CINXE.COM
Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 15/latex - Wikiversity
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-not-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 15/latex - Wikiversity</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-not-available";var cookie=document.cookie.match(/(?:^|; )enwikiversitymwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"6d4df85f-41df-434e-b561-c74158aff004","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_15/latex","wgTitle":"Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 15/latex","wgCurRevisionId":2540849,"wgRevisionId":2540849,"wgArticleId":297516,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Latexpage"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_15/latex","wgRelevantArticleId":297516,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikiversity","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":9,"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"wgSiteNoticeId":"2.101"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","skins.vector.search.codex.styles":"ready", "skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.checkUser.clientHints","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.dismissableSiteNotice.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 15/latex - Wikiversity"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikiversity.org/wiki/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&action=edit"> <link rel="icon" href="/static/favicon/wikiversity.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikiversity (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikiversity.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikiversity.org/wiki/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikiversity Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Mathematics_for_Applied_Sciences_Osnabrück_2023-2024_Part_I_Lecture_15_latex rootpage-Mathematics_for_Applied_Sciences_Osnabrück_2023-2024 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Main-Page" class="mw-list-item"><a href="/wiki/Wikiversity:Main_Page"><span>Main Page</span></a></li><li id="n-Browse" class="mw-list-item"><a href="/wiki/Wikiversity:Browse"><span>Browse</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes in the wiki [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-Guided-tours" class="mw-list-item"><a href="/wiki/Help:Guides"><span>Guided tours</span></a></li><li id="n-Random" class="mw-list-item"><a href="/wiki/Special:RandomRootpage"><span>Random</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="The place to find out"><span>Help</span></a></li> </ul> </div> </div> <div id="p-community" class="vector-menu mw-portlet mw-portlet-community" > <div class="vector-menu-heading"> Community </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Wikiversity:Community_Portal" title="About the project, what you can do, where to find things"><span>Portal</span></a></li><li id="n-Colloquium" class="mw-list-item"><a href="/wiki/Wikiversity:Colloquium"><span>Colloquium</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Wikiversity:News" title="Find background information on current events"><span>News</span></a></li><li id="n-Projects" class="mw-list-item"><a href="/wiki/Wikiversity:Community_projects"><span>Projects</span></a></li><li id="n-Sandbox" class="mw-list-item"><a href="/wiki/Wikiversity:Sandbox"><span>Sandbox</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikiversity:Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikiversity.svg" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikiversity" src="/static/images/mobile/copyright/wikiversity-wordmark-en.svg" style="width: 9.125em; height: 1em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikiversity [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikiversity" aria-label="Search Wikiversity" autocapitalize="sentences" title="Search Wikiversity [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikiversity.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Mathematics+for+Applied+Sciences+%28Osnabr%C3%BCck+2023-2024%29%2FPart+I%2FLecture+15%2Flatex" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Mathematics+for+Applied+Sciences+%28Osnabr%C3%BCck+2023-2024%29%2FPart+I%2FLecture+15%2Flatex" title="You are encouraged to log in; however, it is not mandatory [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="More options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikiversity.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Mathematics+for+Applied+Sciences+%28Osnabr%C3%BCck+2023-2024%29%2FPart+I%2FLecture+15%2Flatex" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Mathematics+for+Applied+Sciences+%28Osnabr%C3%BCck+2023-2024%29%2FPart+I%2FLecture+15%2Flatex" title="You are encouraged to log in; however, it is not mandatory [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Edismiss\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"en\" dir=\"ltr\"\u003E\u003Cdiv class=\"center\" style=\"\"\u003E\n\u003Cbig\u003E\u003Ca href=\"/wiki/Wikiversity:Why_create_an_account%3F\" class=\"mw-redirect\" title=\"Wikiversity:Why create an account?