''', è un'identità tra due somme infinite, di cui la prima è costruita con una funzione <math>f</math> e la seconda con la sua [[trasformata di Fourier]] <math>\hat f</math>. La funzione è definita sull'asse reale o nello spazio euclideo a <math>n</math> dimensioni. La formula è stata scoperta da [[Siméon Denis Poisson]].</div></td> <td class="diff-marker"></td> <td class="diff-context diff-side-added"><div>La '''formula di sommazione di Poisson''', anche detta '''risommazione di Poisson''', è un'identità tra due somme infinite, di cui la prima è costruita con una funzione <math>f</math> e la seconda con la sua [[trasformata di Fourier]] <math>\hat f</math>. La funzione è definita sull'asse reale o nello spazio euclideo a <math>n</math> dimensioni. La formula è stata scoperta da [[Siméon Denis Poisson]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td class="diff-context diff-side-deleted"><br /></td> <td class="diff-marker"></td> <td class="diff-context diff-side-added"><br /></td> </tr> </table><hr class='diff-hr' id='mw-oldid' /> <h2 class='diff-currentversion-title'>Versione delle 08:09, 2 apr 2023</h2> <div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r133964453">.mw-parser-output .avviso .mbox-text-div>div,.mw-parser-output .avviso .mbox-text-full-div>div{font-size:90%}.mw-parser-output .avviso .mbox-image{flex-basis:52px;flex-grow:0;flex-shrink:0}.mw-parser-output .avviso .mbox-text-full-div .hide-when-compact{display:block}</style><div style="" class="ambox metadata noprint plainlinks avviso avviso-contenuto"> <div class="avviso-immagine mbox-image noprint"><span typeof="mw:File"><a href="/wiki/File:Question_book_magnify.svg" class="mw-file-description" title="Nessuna nota a piè di pagina"><img alt="Nessuna nota a piè di pagina" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Question_book_magnify.svg/45px-Question_book_magnify.svg.png" decoding="async" width="45" height="45" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Question_book_magnify.svg/68px-Question_book_magnify.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Question_book_magnify.svg/90px-Question_book_magnify.svg.png 2x" data-file-width="60" data-file-height="60" /></a></span></div> <div class="avviso-testo mbox-text"> <div class="mbox-text-div"><b>Questa voce o sezione  sull'argomento matematica è priva o carente di <a href="/wiki/Wikipedia:Uso_delle_fonti" title="Wikipedia:Uso delle fonti">note</a> e <a href="/wiki/Aiuto:Uso_delle_fonti#Citazioni_nel_testo_.28citazioni_interne.29_e_alla_fine" title="Aiuto:Uso delle fonti">riferimenti bibliografici puntuali</a></b>. <div class="hide-when-compact"> <div class="noprint"><hr />Sebbene vi siano una <a href="/wiki/Aiuto:Bibliografia" title="Aiuto:Bibliografia">bibliografia</a> e/o dei <a href="/wiki/Wikipedia:Collegamenti_esterni" title="Wikipedia:Collegamenti esterni">collegamenti esterni</a>, manca la contestualizzazione delle fonti con <a href="/wiki/Aiuto:Note" title="Aiuto:Note">note a piè di pagina</a> o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi <a class="external text" href="https://it.wikipedia.org/w/index.php?title=Formula_di_sommazione_di_Poisson&action=edit">migliorare questa voce</a> <a href="/wiki/Wikipedia:Uso_delle_fonti" title="Wikipedia:Uso delle fonti">citando le fonti</a> più precisamente. Segui i suggerimenti del <a href="/wiki/Progetto:Matematica" title="Progetto:Matematica">progetto di riferimento</a>.</div> </div> </div> </div> </div> <p>La <b>formula di sommazione di Poisson</b>, anche detta <b>risommazione di Poisson</b>, è un'identità tra due somme infinite, di cui la prima è costruita con una funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> e la seconda con la sua <a href="/wiki/Trasformata_di_Fourier" title="Trasformata di Fourier">trasformata di Fourier</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span>. La funzione è definita sull'asse reale o nello spazio euclideo a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> dimensioni. La formula è stata scoperta da <a href="/wiki/Sim%C3%A9on_Denis_Poisson" class="mw-redirect" title="Siméon Denis Poisson">Siméon Denis Poisson</a>. </p><p>La formula e le sue generalizzazioni sono importanti in molte aree della matematica, tra cui la <a href="/wiki/Teoria_dei_numeri" title="Teoria dei numeri">teoria dei numeri</a>, l'<a href="/wiki/Analisi_armonica" title="Analisi armonica">analisi armonica</a>, e la <a href="/wiki/Geometria_riemanniana" title="Geometria riemanniana">geometria riemanniana</a>. Un modo di interpretare la formula unidimensionale si ottiene osservando la relazione tra lo <a href="/wiki/Spettro_(matematica)" title="Spettro (matematica)">spettro</a> dell'<a href="/wiki/Operatore_di_Laplace-Beltrami" title="Operatore di Laplace-Beltrami">operatore di Laplace-Beltrami</a> sul <a href="/wiki/Cerchio" title="Cerchio">cerchio</a> e la lunghezza delle <a href="/wiki/Geodetica" title="Geodetica">geodetiche</a> periodiche su questa curva. In <a href="/wiki/Analisi_funzionale" title="Analisi funzionale">analisi funzionale</a>, la <a href="/w/index.php?title=Formula_di_Selberg&action=edit&redlink=1" class="new" title="Formula di Selberg (la pagina non esiste)">formula della traccia di Selberg</a> instaura un rapporto di questo tipo - ma di carattere molto più profondo - tra lo spettro del <a href="/wiki/Operatore_di_Laplace" title="Operatore di Laplace">laplaciano</a> e la lunghezza della geodetiche sulle <a href="/wiki/Superficie" title="Superficie">superfici</a> con <a href="/wiki/Curvatura" title="Curvatura">curvatura</a> costante negativa. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="La_formula">La formula</h2></div> <p>Data un'opportuna funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, la formula di sommazione di Poisson è data da: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }f(n)=\sum _{k=-\infty }^{\infty }{\hat {f}}\left(k\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }f(n)=\sum _{k=-\infty }^{\infty }{\hat {f}}\left(k\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ea7b1fc9cff1ab049c148b22d068b1b122933d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.705ex; height:7.009ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }f(n)=\sum _{k=-\infty }^{\infty }{\hat {f}}\left(k\right)}"></span></dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span> è la <a href="/wiki/Trasformata_di_Fourier" title="Trasformata di Fourier">trasformata di Fourier</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, ovvero: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}(\nu )={\mathcal {F}}\{f(x)\}\,{\stackrel {\mathrm {def} }{=}}\int _{-\infty }^{\infty }f(x)\ e^{-2\pi i\nu x}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ν<!-- ν --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>ν<!-- ν --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}(\nu )={\mathcal {F}}\{f(x)\}\,{\stackrel {\mathrm {def} }{=}}\int _{-\infty }^{\infty }f(x)\ e^{-2\pi i\nu x}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adae234060d3b53671fdcad9d204db208099d9dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.039ex; height:6.009ex;" alt="{\displaystyle {\hat {f}}(\nu )={\mathcal {F}}\{f(x)\}\,{\stackrel {\mathrm {def} }{=}}\int _{-\infty }^{\infty }f(x)\ e^{-2\pi i\nu x}\,dx}"></span></dd></dl> <p>Sostituendo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(xP)\ {\stackrel {\text{def}}{=}}\ f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>def</mtext> </mrow> </mover> </mrow> </mrow> <mtext> </mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(xP)\ {\stackrel {\text{def}}{=}}\ f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35db7b978094c068ef1e50f31f01cfce733d41cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.727ex; height:3.843ex;" alt="{\displaystyle g(xP)\ {\stackrel {\text{def}}{=}}\ f(x)}"></span> e sfruttando la proprietà: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{g(xP)\}\ ={\frac {1}{P}}\cdot {\hat {g}}\left({\frac {\nu }{P}}\right)\qquad P>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mtext> </mtext> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ν<!-- ν --></mi> <mi>P</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="2em" /> <mi>P</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{g(xP)\}\ ={\frac {1}{P}}\cdot {\hat {g}}\left({\frac {\nu }{P}}\right)\qquad P>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/796737bcebc1cfffc44f2c822b2491db2b77430e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:36.206ex; height:5.176ex;" alt="{\displaystyle {\mathcal {F}}\{g(xP)\}\ ={\frac {1}{P}}\cdot {\hat {g}}\left({\frac {\nu }{P}}\right)\qquad P>0}"></span></dd></dl> <p>la formula di sommazione diventa: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }g(nP)={\frac {1}{P}}\sum _{\nu =-\infty }^{\infty }{\hat {g}}\left({\frac {\nu }{P}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ν<!-- ν --></mi> <mi>P</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }g(nP)={\frac {1}{P}}\sum _{\nu =-\infty }^{\infty }{\hat {g}}\left({\frac {\nu }{P}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fd4d09f626a4974894d78112d77fbe6a5ee06e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.14ex; height:6.843ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }g(nP)={\frac {1}{P}}\sum _{\nu =-\infty }^{\infty }{\hat {g}}\left({\frac {\nu }{P}}\right)}"></span></dd></dl> <p>Definendo inoltre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(t+x)\ {\stackrel {\text{def}}{=}}\ g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>def</mtext> </mrow> </mover> </mrow> </mrow> <mtext> </mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(t+x)\ {\stackrel {\text{def}}{=}}\ g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1efa2f8285cce5c2d64316fe5b944b66cabc49d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.473ex; height:3.843ex;" alt="{\displaystyle s(t+x)\ {\stackrel {\text{def}}{=}}\ g(x)}"></span> e utilizzando la proprietà: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{s(t+x)\}\ ={\hat {s}}(\nu )\cdot e^{i2\pi \nu t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mtext> </mtext> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ν<!-- ν --></mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mi>ν<!-- ν --></mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{s(t+x)\}\ ={\hat {s}}(\nu )\cdot e^{i2\pi \nu t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34fe5fc6b0f098342041980a469e2ec40e94452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.964ex; height:3.176ex;" alt="{\displaystyle {\mathcal {F}}\{s(t+x)\}\ ={\hat {s}}(\nu )\cdot e^{i2\pi \nu t}}"></span></dd></dl> <p>si ottiene una rappresentazione periodica di periodo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>, la cui <a href="/wiki/Serie_di_Fourier" title="Serie di Fourier">serie di Fourier</a> è: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \underbrace {\sum _{n=-\infty }^{\infty }s(t+nP)} _{S_{P}(t)}=\sum _{k=-\infty }^{\infty }\underbrace {{\frac {1}{P}}\cdot {\hat {s}}\left({\frac {k}{P}}\right)} _{S[k]}\ e^{i2\pi {\frac {k}{P}}t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mrow> </munder> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \underbrace {\sum _{n=-\infty }^{\infty }s(t+nP)} _{S_{P}(t)}=\sum _{k=-\infty }^{\infty }\underbrace {{\frac {1}{P}}\cdot {\hat {s}}\left({\frac {k}{P}}\right)} _{S[k]}\ e^{i2\pi {\frac {k}{P}}t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84bc3afd94cc75fe2e0dd2a617b10d072b78b902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.005ex; width:42.437ex; height:10.843ex;" alt="{\displaystyle \underbrace {\sum _{n=-\infty }^{\infty }s(t+nP)} _{S_{P}(t)}=\sum _{k=-\infty }^{\infty }\underbrace {{\frac {1}{P}}\cdot {\hat {s}}\left({\frac {k}{P}}\right)} _{S[k]}\ e^{i2\pi {\frac {k}{P}}t}}"></span></dd></dl> <p>Si può mostrare che tale relazione vale nel senso che se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(t)\in L^{1}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(t)\in L^{1}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f5c7003bbb16b5a6e043b14278841923b963f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.704ex; height:3.176ex;" alt="{\displaystyle s(t)\in L^{1}(\mathbb {R} )}"></span> allora il membro alla destra