CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 54 results for author: <span class="mathjax">Karagiannidis, G K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&amp;query=Karagiannidis%2C+G+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Karagiannidis, G K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Karagiannidis%2C+G+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Karagiannidis, G K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Karagiannidis%2C+G+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Karagiannidis%2C+G+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Karagiannidis%2C+G+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17013">arXiv:2502.17013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17013">pdf</a>, <a href="https://arxiv.org/format/2502.17013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Latency-Aware Resource Allocation for Integrated Communications, Computation, and Sensing in Cell-Free mMIMO Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Peng%2C+Q">Qihao Peng</a>, <a href="/search/eess?searchtype=author&amp;query=Luo%2C+Q">Qu Luo</a>, <a href="/search/eess?searchtype=author&amp;query=Chu%2C+Z">Zheng Chu</a>, <a href="/search/eess?searchtype=author&amp;query=Lin%2C+Z">Zihuai Lin</a>, <a href="/search/eess?searchtype=author&amp;query=Elkashlan%2C+M">Maged Elkashlan</a>, <a href="/search/eess?searchtype=author&amp;query=Xiao%2C+P">Pei Xiao</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Masouros%2C+C">Christos Masouros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17013v1-abstract-short" style="display: inline;"> In this paper, we investigate a cell-free massive multiple-input and multiple-output (MIMO)-enabled integration communication, computation, and sensing (ICCS) system, aiming to minimize the maximum computation latency to guarantee the stringent sensing requirements. We consider a two-tier offloading framework, where each multi-antenna terminal can optionally offload its local tasks to either multi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17013v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17013v1-abstract-full" style="display: none;"> In this paper, we investigate a cell-free massive multiple-input and multiple-output (MIMO)-enabled integration communication, computation, and sensing (ICCS) system, aiming to minimize the maximum computation latency to guarantee the stringent sensing requirements. We consider a two-tier offloading framework, where each multi-antenna terminal can optionally offload its local tasks to either multiple mobile-edge servers for distributed computation or the cloud server for centralized computation while satisfying the sensing requirements and power constraint. The above offloading problem is formulated as a mixed-integer programming and non-convex problem, which can be decomposed into three sub-problems, namely, distributed offloading decision, beamforming design, and execution scheduling mechanism. First, the continuous relaxation and penalty-based techniques are applied to tackle the distributed offloading strategy. Then, the weighted minimum mean square error (WMMSE) and successive convex approximation (SCA)-based lower bound are utilized to design the integrated communication and sensing (ISAC) beamforming. Finally, the other resources can be judiciously scheduled to minimize the maximum latency. A rigorous convergence analysis and numerical results substantiate the effectiveness of our method. Furthermore, simulation results demonstrate that multi-point cooperation in cell-free massive MIMO-enabled ICCS significantly reduces overall computation latency, in comparison to the benchmark schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17013v1-abstract-full').style.display = 'none'; document.getElementById('2502.17013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE journal for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14203">arXiv:2502.14203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14203">pdf</a>, <a href="https://arxiv.org/format/2502.14203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> AFDM-Enabled Integrated Sensing and Communication: Theoretical Framework and Pilot Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+Z">Zhaocheng Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Mao%2C+T">Tianqi Mao</a>, <a href="/search/eess?searchtype=author&amp;query=Jiao%2C+T">Tianyu Jiao</a>, <a href="/search/eess?searchtype=author&amp;query=Zhuo%2C+Y">Yinxiao Zhuo</a>, <a href="/search/eess?searchtype=author&amp;query=Wen%2C+M">Miaowen Wen</a>, <a href="/search/eess?searchtype=author&amp;query=Xiang%2C+W">Wei Xiang</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+S">Sheng Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14203v1-abstract-short" style="display: inline;"> The integrated sensing and communication (ISAC) has been envisioned as one representative usage scenario of sixth-generation (6G) network. However, the unprecedented characteristics of 6G, especially the doubly dispersive channel, make classical ISAC waveforms rather challenging to guarantee a desirable performance level. The recently proposed affine frequency division multiplexing (AFDM) can atta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14203v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14203v1-abstract-full" style="display: none;"> The integrated sensing and communication (ISAC) has been envisioned as one representative usage scenario of sixth-generation (6G) network. However, the unprecedented characteristics of 6G, especially the doubly dispersive channel, make classical ISAC waveforms rather challenging to guarantee a desirable performance level. The recently proposed affine frequency division multiplexing (AFDM) can attain full diversity even under doubly dispersive effects, thus becoming a competitive candidate for next-generation ISAC waveforms. Relevant investigations are still at an early stage, which involve only straightforward design lacking explicit theoretical analysis. This paper provides an in-depth investigation on AFDM waveform design for ISAC applications. Specifically, the closed-form Cr谩mer-Rao bounds of target detection for AFDM are derived, followed by a demonstration on its merits over existing counterparts. Furthermore, we formulate the ambiguity function of the pilot-assisted AFDM waveform for the first time, revealing conditions for stable sensing performance. To further enhance both the communication and sensing performance of the AFDM waveform, we propose a novel pilot design by exploiting the characteristics of AFDM signals. The proposed design is analytically validated to be capable of optimizing the ambiguity function property and channel estimation accuracy simultaneously as well as overcoming the sensing and channel estimation range limitation originated from the pilot spacing. Numerical results have verified the superiority of the proposed pilot design in terms of dual-functional performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14203v1-abstract-full').style.display = 'none'; document.getElementById('2502.14203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12629">arXiv:2502.12629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.12629">pdf</a>, <a href="https://arxiv.org/format/2502.12629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Rate Maximization for Downlink Pinching-Antenna Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xu%2C+Y">Yanqing Xu</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12629v1-abstract-short" style="display: inline;"> In this letter, we consider a new type of flexible-antenna system, termed pinching-antenna, where multiple low-cost pinching antennas, realized by activating small dielectric particles on a dielectric waveguide, are jointly used to serve a single-antenna user. Our goal is to maximize the downlink transmission rate by optimizing the locations of the pinching antennas. However, these locations affec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12629v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12629v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12629v1-abstract-full" style="display: none;"> In this letter, we consider a new type of flexible-antenna system, termed pinching-antenna, where multiple low-cost pinching antennas, realized by activating small dielectric particles on a dielectric waveguide, are jointly used to serve a single-antenna user. Our goal is to maximize the downlink transmission rate by optimizing the locations of the pinching antennas. However, these locations affect both the path losses and the phase shifts of the user&#39;s effective channel gain, making the problem challenging to solve. To address this challenge and solve the problem in a low complexity manner, a relaxed optimization problem is developed that minimizes the impact of path loss while ensuring that the received signals at the user are constructive. This approach leads to a two-stage algorithm: in the first stage, the locations of the pinching antennas are optimized to minimize the large-scale path loss; in the second stage, the antenna locations are refined to maximize the received signal strength. Simulation results show that pinching-antenna systems significantly outperform conventional fixed-location antenna systems, and the proposed algorithm achieves nearly the same performance as the highly complex exhaustive search-based benchmark. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12629v1-abstract-full').style.display = 'none'; document.getElementById('2502.12629v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by IEEE Wireless Communications Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10753">arXiv:2501.10753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.10753">pdf</a>, <a href="https://arxiv.org/ps/2501.10753">ps</a>, <a href="https://arxiv.org/format/2501.10753">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Pinching Antennas: Principles, Applications and Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yang%2C+Z">Zheng Yang</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Sun%2C+Y">Yanshi Sun</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Schober%2C+R">Robert Schober</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Wong%2C+V+W+S">Vincent W. S. Wong</a>, <a href="/search/eess?searchtype=author&amp;query=Dobre%2C+O+A">Octavia A. Dobre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10753v1-abstract-short" style="display: inline;"> Flexible-antenna systems, such as fluid antennas and movable antennas, have been recognized as key enabling technologies for sixth-generation (6G) wireless networks, as they can intelligently reconfigure the effective channel gains of the users and hence significantly improve their data transmission capabilities. However, existing flexible-antenna systems have been designed to combat small-scale f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10753v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10753v1-abstract-full" style="display: none;"> Flexible-antenna systems, such as fluid antennas and movable antennas, have been recognized as key enabling technologies for sixth-generation (6G) wireless networks, as they can intelligently reconfigure the effective channel gains of the users and hence significantly improve their data transmission capabilities. However, existing flexible-antenna systems have been designed to combat small-scale fading in non-line-of-sight (NLoS) conditions. As a result, they lack the ability to establish line-of-sight links, which are typically 100 times stronger than NLoS links. In addition, existing flexible-antenna systems have limited flexibility, where adding/removing an antenna is not straightforward. This article introduces an innovative flexible-antenna system called pinching antennas, which are realized by applying small dielectric particles to waveguides. We first describe the basics of pinching-antenna systems and their ability to provide strong LoS links by deploying pinching antennas close to the users as well as their capability to scale up/down the antenna system. We then focus on communication scenarios with different numbers of waveguides and pinching antennas, where innovative approaches to implement multiple-input multiple-output and non-orthogonal multiple access are discussed. In addition, promising 6G-related applications of pinching antennas, including integrated sensing and communication and next-generation multiple access, are presented. Finally, important directions for future research, such as waveguide deployment and channel estimation, are highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10753v1-abstract-full').style.display = 'none'; document.getElementById('2501.10753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15843">arXiv:2412.15843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15843">pdf</a>, <a href="https://arxiv.org/format/2412.15843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Rethinking Hardware Impairments in Multi-User Systems: Can FAS Make a Difference? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yao%2C+J">Junteng Yao</a>, <a href="/search/eess?searchtype=author&amp;query=Wu%2C+T">Tuo Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Zhou%2C+L">Liaoshi Zhou</a>, <a href="/search/eess?searchtype=author&amp;query=Jin%2C+M">Ming Jin</a>, <a href="/search/eess?searchtype=author&amp;query=Pan%2C+C">Cunhua Pan</a>, <a href="/search/eess?searchtype=author&amp;query=Elkashlan%2C+M">Maged Elkashlan</a>, <a href="/search/eess?searchtype=author&amp;query=Adachi%2C+F">Fumiyuki Adachi</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Al-Dhahir%2C+N">Naofal Al-Dhahir</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15843v1-abstract-short" style="display: inline;"> In this paper, we analyze the role of fluid antenna systems (FAS) in multi-user systems with hardware impairments (HIs). Specifically, we investigate a scenario where a base station (BS) equipped with multiple fluid antennas communicates with multiple users (CUs), each equipped with a single fluid antenna. Our objective is to maximize the minimum communication rate among all users by jointly optim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15843v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15843v1-abstract-full" style="display: none;"> In this paper, we analyze the role of fluid antenna systems (FAS) in multi-user systems with hardware impairments (HIs). Specifically, we investigate a scenario where a base station (BS) equipped with multiple fluid antennas communicates with multiple users (CUs), each equipped with a single fluid antenna. Our objective is to maximize the minimum communication rate among all users by jointly optimizing the BS&#39;s transmit beamforming, the positions of its transmit fluid antennas, and the positions of the CUs&#39; receive fluid antennas. To address this non-convex problem, we propose a block coordinate descent (BCD) algorithm integrating semidefinite relaxation (SDR), rank-one constraint relaxation (SRCR), successive convex approximation (SCA), and majorization-minimization (MM). Simulation results demonstrate that FAS significantly enhances system performance and robustness, with notable gains when both the BS and CUs are equipped with fluid antennas. Even under low transmit power conditions, deploying FAS at the BS alone yields substantial performance gains. However, the effectiveness of FAS depends on the availability of sufficient movement space, as space constraints may limit its benefits compared to fixed antenna strategies. Our findings highlight the potential of FAS to mitigate HIs and enhance multi-user system performance, while emphasizing the need for practical deployment considerations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15843v1-abstract-full').style.display = 'none'; document.getElementById('2412.15843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13892">arXiv:2412.13892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13892">pdf</a>, <a href="https://arxiv.org/format/2412.13892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Minimum Data Rate Maximization for Uplink Pinching-Antenna Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13892v1-abstract-short" style="display: inline;"> This paper addresses, for the first time, the uplink performance optimization of multi-user pinching-antenna systems, recently developed for next-generation wireless networks. By leveraging the unique capabilities of pinching antennas to dynamically configure wireless channels, we focus on maximizing the minimum achievable data rate between devices to achieve a balanced trade-off between throughpu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13892v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13892v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13892v1-abstract-full" style="display: none;"> This paper addresses, for the first time, the uplink performance optimization of multi-user pinching-antenna systems, recently developed for next-generation wireless networks. By leveraging the unique capabilities of pinching antennas to dynamically configure wireless channels, we focus on maximizing the minimum achievable data rate between devices to achieve a balanced trade-off between throughput and fairness. An effective approach is proposed that separately optimizes the positions of the pinching antennas and the resource allocation. The antenna positioning problem is reformulated into a convex one, while a closed-form solution is provided for the resource allocation. Simulation results demonstrate the superior performance of the investigated system using the proposed algorithm over corresponding counterparts, emphasizing the significant potential of