\"\u003EWhy create a Wikiversity account?\u003C/a\u003E\u003C/big\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 15/latex</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:NewItem?site=enwikiversity&page=Mathematics+for+Applied+Sciences+%28Osnabr%C3%BCck+2023-2024%29%2FPart+I%2FLecture+15%2Flatex" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex" title="View the content page [c]" accesskey="c"><span>Resource</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Talk:Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&action=edit&redlink=1" rel="discussion" class="new" title="Discussion about the content page (page does not exist) [t]" accesskey="t"><span>Discuss</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex"><span>Read</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&veaction=edit" title="Edit this page [v]" accesskey="v"><span>Edit</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&action=edit" title="Edit the source code of this page [e]" accesskey="e"><span>Edit source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex"><span>Read</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&veaction=edit" title="Edit this page [v]" accesskey="v"><span>Edit</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&action=edit" title="Edit the source code of this page [e]" accesskey="e"><span>Edit source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex" title="A list of all wiki pages that link here [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&oldid=2540849" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Mathematics_for_Applied_Sciences_%28Osnabr%C3%BCck_2023-2024%29%2FPart_I%2FLecture_15%2Flatex&id=2540849&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikiversity.org%2Fwiki%2FMathematics_for_Applied_Sciences_%28Osnabr%25C3%25BCck_2023-2024%29%2FPart_I%2FLecture_15%2Flatex"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikiversity.org%2Fwiki%2FMathematics_for_Applied_Sciences_%28Osnabr%25C3%25BCck_2023-2024%29%2FPart_I%2FLecture_15%2Flatex"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-wikimedia_projects" class="vector-menu mw-portlet mw-portlet-wikimedia_projects" > <div class="vector-menu-heading"> Wikimedia Projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Commons" class="mw-list-item"><a href="https://commons.wikimedia.org/wiki/Main_Page"><span>Commons</span></a></li><li id="n-Wikibooks" class="mw-list-item"><a href="https://en.wikibooks.org/wiki/Project:Main_Page"><span>Wikibooks</span></a></li><li id="n-Wikidata" class="mw-list-item"><a href="https://www.wikidata.org/wiki/Wikidata:Main_Page"><span>Wikidata</span></a></li><li id="n-Wikinews" class="mw-list-item"><a href="https://en.wikinews.org/wiki/Main_Page"><span>Wikinews</span></a></li><li id="n-Wikipedia" class="mw-list-item"><a href="https://en.wikipedia.org/wiki/Main_Page"><span>Wikipedia</span></a></li><li id="n-Wikiquote" class="mw-list-item"><a href="https://en.wikiquote.org/wiki/Main_Page"><span>Wikiquote</span></a></li><li id="n-Wikisource" class="mw-list-item"><a href="https://en.wikisource.org/wiki/Main_Page"><span>Wikisource</span></a></li><li id="n-Wikispecies" class="mw-list-item"><a href="https://species.wikimedia.org/wiki/Main_Page"><span>Wikispecies</span></a></li><li id="n-Wikivoyage" class="mw-list-item"><a href="https://en.wikivoyage.org/wiki/Main_Page"><span>Wikivoyage</span></a></li><li id="n-Wiktionary" class="mw-list-item"><a href="https://en.wiktionary.org/wiki/Project:Main_Page"><span>Wiktionary</span></a></li><li id="n-Meta-Wiki" class="mw-list-item"><a href="https://meta.wikimedia.org/wiki/Main_Page"><span>Meta-Wiki</span></a></li><li id="n-Outreach" class="mw-list-item"><a href="https://outreach.wikimedia.org/wiki/Main_Page"><span>Outreach</span></a></li><li id="n-MediaWiki" class="mw-list-item"><a href="https://www.mediawiki.org/wiki/MediaWiki"><span>MediaWiki</span></a></li><li id="n-Wikimania" class="mw-list-item"><a href="https://meta.wikimedia.org/wiki/Wikimania"><span>Wikimania</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Special:Book&bookcmd=book_creator&referer=Mathematics+for+Applied+Sciences+%28Osnabr%C3%BCck+2023-2024%29%2FPart+I%2FLecture+15%2Flatex"><span>Create a book</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Mathematics_for_Applied_Sciences_%28Osnabr%C3%BCck_2023-2024%29%2FPart_I%2FLecture_15%2Flatex&action=show-download-screen"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects emptyPortlet" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikiversity</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div class="subpages">< <bdi dir="ltr"><a href="/wiki/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I" title="Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I">Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I</a></bdi> | <bdi dir="ltr"><a href="/wiki/Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15" title="Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 