CINXE.COM

Search results for: UAV plant phenotyping

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: UAV plant phenotyping</title> <meta name="description" content="Search results for: UAV plant phenotyping"> <meta name="keywords" content="UAV plant phenotyping"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="UAV plant phenotyping" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="UAV plant phenotyping"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3511</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: UAV plant phenotyping</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3511</span> Research and Application of Multi-Scale Three Dimensional Plant Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weiliang%20Wen">Weiliang Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyu%20Guo"> Xinyu Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhang"> Ying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianjun%20Du"> Jianjun Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Boxiang%20Xiao"> Boxiang Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant" title="plant">plant</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20modeling" title=" three dimensional modeling"> three dimensional modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale" title=" multi-scale"> multi-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20phenotyping" title=" plant phenotyping"> plant phenotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20data%20acquisition" title=" three dimensional data acquisition"> three dimensional data acquisition</a> </p> <a href="https://publications.waset.org/abstracts/65305/research-and-application-of-multi-scale-three-dimensional-plant-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3510</span> Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Parker%20Galvan">Jackson Parker Galvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxuan%20Guo"> Wenxuan Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping" title=" UAV plant phenotyping"> UAV plant phenotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20area%20index" title=" leaf area index"> leaf area index</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20wheat" title=" winter wheat"> winter wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=southern%20high%20plains" title=" southern high plains"> southern high plains</a> </p> <a href="https://publications.waset.org/abstracts/155539/estimating-leaf-area-and-biomass-of-wheat-using-uas-multispectral-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3509</span> Iterative Design Process for Development and Virtual Commissioning of Plant Control Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thorsten%20Prante">Thorsten Prante</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Sch%C3%B6ch"> Robert Schöch</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Fleisch"> Ruth Fleisch</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaheh%20Khachatouri"> Vaheh Khachatouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Walch"> Alexander Walch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of industrial plant control software is a complex and often very expensive task. One of the core problems is that a lot of the implementation and adaptation work can only be done after the plant hardware has been installed. In this paper, we present our approach to virtually developing and validating plant-level control software of production plants. This way, plant control software can be virtually commissioned before actual ramp-up of a plant, reducing actual commissioning costs and time. Technically, this is achieved by linking the actual plant-wide process control software (often called plant server) and an elaborate virtual plant model together to form an emulation system. Method-wise, we are suggesting a four-step iterative process with well-defined increments and time frame. Our work is based on practical experiences from planning to commissioning and start-up of several cut-to-size plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iterative%20system%20design" title="iterative system design">iterative system design</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20plant%20engineering" title=" virtual plant engineering"> virtual plant engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20control%20software" title=" plant control software"> plant control software</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20and%20emulation" title=" simulation and emulation"> simulation and emulation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20commissioning" title=" virtual commissioning"> virtual commissioning</a> </p> <a href="https://publications.waset.org/abstracts/14534/iterative-design-process-for-development-and-virtual-commissioning-of-plant-control-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3508</span> Chemical Analyses of Aspillia kotschyi (Sch. bipex, hochst) Oliv Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdu%20Umar%20Adamu">Abdu Umar Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maimuna%20Ibrahim"> Maimuna Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this present work, a locally used medicinal plant, namely: Aspillia kotschyi belonging to the Compositae family, was extracted using methanolic and petroleum ether 60-80OC. The extracts were subjected to microwave plasma Atomic Emission Spectroscopy (MPES) to determine the following metals Se, Ag, Fe, Cu, Ni, As, Co, Mn, and Al. From the result, Ag, Cu, Ni, and Co are of very negligible concentrations in the plant extract. However, Seleniun is found to be 0.530 (mg/kg) in the plant methanolic extract. Iron, on the other hand, was found to be 3.712 (mg/kg) in the plant extract. Arsenic was found to be 0.506 and 1.301 (mg/kg) in both methanolic and petroleum spirit extracts of the plant material. The concentration of aluminium was found to be of the range of 3.050mg/kg in the plant. Functional group analysis of the plant extracts was also carried out using Fourier transform infrared (FTIR) spectroscopy which showed the presence of some functional groups. The results of this study suggest some merit in the popular use of the plant