è la serie di Fourier del membro alla sinistra, e tale serie può divergere. Infatti, dal <a href="/wiki/Teorema_della_convergenza_dominata" title="Teorema della convergenza dominata">teorema della convergenza dominata</a> segue che la somma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{P}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{P}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf71861ff7b3baf5f18412dbe7aff81890d36633" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.206ex; height:2.843ex;" alt="{\displaystyle s_{P}(t)}"></span> esiste ed è finita per quasi tutti i valori di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, ed è integrabile sull'intervallo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,P]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>P</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,P]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e22a95e69fea5905acab328644408c110eedea0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.236ex; height:2.843ex;" alt="{\displaystyle [0,P]}"></span>. Inoltre, dall'espressione del membro alla destra si evince che è sufficiente mostrare che i coefficienti di tale serie di Fourier sono <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{P}}{\hat {s}}\left({\frac {k}{P}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\frac {1}{P}}{\hat {s}}\left({\frac {k}{P}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3acf0629d810edb8ec52e68d9c67bd054d7b999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.59ex; height:3.509ex;" alt="{\displaystyle \scriptstyle {\frac {1}{P}}{\hat {s}}\left({\frac {k}{P}}\right)}"></span>, procedendo come segue: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}S[k]\ &{\stackrel {\text{def}}{=}}\ {\frac {1}{P}}\int _{0}^{P}s_{P}(t)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\\&=\ {\frac {1}{P}}\int _{0}^{P}\left(\sum _{n=-\infty }^{\infty }s(t+nP)\right)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\\&=\ {\frac {1}{P}}\sum _{n=-\infty }^{\infty }\int _{0}^{P}s(t+nP)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>S</mi> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mtext> </mtext> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>def</mtext> </mrow> </mover> </mrow> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}S[k]\ &{\stackrel {\text{def}}{=}}\ {\frac {1}{P}}\int _{0}^{P}s_{P}(t)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\\&=\ {\frac {1}{P}}\int _{0}^{P}\left(\sum _{n=-\infty }^{\infty }s(t+nP)\right)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\\&=\ {\frac {1}{P}}\sum _{n=-\infty }^{\infty }\int _{0}^{P}s(t+nP)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c35550db65dab80998d1f028cdaffbc8430ebab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.722ex; margin-bottom: -0.282ex; width:46.756ex; height:21.176ex;" alt="{\displaystyle {\begin{aligned}S[k]\ &{\stackrel {\text{def}}{=}}\ {\frac {1}{P}}\int _{0}^{P}s_{P}(t)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\\&=\ {\frac {1}{P}}\int _{0}^{P}\left(\sum _{n=-\infty }^{\infty }s(t+nP)\right)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\\&=\ {\frac {1}{P}}\sum _{n=-\infty }^{\infty }\int _{0}^{P}s(t+nP)\cdot e^{-i2\pi {\frac {k}{P}}t}\,dt\end{aligned}}}"></span></dd></dl> <p>dove lo scambio tra la somma e l'integrale è ancora permesso dal teorema della convergenza dominata. Con un'integrazione per sostituzione, ponendo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =t+nPt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> <mo>=</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>P</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =t+nPt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cb2b4c1c9fea98443a9d5d644d4cc4defec56e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.96ex; height:2.343ex;" alt="{\displaystyle \tau =t+nPt}"></span>, la precedente espressione diventa infine: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}S[k]={\frac {1}{P}}\sum _{n=-\infty }^{\infty }\int _{nP}^{nP+P}s(\tau )\ e^{-i2\pi {\frac {k}{P}}\tau }\ \underbrace {e^{i2\pi kn}} _{1}\,d\tau \ =\ {\frac {1}{P}}\int _{-\infty }^{\infty }s(\tau )\ e^{-i2\pi {\frac {k}{P}}\tau }d\tau ={\frac {1}{P}}\cdot {\hat {s}}\left({\frac {k}{P}}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>S</mi> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>P</mi> <mo>+</mo> <mi>P</mi> </mrow> </msubsup> <mi>s</mi> <mo stretchy="false">(</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>τ<!-- τ --></mi> </mrow> </msup> <mtext> </mtext> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mi>k</mi> <mi>n</mi> </mrow> </msup> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </munder> <mspace width="thinmathspace" /> <mi>d</mi> <mi>τ<!-- τ --></mi> <mtext> </mtext> <mo>=</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>s</mi> <mo stretchy="false">(</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>τ<!-- τ --></mi> </mrow> </msup> <mi>d</mi> <mi>τ<!-- τ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}S[k]={\frac {1}{P}}\sum _{n=-\infty }^{\infty }\int _{nP}^{nP+P}s(\tau )\ e^{-i2\pi {\frac {k}{P}}\tau }\ \underbrace {e^{i2\pi kn}} _{1}\,d\tau \ =\ {\frac {1}{P}}\int _{-\infty }^{\infty }s(\tau )\ e^{-i2\pi {\frac {k}{P}}\tau }d\tau ={\frac {1}{P}}\cdot {\hat {s}}\left({\frac {k}{P}}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f28c18bbdaa3ce84b12482eb46e64c6b7e54417c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:87.2ex; height:7.509ex;" alt="{\displaystyle {\begin{aligned}S[k]={\frac {1}{P}}\sum _{n=-\infty }^{\infty }\int _{nP}^{nP+P}s(\tau )\ e^{-i2\pi {\frac {k}{P}}\tau }\ \underbrace {e^{i2\pi kn}} _{1}\,d\tau \ =\ {\frac {1}{P}}\int _{-\infty }^{\infty }s(\tau )\ e^{-i2\pi {\frac {k}{P}}\tau }d\tau ={\frac {1}{P}}\cdot {\hat {s}}\left({\frac {k}{P}}\right)\end{aligned}}}"></span></dd></dl> <p>In modo analogo, la rappresentazione periodica della trasformata di Fourier di una funzione possiede un equivalente sviluppo in serie di Fourier: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=-\infty }^{\infty }{\hat {s}}(\nu +k/T)=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\ e^{-i2\pi nT\nu }\equiv {\mathcal {F}}\left\{\sum _{n=-\infty }^{\infty }T\cdot s(nT)\ \delta (t-nT)\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ν<!