15">Lecture 15</a></bdi></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>\setcounter{section}{15}<br /><br /> </p><p><br /> <br /> <br /> <br /> <br /> \subtitle {Higher derivatives} </p><p>The derivative $f'$ of a differentiable function is also called the \keyword {first derivative} {} of $f$. The zeroth derivative is the function itself. Higher derivatives are defined recursively. <br /><br /><br /> \inputdefinition<br />{ }<br />{ </p> <div> <p>Let <br />\mathrelationchain<br />{\relationchain<br />{ I }<br />{ \subseteq }{ \R }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} denote an <a href="/wiki/Real_numbers/Intervals/Definition" title="Real numbers/Intervals/Definition">interval</a>, and let <br />\mathdisp {f \colon I \longrightarrow \R} { }<br /> be a <a href="/wiki/Mapping/Definition" title="Mapping/Definition">function</a>. The function $f$ is called $n$-times \definitionword {differentiable}{,} if it is \mathl{(n-1)}{-}times differentiable, and the \mathl{(n-1)}{-}th derivative, that is \mathl{f^{(n-1)}}{,} is also <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a>. The derivative <br />\mathrelationchaindisplay<br />{\relationchain<br />{ f^{(n)} (x) }<br />{ \defeq} {(f^{(n-1)})' (x) }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{} </p> is called the $n$-th \definitionword {derivative}{} of $f$. </div><p> } </p><p>The second derivative is written as \mathl{f^{\prime \prime}}{,} the third derivative as \mathl{f^{\prime \prime \prime}}{.} If a function is $n$-times differentiable, then we say that the derivatives exist up to \keyword {order} {} $n$. A function $f$ is called \keyword {infinitely often differentiable} {,} if it is $n$-times differentiable for every $n$. </p><p>A differentiable function is continuous due to <a href="/wiki/Differentiable_function/D_in_R/Continuity_in_point/Fact" title="Differentiable function/D in R/Continuity in point/Fact">Corollary 14.6 </a>, but its derivative is not necessarily so. Therefore, the following concept is justified. <br /><br /><br /> \inputdefinition<br />{ }<br />{ </p> <div> <p>Let <br />\mathrelationchain<br />{\relationchain<br />{I }<br />{ \subseteq }{ \R }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} be an <a href="/wiki/Real_numbers/Intervals/Definition" title="Real numbers/Intervals/Definition">interval</a>, and let <br />\mathdisp {f \colon I \longrightarrow \R} { }<br /> be a <a href="/wiki/Mapping/Definition" title="Mapping/Definition">function</a>. The function $f$ is called \definitionword {continuously differentiable}{,} if $f$ is <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a> and its <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">derivative</a> $f'$ is </p> <a href="/wiki/Real_function/Continuity_in_a_Point/General/Definition" title="Real function/Continuity in a Point/General/Definition">continuous</a>. </div><p> } </p><p>A function is called $n$-times \keyword {continuously differentiable} {,} if it is $n$-times differentiable, and its $n$-th derivative is continuous. </p><p><br /> <br /> <br /> <br /> <br /> \subtitle {Extrema of functions} </p><p>We investigate now, with the help of the methods from differentiability, when a differentiable function <br />\mathdisp {f \colon I \longrightarrow \R} { , }<br /> where <br />\mathrelationchain<br />{\relationchain<br />{I }<br />{ \subseteq }{ \R }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} denotes an interval, has a \extrabracket {local} {} {} extremum, and how the growing behavior looks like. </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Real function/Open interval/Local extrema/Differentiable/Derivative zero/Fact}<br />{Theorem}<br />{}<br />{ <p>\factsituation {Let <br />\mathdisp {f \colon {]a,b[} \longrightarrow \R} { }<br /> be a <a href="/wiki/Mapping/Definition" title="Mapping/Definition">function</a>}<br />\factcondition {which attains in <br />\mathrelationchain<br />{\relationchain<br />{c }<br />{ \in }{ {]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} a <a href="/wiki/Real_function/Local_maximum_and_minimum/Definition" title="Real function/Local maximum and minimum/Definition">local extremum</a>, and is <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a> there.} <br />\factconclusion {Then <br />\mathrelationchain<br />{\relationchain<br />{f'(c) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds.}<br />\factextra {}<br /> }<br />{ </p> <div> <div> <p>We may assume that $f$ attains a local maximum in $c$. This means that there exists an <br />\mathrelationchain<br />{\relationchain<br />{ \epsilon }<br />{ > }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} such that <br />\mathrelationchain<br />{\relationchain<br />{f(x) }<br />{ \leq }{f(c) }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds for all <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \in }{ [c - \epsilon, c + \epsilon] }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Let \mathl{{ \left( s_n \right) }_{n \in \N }}{} be a sequence with <br />\mathrelationchain<br />{\relationchain<br />{ c- \epsilon }<br />{ \leq }{s_n }<br />{ < }{ c }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} tending to $c$ \extrabracket {\quotationshort{from below}{}} {} {.