in herbal medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspillia%20kotschyi" title="Aspillia kotschyi">Aspillia kotschyi</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20group" title=" functional group"> functional group</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=MPES" title=" MPES"> MPES</a> </p> <a href="https://publications.waset.org/abstracts/155497/chemical-analyses-of-aspillia-kotschyi-sch-bipex-hochst-oliv-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3507</span> Plant Disease Detection Using Image Processing and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanskar">Sanskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Pal"> Abhinav Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aryush%20Gupta"> Aryush Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar%20Mishra"> Sushil Kumar Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20diseases" title="plant diseases">plant diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/194420/plant-disease-detection-using-image-processing-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3506</span> Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khomkrit%20Mongkhuntod">Khomkrit Mongkhuntod</a>, <a href="https://publications.waset.org/abstracts/search?q=Chatchawal%20Chaichana"> Chatchawal Chaichana</a>, <a href="https://publications.waset.org/abstracts/search?q=Atipoang%20Nuntaphan"> Atipoang Nuntaphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed%20water%20heater" title="feed water heater">feed water heater</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant%20efficiency" title=" power plant efficiency"> power plant efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20heat%20rate" title=" plant heat rate"> plant heat rate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency%20analysis" title=" thermal efficiency analysis"> thermal efficiency analysis</a> </p> <a href="https://publications.waset.org/abstracts/65534/thermal-efficiency-analysis-and-optimal-of-feed-water-heater-for-mae-moh-thermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3505</span> Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kamble">Sachin Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Shradha%20Gawankar"> Shradha Gawankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-plant%20logistics" title="in-plant logistics">in-plant logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20logistics" title=" cement logistics"> cement logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modelling" title=" simulation modelling"> simulation modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20process%20re-engineering" title=" business process re-engineering"> business process re-engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/45289/simulation-modeling-and-analysis-of-in-plant-logistics-at-a-cement-manufacturing-plant-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3504</span> A Life Cycle Assessment (LCA) of Aluminum Production Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Al%20Hawari">Alaa Al Hawari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khader"> Mohammad Khader</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20El%20Hasan"> Wael El Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Alijla"> Mahmoud Alijla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Manawi"> Ammar Manawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelbaki%20Benamour"> Abdelbaki Benamour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20production" title=" aluminium production"> aluminium production</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20impacts" title=" ecological impacts"> ecological impacts</a> </p> <a href="https://publications.waset.org/abstracts/8005/a-life-cycle-assessment-lca-of-aluminum-production-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3503</span> Exploring the Effectiveness of Robotic Companions Through the Use of Symbiotic Autonomous Plant Care Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelos%20Kaminis">Angelos Kaminis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dakotah%20Stirnweis"> Dakotah Stirnweis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in robotic technology have driven the development of improved robotic companions in the last couple decades. However, commercially available robotic companions lack the ability to create an emotional connection with their user. By developing a companion robot that has a symbiotic relationship with a plant, an element of co-dependency is introduced into the human companion robot dynamic. This companion robot, while theoretically capable of providing most of the plant’s needs, still requires human interaction for watering, moving obstacles, and solar panel cleaning. To facilitate the interaction between human and robot, the robot is capable of limited auditory and visual communication to help express its and the plant’s needs. This paper seeks to fully describe the Autonomous Plant Care Robot system and its symbiotic relationship with its botanical ward and the plant and robot’s dependent relationship with their owner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=symbiotic" title="symbiotic">symbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous" title=" autonomous"> autonomous</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-care" title=" plant-care"> plant-care</a>, <a href="https://publications.waset.org/abstracts/search?q=companion" title=" companion"> companion</a> </p> <a href="https://publications.waset.org/abstracts/147471/exploring-the-effectiveness-of-robotic-companions-through-the-use-of-symbiotic-autonomous-plant-care-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3502</span> Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mads%20H.%20Clausen">Mads H. Clausen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oligosaccharides" title="oligosaccharides">oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate%20chemistry" title=" carbohydrate chemistry"> carbohydrate chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cell%20walls" title=" plant cell walls"> plant cell walls</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate-acting%20enzymes" title=" carbohydrate-acting enzymes"> carbohydrate-acting enzymes</a> </p> <a href="https://publications.waset.org/abstracts/13547/synthesis-and-application-of-oligosaccharides-representing-plant-cell-wall-polysaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3501</span> Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Azadi">M. Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tahouni"> N. Tahouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Panjeshahi"> M. H. Panjeshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/13263/efficient-use-of-energy-through-incorporation-of-a-gas-turbine-in-methanol-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3500</span> Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Cherif%20Megri">Ahmed Cherif Megri</a>, <a href="https://publications.waset.org/abstracts/search?q=HossamEldin%20ElSherif"> HossamEldin ElSherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization" title="shape optimization">shape optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=header" title=" header"> header</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=inconel%20alloy" title=" inconel alloy"> inconel alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/174024/shape-optimization-of-header-pipes-in-power-plants-for-enhanced-efficiency-and-environmental-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3499</span> Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebuwa%20Osagie">Ebuwa Osagie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chet%20Biliyok"> Chet Biliyok</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeung%20Hoi"> Yeung Hoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas-fired" title="natural gas-fired">natural gas-fired</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA" title=" MEA"> MEA</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/36464/modelling-and-simulation-of-natural-gas-fired-power-plant-integrated-to-a-co2-capture-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3498</span> Effect of Three Sand Types on Potato Vegetative Growth and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shatha%20A.%20Yousif">Shatha A. Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Qasim%20M.%20Zamil"> Qasim M. Zamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Y.%20Al%20Muhi"> Hasan Y. Al Muhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Al%20Shammari"> Jamal A. Al Shammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of mini tubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20culture" title=" sand culture"> sand culture</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/25112/effect-of-three-sand-types-on-potato-vegetative-growth-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3497</span> Nuclear Power Plant Radioactive Effluent Discharge Management in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yang">Jie Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qifu%20Cheng"> Qifu Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yafang%20Liu"> Yafang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijie%20Gu"> Zhijie Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled emissions of effluent from nuclear power plants are an important means of ensuring environmental safety. In order to fully grasp the actual discharge level of nuclear power plant in China's nuclear power plant in the pressurized water reactor and heavy water reactor, it will use the global average nuclear power plant effluent discharge as a reference to the standard analysis of China's nuclear power plant environmental discharge status. The results show that the average normalized emission of liquid tritium in PWR nuclear power plants in China is slightly higher than the global average value, and the other nuclides emissions are lower than the global average values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioactive%20effluent" title="radioactive effluent">radioactive effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=HWR" title=" HWR"> HWR</a>, <a href="https://publications.waset.org/abstracts/search?q=PWR" title=" PWR"> PWR</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a> </p> <a href="https://publications.waset.org/abstracts/81396/nuclear-power-plant-radioactive-effluent-discharge-management-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3496</span> Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idris%20Elfeituri">Idris Elfeituri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Exergy" title="Exergy">Exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-heater" title=" Super-heater"> Super-heater</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouling%3B%20Steam%20power%20plant%3B%20Off-design." title=" Fouling; Steam power plant; Off-design."> Fouling; Steam power plant; Off-design.</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouling%3B" title=" Fouling;"> Fouling;</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-heater" title=" Super-heater"> Super-heater</a>, <a href="https://publications.waset.org/abstracts/search?q=Steam%20power%20plant" title=" Steam power plant"> Steam power plant</a> </p> <a href="https://publications.waset.org/abstracts/60015/performance-of-derna-steam-power-plant-at-varying-super-heater-operating-conditions-based-on-exergy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3495</span> The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dagbasi">Mustafa Dagbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Bamisile"> Olusola Bamisile</a>, <a href="https://publications.waset.org/abstracts/search?q=Adii%20Chinedum"> Adii Chinedum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title="solar power">solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20plant" title=" photovoltaic plant"> photovoltaic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20plant" title=" parabolic trough plant"> parabolic trough plant</a>, <a href="https://publications.waset.org/abstracts/search?q=techno-economic%20analysis" title=" techno-economic analysis"> techno-economic analysis</a> </p> <a