pinching-antenna systems for robust and efficient uplink communication in next-generation wireless networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13892v1-abstract-full').style.display = 'none'; document.getElementById('2412.13892v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03839">arXiv:2412.03839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03839">pdf</a>, <a href="https://arxiv.org/format/2412.03839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Fluid Antenna Systems Enabling 6G:Principles, Applications, and Research Directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wu%2C+T">Tuo Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Zhi%2C+K">Kangda Zhi</a>, <a href="/search/eess?searchtype=author&amp;query=Yao%2C+J">Junteng Yao</a>, <a href="/search/eess?searchtype=author&amp;query=Lai%2C+X">Xiazhi Lai</a>, <a href="/search/eess?searchtype=author&amp;query=Zheng%2C+J">Jianchao Zheng</a>, <a href="/search/eess?searchtype=author&amp;query=Niu%2C+H">Hong Niu</a>, <a href="/search/eess?searchtype=author&amp;query=Elkashlan%2C+M">Maged Elkashlan</a>, <a href="/search/eess?searchtype=author&amp;query=Wong%2C+K">Kai-Kit Wong</a>, <a href="/search/eess?searchtype=author&amp;query=Chae%2C+C">Chan-Byoung Chae</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Debbah%2C+M">Merouane Debbah</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03839v1-abstract-short" style="display: inline;"> Fluid antenna system (FAS) as a new version of reconfigurable antenna technologies promoting shape and position flexibility, has emerged as an exciting and possibly transformative technology for wireless communications systems. FAS represents any software-controlled fluidic, conductive or dielectric structure that can dynamically alter antenna&#39;s shape and position to change the gain, the radiation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03839v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03839v1-abstract-full" style="display: none;"> Fluid antenna system (FAS) as a new version of reconfigurable antenna technologies promoting shape and position flexibility, has emerged as an exciting and possibly transformative technology for wireless communications systems. FAS represents any software-controlled fluidic, conductive or dielectric structure that can dynamically alter antenna&#39;s shape and position to change the gain, the radiation pattern, the operating frequency, and other critical radiation characteristics. With its capability, it is highly anticipated that FAS can contribute greatly to the upcoming sixth generation (6G) wireless networks. This article substantiates this thought by addressing four major questions: 1) Is FAS crucial to 6G? 2) How to characterize FAS? 3) What are the applications of FAS? 4) What are the relevant challenges and future research directions? In particular, five promising research directions that underscore the potential of FAS are discussed. We conclude this article by showcasing the impressive performance of FAS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03839v1-abstract-full').style.display = 'none'; document.getElementById('2412.03839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08383">arXiv:2411.08383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08383">pdf</a>, <a href="https://arxiv.org/format/2411.08383">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> FAS-Driven Spectrum Sensing for Cognitive Radio Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yao%2C+J">Junteng Yao</a>, <a href="/search/eess?searchtype=author&amp;query=Jin%2C+M">Ming Jin</a>, <a href="/search/eess?searchtype=author&amp;query=Wu%2C+T">Tuo Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Elkashlan%2C+M">Maged Elkashlan</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a>, <a href="/search/eess?searchtype=author&amp;query=Wong%2C+K">Kai-Kit Wong</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Shin%2C+H">Hyundong Shin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08383v1-abstract-short" style="display: inline;"> Cognitive radio (CR) networks face significant challenges in spectrum sensing, especially under spectrum scarcity. Fluid antenna systems (FAS) can offer an unorthodox solution due to their ability to dynamically adjust antenna positions for improved channel gain. In this letter, we study a FAS-driven CR setup where a secondary user (SU) adjusts the positions of fluid antennas to detect signals fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08383v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08383v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08383v1-abstract-full" style="display: none;"> Cognitive radio (CR) networks face significant challenges in spectrum sensing, especially under spectrum scarcity. Fluid antenna systems (FAS) can offer an unorthodox solution due to their ability to dynamically adjust antenna positions for improved channel gain. In this letter, we study a FAS-driven CR setup where a secondary user (SU) adjusts the positions of fluid antennas to detect signals from the primary user (PU). We aim to maximize the detection probability under the constraints of the false alarm probability and the received beamforming of the SU. To address this problem, we first derive a closed-form expression for the optimal detection threshold and reformulate the problem to find its solution. Then an alternating optimization (AO) scheme is proposed to decompose the problem into several sub-problems, addressing both the received beamforming and the antenna positions at the SU. The beamforming subproblem is addressed using a closed-form solution, while the fluid antenna positions are solved by successive convex approximation (SCA). Simulation results reveal that the proposed algorithm provides significant improvements over traditional fixed-position antenna (FPA) schemes in terms of spectrum sensing performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08383v1-abstract-full').style.display = 'none'; document.getElementById('2411.08383v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01776">arXiv:2411.01776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01776">pdf</a>, <a href="https://arxiv.org/ps/2411.01776">ps</a>, <a href="https://arxiv.org/format/2411.01776">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> On Energy Efficiency of Hybrid NOMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sun%2C+Y">Yanshi Sun</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Hou%2C+Y">Yun Hou</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01776v1-abstract-short" style="display: inline;"> This paper aims to prove the significant superiority of hybrid non-orthogonal multiple access (NOMA) over orthog onal multiple access (OMA) in terms of energy efficiency. In particular, a novel hybrid NOMA scheme is proposed in which a user can transmit signals not only by using its own time slot but also by using the time slots of other users. The data rate maximization problem is studied by opti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01776v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01776v1-abstract-full" style="display: none;"> This paper aims to prove the significant superiority of hybrid non-orthogonal multiple access (NOMA) over orthog onal multiple access (OMA) in terms of energy efficiency. In particular, a novel hybrid NOMA scheme is proposed in which a user can transmit signals not only by using its own time slot but also by using the time slots of other users. The data rate maximization problem is studied by optimizing the power allocation, where closed-form solutions are obtained. Further more, the conditions under which hybrid NOMA can achieve a higher instantaneous data rate with less power consumption than OMA are obtained. It is proved that the probability that hybrid NOMA can achieve a higher instantaneous data rate with less power consumption than OMA approaches one in the high SNR regime, indicating the superiority of hybrid NOMA in terms of power efficiency. Numerical results are also provided to verify the developed analysis and also to demonstrate the superior performance of hybrid NOMA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01776v1-abstract-full').style.display = 'none'; document.getElementById('2411.01776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01379">arXiv:2410.01379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01379">pdf</a>, <a href="https://arxiv.org/format/2410.01379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TWC.2024.3376998">10.1109/TWC.2024.3376998 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid Semantic-Shannon Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Evgenidis%2C+N+G">Nikos G. Evgenidis</a>, <a href="/search/eess?searchtype=author&amp;query=Mitsiou%2C+N+A">Nikos A. Mitsiou</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Sarigiannidis%2C+P">Panagiotis Sarigiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Krikidis%2C+I">Ioannis Krikidis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01379v1-abstract-short" style="display: inline;"> Semantic communications are considered a promising beyond-Shannon/bit paradigm to reduce network traffic and increase reliability, thus making wireless networks more energy efficient, robust, and sustainable. However, the performance is limited by the efficiency of the semantic transceivers, i.e., the achievable &#34;similarity&#34; between the transmitted and received signals. Under strict similarity con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01379v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01379v1-abstract-full" style="display: none;"> Semantic communications are considered a promising beyond-Shannon/bit paradigm to reduce network traffic and increase reliability, thus making wireless networks more energy efficient, robust, and sustainable. However, the performance is limited by the efficiency of the semantic transceivers, i.e., the achievable &#34;similarity&#34; between the transmitted and received signals. Under strict similarity conditions, semantic transmission may not be applicable and bit communication is mandatory. In this paper, for the first time in the literature, we propose a multi-carrier Hybrid Semantic-Shannon communication system where, without loss of generality, the case of text transmission is investigated. To this end, a joint semantic-bit transmission selection and power allocation optimization problem is formulated, aiming to minimize two transmission delay metrics widely used in the literature, subject to strict similarity thresholds. Despite their non-convexity, both problems are decomposed into a convex and a mixed linear integer programming problem by using alternating optimization, both of which can be solved optimally. Furthermore, to improve the performance of the proposed hybrid schemes, a novel association of text sentences to subcarriers is proposed based on the data size of the sentences and the channel gains of the subcarriers. We show that the proposed association is optimal in terms of transmission delay. Numerical simulations verify the effectiveness of the proposed hybrid semantic-bit communication scheme and the derived sentence-to-subcarrier association, and provide useful insights into the design parameters of such systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01379v1-abstract-full').style.display = 'none'; document.getElementById('2410.01379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Wireless Communications, vol. 23, no. 9, pp. 10926-10940, Sept. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03259">arXiv:2409.03259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03259">pdf</a>, <a href="https://arxiv.org/format/2409.03259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Transmit Beamforming Design for ISAC with Stacked Intelligent Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Li%2C+S">Shunyu Li</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Mao%2C+T">Tianqi Mao</a>, <a href="/search/eess?searchtype=author&amp;query=Na%2C+R">Rui Na</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+Z">Zhaocheng Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03259v2-abstract-short" style="display: inline;"> This paper proposes a transmit beamforming strategy for the integrated sensing and communication (ISAC) systems enabled by the novel stacked intelligent metasurface (SIM) architecture, where the base station (BS) simultaneously performs downlink communication and radar target detection via different beams. To ensure superior dual-function performance simultaneously, we design the multi-layer casca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03259v2-abstract-full').style.display = 'inline'; document.getElementById('2409.03259v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03259v2-abstract-full" style="display: none;"> This paper proposes a transmit beamforming strategy for the integrated sensing and communication (ISAC) systems enabled by the novel stacked intelligent metasurface (SIM) architecture, where the base station (BS) simultaneously performs downlink communication and radar target detection via different beams. To ensure superior dual-function performance simultaneously, we design the multi-layer cascading beamformer by maximizing the sum rate of the users while optimally shaping the normalized beam pattern for detection. A dual-normalized differential gradient descent (D3) algorithm is further proposed to solve the resulting non-convex multi-objective problem (MOP), where gradient differences and dual normalization are employed to ensure a fair trade-off between communication and sensing objectives. Numerical results demonstrate the superiority of the proposed beamforming design in terms of balancing communication and sensing performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03259v2-abstract-full').style.display = 'none'; document.getElementById('2409.03259v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07165">arXiv:2406.07165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07165">pdf</a>, <a href="https://arxiv.org/format/2406.07165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Realizing RF Wavefront Copying with RIS for Future Extended Reality Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tsimpoukis%2C+S">Stavros Tsimpoukis</a>, <a href="/search/eess?searchtype=author&amp;query=Tyrovolas%2C+D">Dimitrios Tyrovolas</a>, <a href="/search/eess?searchtype=author&amp;query=Ioannidis%2C+S">Sotiris Ioannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Akyildiz%2C+I+F">Ian F. Akyildiz</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Liaskos%2C+C">Christos Liaskos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07165v1-abstract-short" style="display: inline;"> Lately a new approach to Extended Reality (XR), denoted as XR-RF, has been proposed which is realized by combining Radio Frequency (RF) Imaging and programmable wireless environments (PWEs). RF Imaging is a technique that aims to detect geometric and material features of an object through RF waves. On the other hand, the PWE focuses on the the conversion of the wireless RF propagation in a control&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07165v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07165v1-abstract-full" style="display: none;"> Lately a new approach to Extended Reality (XR), denoted as XR-RF, has been proposed which is realized by combining Radio Frequency (RF) Imaging and programmable wireless environments (PWEs). RF Imaging is a technique that aims to detect geometric and material features of an object through RF waves. On the other hand, the PWE focuses on the the conversion of the wireless RF propagation in a controllable, by software, entity through the utilization of Reconfigurable Intelligent Surfaces (RISs), which can have a controllable interaction with impinging RF waves. In that sense, this dynamic synergy leverages the potential of RF Imaging to detect the structure of an object through RF wavefronts and the PWE&#39;s ability to selectively replicate those RF wavefronts from one spatial location to wherever an XR-RF mobile user is presently located. Then the captured wavefront, through appropriate hardware, is mapped to the visual representation of the object through machine learning models. As a key aspect of the XR-RF&#39;s system workflow is the wavefront copying mechanism, this work introduces a new PWE configuration algorithm for XR-RF. Moreover, it is shown that the waveform replication process inevitably yields imprecision in the replication process. After statistical analysis, based on simulation results, it is shown that this imprecision can be effectively modeled by the gamma distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07165v1-abstract-full').style.display = 'none'; document.getElementById('2406.07165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper was presented in the Seventh International Balkan Conference on Communications and Networking (BalkanCom&#39;24)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02190">arXiv:2406.02190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02190">pdf</a>, <a href="https://arxiv.org/ps/2406.02190">ps</a>, <a href="https://arxiv.org/format/2406.02190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Age of Trust (AoT): A Continuous Verification Framework for Wireless Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xiao%2C+Y">Yuquan Xiao</a>, <a href="/search/eess?searchtype=author&amp;query=Du%2C+Q">Qinghe Du</a>, <a href="/search/eess?searchtype=author&amp;query=Cheng%2C+W">Wenchi Cheng</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02190v1-abstract-short" style="display: inline;"> Zero Trust is a new security vision for 6G networks that emphasises