-- ν --></mi> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mi>n</mi> <mi>T</mi> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=-\infty }^{\infty }{\hat {s}}(\nu +k/T)=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\ e^{-i2\pi nT\nu }\equiv {\mathcal {F}}\left\{\sum _{n=-\infty }^{\infty }T\cdot s(nT)\ \delta (t-nT)\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f95e22ec8f82090e169f59d913660bdfcfadfaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:77.194ex; height:7.509ex;" alt="{\displaystyle \sum _{k=-\infty }^{\infty }{\hat {s}}(\nu +k/T)=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\ e^{-i2\pi nT\nu }\equiv {\mathcal {F}}\left\{\sum _{n=-\infty }^{\infty }T\cdot s(nT)\ \delta (t-nT)\right\}}"></span></dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> è l'intervallo temporale che corrisponde al periodo al quale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c484de351ba40ccb9a5ad522c29c1aac5686c0df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.739ex; height:2.843ex;" alt="{\displaystyle s(t)}"></span> viene campionata. </p> <div class="mw-heading mw-heading2"><h2 id="Teorema">Teorema</h2></div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> una funzione complessa definita su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> due volte continuamente <a href="/wiki/Funzione_differenziabile" title="Funzione differenziabile">differenziabile</a>, le cui prime due derivate su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> siano integrabili, e che soddisfi la relazione: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(x)|\leq {\frac {C}{1+x^{2}}}\qquad \forall x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(x)|\leq {\frac {C}{1+x^{2}}}\qquad \forall x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d214300226179fa79a573c3939c41a06e1cd643" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.819ex; height:5.843ex;" alt="{\displaystyle |f(x)|\leq {\frac {C}{1+x^{2}}}\qquad \forall x\in \mathbb {R} }"></span></dd></dl> <p>Sia inoltre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> un numero strettamente positivo. Detto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}=2\pi /a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}=2\pi /a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c420e774f94076694b51c80d7553a40cea8e848f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.485ex; height:2.843ex;" alt="{\displaystyle \omega _{0}=2\pi /a}"></span> il modo fondamentale, vale la seguente identità: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(t)\equiv \sum _{n=-\infty }^{\infty }f(t+na)={\frac {1}{a}}\sum _{m=-\infty }^{\infty }{\hat {f}}(m\omega _{0})\ e^{im\omega _{0}t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>≡<!-- ≡ --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>m</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(t)\equiv \sum _{n=-\infty }^{\infty }f(t+na)={\frac {1}{a}}\sum _{m=-\infty }^{\infty }{\hat {f}}(m\omega _{0})\ e^{im\omega _{0}t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2493503b064b3ebe4c80c99afd39da4d3f7c8851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:48.197ex; height:6.843ex;" alt="{\displaystyle S(t)\equiv \sum _{n=-\infty }^{\infty }f(t+na)={\frac {1}{a}}\sum _{m=-\infty }^{\infty }{\hat {f}}(m\omega _{0})\ e^{im\omega _{0}t}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Dimostrazione">Dimostrazione</h3></div> <p>Il lato sinistro della formula sommatoria di Poisson è la somma di una serie di funzioni continue. L'ipotesi fatte circa il comportamento di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> all'infinito implica che la serie <a href="/w/index.php?title=Convergenza_in_norma&action=edit&redlink=1" class="new" title="Convergenza in norma (la pagina non esiste)">converge normalmente</a> su ogni compatto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [-a,a]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo>,</mo> <mi>a</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [-a,a]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50ccbcece37f9ec0a4c6d396be3a143a0b76d5c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.595ex; height:2.843ex;" alt="{\displaystyle [-a,a]}"></span> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. Pertanto, la sua somma è una funzione continua, e la formula di definizione mostra che è periodica di periodo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>. </p><p>Quindi si possono calcolare i coefficienti della sua <a href="/wiki/Serie_di_Fourier" title="Serie di Fourier">serie di Fourier</a> a esponenziali sul <a href="/wiki/Base_ortonormale" title="Base ortonormale">sistema ortonormale</a> <a href="/wiki/Spazio_completo" class="mw-redirect" title="Spazio completo">completo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{e^{i2\pi {\frac {n}{a}}}\right\}_{n=-\infty }^{n=+\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>{</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>a</mi> </mfrac> </mrow> </mrow> </msup> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{e^{i2\pi {\frac {n}{a}}}\right\}_{n=-\infty }^{n=+\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aee781b46d35b31fd75a35572cda0359416001a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.803ex; height:5.176ex;" alt="{\displaystyle \left\{e^{i2\pi {\frac {n}{a}}}\right\}_{n=-\infty }^{n=+\infty }}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{m}=\int _{0}^{a}\sum _{n\in \mathbb {Z} }f(t+na)e^{-2\mathrm {i} \pi mt/a}\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>a</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>π<!