href="https://publications.waset.org/abstracts/47894/the-techno-economic-comparison-of-solar-power-generation-methods-for-turkish-republic-of-north-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3494</span> Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20El%20Bari%20Tidjani"> Abdellatif El Bari Tidjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Karma%20wastewater" title="El-Karma wastewater">El-Karma wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS%20concentrations" title=" TSS concentrations"> TSS concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20and%20BOD5" title=" COD and BOD5"> COD and BOD5</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%2FBOD5%20ratio" title=" COD/BOD5 ratio"> COD/BOD5 ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/87940/analysis-and-treatment-of-sewage-treatment-plant-wastewater-of-el-karma-oran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3493</span> Simulation of a Fluid Catalytic Cracking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Kim">Sungho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Shik%20Kim"> Dae Shik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title="fluid catalytic cracking">fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20data" title=" plant data"> plant data</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20design" title=" process design"> process design</a> </p> <a href="https://publications.waset.org/abstracts/29425/simulation-of-a-fluid-catalytic-cracking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3492</span> Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20S.%20Muthukumarana">Praveen S. Muthukumarana</a>, <a href="https://publications.waset.org/abstracts/search?q=Achala%20C.%20Aponso"> Achala C. Aponso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20disease%20classification" title=" plant disease classification"> plant disease classification</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20disease%20detection" title=" plant disease detection"> plant disease detection</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20disease%20diagnosis" title=" plant disease diagnosis"> plant disease diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/127286/investigating-the-factors-affecting-generalization-of-deep-learning-models-for-plant-disease-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3491</span> Both Floristic Studies and Molecular Markers Are Necessary to Study of the Flora of a Region </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Akrami">Somayeh Akrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Vali-Allah%20Mozaffarian"> Vali-Allah Mozaffarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Onsori"> Habib Onsori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studied region in this research, watershed Kuhkamar river, is about 112.66 square kilometers, it is located between 45º 48' 9" to 45º 2' 20" N and 38º 34' 15" to 38º 40' 28" E. The gained results of the studies on flora combinations, proved 287 plant species in 190 genera and 51 families. Asteracea with 49 and Lamiaceae with 27 plant species are the major plant families. Among collected species one interesting plant was found and determined as a new record Anemone narcissiflora L. for flora of Iran. This plant is known as a complex species that shows intraspecific speciation and is classified into about 12 subspecies and 10 varieties in world. To identify the infraspecies taxons of this species, in addition to morphological characteristics, the use of appropriate molecular markers for the better isolation of the individuals were needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anemone%20narcissiflora" title="Anemone narcissiflora">Anemone narcissiflora</a>, <a href="https://publications.waset.org/abstracts/search?q=floristic%20Study" title=" floristic Study"> floristic Study</a>, <a href="https://publications.waset.org/abstracts/search?q=kuhkamar" title=" kuhkamar"> kuhkamar</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20marker" title=" molecular marker "> molecular marker </a> </p> <a href="https://publications.waset.org/abstracts/26438/both-floristic-studies-and-molecular-markers-are-necessary-to-study-of-the-flora-of-a-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3490</span> Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing-Bing%20E.%20Goh">Bing-Bing E. Goh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=winter%20wheat" title="winter wheat">winter wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20monitoring" title=" crop monitoring"> crop monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20analysis" title=" multivariate analysis"> multivariate analysis</a> </p> <a href="https://publications.waset.org/abstracts/143541/use-of-sentiel-2-data-to-monitor-plant-density-and-establishment-rate-of-winter-wheat-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3489</span> Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Lal">Deepali Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Summerwar"> Sudha Summerwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoutsna%20Pandey"> Jyoutsna Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation%20plant" title="distillation plant">distillation plant</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone" title=" acetone"> acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol" title=" alcohol"> alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=pipette" title=" pipette"> pipette</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20leaves" title=" castor leaves"> castor leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=grams%20pods" title=" grams pods"> grams pods</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae%20of%20helicoverpa%20armigera" title=" larvae of helicoverpa armigera"> larvae of helicoverpa armigera</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=vails" title=" vails"> vails</a>, <a href="https://publications.waset.org/abstracts/search?q=jars" title=" jars"> jars</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/48194/efficacy-of-some-plant-extract-against-larvae-and-pupae-of-american-bollworm-helicoverpa-armigera-including-the-effect-on-peritropme-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3488</span> The Effects of Different Sowing Times on Seed Yield and Quality