the philosophy of never trust and always verify. However, there is a fundamental trade-off between the wireless transmission efficiency and the trust level, which is reflected by the verification interval and its adaptation strategy. More importantly, the mathematical framework to characterise the trust level of the adaptive verif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02190v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02190v1-abstract-full" style="display: none;"> Zero Trust is a new security vision for 6G networks that emphasises the philosophy of never trust and always verify. However, there is a fundamental trade-off between the wireless transmission efficiency and the trust level, which is reflected by the verification interval and its adaptation strategy. More importantly, the mathematical framework to characterise the trust level of the adaptive verification strategy is still missing. Inspired by this vision, we propose a concept called age of trust (AoT) to capture the characteristics of the trust level degrading over time, with the definition of the time elapsed since the last verification of the target user&#39;s trust plus the initial age, which depends on the trust level evaluated at that verification. The higher the trust level, the lower the initial age. To evaluate the trust level in the long term, the average AoT is used. We then investigate how to find a compromise between average AoT and wireless transmission efficiency with limited resources. In particular, we address the bi-objective optimization (BOO) problem between average AoT and throughput over a single link with arbitrary service process, where the identity of the receiver is constantly verified, and we devise a periodic verification scheme and a Q-learning-based scheme for constant process and random process, respectively. We also tackle the BOO problem in a multiple random access scenario, where a trust-enhanced frame-slotted ALOHA is designed. Finally, the numerical results show that our proposals can achieve a fair compromise between trust level and wireless transmission efficiency, and thus have a wide application prospect in various zero-trust architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02190v1-abstract-full').style.display = 'none'; document.getElementById('2406.02190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02139">arXiv:2406.02139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02139">pdf</a>, <a href="https://arxiv.org/format/2406.02139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Statistical Age of Information: A Risk-Aware Metric and Its Applications in Status Updates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Xiao%2C+Y">Yuquan Xiao</a>, <a href="/search/eess?searchtype=author&amp;query=Du%2C+Q">Qinghe Du</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02139v1-abstract-short" style="display: inline;"> Age of information (AoI) is an effective measure to quantify the information freshness in wireless status update systems. It has been further validated that the peak AoI has the potential to capture the core characteristics of the aging process, and thus the average peak AoI is widely used to evaluate the long-term performance of information freshness. However, the average peak AoI is a risk-insen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02139v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02139v1-abstract-full" style="display: none;"> Age of information (AoI) is an effective measure to quantify the information freshness in wireless status update systems. It has been further validated that the peak AoI has the potential to capture the core characteristics of the aging process, and thus the average peak AoI is widely used to evaluate the long-term performance of information freshness. However, the average peak AoI is a risk-insensitive metric and therefore may not be well suited for evaluating critical status update services. Motivated by this concern, and following the spirit of entropic value-at-risk (EVaR) in the field of risk analysis, in this paper we present a concept, termed Statistical AoI, for providing a unified framework to guarantee various requirements of risk-sensitive status-update services with the demand on the violation probability of the peak age. In particular, as the constraint on the violation probability of the peak age varies from loose to strict, the statistical AoI evolves from the average peak AoI to the maximum peak AoI. We then investigate the statistical AoI minimization problem for status updates over wireless fading channels. It is interesting to note that the corresponding optimal sampling scheme varies from step to constant functions of the channel power gain with the peak age violation probability from one to zero. We also address the maximum statistical AoI minimization problem for multi-status updates with time division multiple access (TDMA), where longer transmission time can improve reliability but may also cause the larger age. By solving this problem, we derive the optimal transmission time allocation scheme. Numerical results show that our proposals can better satisfy the diverse requirements of various risk-sensitive status update services, and demonstrate the great potential of improving information freshness compared to baseline approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02139v1-abstract-full').style.display = 'none'; document.getElementById('2406.02139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20877">arXiv:2405.20877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20877">pdf</a>, <a href="https://arxiv.org/format/2405.20877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Waveform Design for Over-the-Air Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Evgenidis%2C+N+G">Nikos G. Evgenidis</a>, <a href="/search/eess?searchtype=author&amp;query=Mitsiou%2C+N+A">Nikos A. Mitsiou</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Sarigiannidis%2C+P">Panagiotis Sarigiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Rekanos%2C+I+T">Ioannis T. Rekanos</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20877v1-abstract-short" style="display: inline;"> In response to the increasing number of devices anticipated in next-generation networks, a shift toward over-the-air (OTA) computing has been proposed. Leveraging the superposition of multiple access channels, OTA computing enables efficient resource management by supporting simultaneous uncoded transmission in the time and the frequency domain. Thus, to advance the integration of OTA computing, o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20877v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20877v1-abstract-full" style="display: none;"> In response to the increasing number of devices anticipated in next-generation networks, a shift toward over-the-air (OTA) computing has been proposed. Leveraging the superposition of multiple access channels, OTA computing enables efficient resource management by supporting simultaneous uncoded transmission in the time and the frequency domain. Thus, to advance the integration of OTA computing, our study presents a theoretical analysis addressing practical issues encountered in current digital communication transceivers, such as time sampling error and intersymbol interference (ISI). To this end, we examine the theoretical mean squared error (MSE) for OTA transmission under time sampling error and ISI, while also exploring methods for minimizing the MSE in the OTA transmission. Utilizing alternating optimization, we also derive optimal power policies for both the devices and the base station. Additionally, we propose a novel deep neural network (DNN)-based approach to design waveforms enhancing OTA transmission performance under time sampling error and ISI. To ensure fair comparison with existing waveforms like the raised cosine (RC) and the better-than-raised-cosine (BRTC), we incorporate a custom loss function integrating energy and bandwidth constraints, along with practical design considerations such as waveform symmetry. Simulation results validate our theoretical analysis and demonstrate performance gains of the designed pulse over RC and BTRC waveforms. To facilitate testing of our results without necessitating the DNN structure recreation, we provide curve fitting parameters for select DNN-based waveforms as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20877v1-abstract-full').style.display = 'none'; document.getElementById('2405.20877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19889">arXiv:2405.19889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19889">pdf</a>, <a href="https://arxiv.org/format/2405.19889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> Deep Joint Semantic Coding and Beamforming for Near-Space Airship-Borne Massive MIMO Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wu%2C+M">Minghui Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Gao%2C+Z">Zhen Gao</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+Z">Zhaocheng Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+S">Sheng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19889v1-abstract-short" style="display: inline;"> Near-space airship-borne communication network is recognized to be an indispensable component of the future integrated ground-air-space network thanks to airships&#39; advantage of long-term residency at stratospheric altitudes, but it urgently needs reliable and efficient Airship-to-X link. To improve the transmission efficiency and capacity, this paper proposes to integrate semantic communication wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19889v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19889v1-abstract-full" style="display: none;"> Near-space airship-borne communication network is recognized to be an indispensable component of the future integrated ground-air-space network thanks to airships&#39; advantage of long-term residency at stratospheric altitudes, but it urgently needs reliable and efficient Airship-to-X link. To improve the transmission efficiency and capacity, this paper proposes to integrate semantic communication with massive multiple-input multiple-output (MIMO) technology. Specifically, we propose a deep joint semantic coding and beamforming (JSCBF) scheme for airship-based massive MIMO image transmission network in space, in which semantics from both source and channel are fused to jointly design the semantic coding and physical layer beamforming. First, we design two semantic extraction networks to extract semantics from image source and channel state information, respectively. Then, we propose a semantic fusion network that can fuse these semantics into complex-valued semantic features for subsequent physical-layer transmission. To efficiently transmit the fused semantic features at the physical layer, we then propose the hybrid data and model-driven semantic-aware beamforming networks. At the receiver, a semantic decoding network is designed to reconstruct the transmitted images. Finally, we perform end-to-end deep learning to jointly train all the modules, using the image reconstruction quality at the receivers as a metric. The proposed deep JSCBF scheme fully combines the efficient source compressibility and robust error correction capability of semantic communication with the high spectral efficiency of massive MIMO, achieving a significant performance improvement over existing approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19889v1-abstract-full').style.display = 'none'; document.getElementById('2405.19889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Major Revision by IEEE JSAC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10695">arXiv:2405.10695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10695">pdf</a>, <a href="https://arxiv.org/ps/2405.10695">ps</a>, <a href="https://arxiv.org/format/2405.10695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> On the Design of Super Constellations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Oikonomou%2C+T+K">Thrassos K. Oikonomou</a>, <a href="/search/eess?searchtype=author&amp;query=Tyrovolas%2C+D">Dimitrios Tyrovolas</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Sarigiannidis%2C+P">Panagiotis Sarigiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10695v1-abstract-short" style="display: inline;"> In the evolving landscape of sixth-generation (6G) wireless networks, which demand ultra high data rates, this study introduces the concept of super constellation communications. Also, we present super amplitude phase shift keying (SAPSK), an innovative modulation technique designed to achieve these ultra high data rate demands. SAPSK is complemented by the generalized polar distance detector (GPD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10695v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10695v1-abstract-full" style="display: none;"> In the evolving landscape of sixth-generation (6G) wireless networks, which demand ultra high data rates, this study introduces the concept of super constellation communications. Also, we present super amplitude phase shift keying (SAPSK), an innovative modulation technique designed to achieve these ultra high data rate demands. SAPSK is complemented by the generalized polar distance detector (GPD-D), which approximates the optimal maximum likelihood detector in channels with Gaussian phase noise (GPN). By leveraging the decision regions formulated by GPD-D, a tight closed-form approximation for the symbol error probability (SEP) of SAPSK constellations is derived, while a detection algorithm with O(1) time complexity is developed to ensure fast and efficient SAPSK symbol detection. Finally, the theoretical performance of SAPSK and the efficiency of the proposed O(1) algorithm are validated by numerical simulations, highlighting both its superiority in terms of SEP compared to various constellations and its practical advantages in terms of fast and accurate symbol detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10695v1-abstract-full').style.display = 'none'; document.getElementById('2405.10695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03300">arXiv:2405.03300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03300">pdf</a>, <a href="https://arxiv.org/format/2405.03300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Active RIS-Aided Massive MIMO With Imperfect CSI and Phase Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Peng%2C+Z">Zhangjie Peng</a>, <a href="/search/eess?searchtype=author&amp;query=Zhu%2C+J">Jianchen Zhu</a>, <a href="/search/eess?searchtype=author&amp;query=Pan%2C+C">Cunhua Pan</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Z">Zaichen Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=da+Costa%2C+D+B">Daniel Benevides da Costa</a>, <a href="/search/eess?searchtype=author&amp;query=Elkashlan%2C+M">Maged Elkashlan</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03300v1-abstract-short" style="display: inline;"> Active reconfigurable intelligent surface (RIS) has attracted significant attention as a recently proposed RIS architecture. Owing to its capability to amplify the incident signals, active RIS can mitigate the multiplicative fading effect inherent in the passive RIS-aided system. In this paper, we consider an active RIS-aided uplink multi-user massive multiple-input multiple-output (MIMO) system i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03300v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03300v1-abstract-full" style="display: none;"> Active reconfigurable intelligent surface (RIS) has attracted significant attention as a recently proposed RIS architecture. Owing to its capability to amplify the incident signals, active RIS can mitigate the multiplicative fading effect inherent in the passive RIS-aided system. In this paper, we consider an active RIS-aided uplink multi-user massive multiple-input multiple-output (MIMO) system in the presence of phase noise at the active RIS. Specifically, we employ a two-timescale scheme, where the beamforming at the base station (BS) is adjusted based on the instantaneous aggregated channel state information (CSI) and the statistical CSI serves as the basis for designing the phase shifts at the active RIS, so that the feedback overhead and computational complexity can be significantly reduced. The aggregated channel composed of the cascaded and direct channels is estimated by utilizing the linear minimum mean square error (LMMSE) technique. Based on the estimated channel, we derive the analytical closed-form expression of a lower bound of the achievable rate. The power scaling laws in the active RIS-aided system are investigated based on the theoretical expressions. When the transmit power of each user is scaled down by the number of BS antennas M or reflecting elements N, we find that the thermal noise will cause the lower bound of the achievable rate to approach zero, as the number of M or N increases to infinity. Moreover, an optimization approach based on genetic algorithms (GA) is introduced to tackle the phase shift optimization problem. Numerical results reveal that the active RIS can greatly enhance the performance of the considered system under various settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03300v1-abstract-full').style.display = 'none'; document.getElementById('2405.03300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17181">arXiv:2403.17181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17181">pdf</a>, <a href="https://arxiv.org/format/2403.17181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> On the Intersection of Signal Processing and Machine Learning: A Use Case-Driven Analysis Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Aburakhia%2C+S">Sulaiman