-- π --></mi> <mi>m</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{m}=\int _{0}^{a}\sum _{n\in \mathbb {Z} }f(t+na)e^{-2\mathrm {i} \pi mt/a}\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c30c1d311e634eae50615d78900727ad698c7f06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.854ex; height:6.676ex;" alt="{\displaystyle c_{m}=\int _{0}^{a}\sum _{n\in \mathbb {Z} }f(t+na)e^{-2\mathrm {i} \pi mt/a}\,dt}"></span></dd></dl> <p>Grazie alla convergenza normale della serie definente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> possiamo scambiare somma e integrazione, e scrivere quindi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{m}=\sum _{n\in \mathbb {Z} }\int _{0}^{a}f(t+na)e^{-2\mathrm {i} \pi mt/a}\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>a</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>π<!-- π --></mi> <mi>m</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{m}=\sum _{n\in \mathbb {Z} }\int _{0}^{a}f(t+na)e^{-2\mathrm {i} \pi mt/a}\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ad9947200427f029673c474a92020130640a44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.854ex; height:6.676ex;" alt="{\displaystyle c_{m}=\sum _{n\in \mathbb {Z} }\int _{0}^{a}f(t+na)e^{-2\mathrm {i} \pi mt/a}\,dt}"></span></dd></dl> <p>Se si effettua in ogni integrale il cambio di variabile <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=t+na}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>t</mi> <mo>+</mo> <mi>n</mi> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=t+na}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fdd1d845b31a34a938534c1406769846325dd30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.493ex; height:2.176ex;" alt="{\displaystyle s=t+na}"></span> si ottiene: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{m}=\sum _{n\in \mathbb {Z} }\int _{na}^{(n+1)a}f(s)e^{-2\mathrm {i} \pi m(s-na)/a}\,ds={\hat {f}}(2m\pi /a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>π<!-- π --></mi> <mi>m</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{m}=\sum _{n\in \mathbb {Z} }\int _{na}^{(n+1)a}f(s)e^{-2\mathrm {i} \pi m(s-na)/a}\,ds={\hat {f}}(2m\pi /a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0fc964702ee0fac57086e51f65b82af08ef4989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:51.382ex; height:7.176ex;" alt="{\displaystyle c_{m}=\sum _{n\in \mathbb {Z} }\int _{na}^{(n+1)a}f(s)e^{-2\mathrm {i} \pi m(s-na)/a}\,ds={\hat {f}}(2m\pi /a)}"></span></dd></dl> <p>Dalle ipotesi su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> e le sue derivate, e dalle identità classiche sulle trasformata della derivata, si vede che la funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span> soddisfa la relazione: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall \omega \in \mathbb {R} ,\quad |{\hat {f}}(\omega )|\leq {\hat {C}}/(1+\omega ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>ω<!-- ω --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>C</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall \omega \in \mathbb {R} ,\quad |{\hat {f}}(\omega )|\leq {\hat {C}}/(1+\omega ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc9dc84736a0cb95815c252da31ec794ccb711f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.201ex; height:3.343ex;" alt="{\displaystyle \forall \omega \in \mathbb {R} ,\quad |{\hat {f}}(\omega )|\leq {\hat {C}}/(1+\omega ^{2})}"></span></dd></dl> <p>Pertanto, la serie di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5a92f980a7ccf6827b6925c6d6421984d9c5859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.682ex; height:2.009ex;" alt="{\displaystyle c_{m}}"></span> è assolutamente convergente ci troviamo in una situazione in cui si può sommare la serie di Fourier di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>, e ottenere: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(t)={\frac {1}{a}}\sum _{m\in \mathbb {Z} }c_{m}e^{2\mathrm {i} \pi mt/a}={\frac {1}{a}}\sum _{m\in \mathbb {Z} }{\hat {f}}(2m\pi /a)e^{2\mathrm {i} \pi mt/a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>π<!-- π --></mi> <mi>m</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>π<!-- π --></mi> <mi>m</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(t)={\frac {1}{a}}\sum _{m\in \mathbb {Z} }c_{m}e^{2\mathrm {i} \pi mt/a}={\frac {1}{a}}\sum _{m\in \mathbb {Z} }{\hat {f}}(2m\pi /a)e^{2\mathrm {i} \pi mt/a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dead6cef0898e2a313d88c2574e59ccd664f2b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.943ex; height:6.509ex;" alt="{\displaystyle S(t)={\frac {1}{a}}\sum _{m\in \mathbb {Z} }c_{m}e^{2\mathrm {i} \pi mt/a}={\frac {1}{a}}\sum _{m\in \mathbb {Z} }{\hat {f}}(2m\pi /a)e^{2\mathrm {i} \pi mt/a}}"></span></dd></dl> <p>Questa è la formula desiderata, ricordando che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi /a=\omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> <mo>=</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi /a=\omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8bc8b83362469117563bd6c2cefa2372b763b29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.485ex; height:2.843ex;" alt="{\displaystyle 2\pi /a=\omega _{0}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Teoria_delle_distribuzioni">Teoria delle distribuzioni</h2></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Distribuzione_(matematica)" title="Distribuzione (matematica)">Distribuzione (matematica)</a></b>.</span></div> </div> <p>Un modo comodo per aggirare le condizioni di regolarità imposte alla funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> è di collocare la formula nel contesto più ampio della teoria delle distribuzioni. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4457507451c205a7e6adda92d919ee4c4a369cea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.188ex; height:2.843ex;" alt="{\displaystyle \delta (x)}"></span> è la <a href="/wiki/Delta_di_Dirac" title="Delta di Dirac">distribuzione di Dirac</a> e se si introduce la seguente distribuzione, nota come <a href="/wiki/Pettine_di_Dirac" title="Pettine di Dirac">pettine di Dirac</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (x)\equiv \sum _{n\in \mathbb {Z} }\delta (x-n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≡<!