} Then <br />\mathrelationchain<br />{\relationchain<br />{ s_n- c }<br />{ < }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and so <br />\mathrelationchain<br />{\relationchain<br />{f(s_n) -f(c) }<br />{ \leq }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and therefore the difference quotient <br />\mathrelationchaindisplay<br />{\relationchain<br />{ \frac{ f (s_n )-f (c) }{ s_n -c } }<br />{ \geq} { 0 }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.} Due to <a href="/wiki/Real_numbers/Convergent_sequences/Compare/Fact" title="Real numbers/Convergent sequences/Compare/Fact">Lemma 7.12 </a>, this relation carries over to the limit, which is the derivative. Hence, <br />\mathrelationchain<br />{\relationchain<br />{f'(c) }<br />{ \geq }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} For another sequence \mathl{{ \left( t_n \right) }_{n \in \N }}{} with <br />\mathrelationchain<br />{\relationchain<br />{ c + \epsilon }<br />{ \geq }{ t_n }<br />{ > }{ c }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} we get <br />\mathrelationchaindisplay<br />{\relationchain<br />{ \frac{ f (t_n )-f (c) }{ t_n -c } }<br />{ \leq} { 0 }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.} Therefore, also <br />\mathrelationchain<br />{\relationchain<br />{f'(c) }<br />{ \leq }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} and thus <br />\mathrelationchain<br />{\relationchain<br />{f'(c) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} </p> </div> </div> }</div> <p><br /> <br /><br /><br /><br /><br />\image{ \begin{center}<br />\includegraphics[width=5.5cm]{\imageinclude {X_Cubed.svg} }<br />\end{center} <br />\imagetext {} }<br /><br />\imagelicense { X Cubed.svg } {} {Pieter Kuiper} {Commons} {PD} {}<br /> <br /> </p><p><br /> We remark that the vanishing of the derivative is only a necessary, but not a sufficient, criterion for the existence of an extremum. The easiest example for this phenomenon is the function $\R \rightarrow \R , x \mapsto x^3$, which is strictly increasing and its derivative is zero at the zero point. We will provide a sufficient criterion in <a href="/wiki/Real_function/Extrema/Second_derivative/Fact" title="Real function/Extrema/Second derivative/Fact">Corollary 15.9 </a> below, see also <a href="/wiki/Real_function/Extrema/Higher_derivatives/Fact" title="Real function/Extrema/Higher derivatives/Fact">Theorem 17.4 </a>. </p><p><br /> <br /> <br /> <br /> <br /> \subtitle {The mean value theorem} </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Real function/Theorem of Rolle/Fact}<br />{Theorem}<br />{}<br />{ <p>\factsituation {Let <br />\mathrelationchain<br />{\relationchain<br />{a }<br />{ < }{b }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and let <br />\mathdisp {f \colon [a,b] \longrightarrow \R} { }<br /> be a <a href="/wiki/Real_function/Continuity_in_a_Point/General/Definition" title="Real function/Continuity in a Point/General/Definition">continuous</a> function, which is <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a> on \mathl{]a,b[}{,}}<br />\factcondition {and such that <br />\mathrelationchain<br />{\relationchain<br />{f(a) }<br />{ = }{f(b) }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.}} <br />\factconclusion {Then there exists some <br />\mathrelationchain<br />{\relationchain<br />{c }<br />{ \in }{ {]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} such that <br />\mathrelationchaindisplay<br />{\relationchain<br />{f'(c) }<br />{ =} { 0 }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.}}<br />\factextra {}<br /> }<br />{ </p> <div> <p>The statement is true if $f$ is constant. So suppose that $f$ is not constant. Then there exists some <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \in }{{]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} such that <br />\mathrelationchain<br />{\relationchain<br />{f(x) }<br />{ \neq }{ f(a) }<br />{ = }{ f(b) }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Let's say that \mathl{f(x)}{} has a larger value. Due to <a href="/wiki/Continuous_function/Closed_bounded_interval/Maximum_is_attained/Fact" title="Continuous function/Closed bounded interval/Maximum is attained/Fact">Theorem 11.13 </a>, there exists some <br />\mathrelationchain<br />{\relationchain<br />{c }<br />{ \in }{ [a,b] }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} where the function attains its <a href="/wiki/Realvalued_function/Set/Maximum/Definition" title="Realvalued function/Set/Maximum/Definition">maximum</a>. This point is not on the border. For this $c$, we have <br />\mathrelationchain<br />{\relationchain<br />{f'(c) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} due to <a href="/wiki/Real_function/Open_interval/Local_extrema/Differentiable/Derivative_zero/Fact" title="Real function/Open interval/Local extrema/Differentiable/Derivative zero/Fact">Theorem 15.3 </a>. </p> </div> }</div> <p><br /> This theorem is called \keyword {Theorem of Rolle} {.