of Fenugreek (Trigonella foenum graecum L.) in East Mediterranean Region of Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lale%20Efe">Lale Efe</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Gokce"> Zeynep Gokce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study carried out in 2013-14 growing season in East Mediterranean Region of Turkey, it was aimed to investigate the effects of different sowing times on the seed yield and quality of fenugreek (Trigonella foenum graceum L.). Three fenugreek genotypes (Gürarslan, Candidate Line-1 and Genotype-1) were sown on 13.11.2013 and 07.03.2014 according to factorial randomized block design with 3 replications. Plant height (cm), branch number per plant, first pod height (cm), pod length (mm), seed number per pod (g), seed yield per plant (g), seed yield per decar (kg), thousand seed weight (g), mucilage rate (%), seed protein ratio (%), seed oil ratio (%), oleic acid (%), linoleic acid (%), palmitic acid (%) and stearic acid (%) were investigated. Among genotypes, while the highest seed yield per plant was obtained from Genotype-1 (5 g/plant), the lowest seed yield per plant was obtained from cv. Gürarslan (3.4 g/plant). According to genotype x sowing date interactions, it can be said that the highest seed yield per plant was taken in autumn sowing from Genotype-1 (6.6 g/plant) and the lowest seed yield per plant was taken in spring sowing from cv. Gürarslan (2.9 g/plant). Genotype-1 had the highest linoleic acid ratio (41.6 %). Cv. Gürarslan and Candidate Line-1 had the highest oleic acid ratio (respectively 17.8 % and 17.6%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title="fenugreek">fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20yield%20and%20quality" title=" seed yield and quality"> seed yield and quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20times" title=" sowing times"> sowing times</a>, <a href="https://publications.waset.org/abstracts/search?q=Trigonella%20foenum%20graecum%20L." title=" Trigonella foenum graecum L. "> Trigonella foenum graecum L. </a> </p> <a href="https://publications.waset.org/abstracts/75917/the-effects-of-different-sowing-times-on-seed-yield-and-quality-of-fenugreek-trigonella-foenum-graecum-l-in-east-mediterranean-region-of-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3487</span> Seed Priming, Treatments and Germination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atakan%20Efe%20Akp%C4%B1nar">Atakan Efe Akpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Demir"> Zeynep Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed priming technologies are frequently used nowadays to increase the germination potential and stress tolerance of seeds. These treatments might be beneficial for native species as well as crops. Different priming treatments can be used depending on the type of plant, the morphology, and the physiology of the seed. Moreover, these may be various physical, chemical, and/or biological treatments. Aiming to improve studies about seed priming, ideas need to be brought into this technological sector related to the agri-seed industry. In this study, seed priming was carried out using some plant extracts. Firstly, some plant extracts prepared from plant leaves, roots, or fruit parts were obtained for use in priming treatments. Then, seeds were kept in solutions containing plant extracts at 20°C for 48 hours. Seeds without any treatment were evaluated as the control group. At the end of priming applications, seeds are dried superficially at 25°C. Seeds were analyzed for vigor (normal germination rate, germination time, germination index etc.). In the future, seed priming applications can expand to multidisciplinary research combining with digital, bioinformatic and molecular tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title="seed priming">seed priming</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a> </p> <a href="https://publications.waset.org/abstracts/176548/seed-priming-treatments-and-germination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3486</span> On-Plot Piping Corrosion Analysis for Gas and Oil Separation Plants (GOSPs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20A.%20Al%20Shaqaq">Sultan A. Al Shaqaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion is a serious challenge for a piping system in our Gas and Oil Separation Plant (GOSP) that causes piping failures. Two GOSPs (Plant-A and Plant-B) observed chronic corrosion issue with an on-plot piping system that leads to having more piping replacement during the past years. Since it is almost impossible to avoid corrosion, it is becoming more obvious that managing the corrosion level may be the most economical resolution. Corrosion engineers are thus increasingly involved in approximating the cost of their answers to corrosion prevention, and assessing the useful life of the equipment. This case study covers the background of corrosion encountered in piping internally and externally in these two GOSPs. The collected piping replacement data from year of 2011 to 2014 was covered. These data showed the replicate corrosion levels in an on-plot piping system. Also, it is included the total piping replacement with drain lines system and other service lines in plants (Plant-A and Plant-B) at Saudi Aramco facility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20and%20oil%20separation%20plant" title="gas and oil separation plant">gas and oil separation plant</a>, <a href="https://publications.waset.org/abstracts/search?q=on-plot%20piping" title=" on-plot piping"> on-plot piping</a>, <a href="https://publications.waset.org/abstracts/search?q=drain%20lines" title=" drain lines"> drain lines</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Aramco" title=" Saudi Aramco"> Saudi Aramco</a> </p> <a href="https://publications.waset.org/abstracts/53852/on-plot-piping-corrosion-analysis-for-gas-and-oil-separation-plants-gosps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3485</span> Modeling and Simulation of Fluid Catalytic Cracking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Kim">Sungho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Shik%20Kim"> Dae