Aburakhia</a>, <a href="/search/eess?searchtype=author&amp;query=Shami%2C+A">Abdallah Shami</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17181v1-abstract-short" style="display: inline;"> Recent advancements in sensing, measurement, and computing technologies have significantly expanded the potential for signal-based applications, leveraging the synergy between signal processing and Machine Learning (ML) to improve both performance and reliability. This fusion represents a critical point in the evolution of signal-based systems, highlighting the need to bridge the existing knowledg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17181v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17181v1-abstract-full" style="display: none;"> Recent advancements in sensing, measurement, and computing technologies have significantly expanded the potential for signal-based applications, leveraging the synergy between signal processing and Machine Learning (ML) to improve both performance and reliability. This fusion represents a critical point in the evolution of signal-based systems, highlighting the need to bridge the existing knowledge gap between these two interdisciplinary fields. Despite many attempts in the existing literature to bridge this gap, most are limited to specific applications and focus mainly on feature extraction, often assuming extensive prior knowledge in signal processing. This assumption creates a significant obstacle for a wide range of readers. To address these challenges, this paper takes an integrated article approach. It begins with a detailed tutorial on the fundamentals of signal processing, providing the reader with the necessary background knowledge. Following this, it explores the key stages of a standard signal processing-based ML pipeline, offering an in-depth review of feature extraction techniques, their inherent challenges, and solutions. Differing from existing literature, this work offers an application-independent review and introduces a novel classification taxonomy for feature extraction techniques. Furthermore, it aims at linking theoretical concepts with practical applications, and demonstrates this through two specific use cases: a spectral-based method for condition monitoring of rolling bearings and a wavelet energy analysis for epilepsy detection using EEG signals. In addition to theoretical contributions, this work promotes a collaborative research culture by providing a public repository of relevant Python and MATLAB signal processing codes. This effort is intended to support collaborative research efforts and ensure the reproducibility of the results presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17181v1-abstract-full').style.display = 'none'; document.getElementById('2403.17181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15754">arXiv:2403.15754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15754">pdf</a>, <a href="https://arxiv.org/format/2403.15754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Energy Efficient Design of Active STAR-RIS-Aided SWIPT Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Faramarzi%2C+S">Sajad Faramarzi</a>, <a href="/search/eess?searchtype=author&amp;query=Zarini%2C+H">Hosein Zarini</a>, <a href="/search/eess?searchtype=author&amp;query=Javadi%2C+S">Sepideh Javadi</a>, <a href="/search/eess?searchtype=author&amp;query=Mili%2C+M+R">Mohammad Robat Mili</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Al-Dhahir%2C+N">Naofal Al-Dhahir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15754v1-abstract-short" style="display: inline;"> In this paper, we consider the downlink transmission of a multi-antenna base station (BS) supported by an active simultaneously transmitting and reconfigurable intelligent surface (STAR-RIS) to serve single-antenna users via simultaneous wireless information and power transfer (SWIPT). In this context, we formulate an energy efficiency maximisation problem that jointly optimises the gain, element&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15754v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15754v1-abstract-full" style="display: none;"> In this paper, we consider the downlink transmission of a multi-antenna base station (BS) supported by an active simultaneously transmitting and reconfigurable intelligent surface (STAR-RIS) to serve single-antenna users via simultaneous wireless information and power transfer (SWIPT). In this context, we formulate an energy efficiency maximisation problem that jointly optimises the gain, element selection and phase shift matrices of the active STAR-RIS, the transmit beamforming of the BS and the power splitting ratio of the users. With respect to the highly coupled and non-convex form of this problem, an alternating optimisation solution approach is proposed, using tools from convex optimisation and reinforcement learning. Specifically, semi-definite relaxation (SDR), difference of concave functions (DC), and fractional programming techniques are employed to transform the non-convex optimisation problem into a convex form for optimising the BS beamforming vector and the power splitting ratio of the SWIPT. Then, by integrating meta-learning with the modified deep deterministic policy gradient (DDPG) and soft actor-critical (SAC) methods, a combinatorial reinforcement learning network is developed to optimise the element selection, gain and phase shift matrices of the active STAR-RIS. Our simulations show the effectiveness of the proposed resource allocation scheme. Furthermore, our proposed active STAR-RIS-based SWIPT system outperforms its passive counterpart by 57% on average. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15754v1-abstract-full').style.display = 'none'; document.getElementById('2403.15754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07903">arXiv:2403.07903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07903">pdf</a>, <a href="https://arxiv.org/format/2403.07903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Multiple Access in the Era of Distributed Computing and Edge Intelligence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Evgenidis%2C+N+G">Nikos G. Evgenidis</a>, <a href="/search/eess?searchtype=author&amp;query=Mitsiou%2C+N+A">Nikos A. Mitsiou</a>, <a href="/search/eess?searchtype=author&amp;query=Koutsioumpa%2C+V+I">Vasiliki I. Koutsioumpa</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07903v1-abstract-short" style="display: inline;"> This paper focuses on the latest research and innovations in fundamental next-generation multiple access (NGMA) techniques and the coexistence with other key technologies for the sixth generation (6G) of wireless networks. In more detail, we first examine multi-access edge computing (MEC), which is critical to meeting the growing demand for data processing and computational capacity at the edge of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07903v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07903v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07903v1-abstract-full" style="display: none;"> This paper focuses on the latest research and innovations in fundamental next-generation multiple access (NGMA) techniques and the coexistence with other key technologies for the sixth generation (6G) of wireless networks. In more detail, we first examine multi-access edge computing (MEC), which is critical to meeting the growing demand for data processing and computational capacity at the edge of the network, as well as network slicing. We then explore over-the-air (OTA) computing, which is considered to be an approach that provides fast and efficient computation of various functions. We also explore semantic communications, identified as an effective way to improve communication systems by focusing on the exchange of meaningful information, thus minimizing unnecessary data and increasing efficiency. The interrelationship between machine learning (ML) and multiple access technologies is also reviewed, with an emphasis on federated learning, federated distillation, split learning, reinforcement learning, and the development of ML-based multiple access protocols. Finally, the concept of digital twinning and its role in network management is discussed, highlighting how virtual replication of physical networks can lead to improvements in network efficiency and reliability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07903v1-abstract-full').style.display = 'none'; document.getElementById('2403.07903v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16629">arXiv:2402.16629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16629">pdf</a>, <a href="https://arxiv.org/format/2402.16629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> SLIPT in Joint Dimming Multi-LED OWC Systems with Rate Splitting Multiple Access </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Javadi%2C+S">Sepideh Javadi</a>, <a href="/search/eess?searchtype=author&amp;query=Faramarzi%2C+S">Sajad Faramarzi</a>, <a href="/search/eess?searchtype=author&amp;query=Zeinali%2C+F">Farshad Zeinali</a>, <a href="/search/eess?searchtype=author&amp;query=Zarini%2C+H">Hosein Zarini</a>, <a href="/search/eess?searchtype=author&amp;query=Mili%2C+M+R">Mohammad Robat Mili</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Jorswieck%2C+E">Eduard Jorswieck</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16629v2-abstract-short" style="display: inline;"> Optical wireless communication (OWC) systems with multiple light-emitting diodes (LEDs) have recently been explored to support energy-limited devices via simultaneous lightwave information and power transfer (SLIPT). The energy consumption, however, becomes considerable by increasing the number of incorporated LEDs. This paper proposes a joint dimming (JD) scheme that lowers the consumed power of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16629v2-abstract-full').style.display = 'inline'; document.getElementById('2402.16629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16629v2-abstract-full" style="display: none;"> Optical wireless communication (OWC) systems with multiple light-emitting diodes (LEDs) have recently been explored to support energy-limited devices via simultaneous lightwave information and power transfer (SLIPT). The energy consumption, however, becomes considerable by increasing the number of incorporated LEDs. This paper proposes a joint dimming (JD) scheme that lowers the consumed power of a SLIPT-enabled OWC system by controlling the number of active LEDs. We further enhance the data rate of this system by utilizing rate splitting multiple access (RSMA). More specifically, we formulate a data rate maximization problem to optimize the beamforming design, LED selection and RSMA rate adaptation that guarantees the power budget of the OWC transmitter, as well as the quality-of-service (QoS) and an energy harvesting level for users. We propose a dynamic resource allocation solution based on proximal policy optimization (PPO) reinforcement learning. In simulations, the optimal dimming level is determined to initiate a trade-off between the data rate and power consumption. It is also verified that RSMA significantly improves the data rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16629v2-abstract-full').style.display = 'none'; document.getElementById('2402.16629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ICC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12107">arXiv:2401.12107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12107">pdf</a>, <a href="https://arxiv.org/format/2401.12107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Energy-aware Trajectory Optimization for UAV-mounted RIS and Full-duplex Relay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tyrovolas%2C+D">Dimitrios Tyrovolas</a>, <a href="/search/eess?searchtype=author&amp;query=Mitsiou%2C+N+A">Nikos A. Mitsiou</a>, <a href="/search/eess?searchtype=author&amp;query=Boufikos%2C+T+G">Thomas G. Boufikos</a>, <a href="/search/eess?searchtype=author&amp;query=Mekikis%2C+P">Prodromos-Vasileios Mekikis</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Ioannidis%2C+S">Sotiris Ioannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Liaskos%2C+C+K">Christos K. Liaskos</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12107v2-abstract-short" style="display: inline;"> In the evolving landscape of sixth-generation (6G) wireless networks, unmanned aerial vehicles (UAVs) have emerged as transformative tools for dynamic and adaptive connectivity. However, dynamically adjusting their position to offer favorable communication channels introduces operational challenges in terms of energy consumption, especially when integrating advanced communication technologies like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12107v2-abstract-full').style.display = 'inline'; document.getElementById('2401.12107v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12107v2-abstract-full" style="display: none;"> In the evolving landscape of sixth-generation (6G) wireless networks, unmanned aerial vehicles (UAVs) have emerged as transformative tools for dynamic and adaptive connectivity. However, dynamically adjusting their position to offer favorable communication channels introduces operational challenges in terms of energy consumption, especially when integrating advanced communication technologies like reconfigurable intelligent surfaces (RISs) and full-duplex relays (FDRs). To this end, by recognizing the pivotal role of UAV mobility, the paper introduces an energy-aware trajectory design for UAV-mounted RISs and UAV-mounted FDRs using the decode and forward (DF) protocol, aiming to maximize the network minimum rate and enhance user fairness, while taking into consideration the available on-board energy. Specifically, this work highlights their distinct energy consumption characteristics and their associated integration challenges by developing appropriate energy consumption models for both UAV-mounted RISs and FDRs that capture the intricate relationship between key factors such as weight, and their operational characteristics. Furthermore, a joint time-division multiple access (TDMA) user scheduling-UAV trajectory optimization problem is formulated, considering the power dynamics of both systems, while assuring that the UAV energy is not depleted mid-air. Finally, simulation results underscore the importance of energy considerations in determining the optimal trajectory and scheduling and provide insights into the performance comparison of UAV-mounted RISs and FDRs in UAV-assisted wireless networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12107v2-abstract-full').style.display = 'none'; document.getElementById('2401.12107v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15707">arXiv:2310.15707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15707">pdf</a>, <a href="https://arxiv.org/ps/2310.15707">ps</a>, <a href="https://arxiv.org/format/2310.15707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> User Clustering for Coexistence between Near-field and Far-field Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wang%2C+K">Kaidi Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15707v2-abstract-short" style="display: inline;"> This letter investigates the coexistence between near-field (NF) and far-field (FF) communications, where multiple FF users are clustered to be served on the beams of legacy NF users, via non-orthogonal multiple access (NOMA). Three different successive interference cancellation (SIC) decoding strategies are proposed and a sum rate maximization problem is formulated to optimize the beam assignment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15707v2-abstract-full').style.display = 'inline'; document.getElementById('2310.15707v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15707v2-abstract-full" style="display: none;"> This letter investigates the coexistence between near-field (NF) and far-field (FF) communications, where multiple FF users are clustered to be served on the beams of legacy NF users, via non-orthogonal multiple access (NOMA). Three different successive interference cancellation (SIC) decoding strategies are proposed and a sum rate maximization problem is formulated to optimize the beam assignment and decoding order. The beam assignment problem is further reformulated as an overlapping coalitional game, which facilitates the design of the proposed clustering algorithm. The optimal decoding order in each cluster is also derived, which can be integrated into the proposed clustering. Simulation results demonstrate that the proposed clustering algorithm is able to significantly improve the sum rate of the considered system, and the developed strategies achieve different trade-offs between sum rate and fairness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15707v2-abstract-full').style.display = 'none'; document.getElementById('2310.15707v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07686">arXiv:2305.07686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07686">pdf</a>, <a href="https://arxiv.org/format/2305.07686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Zero-Energy Reconfigurable Intelligent Surfaces (zeRIS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tyrovolas%2C+D">Dimitrios Tyrovolas</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Papanikolaou%2C+V+K">Vasilis K. Papanikolaou</a>, <a href="/search/eess?searchtype=author&amp;query=Xiao%2C+Y">Yue Xiao</a>, <a href="/search/eess?searchtype=author&amp;query=Mekikis%2C+P">Prodromos-Vasileios Mekikis</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Ioannidis%2C+S">Sotiris Ioannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Liaskos%2C+C+K">Christos