-- ≡ --></mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mrow> </munder> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (x)\equiv \sum _{n\in \mathbb {Z} }\delta (x-n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e8e24f40f24a2bf7d2674323d3e45c32c71ba11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:20.338ex; height:5.676ex;" alt="{\displaystyle \Delta (x)\equiv \sum _{n\in \mathbb {Z} }\delta (x-n)}"></span></dd></dl> <p>Un modo elegante per riscrivere la somma equivale a dire che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1dbdf957b843d924706374d3094a44847a072c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.075ex; height:2.843ex;" alt="{\displaystyle \Delta (x)}"></span> è la trasformata di Fourier di sé stessa. </p><p>Si consideri una distribuzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> le cui derivate siano a decrescenza rapida. Considerando il pettine di Dirac e il suo sviluppo in <a href="/wiki/Serie_di_Fourier" title="Serie di Fourier">serie di Fourier</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }\delta (x-nP)\equiv \sum _{k=-\infty }^{\infty }{\frac {1}{P}}\cdot e^{-i2\pi {\frac {k}{P}}x}\quad {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\quad {\frac {1}{P}}\cdot \sum _{k=-\infty }^{\infty }\delta (\nu +k/P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>≡<!-- ≡ --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>P</mi> </mfrac> </mrow> <mi>x</mi> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">⟺<!-- ⟺ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>ν<!-- ν --></mi> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }\delta (x-nP)\equiv \sum _{k=-\infty }^{\infty }{\frac {1}{P}}\cdot e^{-i2\pi {\frac {k}{P}}x}\quad {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\quad {\frac {1}{P}}\cdot \sum _{k=-\infty }^{\infty }\delta (\nu +k/P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ce0cb121c437e9713b67a1316dfeaa7feb1fb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:65.964ex; height:7.009ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }\delta (x-nP)\equiv \sum _{k=-\infty }^{\infty }{\frac {1}{P}}\cdot e^{-i2\pi {\frac {k}{P}}x}\quad {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\quad {\frac {1}{P}}\cdot \sum _{k=-\infty }^{\infty }\delta (\nu +k/P)}"></span></dd></dl> <p>Si ha: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{k=-\infty }^{\infty }{\hat {f}}(k)&=\sum _{k=-\infty }^{\infty }\left(\int _{-\infty }^{\infty }f(x)\ e^{-i2\pi kx}dx\right)=\int _{-\infty }^{\infty }f(x)\underbrace {\left(\sum _{k=-\infty }^{\infty }e^{-i2\pi kx}\right)} _{\sum _{n=-\infty }^{\infty }\delta (x-n)}dx\\&=\sum _{n=-\infty }^{\infty }\left(\int _{-\infty }^{\infty }f(x)\ \delta (x-n)\ dx\right)=\sum _{n=-\infty }^{\infty }f(n)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mi>d</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{k=-\infty }^{\infty }{\hat {f}}(k)&=\sum _{k=-\infty }^{\infty }\left(\int _{-\infty }^{\infty }f(x)\ e^{-i2\pi kx}dx\right)=\int _{-\infty }^{\infty }f(x)\underbrace {\left(\sum _{k=-\infty }^{\infty }e^{-i2\pi kx}\right)} _{\sum _{n=-\infty }^{\infty }\delta (x-n)}dx\\&=\sum _{n=-\infty }^{\infty }\left(\int _{-\infty }^{\infty }f(x)\ \delta (x-n)\ dx\right)=\sum _{n=-\infty }^{\infty }f(n)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6681131c13d95281d693bd19857249ea68a4ba18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:72.72ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}\sum _{k=-\infty }^{\infty }{\hat {f}}(k)&=\sum _{k=-\infty }^{\infty }\left(\int _{-\infty }^{\infty }f(x)\ e^{-i2\pi kx}dx\right)=\int _{-\infty }^{\infty }f(x)\underbrace {\left(\sum _{k=-\infty }^{\infty }e^{-i2\pi kx}\right)} _{\sum _{n=-\infty }^{\infty }\delta (x-n)}dx\\&=\sum _{n=-\infty }^{\infty }\left(\int _{-\infty }^{\infty }f(x)\ \delta (x-n)\ dx\right)=\sum _{n=-\infty }^{\infty }f(n)\end{aligned}}}"></span></dd></dl> <p>e similmente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{k=-\infty }^{\infty }{\hat {s}}(\nu +k/T)&=\sum _{k=-\infty }^{\infty }{\mathcal {F}}\left\{s(t)\cdot e^{-i2\pi {\frac {k}{T}}t}\right\}\\&={\mathcal {F}}{\bigg \{}s(t)\underbrace {\sum _{k=-\infty }^{\infty }e^{-i2\pi {\frac {k}{T}}t}} _{T\sum _{n=-\infty }^{\infty }\delta (t-nT)}{\bigg \}}={\mathcal {F}}\left\{\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot \delta (t-nT)\right\}\\&=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot {\mathcal {F}}\left\{\delta (t-nT)\right\}=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot e^{-i2\pi nT\nu }\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ν<!-- ν --></mi> <mo>+</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>T</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>T</mi> </mfrac> </mrow> <mi>t</mi> </mrow> </msup> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>T</mi> </mfrac> </mrow> <mi>t</mi> </mrow> </msup> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mi>n</mi> <mi>T</mi> <mi>ν<!-- ν --></mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{k=-\infty }^{\infty }{\hat {s}}(\nu +k/T)&=\sum _{k=-\infty }^{\infty }{\mathcal {F}}\left\{s(t)\cdot e^{-i2\pi {\frac {k}{T}}t}\right\}\\&={\mathcal {F}}{\bigg \{}s(t)\underbrace {\sum _{k=-\infty }^{\infty }e^{-i2\pi {\frac {k}{T}}t}} _{T\sum _{n=-\infty }^{\infty }\delta (t-nT)}{\bigg \}}={\mathcal {F}}\left\{\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot \delta (t-nT)\right\}\\&=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot {\mathcal {F}}\left\{\delta (t-nT)\right\}=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot e^{-i2\pi nT\nu }\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fd38c833be1befd557e7bc403382338eefa7a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.505ex; width:78.933ex; height:26.