Shik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title="fluid catalytic cracking">fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20data" title=" plant data"> plant data</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20design" title=" process design"> process design</a> </p> <a href="https://publications.waset.org/abstracts/29415/modeling-and-simulation-of-fluid-catalytic-cracking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3484</span> Seed Priming Treatments in Common Zinnia (Zinnia elegans) Using Some Plant Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atakan%20Efe%20Akp%C4%B1nar">Atakan Efe Akpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Demir"> Zeynep Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed priming technologies are frequently used nowadays to increase the germination potential and stress tolerance of seeds. These treatments might be beneficial for native species as well as crops. Different priming treatments can be used depending on the type of plant, the morphology, and the physiology of the seed. Moreover, these may be various physical, chemical, and/or biological treatments. Aiming to improve studies about seed priming, ideas need to be brought into this technological sector related to the agri-seed industry. This study addresses the question of whether seed priming with plant extracts can improve seed vigour and germination performance. By investigating the effects of plant extract priming on various vigour parameters, the research aims to provide insights into the potential benefits of this treatment method. Thus, seed priming was carried out using some plant extracts. Firstly, some plant extracts prepared from plant leaves, roots, or fruit parts were obtained for use in priming treatments. Then, seeds of Common zinnia (Zinnia elegans) were kept in solutions containing plant extracts at 20°C for 48 hours. Seeds without any treatment were evaluated as the control group. At the end of priming applications, seeds are dried superficially at 25°C. Seeds of Common zinnia (Zinnia elegans) were analyzed for vigour (normal germination rate, germination time, germination index etc.). In the future, seed priming applications can expand to multidisciplinary research combining with digital, bioinformatic and molecular tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title="seed priming">seed priming</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a> </p> <a href="https://publications.waset.org/abstracts/177849/seed-priming-treatments-in-common-zinnia-zinnia-elegans-using-some-plant-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3483</span> Changes in Inorganic Element Contents in Potamogeton Natans Exposed to Cement Factory Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Demir">Yavuz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Genisel"> Mucip Genisel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hulya%20Turk"> Hulya Turk</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgay%20Sisman"> Turgay Sisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Erdal"> Serkan Erdal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the changes in contents of inorganic elements in the aquatic plant (Potamogeton natans) as a reflection of the impact of chemical nature pollution in a cement factory region (CFR) was evaluated. For this purpose, P, S, K, Ca, Fe, Cl, Mn, Cu, Zn, Mo, Ni, Si, Al, and Cd concentrations were measured in the aquatic plant (Potamogeton natans) taken from a CFR. As a control, aquatic plant was collected at a distance of 2000 m from the outer zone of the cement factory. Inorganic element compositions were measured by energy dispersive X-ray fluorescence spectrometry (EDXRF). Three aquatic plant exhibited similar changes in contents of microelements and macroelements in their leaves. P, S, K, Cl, Ca, and Mo contents in plant grown in the CFR were reduced significantly compared to control plant, whereas their contents of Al, Mn, Fe, Ni, Cu, Zn and Cd were very high. According to these findings, it is possible that aquatic plant (Potamogeton natans) inhabiting in the vicinity of cement factory sustains the deficiency of important essential elements like P, S, K, Ca, and Mo and greatly accumulate heavy metals like Al, Mn, Fe, Ni, Cu, Zn, and Cd. In addition, results of water analysis showed that heavy metal content such as Cu, Pb, Zn, Co, and Al of water taken from CFR was remarkably high than that of outer zone of CFR. These findings with relation to changes in inorganic composition can contribute to be elucidated of effect mechanism on growth and development of aquatic plant (Potamogeton natans) of pollution resulted from cement factories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plant" title="aquatic plant">aquatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20factory" title=" cement factory"> cement factory</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution" title=" heavy metal pollution"> heavy metal pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20element" title=" inorganic element"> inorganic element</a>, <a href="https://publications.waset.org/abstracts/search?q=Potamogeton%20natans" title=" Potamogeton natans "> Potamogeton natans </a> </p> <a href="https://publications.waset.org/abstracts/45228/changes-in-inorganic-element-contents-in-potamogeton-natans-exposed-to-cement-factory-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3482</span> Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Sakizadeh">Mohamad Sakizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Mehrabi%20Sharafabadi"> Fatemeh Mehrabi Sharafabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Ghorbani"> Hadi Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioconcentration%20factor" title="bioconcentration factor">bioconcentration factor</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/61487/nickel-and-chromium-distributions-in-soil-and-plant-influenced-by-geogenic-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=117">117</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=118">118</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UAV%20plant%20phenotyping&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10