K. Liaskos</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07686v3-abstract-short" style="display: inline;"> A primary objective of the forthcoming sixth generation (6G) of wireless networking is to support demanding applications, while ensuring energy efficiency. Programmable wireless environments (PWEs) have emerged as a promising solution, leveraging reconfigurable intelligent surfaces (RISs), to control wireless propagation and deliver exceptional quality-ofservice. In this paper, we analyze the perf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07686v3-abstract-full').style.display = 'inline'; document.getElementById('2305.07686v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07686v3-abstract-full" style="display: none;"> A primary objective of the forthcoming sixth generation (6G) of wireless networking is to support demanding applications, while ensuring energy efficiency. Programmable wireless environments (PWEs) have emerged as a promising solution, leveraging reconfigurable intelligent surfaces (RISs), to control wireless propagation and deliver exceptional quality-ofservice. In this paper, we analyze the performance of a network supported by zero-energy RISs (zeRISs), which harvest energy for their operation and contribute to the realization of PWEs. Specifically, we investigate joint energy-data rate outage probability and the energy efficiency of a zeRIS-assisted communication system by employing three harvest-and-reflect (HaR) methods, i) power splitting, ii) time switching, and iii) element splitting. Furthermore, we consider two zeRIS deployment strategies, namely BS-side zeRIS and UE-side zeRIS. Simulation results validate the provided analysis and examine which HaR method performs better depending on the zeRIS placement. Finally, valuable insights and conclusions for the performance of zeRISassisted wireless networks are drawn from the presented results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07686v3-abstract-full').style.display = 'none'; document.getElementById('2305.07686v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17512">arXiv:2303.17512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17512">pdf</a>, <a href="https://arxiv.org/format/2303.17512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Power-Optimal HARQ Protocol for Reliable Free Space Optical Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Chondrogiannis%2C+G+D">Georgios D. Chondrogiannis</a>, <a href="/search/eess?searchtype=author&amp;query=Mitsiou%2C+N+A">Nikos A. Mitsiou</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzidiamantis%2C+N+D">Nestor D. Chatzidiamantis</a>, <a href="/search/eess?searchtype=author&amp;query=Boulogeorgos%2C+A+A">Alexandros-Apostolos A. Boulogeorgos</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17512v1-abstract-short" style="display: inline;"> This paper investigates the usage of hybrid automatic repeat request (HARQ) protocols for power-efficient and reliable communications over free space optical (FSO) links. By exploiting the large coherence time of the FSO channel, the proposed transmission schemes combat turbulence-induced fading by retransmitting the failed packets in the same coherence interval. To assess the performance of the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17512v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17512v1-abstract-full" style="display: none;"> This paper investigates the usage of hybrid automatic repeat request (HARQ) protocols for power-efficient and reliable communications over free space optical (FSO) links. By exploiting the large coherence time of the FSO channel, the proposed transmission schemes combat turbulence-induced fading by retransmitting the failed packets in the same coherence interval. To assess the performance of the presented HARQ technique, we extract a theoretical framework for the outage performance. In more detail, a closed-form expression for the outage probability (OP) is reported and an approximation for the high signal-to-noise ratio (SNR) region is extracted. Building upon the theoretical framework, we formulate a transmission power allocation problem throughout the retransmission rounds. This optimization problem is solved numerically through the use of an iterative algorithm. In addition, the average throughput of the HARQ schemes under consideration is examined. Simulation results validate the theoretical analysis under different turbulence conditions and demonstrate the performance improvement, in terms of both OP and throughput, of the proposed HARQ schemes compared to fixed transmit power HARQ benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17512v1-abstract-full').style.display = 'none'; document.getElementById('2303.17512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, IEEE International Conference on Communications (ICC) 2023 WS-19: 5th Workshop on ULMC6GN - Ultra-high speed, Low latency and Massive Communication for futuristic 6G Networks</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14003">arXiv:2212.14003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.14003">pdf</a>, <a href="https://arxiv.org/ps/2212.14003">ps</a>, <a href="https://arxiv.org/format/2212.14003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Distributed Optimization via Over-the-Air Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Mitsiou%2C+N+A">Nikos A. Mitsiou</a>, <a href="/search/eess?searchtype=author&amp;query=Bouzinis%2C+P+S">Pavlos S. Bouzinis</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Schober%2C+R">Robert Schober</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14003v1-abstract-short" style="display: inline;"> Distributed optimization is ubiquitous in emerging applications, such as robust sensor network control, smart grid management, machine learning, resource slicing, and localization. However, the extensive data exchange among local and central nodes may cause a severe communication bottleneck. To overcome this challenge, over-the-air computing (AirComp) is a promising medium access technology, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14003v1-abstract-full').style.display = 'inline'; document.getElementById('2212.14003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14003v1-abstract-full" style="display: none;"> Distributed optimization is ubiquitous in emerging applications, such as robust sensor network control, smart grid management, machine learning, resource slicing, and localization. However, the extensive data exchange among local and central nodes may cause a severe communication bottleneck. To overcome this challenge, over-the-air computing (AirComp) is a promising medium access technology, which exploits the superposition property of the wireless multiple access channel (MAC) and offers significant bandwidth savings. In this work, we propose an AirComp framework for general distributed convex optimization problems. Specifically, a distributed primaldual (DPD) subgradient method is utilized for the optimization procedure. Under general assumptions, we prove that DPDAirComp can asymptotically achieve zero expected constraint violation. Therefore, DPD-AirComp ensures the feasibility of the original problem, despite the presence of channel fading and additive noise. Moreover, with proper power control of the users&#39; signals, the expected non-zero optimality gap can also be mitigated. Two practical applications of the proposed framework are presented, namely, smart grid management and wireless resource allocation. Finally, numerical results reconfirm DPDAirComp&#39;s excellent performance, while it is also shown that DPD-AirComp converges an order of magnitude faster compared to a digital orthogonal multiple access scheme, specifically, time division multiple access (TDMA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14003v1-abstract-full').style.display = 'none'; document.getElementById('2212.14003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01659">arXiv:2211.01659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01659">pdf</a>, <a href="https://arxiv.org/format/2211.01659">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> An Open Platform for Simulating the Physical Layer of 6G Communication Systems with Multiple Intelligent Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Papadopoulos%2C+A">Alexandros Papadopoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Lalas%2C+A">Antonios Lalas</a>, <a href="/search/eess?searchtype=author&amp;query=Votis%2C+K">Konstantinos Votis</a>, <a href="/search/eess?searchtype=author&amp;query=Tyrovolas%2C+D">Dimitrios Tyrovolas</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Ioannidis%2C+S">Sotiris Ioannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Liaskos%2C+C">Christos Liaskos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01659v1-abstract-short" style="display: inline;"> Reconfigurable Intelligent Surfaces (RIS) constitute a promising technology that could fulfill the extreme performance and capacity needs of the upcoming 6G wireless networks, by offering software-defined control over wireless propagation phenomena. Despite the existence of many theoretical models describing various aspects of RIS from the signal processing perspective (e.g., channel fading models&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01659v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01659v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01659v1-abstract-full" style="display: none;"> Reconfigurable Intelligent Surfaces (RIS) constitute a promising technology that could fulfill the extreme performance and capacity needs of the upcoming 6G wireless networks, by offering software-defined control over wireless propagation phenomena. Despite the existence of many theoretical models describing various aspects of RIS from the signal processing perspective (e.g., channel fading models), there is no open platform to simulate and study their actual physical-layer behavior, especially in the multi-RIS case. In this paper, we develop an open simulation platform, aimed at modeling the physical-layer electromagnetic coupling and propagation between RIS pairs. We present the platform by initially designing a basic unit cell, and then proceeding to progressively model and simulate multiple and larger RISs. The platform can be used for producing verifiable stochastic models for wireless communication in multi-RIS deployments, such as vehicle-to-everything (V2X) communications in autonomous vehicles and cybersecurity schemes, while its code is freely available to the public. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01659v1-abstract-full').style.display = 'none'; document.getElementById('2211.01659v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02397">arXiv:2210.02397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02397">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> EU cost action on future generation optical wireless communication technologies -- newfocus ca19111, a white paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Khalighi%2C+M+A">M A Khalighi</a>, <a href="/search/eess?searchtype=author&amp;query=Ghassemlooy%2C+Z">Z Ghassemlooy</a>, <a href="/search/eess?searchtype=author&amp;query=Zvanovec%2C+S">S Zvanovec</a>, <a href="/search/eess?searchtype=author&amp;query=Stevens%2C+N">N Stevens</a>, <a href="/search/eess?searchtype=author&amp;query=Alves%2C+L+N">L N Alves</a>, <a href="/search/eess?searchtype=author&amp;query=Shrestha%2C+A">A Shrestha</a>, <a href="/search/eess?searchtype=author&amp;query=Uysal%2C+M">M Uysal</a>, <a href="/search/eess?searchtype=author&amp;query=Vegni%2C+A+M">A M Vegni</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">P D Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Papanikolaou%2C+V+K">V K Papanikolaou</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">G K Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Ortega%2C+B">B Ortega</a>, <a href="/search/eess?searchtype=author&amp;query=Almenar%2C+V">V Almenar</a>, <a href="/search/eess?searchtype=author&amp;query=Bouchet%2C+O">O Bouchet</a>, <a href="/search/eess?searchtype=author&amp;query=Ladid%2C+L">L Ladid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02397v1-abstract-short" style="display: inline;"> The EU COST Action NEWFOCUS is focused on investigating radical solutions with the potential to impact the design of future wireless networks. It aims to address some of the challenges in OWC and establish it as an efficient technology that can satisfy the demanding requirements of backhaul and access network levels in 5G networks. This also includes the use of hybrid links that associate OWC with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02397v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02397v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02397v1-abstract-full" style="display: none;"> The EU COST Action NEWFOCUS is focused on investigating radical solutions with the potential to impact the design of future wireless networks. It aims to address some of the challenges in OWC and establish it as an efficient technology that can satisfy the demanding requirements of backhaul and access network levels in 5G networks. This also includes the use of hybrid links that associate OWC with radiofrequency or wired/fiber-based technologies. The focus of this White Paper is on the use of optical wireless communication (OWC) as enabling technology in a range of areas outlined in HE&#39;s Pillar II including Health, Manufacturing, Intelligent Transportation Systems (ITS), Unmanned Aerial Vehicles and Network and Protocol. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02397v1-abstract-full').style.display = 'none'; document.getElementById('2210.02397v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05825">arXiv:2204.05825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05825">pdf</a>, <a href="https://arxiv.org/format/2204.05825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> On the Ergodic Rate of Cognitive Radio Inspired Uplink Multiple Access </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yue%2C+X">Xiao Yue</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Ma%2C+Z">Zheng Ma</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05825v3-abstract-short" style="display: inline;"> With the exponential increase of the number of devices in the communication ecosystem toward the upcoming sixth generation (6G) of wireless networks, more enabling technologies and potential wireless architectures are necessary to fulfill the networking requirements of high throughput, massive connectivity, ultra reliability, and heterogeneous quality of service (QoS). In this work, we consider an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05825v3-abstract-full').style.display = 'inline'; document.getElementById('2204.05825v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05825v3-abstract-full" style="display: none;"> With the exponential increase of the number of devices in the communication ecosystem toward the upcoming sixth generation (6G) of wireless networks, more enabling technologies and potential wireless architectures are necessary to fulfill the networking requirements of high throughput, massive connectivity, ultra reliability, and heterogeneous quality of service (QoS). In this work, we consider an uplink network consisting of a primary user (PU) and a secondary user (SU) and, by integrating the concept of cognitive radio and multiple access, two protocols based on rate-splitting multiple access and non-orthogonal multiple access with successive interference cancellation are investigated in terms of ergodic rate. The considered protocols aim to serve the SU in a resource block which is originally allocated solely for the PU without negatively affecting the QoS of the PU. We extract the ergodic rate of the SU considering a specific QoS for the PU for the two protocols. In the numerical results, we validate the theoretical analysis and illustrate the superiority of the considered protocols over two benchmark schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05825v3-abstract-full').style.display = 'none'; document.getElementById('2204.05825v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09954">arXiv:2203.09954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09954">pdf</a>, <a href="https://arxiv.org/format/2203.09954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning to Optimize Resource Assignment for Task Offloading in Mobile Edge Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Qian%2C+Y">Yurong Qian</a>, <a href="/search/eess?searchtype=author&amp;query=Xu%2C+J">Jindan Xu</a>, <a href="/search/eess?searchtype=author&amp;query=Zhu%2C+S">Shuhan Zhu</a>, <a href="/search/eess?searchtype=author&amp;query=Xu%2C+W">Wei Xu</a>, <a href="/search/eess?searchtype=author&amp;query=Fan%2C+L">Lisheng Fan</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09954v1-abstract-short" style="display: inline;"> In this paper, we consider a multiuser mobile edge computing (MEC) system, where a mixed-integer offloading strategy is used to assist the resource assignment for task offloading. Although the conventional branch and bound (BnB) approach can be applied to solve this problem, a huge burden of computational complexity arises which limits the application of BnB. To address this issue, we propose an i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09954v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09954v1-abstract-full" style="display: none;"> In this paper, we consider a multiuser mobile edge computing (MEC) system, where a mixed-integer offloading strategy is used to assist the resource assignment for task offloading. Although the conventional branch and bound (BnB) approach can be applied to solve this problem, a huge