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{k=-\infty }^{\infty }{\hat {s}}(\nu +k/T)&=\sum _{k=-\infty }^{\infty }{\mathcal {F}}\left\{s(t)\cdot e^{-i2\pi {\frac {k}{T}}t}\right\}\\&={\mathcal {F}}{\bigg \{}s(t)\underbrace {\sum _{k=-\infty }^{\infty }e^{-i2\pi {\frac {k}{T}}t}} _{T\sum _{n=-\infty }^{\infty }\delta (t-nT)}{\bigg \}}={\mathcal {F}}\left\{\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot \delta (t-nT)\right\}\\&=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot {\mathcal {F}}\left\{\delta (t-nT)\right\}=\sum _{n=-\infty }^{\infty }T\cdot s(nT)\cdot e^{-i2\pi nT\nu }\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Somma_periodica">Somma periodica</h2></div> <p>Una forma della sommazione di Poisson si ottiene considerando una <a href="/wiki/Funzione_periodica" title="Funzione periodica">funzione periodica</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43bdbe4ab8c7bbbb89a5410c25b536d10befbb5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.606ex; height:2.509ex;" alt="{\displaystyle f_{P}}"></span> di periodo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> e rappresendola attraverso un funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> non periodica nel seguente modo: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}(x)=\sum _{n=-\infty }^{\infty }f(x+nP)=\sum _{n=-\infty }^{\infty }f(x-nP)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}(x)=\sum _{n=-\infty }^{\infty }f(x+nP)=\sum _{n=-\infty }^{\infty }f(x-nP)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704f5385db677c0a4de8f3f6be7ef8542c03bb67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.885ex; height:6.843ex;" alt="{\displaystyle f_{P}(x)=\sum _{n=-\infty }^{\infty }f(x+nP)=\sum _{n=-\infty }^{\infty }f(x-nP)}"></span></dd></dl> <p>Tale espressione è detta <i>sommazione periodica</i>, e se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43bdbe4ab8c7bbbb89a5410c25b536d10befbb5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.606ex; height:2.509ex;" alt="{\displaystyle f_{P}}"></span> è rappresentabile in <a href="/wiki/Serie_di_Fourier" title="Serie di Fourier">serie di Fourier</a> complessa i coefficienti di tale serie sono proporzionali ai valori della <a href="/wiki/Trasformata_di_Fourier" title="Trasformata di Fourier">trasformata di Fourier</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> "campionata" ad intervalli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle 1/P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle 1/P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1460b1ac04bd11a17f0b7280f8cb9b9231c9c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.878ex; height:2.176ex;" alt="{\displaystyle \scriptstyle 1/P}"></span>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>In modo analogo, una serie di Fourier i cui coefficienti sono ottenuti campionando <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> è equivalente alla somma periodica della trasformata di Fourier di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, nota come <a href="/wiki/Trasformata_di_Fourier_discreta" class="mw-redirect" title="Trasformata di Fourier discreta">trasformata di Fourier discreta</a>. </p><p>Se si rappresenta una funzione periodica utilizzando il dominio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} /(P\cdot \mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} /(P\cdot \mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a413f5d22be4cba49649249d97ca90afe14f513" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.625ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} /(P\cdot \mathbb {Z} )}"></span> (<a href="/wiki/Spazio_vettoriale_quoziente" title="Spazio vettoriale quoziente">spazio quoziente</a>) si può scrivere: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{P}:\mathbb {R} /(P\cdot \mathbb {Z} )\to \mathbb {R} \qquad \varphi _{P}(x)=\sum _{\tau \in x}f(\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mspace width="2em" /> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>τ<!-- τ --></mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{P}:\mathbb {R} /(P\cdot \mathbb {Z} )\to \mathbb {R} \qquad \varphi _{P}(x)=\sum _{\tau \in x}f(\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e404aae51553a5571d012740d92b3032cf51f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.742ex; height:5.509ex;" alt="{\displaystyle \varphi _{P}:\mathbb {R} /(P\cdot \mathbb {Z} )\to \mathbb {R} \qquad \varphi _{P}(x)=\sum _{\tau \in x}f(\tau )}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Applicazioni_della_risommazione_di_Poisson">Applicazioni della risommazione di Poisson</h2></div> <p>Un risultato di fondamentale importanza della formula di sommazione è fornire un <a href="/wiki/Teorema_del_campionamento_di_Nyquist-Shannon#Formula_di_sommazione_di_Poisson" title="Teorema del campionamento di Nyquist-Shannon">criterio</a> che garantisca la ricostruibilità di un segnale <a href="/wiki/Campionamento_(teoria_dei_segnali)" title="Campionamento (teoria dei segnali)">campionato</a>. Essa lega i campioni di una generica <a href="/wiki/Forma_d%27onda" title="Forma d'onda">forma d'onda</a> nel <a href="/wiki/Dominio_del_tempo" title="Dominio del tempo">dominio del tempo</a> alle ripetizioni della sua trasformata nel <a href="/wiki/Dominio_della_frequenza" title="Dominio della frequenza">dominio della frequenza</a>: scegliendo un intervallo di campionamento sufficientemente rapido non vi saranno sovrapposizioni nel dominio della frequenza e sarà sempre possibile ricostruire il segnale campionato. </p><p>La sommazione è inoltre utile per determinare la somma di serie come: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\equiv \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>≡<!-- ≡ --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\equiv \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb3804c8284c51e69a3fa93b7a9dd3d995e28d95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.948ex; height:6.843ex;" alt="{\displaystyle S\equiv \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}"></span></dd></dl> <p>o anche: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\equiv -\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n^{4}}}={\frac {7\pi ^{4}}{720}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>≡<!-- ≡ --></mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>7</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mn>720</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\equiv -\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n^{4}}}={\frac {7\pi ^{4}}{720}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84d700cf3bad27d06b1d3479c5a9264cf584152b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.855ex; height:6.843ex;" alt="{\displaystyle S\equiv -\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n^{4}}}={\frac {7\pi ^{4}}{720}}}"></span></dd></dl> <p>In generale, la risommazione Poisson è utile in quanto una serie che converge lentamente nello spazio diretto può essere trasformato in una serie convergente molto più velocemente nello spazio di Fourier (se prendiamo l'esempio di funzioni gaussiane, una gaussiana varianza grande nello spazio diretto è trasformata in una gaussiana con varianza piccola spazio di Fourier). Questa è l'idea fondamentale alla base della <a href="/w/index.php?title=Sommatoria_di_Ewald&action=edit&redlink=1" class="new" title="Sommatoria di Ewald (la pagina non esiste)">sommatoria di Ewald</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><a href="#cite_ref-1"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal"> Mark Pinsky, <span style="font-style:italic;">Introduction to Fourier Analysis and Wavelets</span>, Brooks/Cole, 2001, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/978-0-534-37660-4" title="Speciale:RicercaISBN/978-0-534-37660-4">978-0-534-37660-4</a>.</cite></span> </li> <li id="cite_note-2"><a href="#cite_ref-2"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal"> Antoni Zygmund, <span style="font-style:italic;">Trigonometric series (2nd ed.)</span>, Cambridge University Press, 1988, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/978-0-521-35885-9" title="Speciale:RicercaISBN/978-0-521-35885-9">978-0-521-35885-9</a>.</cite></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2></div> <ul><li>(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Matthew R. Watkins, <a rel="nofollow" class="external text" href="http://www.maths.ex.ac.uk/~mwatkins/zeta/physics4.htm">pagina</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060925091627/http://www.maths.ex.ac.uk/~mwatkins/zeta/physics4.htm">Archiviato</a> il 25 settembre 2006 in <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a>. sui legami tra teoria dei numeri e la fisica teorica.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2></div> <ul><li><a href="/wiki/Distribuzione_(matematica)" title="Distribuzione (matematica)">Distribuzione (matematica)</a></li> <li><a href="/w/index.php?title=Formula_di_Selberg&action=edit&redlink=1" class="new" title="Formula di Selberg (la pagina non esiste)">Formula di Selberg</a></li> <li><a href="/wiki/Operatore_di_Laplace-Beltrami" title="Operatore di Laplace-Beltrami">Operatore di Laplace-Beltrami</a></li> <li><a href="/wiki/Serie_di_Fourier" title="Serie di Fourier">Serie di Fourier</a></li> <li><a href="/wiki/Teorema_della_convergenza_dominata" title="Teorema della convergenza dominata">Teorema della convergenza dominata</a></li> <li><a href="/wiki/Trasformata_di_Fourier_discreta" class="mw-redirect" title="Trasformata di Fourier discreta">Trasformata di Fourier discreta</a></li> <li><a href="/wiki/Trasformata_di_Fourier" title="Trasformata di Fourier">Trasformata di Fourier</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/PoissonSumFormula.html"><span style="font-style:italic;">Formula di sommazione di Poisson</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q387743#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li></ul> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span> <b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>: accedi alle voci di Wikipedia che trattano di matematica</div></div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Formula_di_sommazione_di_Poisson&oldid=132810333">https://it.wikipedia.org/w/index.php?title=Formula_di_sommazione_di_Poisson&oldid=132810333</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categoria</a>: <ul><li><a href="/wiki/Categoria:Analisi_di_Fourier" title="Categoria:Analisi di Fourier">Analisi di Fourier</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:Contestualizzare_fonti_-_matematica" title="Categoria:Contestualizzare fonti - matematica">Contestualizzare fonti - matematica</a></li><li><a href="/wiki/Categoria:Contestualizzare_fonti_-_aprile_2023" title="Categoria:Contestualizzare fonti - aprile 2023">Contestualizzare fonti - aprile 2023</a></li><li><a href="/wiki/Categoria:Template_Webarchive_-_collegamenti_all%27Internet_Archive" title="Categoria:Template Webarchive - collegamenti all'Internet Archive">Template Webarchive - collegamenti all'Internet Archive</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il 2 apr 2023 alle 08:09.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Formula_di_sommazione_di_Poisson&diff=prev&oldid=132810333&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-rbp7v","wgBackendResponseTime":782,"wgPageParseReport":{"limitreport":{"cputime":"0.306","walltime":"0.546","ppvisitednodes":{"value":4271,"limit":1000000},"postexpandincludesize":{"value":9351,"limit":2097152},"templateargumentsize":{"value":2344,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":5984,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 306.113 1 -total"," 42.62% 130.461 1 Template:Collegamenti_esterni"," 14.38% 44.033 1 Template:NN"," 13.68% 41.887 1 Template:Avviso"," 13.65% 41.771 1 Template:Vedi_anche"," 9.26% 28.354 1 Template:Portale"," 8.93% 27.351 1 Template:Categorie_avviso"," 8.37% 25.635 2 Template:Cita_libro"," 7.14% 21.864 3 Template:Rp"," 6.10% 18.667 1 Template:En"]},"scribunto":{"limitreport-timeusage":{"value":"0.151","limit":"10.000"},"limitreport-memusage":{"value":4531216,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5c59558b9d-rbp7v","timestamp":"20241130154328","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Formula di sommazione di Poisson","url":"https:\/\/it.wikipedia.org\/wiki\/Formula_di_sommazione_di_Poisson","sameAs":"http:\/\/www.wikidata.org\/entity\/Q387743","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q387743","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2011-09-10T11:23:12Z","dateModified":"2023-04-02T07:09:17Z"}</script> </body> </html>