burden of computational complexity arises which limits the application of BnB. To address this issue, we propose an intelligent BnB (IBnB) approach which applies deep learning (DL) to learn the pruning strategy of the BnB approach. By using this learning scheme, the structure of the BnB approach ensures near-optimal performance and meanwhile DL-based pruning strategy significantly reduces the complexity. Numerical results verify that the proposed IBnB approach achieves optimal performance with complexity reduced by over 80%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09954v1-abstract-full').style.display = 'none'; document.getElementById('2203.09954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05878">arXiv:2203.05878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05878">pdf</a>, <a href="https://arxiv.org/format/2203.05878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Wireless Quantized Federated Learning: A Joint Computation and Communication Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Bouzinis%2C+P+S">Pavlos S. Bouzinis</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05878v1-abstract-short" style="display: inline;"> Recently, federated learning (FL) has sparked widespread attention as a promising decentralized machine learning approach which provides privacy and low delay. However, communication bottleneck still constitutes an issue, that needs to be resolved for an efficient deployment of FL over wireless networks. In this paper, we aim to minimize the total convergence time of FL, by quantizing the local mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05878v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05878v1-abstract-full" style="display: none;"> Recently, federated learning (FL) has sparked widespread attention as a promising decentralized machine learning approach which provides privacy and low delay. However, communication bottleneck still constitutes an issue, that needs to be resolved for an efficient deployment of FL over wireless networks. In this paper, we aim to minimize the total convergence time of FL, by quantizing the local model parameters prior to uplink transmission. More specifically, the convergence analysis of the FL algorithm with stochastic quantization is firstly presented, which reveals the impact of the quantization error on the convergence rate. Following that, we jointly optimize the computing, communication resources and number of quantization bits, in order to guarantee minimized convergence time across all global rounds, subject to energy and quantization error requirements, which stem from the convergence analysis. The impact of the quantization error on the convergence time is evaluated and the trade-off among model accuracy and timely execution is revealed. Moreover, the proposed method is shown to result in faster convergence in comparison with baseline schemes. Finally, useful insights for the selection of the quantization error tolerance are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05878v1-abstract-full').style.display = 'none'; document.getElementById('2203.05878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09284">arXiv:2111.09284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09284">pdf</a>, <a href="https://arxiv.org/format/2111.09284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Optimization of Grant-Free NOMA with Multiple Configured-Grants for mURLLC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Deng%2C+Y">Yansha Deng</a>, <a href="/search/eess?searchtype=author&amp;query=Elkashlan%2C+M">Maged Elkashlan</a>, <a href="/search/eess?searchtype=author&amp;query=Nallanathan%2C+A">Arumugam Nallanathan</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09284v1-abstract-short" style="display: inline;"> Massive Ultra-Reliable and Low-Latency Communications (mURLLC), which integrates URLLC with massive access, is emerging as a new and important service class in the next generation (6G) for time-sensitive traffics and has recently received tremendous research attention. However, realizing efficient, delay-bounded, and reliable communications for a massive number of user equipments (UEs) in mURLLC,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09284v1-abstract-full').style.display = 'inline'; document.getElementById('2111.09284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09284v1-abstract-full" style="display: none;"> Massive Ultra-Reliable and Low-Latency Communications (mURLLC), which integrates URLLC with massive access, is emerging as a new and important service class in the next generation (6G) for time-sensitive traffics and has recently received tremendous research attention. However, realizing efficient, delay-bounded, and reliable communications for a massive number of user equipments (UEs) in mURLLC, is extremely challenging as it needs to simultaneously take into account the latency, reliability, and massive access requirements. To support these requirements, the third generation partnership project (3GPP) has introduced enhanced grant-free (GF) transmission in the uplink (UL), with multiple active configured-grants (CGs) for URLLC UEs. With multiple CGs (MCG) for UL, UE can choose any of these grants as soon as the data arrives. In addition, non-orthogonal multiple access (NOMA) has been proposed to synergize with GF transmission to mitigate the serious transmission delay and network congestion problems. In this paper, we develop a novel learning framework for MCG-GF-NOMA systems with bursty traffic. We first design the MCG-GF-NOMA model by characterizing each CG using the parameters: the number of contention-transmission units (CTUs), the starting slot of each CG within a subframe, and the number of repetitions of each CG. Based on the model, the latency and reliability performances are characterized. We then formulate the MCG-GF-NOMA resources configuration problem taking into account three constraints. Finally, we propose a Cooperative Multi-Agent based Double Deep Q-Network (CMA-DDQN) algorithm to allocate the channel resources among MCGs so as to maximize the number of successful transmissions under the latency constraint. Our results show that the MCG-GF-NOMA framework can simultaneously improve the low latency and high reliability performances in massive URLLC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09284v1-abstract-full').style.display = 'none'; document.getElementById('2111.09284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 15 figures, submitted to IEEE JSAC SI on Next Generation Multiple Access. arXiv admin note: text overlap with arXiv:2101.00515</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02495">arXiv:2111.02495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.02495">pdf</a>, <a href="https://arxiv.org/format/2111.02495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Channel modeling for in-body optical wireless communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Trevlakis%2C+S+E">Stylianos E. Trevlakis</a>, <a href="/search/eess?searchtype=author&amp;query=Boulogeorgos%2C+A+A">Alexandros-Apostolos A. Boulogeorgos</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzidiamantis%2C+N+D">Nestor D. Chatzidiamantis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02495v1-abstract-short" style="display: inline;"> Next generation in-to-out-of body biomedical applications have adopted optical wireless communications (OWCs). However, by delving into the published literature, a gap is recognised in modeling the in-to-out-of channel, since most published contributions neglect the particularities of different type of tissues. Towards this direction, in this paper we present a novel pathloss and scattering models&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02495v1-abstract-full').style.display = 'inline'; document.getElementById('2111.02495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02495v1-abstract-full" style="display: none;"> Next generation in-to-out-of body biomedical applications have adopted optical wireless communications (OWCs). However, by delving into the published literature, a gap is recognised in modeling the in-to-out-of channel, since most published contributions neglect the particularities of different type of tissues. Towards this direction, in this paper we present a novel pathloss and scattering models for in-to-out-of OWC links. Specifically, we derive extract analytical expressions that accurately describe the absorption of the five main tissues&#39; constituents, namely fat, water, melanin, oxygenated and de-oxygenated blood. Moreover, we formulate a model for the calculation of the absorption coefficient of any generic biological tissue. Next, by incorporating the impact of scattering in the aforementioned model we formulate the complete pathloss model. The developed theoretical framework is verified by means of comparisons between the estimated pathloss and experimental measurements from independent research works. Finally, we illustrate the accuracy of the theoretical framework in estimating the optical properties of any generic tissue based on its constitution. The extracted channel model is capable of boosting the design of optimized communication protocols for a plethora of biomedical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02495v1-abstract-full').style.display = 'none'; document.getElementById('2111.02495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10034">arXiv:2106.10034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.10034">pdf</a>, <a href="https://arxiv.org/format/2106.10034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Synergetic UAV-RIS Communication with Highly Directional Transmission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tyrovolas%2C+D">Dimitrios Tyrovolas</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10034v2-abstract-short" style="display: inline;"> The effective integration of unmanned aerial vehicles (UAVs) in future wireless communication systems depends on the conscious use of their limited energy, which constrains their flight time. Reconfigurable intelligent surfaces (RISs) can be used in combination with UAVs with the aim to improve the communication performance without increasing complexity at the UAV side. In this paper, we propose a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10034v2-abstract-full').style.display = 'inline'; document.getElementById('2106.10034v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10034v2-abstract-full" style="display: none;"> The effective integration of unmanned aerial vehicles (UAVs) in future wireless communication systems depends on the conscious use of their limited energy, which constrains their flight time. Reconfigurable intelligent surfaces (RISs) can be used in combination with UAVs with the aim to improve the communication performance without increasing complexity at the UAV side. In this paper, we propose a synergetic UAV RIS communication system, utilizing a UAV with a highly directional antenna aiming to the RIS. The proposed scenario can be applied in all air-to-ground RIS-assisted networks and numerical results illustrate that it is superior from the cases where the UAV utilizes either an omnidirectional antenna or a highly directional antenna aiming towards the ground node. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10034v2-abstract-full').style.display = 'none'; document.getElementById('2106.10034v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01549">arXiv:2106.01549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01549">pdf</a>, <a href="https://arxiv.org/ps/2106.01549">ps</a>, <a href="https://arxiv.org/format/2106.01549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Waveform Design for Joint Sensing and Communications in Millimeter-Wave and Low Terahertz Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Mao%2C+T">Tianqi Mao</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+J">Jiaxuan Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Han%2C+C">Chong Han</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+Z">Zhaocheng Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01549v3-abstract-short" style="display: inline;"> The convergence of sensing and communication in the millimeter-wave (mmWave) and low terahertz (THz) bands has been envisioned as a promising technology, since it incorporates high-rate data transmission of hundreds of Gbps and mm-level radar sensing in a spectrum- and cost-efficient manner, by sharing both the frequency and hardware resources. However, the joint radar sensing and communication (J&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01549v3-abstract-full').style.display = 'inline'; document.getElementById('2106.01549v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01549v3-abstract-full" style="display: none;"> The convergence of sensing and communication in the millimeter-wave (mmWave) and low terahertz (THz) bands has been envisioned as a promising technology, since it incorporates high-rate data transmission of hundreds of Gbps and mm-level radar sensing in a spectrum- and cost-efficient manner, by sharing both the frequency and hardware resources. However, the joint radar sensing and communication (JRC) system faces considerable challenges in the mmWave and low-THz scale, due to the peculiarities of the propagation channel and radio-frequency (RF) front ends. To this end, the waveform design for the JRC systems in mmWave and low-THz bands with ultra-broad bandwidth is investigated in this paper. Firstly, by considering the JRC design based on the co-existence concept, where both functions operate in a time-domain duplex (TDD) manner, a novel multi-subband quasi-perfect (MS-QP) sequence, composed of multiple perfect subsequences on different subbands, is proposed for target sensing, which achieves accurate target ranging and velocity estimation, whilst only requiring cost-efficient low-rate analog-to-digital converters (A/Ds) for sequence detection. Furthermore, the root index of each perfect subsequence is designed to eliminate the influence of strong Doppler shift on radar sensing. Finally, a data-embedded MS-QP (DE-MS-QP) waveform is constructed through time-domain extension of the MS-QP sequence, generating null frequency points on each subband for data transmission. Unlike the co-existence-based JRC system in TDD manner, the proposed DE-MS-QP waveform enables simultaneous interference-free sensing and communication, whilst inheriting all the merits from MS-QP sequences. Numerical results validate the superiority of the proposed waveforms regarding the communication and sensing performances, hardware cost as well as flexibility of the resource allocation between the dual functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01549v3-abstract-full').style.display = 'none'; document.getElementById('2106.01549v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.05591">arXiv:2102.05591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.05591">pdf</a>, <a href="https://arxiv.org/ps/2102.05591">ps</a>, <a href="https://arxiv.org/format/2102.05591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> On the Distribution of the Sum of Double-Nakagami-m Random Vectors and Application in Randomly Reconfigurable Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Tyrovolas%2C+D">Dimitrios Tyrovolas</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Liaskos%2C+C+K">Christos K. Liaskos</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.05591v3-abstract-short" style="display: inline;"> Meta-surfaces intend to improve significantly the performance of future wireless networks by controlling the wireless propagation and shaping the radio waves according to the generalized Snell&#39;s law. A recent application of meta-surfaces is reconfigurable intelligent surfaces which are practically limited by the requirement for perfect knowledge of the user&#39;s position. For the case where the user&#39;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05591v3-abstract-full').style.display = 'inline'; document.getElementById('2102.05591v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.05591v3-abstract-full" style="display: none;"> Meta-surfaces intend to improve significantly the performance of future wireless networks by controlling the wireless propagation and shaping the radio waves according to the generalized Snell&#39;s law. A recent application of meta-surfaces is reconfigurable intelligent surfaces which are practically limited by the requirement for perfect knowledge of the user&#39;s position. For the case where the user&#39;s position cannot be obtained, we introduce randomly reconfigurable surfaces (RRSs) aiming to diffuse the incoming wave. A RRS is defined as a reconfigurable meta-surface that each of its elements induces a randomly selected time-variant phase shift on the reflected signal. To facilitate the performance analysis of a RRS-assisted system, first, we present novel closed-form expressions for the probability density function, the cumulative distribution function, the moments, and the characteristic function of the distribution of the sum of double-Nakagami-m random vectors, whose amplitudes follow the double-Nakagami-m distribution, i.e., the distribution of the product of two Nakagami-m random variables, and phases follow the circular uniform distribution. We also consider a special case of this distribution, namely the distribution of the sum of Rayleigh-Nakagami-m random vectors. Then, we exploit these expressions to investigate the performance of the RRS-assisted composite channel, assuming that the two links undergo Nakagami-m fading and the equivalent phase follows the circular uniform distribution. Closed-form expressions for the outage probability, the average received signal-to-noise ratio, the ergodic capacity, the bit error probability, the amount of fading, and the channel quality estimation index are provided to evaluate the performance of the considered system. These metrics are also derived for the practical special case where one of the two links undergoes Rayleigh fading. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05591v3-abstract-full').style.display = 'none'; document.getElementById('2102.05591v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01332">arXiv:2011.01332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01332">pdf</a>, <a href="https://arxiv.org/ps/2011.01332">ps</a>, <a href="https://arxiv.org/format/2011.01332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> New Results for Pearson Type III Family of Distributions and Application in Wireless Power Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzidiamantis%2C+N+D">Nestor D. Chatzidiamantis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01332v1-abstract-short" style="display: inline;"> Pearson and log Pearson type III distributions have been considered in several scientific fields, as in hydrology and seismology. In this paper, we present new results for these distributions and we utilize them, for first time in the literature, to investigate the statistical behavior of wireless power transfer (WPT), assuming that the harvested energy follows a well-established nonlinear energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01332v1-abstract-full').style.display = 'inline'; document.getElementById('2011.01332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01332v1-abstract-full" style="display: none;"> Pearson and log Pearson type III distributions have been considered in several scientific fields, as in hydrology and seismology. In this paper, we present new results for these distributions and we utilize them, for first time in the literature, to investigate the statistical behavior of wireless power transfer (WPT), assuming that the harvested energy follows a well-established nonlinear energy harvesting model based on the logistic function. Specifically, we present new closed-form expressions for the statistical properties of a general form of Pearson and log Pearson type III distributions and we utilize them to introduce a new member of the Pearson type III family, the logit Pearson type III distribution, through which the logit gamma distribution is also defined. Moreover, we derive closed-form expressions for the probability density function, the cumulative distribution function and moments of the distributions of the sum, the log sum and the logit sum of Pearson type III random variables. Furthermore, taking into account that Pearson type III family of distributions is closely related to the considered nonlinear harvesting model the statistical properties of the distribution of the harvested power and derived, for both single input single output and multiple input single output scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01332v1-abstract-full').style.display = 'none'; document.getElementById('2011.01332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00211">arXiv:2011.00211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.00211">pdf</a>, <a href="https://arxiv.org/ps/2011.00211">ps</a>, <a href="https://arxiv.org/format/2011.00211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TWC.2021.3081423">10.1109/TWC.2021.3081423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Orthogonal Multiple Access (NOMA) With Multiple Intelligent Reflecting Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Cheng%2C+Y">Yanyu Cheng</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+K+H">Kwok Hung Li</a>, <a href="/search/eess?searchtype=author&amp;query=Liu%2C+Y">Yuanwei Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Teh%2C+K+C">Kah Chan Teh</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00211v2-abstract-short" style="display: inline;"> In this paper, non-orthogonal multiple access (NOMA) networks assisted by multiple intelligent reflecting surfaces (IRSs) with discrete phase shifts are investigated, in which each user device (UD) is served by an IRS to improve the quality of the received signal. Two scenarios are considered according to whether there is a direct link between the base station (BS) and each UD, and the outage perf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00211v2-abstract-full').style.display = 'inline'; document.getElementById('2011.00211v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00211v2-abstract-full" style="display: none;"> In this paper, non-orthogonal multiple access (NOMA) networks assisted by multiple intelligent reflecting surfaces (IRSs) with discrete phase shifts are investigated, in which each user device (UD) is served by an IRS to improve the quality of the received signal. Two scenarios are considered according to whether there is a direct link between the base station (BS) and each UD, and the outage performance is analyzed for each of them. Specifically, the asymptotic expressions for the upper and lower bounds of the outage probability in the high signal-to-noise ratio (SNR) regime are derived. Following that, the diversity order is obtained. It is shown that the use of discrete phase shifts does not degrade diversity order. More importantly, simulation results reveal that a 3-bit resolution for discrete phase shifts is sufficient to achieve near-optimal outage performance. Simulation results also imply the superiority of IRSs over full-duplex decode-and-forward relays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00211v2-abstract-full').style.display = 'none'; document.getElementById('2011.00211v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the IEEE Transactions on Wireless Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06397">arXiv:2009.06397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.06397">pdf</a>, <a href="https://arxiv.org/format/2009.06397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Optimal Resource Allocation for Delay Minimization in NOMA-MEC Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Fang%2C+F">Fang Fang</a>, <a href="/search/eess?searchtype=author&amp;query=Xu%2C+Y">Yanqing Xu</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Shen%2C+C">Chao Shen</a>, <a href="/search/eess?searchtype=author&amp;query=Peng%2C+M">Mugen Peng</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06397v1-abstract-short" style="display: inline;"> Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06397v1-abstract-full').style.display = 'inline'; document.getElementById('2009.06397v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06397v1-abstract-full" style="display: none;"> Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06397v1-abstract-full').style.display = 'none'; document.getElementById('2009.06397v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE Transactions on Communications 2020. arXiv admin note: substantial text overlap with arXiv:1904.12389</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07112">arXiv:2008.07112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.07112">pdf</a>, <a href="https://arxiv.org/format/2008.07112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> AnciNet: An Efficient Deep Learning Approach for Feedback Compression of Estimated CSI in Massive MIMO Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sun%2C+Y">Yuyao Sun</a>, <a href="/search/eess?searchtype=author&amp;query=Xu%2C+W">Wei Xu</a>, <a href="/search/eess?searchtype=author&amp;query=Fan%2C+L">Lisheng Fan</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+G+Y">Geoffrey Ye Li</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07112v1-abstract-short" style="display: inline;"> Accurate channel state information (CSI) feedback plays a vital role in improving the performance gain of massive multiple-input multiple-output (m-MIMO) systems, where the dilemma is excessive CSI overhead versus limited feedback bandwith. By considering the noisy CSI due to imperfect channel estimation, we propose a novel deep neural network architecture, namely AnciNet, to conduct the CSI feedb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07112v1-abstract-full').style.display = 'inline'; document.getElementById('2008.07112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07112v1-abstract-full" style="display: none;"> Accurate channel state information (CSI) feedback plays a vital role in improving the performance gain of massive multiple-input multiple-output (m-MIMO) systems, where the dilemma is excessive CSI overhead versus limited feedback bandwith. By considering the noisy CSI due to imperfect channel estimation, we propose a novel deep neural network architecture, namely AnciNet, to conduct the CSI feedback with limited bandwidth. AnciNet extracts noise-free features from the noisy CSI samples to achieve effective CSI compression for the feedback. Experimental results verify that the proposed AnciNet approach outperforms the existing techniques under various conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07112v1-abstract-full').style.display = 'none'; document.getElementById('2008.07112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.02195">arXiv:2008.02195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.02195">pdf</a>, <a href="https://arxiv.org/format/2008.02195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning in Nano-Scale Biomedical Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Boulogeorgos%2C+A+A">Alexandros-Apostolos A. Boulogeorgos</a>, <a href="/search/eess?searchtype=author&amp;query=Trevlakis%2C+S+E">Stylianos E. Trevlakis</a>, <a href="/search/eess?searchtype=author&amp;query=Tegos%2C+S+A">Sotiris A. Tegos</a>, <a href="/search/eess?searchtype=author&amp;query=Papanikolaou%2C+V+K">Vasilis K. Papanikolaou</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.02195v2-abstract-short" style="display: inline;"> Machine learning (ML) empowers biomedical systems with the capability to optimize their performance through modeling of the available data extremely well, without using strong assumptions about the modeled system. Especially in nano-scale biosystems, where the generated data sets are too vast and complex to mentally parse without computational assist, ML is instrumental in analyzing and extracting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02195v2-abstract-full').style.display = 'inline'; document.getElementById('2008.02195v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.02195v2-abstract-full" style="display: none;"> Machine learning (ML) empowers biomedical systems with the capability to optimize their performance through modeling of the available data extremely well, without using strong assumptions about the modeled system. Especially in nano-scale biosystems, where the generated data sets are too vast and complex to mentally parse without computational assist, ML is instrumental in analyzing and extracting new insights, accelerating material and structure discoveries, and designing experience as well as supporting nano-scale communications and networks. However, despite these efforts, the use of ML in nano-scale biomedical engineering remains still under-explored in certain areas and research challenges are still open in fields such as structure and material design and simulations, communications and signal processing, and bio-medicine applications. In this article, we review the existing research regarding the use of ML in nano-scale biomedical engineering. In more detail, we first identify and discuss the main challenges that can be formulated as ML problems. These challenges are classified into the three aforementioned main categories. Next, we discuss the state of the art ML methodologies that are used to countermeasure the aforementioned challenges. For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations. Finally, we conclude the article with insightful discussions, that reveal research gaps and highlight possible future research directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02195v2-abstract-full').style.display = 'none'; document.getElementById('2008.02195v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 15 figures, 1 table, Journal paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11577">arXiv:2006.11577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11577">pdf</a>, <a href="https://arxiv.org/format/2006.11577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> All-Optical Cochlear Implants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Trevlakis%2C+S+E">Stylianos E. Trevlakis</a>, <a href="/search/eess?searchtype=author&amp;query=Boulogeorgos%2C+A+A">Alexandros-Apostolos A. Boulogeorgos</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzidiamantis%2C+N+D">Nestor D. Chatzidiamantis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11577v1-abstract-short" style="display: inline;"> In the present work, we introduce a novel cochlear implant (CI) architecture, namely all-optical CI (AOCI), which directly converts acoustic to optical signals capable of stimulating the cochlear neurons. First, we describe the building-blocks (BBs) of the AOCI, and explain their functionalities as well as their interconnections. Next, we present a comprehensive system model that incorporates the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11577v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11577v1-abstract-full" style="display: none;"> In the present work, we introduce a novel cochlear implant (CI) architecture, namely all-optical CI (AOCI), which directly converts acoustic to optical signals capable of stimulating the cochlear neurons. First, we describe the building-blocks (BBs) of the AOCI, and explain their functionalities as well as their interconnections. Next, we present a comprehensive system model that incorporates the technical characteristics and constraints of each BB, the transdermal-optical-channel particularities, i.e. optical path-loss and external-implanted device stochastic pointing-errors, and the cochlear neurons biological properties. Additionally, in order to prove the feasibility of the AOCI architecture, we conduct a link-budget analysis that outputs novel closed-form expressions for the instantaneous and average photon flux that is emitted on the cochlear neurons. Likewise, we define three new key-performance-indicators (KPIs), namely probability of hearing, probability of false-hearing, and probability of neural damage. The proposed theoretical framework is verified through respective simulations, which not only quantify the efficiency of the proposed architecture, but also reveal an equilibrium between the optical transmission power and the patient&#39;s safety, as well as the AOCI BBs specifications. Finally, it is highlighted that the AOCI approach is greener and safer than the conventional CIs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11577v1-abstract-full').style.display = 'none'; document.getElementById('2006.11577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11513">arXiv:2006.11513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11513">pdf</a>, <a href="https://arxiv.org/ps/2006.11513">ps</a>, <a href="https://arxiv.org/format/2006.11513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning based Radio Resource Management in NOMA Networks: User Association, Subchannel and Power Allocation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+H">Haijun Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+H">Haisen Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Long%2C+K">Keping Long</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11513v1-abstract-short" style="display: inline;"> With the rapid development of future wireless communication, the combination of NOMA technology and millimeter-wave(mmWave) technology has become a research hotspot. The application of NOMA in mmWave heterogeneous networks can meet the diverse needs of users in different applications and scenarios in future communications. In this paper, we propose a machine learning framework to deal with the use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11513v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11513v1-abstract-full" style="display: none;"> With the rapid development of future wireless communication, the combination of NOMA technology and millimeter-wave(mmWave) technology has become a research hotspot. The application of NOMA in mmWave heterogeneous networks can meet the diverse needs of users in different applications and scenarios in future communications. In this paper, we propose a machine learning framework to deal with the user association, subchannel and power allocation problems in such a complex scenario. We focus on maximizing the energy efficiency (EE) of the system under the constraints of quality of service (QoS), interference limitation, and power limitation. Specifically, user association is solved through the Lagrange dual decomposition method, while semi-supervised learning and deep neural network (DNN) are used for the subchannel and power allocation, respectively. In particular, unlabeled samples are introduced to improve approximation and generalization ability for subchannel allocation. The simulation indicates that the proposed scheme can achieve higher EE with lower complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11513v1-abstract-full').style.display = 'none'; document.getElementById('2006.11513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in IEEE Transactions on Network Science and Engineering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.13618">arXiv:2004.13618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.13618">pdf</a>, <a href="https://arxiv.org/ps/2004.13618">ps</a>, <a href="https://arxiv.org/format/2004.13618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> UAV-to-Ground Communications: Channel Modeling and UAV Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Bithas%2C+P+S">Petros S. Bithas</a>, <a href="/search/eess?searchtype=author&amp;query=Nikolaidis%2C+V">Viktor Nikolaidis</a>, <a href="/search/eess?searchtype=author&amp;query=Kanatas%2C+A+G">Athanasios G. Kanatas</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.13618v1-abstract-short" style="display: inline;"> Unmanned aerial vehicle (UAV)-enabled communications have been proposed as a critical part of the beyond fifth-generation (5G) cellular networks. This type of communications is frequently characterized by line-of-sight (LoS) and dynamic propagation conditions. However, in various scenarios, the presence of large obstacles in the LoS path is unavoidable, resulting in shadowed fading environments. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13618v1-abstract-full').style.display = 'inline'; document.getElementById('2004.13618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.13618v1-abstract-full" style="display: none;"> Unmanned aerial vehicle (UAV)-enabled communications have been proposed as a critical part of the beyond fifth-generation (5G) cellular networks. This type of communications is frequently characterized by line-of-sight (LoS) and dynamic propagation conditions. However, in various scenarios, the presence of large obstacles in the LoS path is unavoidable, resulting in shadowed fading environments. In this paper, a new channel model is proposed, in which the effects of mobility and shadowing are simultaneously considered. In particular, the performance of a UAV-based communication system operating in a shadowed double-scattering channel is analyzed. {The new channel model is generic, since it models various fading/shadowing conditions, while it is in terms of easy-to-evaluate mathematical functions. Moreover, a low complexity UAV selection policy is proposed, which exploits shadowing-related information. The proposed scheme offers a reduction of the signal processing complexity, without any important degradation on the performance, as compared to alternatives approaches.} In this context, a new analytical framework has been developed for investigating the performance of the new strategy. Finally, the main outcomes of this paper are also validated by empirical data, collected in an air-to-ground measurement campaign. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13618v1-abstract-full').style.display = 'none'; document.getElementById('2004.13618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07842">arXiv:2002.07842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.07842">pdf</a>, <a href="https://arxiv.org/format/2002.07842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Analyzing Grant-Free Access for URLLC Service </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Deng%2C+Y">Yansha Deng</a>, <a href="/search/eess?searchtype=author&amp;query=Elkashlan%2C+M">Maged Elkashlan</a>, <a href="/search/eess?searchtype=author&amp;query=Nallanathan%2C+A">Arumugam Nallanathan</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07842v2-abstract-short" style="display: inline;"> 5G New Radio (NR) is expected to support new ultra-reliable low-latency communication (URLLC) service targeting at supporting the small packets transmissions with very stringent latency and reliability requirements. Current Long Term Evolution (LTE) system has been designed based on grantbased (GB) (i.e., dynamic grant) random access, which can hardly support the URLLC requirements. Grant-free (GF&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07842v2-abstract-full').style.display = 'inline'; document.getElementById('2002.07842v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07842v2-abstract-full" style="display: none;"> 5G New Radio (NR) is expected to support new ultra-reliable low-latency communication (URLLC) service targeting at supporting the small packets transmissions with very stringent latency and reliability requirements. Current Long Term Evolution (LTE) system has been designed based on grantbased (GB) (i.e., dynamic grant) random access, which can hardly support the URLLC requirements. Grant-free (GF) (i.e., configured grant) access is proposed as a feasible and promising technology to meet such requirements, especially for uplink transmissions, which effectively saves the time of requesting/waiting for a grant. While some basic GF access features have been proposed and standardized in NR Release-15, there is still much space to improve. Being proposed as 3GPP study items, three GF access schemes with Hybrid Automatic Repeat reQuest (HARQ) retransmissions including Reactive, K-repetition, and Proactive, are analyzed in this paper. Specifically, we present a spatiotemporal analytical framework for the contention-based GF access analysis. Based on this framework, we define the latent access failure probability to characterize URLLC reliability and latency performances. We propose a tractable approach to derive and analyze the latent access failure probability of the typical UE under three GF HARQ schemes. Our results show that under shorter latency constraints, the Proactive scheme provides the lowest latent access failure probability, whereas, under longer latency constraints, the K-repetition scheme achieves the lowest latent access failure probability, which depends on K. If K is overestimated, the Proactive scheme provides lower latent access failure probability than the K-repetition scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07842v2-abstract-full').style.display = 'none'; document.getElementById('2002.07842v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in IEEE JSAC SI on MA for B5G IEEE JSAC SI on MASSIVE ACCESS FOR 5G AND BEYOND</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.12424">arXiv:1905.12424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.12424">pdf</a>, <a href="https://arxiv.org/format/1905.12424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Statistical Modeling of the FSO Fronthaul Channel for UAV-based Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Najafi%2C+M">Marzieh Najafi</a>, <a href="/search/eess?searchtype=author&amp;query=Ajam%2C+H">Hedieh Ajam</a>, <a href="/search/eess?searchtype=author&amp;query=Jamali%2C+V">Vahid Jamali</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a>, <a href="/search/eess?searchtype=author&amp;query=Schober%2C+R">Robert Schober</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.12424v2-abstract-short" style="display: inline;"> In this paper, we investigate the statistics of the free space optics (FSO) communication channel between a hovering unmanned aerial vehicle (UAV) and a central unit. Two unique characteristics make UAV-based FSO systems significantly different from conventional FSO systems with static transceivers. First, for UAV-based FSO systems, the incident laser beam is not always orthogonal to the receiver&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12424v2-abstract-full').style.display = 'inline'; document.getElementById('1905.12424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.12424v2-abstract-full" style="display: none;"> In this paper, we investigate the statistics of the free space optics (FSO) communication channel between a hovering unmanned aerial vehicle (UAV) and a central unit. Two unique characteristics make UAV-based FSO systems significantly different from conventional FSO systems with static transceivers. First, for UAV-based FSO systems, the incident laser beam is not always orthogonal to the receiver lens plane. Second, both position and orientation of the UAV fluctuate over time due to dynamic wind load, inherent random air fluctuations in the atmosphere around the UAV, and internal vibrations of the UAV. On the contrary, for conventional FSO systems, the laser beam is always perpendicular to the receiver lens plane and the relative movement of the transceivers is limited. In this paper, we develop a novel channel model for UAV-based FSO systems by quantifying the corresponding geometric and misalignment losses (GML), while taking into account the non-orthogonality of the laser beam and the random fluctuations of the position and orientation of the UAV. In particular, for diverse weather conditions, we propose different fluctuation models for the position and orientation of the UAV and derive corresponding statistical models for the GML. We further analyze the performance of a UAV-based FSO link in terms of outage probability and ergodic rate and simplify the resulting analytical expressions for the high signal-to-noise ratio (SNR) regime. Finally, simulations validate the accuracy of the presented analysis and provide important insights for system design. For instance, we show that for a given variance of the fluctuations, the beam width should be properly adjusted to minimize the outage probability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12424v2-abstract-full').style.display = 'none'; document.getElementById('1905.12424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is accepted for publication in the IEEE Transactions on Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04738">arXiv:1905.04738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.04738">pdf</a>, <a href="https://arxiv.org/format/1905.04738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Ultra-small Cell Networks with Collaborative RF and Lightwave Power Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Tran%2C+H">Ha-Vu Tran</a>, <a href="/search/eess?searchtype=author&amp;query=Kaddoum%2C+G">Georges Kaddoum</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Abou-Rjeily%2C+C">Chadi Abou-Rjeily</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04738v1-abstract-short" style="display: inline;"> This paper investigates a hybrid radio frequency (RF)/visible light communication (VLC) ultra-small cell network consisting of multiple optical angle-diversity transmitters, one multi-antenna RF access point (AP), and multiple terminal devices. In the network, the optical transmitters play the primary role and are responsible for delivering information and power over the visible light, while the R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04738v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04738v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04738v1-abstract-full" style="display: none;"> This paper investigates a hybrid radio frequency (RF)/visible light communication (VLC) ultra-small cell network consisting of multiple optical angle-diversity transmitters, one multi-antenna RF access point (AP), and multiple terminal devices. In the network, the optical transmitters play the primary role and are responsible for delivering information and power over the visible light, while the RF AP acts as a complementary power transfer system. Thus, we propose a novel collaborative RF and lightwave resource allocation scheme for hybrid RF/VLC ultra-small cell networks. The proposed scheme aims to maximize the communication quality-of-service provided by the VLC under a constraint of total RF and light energy harvesting performance, while keeping illumination constant and ensuring health safety. This scheme leads to the formulation of two optimization problems that correspond to the resource allocation at the optical transmitters and the RF AP. Both problems are optimally solved by appropriate algorithms. Moreover, we propose a closed-form suboptimal solution with high accuracy to tackle the optical transmitters&#39; resource allocation problem, as well as an efficient semi-decentralized method. Finally, simulation results illustrate the achievable performance of the investigated system and the effectiveness of the proposed solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04738v1-abstract-full').style.display = 'none'; document.getElementById('1905.04738v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00479">arXiv:1905.00479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00479">pdf</a>, <a href="https://arxiv.org/ps/1905.00479">ps</a>, <a href="https://arxiv.org/format/1905.00479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Shadowed FSO/mmWave Systems with Interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Trigui%2C+I">Imene Trigui</a>, <a href="/search/eess?searchtype=author&amp;query=Diamantoulakis%2C+P+D">Panagiotis D. Diamantoulakis</a>, <a href="/search/eess?searchtype=author&amp;query=Affes%2C+S">Sofiene Affes</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00479v1-abstract-short" style="display: inline;"> We investigate the performance of mixed free space optical (FSO)/millimeter-wave (mmWave) relay networks with interference at the destination. The FSO/mmWave channels are assumed to follow Malaga-M/Generalized-K fading models with pointing errors in the FSO link. The H-transform theory, wherein integral transforms involve Fox&#39;s H-functions as kernels, is embodied to unifying the performance analys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00479v1-abstract-full').style.display = 'inline'; document.getElementById('1905.00479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00479v1-abstract-full" style="display: none;"> We investigate the performance of mixed free space optical (FSO)/millimeter-wave (mmWave) relay networks with interference at the destination. The FSO/mmWave channels are assumed to follow Malaga-M/Generalized-K fading models with pointing errors in the FSO link. The H-transform theory, wherein integral transforms involve Fox&#39;s H-functions as kernels, is embodied to unifying the performance analysis framework that encompasses closed-form expressions for the outage probability, the average bit error rate (BER) and the average capacity. By virtue of some H-transform asymptotic expansions, the high signal-to-interference-plus-noise ratio (SINR) analysis reduces to easy-to-compute expressions for the outage probability and BER, which reveals inside information for the system design. We finally investigate the optimal power allocation strategy, which minimizes the outage probability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00479v1-abstract-full').style.display = 'none'; document.getElementById('1905.00479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02513">arXiv:1811.02513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02513">pdf</a>, <a href="https://arxiv.org/ps/1811.02513">ps</a>, <a href="https://arxiv.org/format/1811.02513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical Wireless Cochlear Implants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Trevlakis%2C+S+E">Stylianos E. Trevlakis</a>, <a href="/search/eess?searchtype=author&amp;query=Boulogeorgos%2C+A+A">Alexandros-Apostolos A. Boulogeorgos</a>, <a href="/search/eess?searchtype=author&amp;query=Sofotasios%2C+P+C">Paschalis C. Sofotasios</a>, <a href="/search/eess?searchtype=author&amp;query=Muhaidat%2C+S">Sami Muhaidat</a>, <a href="/search/eess?searchtype=author&amp;query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02513v1-abstract-short" style="display: inline;"> In the present contribution, we introduce a wireless optical communication-based system architecture which is shown to significantly improve the reliability and the spectral and power efficiency of the transcutaneous link in cochlear implants (CIs). We refer to the proposed system as optical wireless cochlear implant (OWCI).In order to provide a quantified understanding of its design parameters, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02513v1-abstract-full').style.display = 'inline'; document.getElementById('1811.02513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02513v1-abstract-full" style="display: none;"> In the present contribution, we introduce a wireless optical communication-based system architecture which is shown to significantly improve the reliability and the spectral and power efficiency of the transcutaneous link in cochlear implants (CIs). We refer to the proposed system as optical wireless cochlear implant (OWCI).In order to provide a quantified understanding of its design parameters, we establish a theoretical framework that takes into account the channel particularities, the integration area of the internal unit, the transceivers misalignment, and the characteristics of the optical units. To this end, we derive explicit expressions for the corresponding average signal-to-noise-ratio, outage probability, ergodic spectral efficiency and capacity of the transcutaneous optical link (TOL). These expressions are subsequently used to assess the dependence of the TOL&#39;s communication quality on the transceivers design parameters and the corresponding channels characteristics. The offered analytic results are corroborated with respective results from Monte Carlo simulations. Our findings reveal that OWCI is a particularly promising architecture that drastically increases the reliability and effectiveness of the CI TOL, whilst it requires considerably lower transmit power compared to the corresponding widely-used radio frequency (RF) solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02513v1-abstract-full').style.display = 'none'; document.getElementById('1811.02513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 24 figures, accepted for publication in Biomedical Optics Express</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Biomedical Optics Express 2018 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Karagiannidis%2C+G+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Karagiannidis%2C+G+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Karagiannidis%2C+G+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10