} <br /><br /><br /><br /><br />\image{ \begin{center}<br />\includegraphics[width=5.5cm]{\imageinclude {Mvt2_italian.svg} }<br />\end{center} <br />\imagetext {The mean value theorem means that, for every secant, there exists a parallel tangent.} }<br /><br />\imagelicense { Mvt2 italian.svg } {} {4C} {Commons} {CC-by-sa 3.0} {}<br /> <br /> </p><p>The following theorem is called \keyword {Mean value theorem} {.} It says that if a function describes a differentiable one-dimensional movement, then the average velocity is obtained at least once as the instantaneous velocity. </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Differentiable functions/Mean value theorem/Fact}<br />{Theorem}<br />{}<br />{ <p>\factsituation {Let <br />\mathrelationchain<br />{\relationchain<br />{a }<br />{ < }{b }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and let <br />\mathdisp {f \colon [a,b] \longrightarrow \R} { }<br /> be a <a href="/wiki/Real_function/Continuity_in_a_Point/General/Definition" title="Real function/Continuity in a Point/General/Definition">continuous function</a> which is <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a> on \mathl{]a,b[}{.}} <br />\factconclusion {Then there exists some <br />\mathrelationchain<br />{\relationchain<br />{c}<br />{ \in }{{]a,b[}}<br />{ }{}<br />{ }{}<br />{ }{}<br />} {}{}{,} such that <br />\mathrelationchaindisplay<br />{\relationchain<br />{ f'(c)}<br />{ =} { { \frac{ f(b)-f(a) }{ b-a } } }<br />{ } {}<br />{ } {}<br />{ } {}<br />} {}{}{.}}<br />\factextra {}<br /> }<br />{ </p> <div> <p>We consider the auxiliary function <br />\mathdisp {g \colon [a,b] \longrightarrow \R , x \longmapsto g(x) \defeq f(x) - { \frac{ f(b) -f(a) }{ b-a } } (x-a)} { . }<br /> This function is also <a href="/wiki/Real_function/Continuity_in_a_Point/General/Definition" title="Real function/Continuity in a Point/General/Definition">continuous</a> and <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a> in \mathl{]a,b[}{.} Moreover, we have <br />\mathrelationchain<br />{\relationchain<br />{ g(a) }<br />{ = }{ f(a) }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} and <br />\mathrelationchaindisplay<br />{\relationchain<br />{ g(b) }<br />{ =} { f(b) -(f(b)-f(a)) }<br />{ =} { f(a) }<br />{ } { }<br />{ } { }<br />} {}{}{.} Hence, $g$ fulfills the conditions of <a href="/wiki/Real_function/Theorem_of_Rolle/Fact" title="Real function/Theorem of Rolle/Fact">Theorem 15.4 </a>, and therefore there exists some <br />\mathrelationchain<br />{\relationchain<br />{c }<br />{ \in }{ {]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} such that <br />\mathrelationchain<br />{\relationchain<br />{g'(c) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Because of the rules for derivatives, we obtain <br />\mathrelationchaindisplay<br />{\relationchain<br />{ f'(c) }<br />{ =} { { \frac{ f(b) -f(a) }{ b-a } } }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.} </p> </div> }</div> <p><br /> </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Real function/Derivative zero/Constant/Fact}<br />{Corollary}<br />{}<br />{ <p>\factsituation {Let <br />\mathdisp {f \colon { ]a,b[} \longrightarrow \R} { }<br /> be a <a href="/wiki/Real_function/Derivative_function/Definition" title="Real function/Derivative function/Definition">differentiable function</a>}<br />\factcondition {such that <br />\mathrelationchain<br />{\relationchain<br />{ f'(x) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} for all <br />\mathrelationchain<br />{\relationchain<br />{ x }<br />{ \in }{ {]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.}} <br />\factconclusion {Then $f$ is constant.}<br />\factextra {}<br /> }<br />{ </p> <div> <p>If $f$ is not constant, then there exists some <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ < }{x' }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} such that <br />\mathrelationchain<br />{\relationchain<br />{ f(x) }<br />{ \neq }{ f(x') }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Then there exists, due to the <a href="/wiki/Differentiable_functions/Mean_value_theorem/Fact" title="Differentiable functions/Mean value theorem/Fact">mean value theorem</a>, some <br />\mathcond {c} {} <br /> {x <c < x'} {} <br /> {} {} {} {,} such that <br />\mathrelationchain<br />{\relationchain<br />{f'(c) }<br />{ = }{ \frac{f(x') - f(x)}{x'-x} }<br />{ \neq }{ 0 }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} which contradicts the assumption. </p> </div> }</div> <p><br /> </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Real function/Derivative/Monotonicity/Fact}<br />{Theorem}<br />{}<br />{ <p>\factsituation {Let <br />\mathrelationchain<br />{\relationchain<br />{I }<br />{ \subseteq }{ \R }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} be an <a href="/wiki/Real_numbers/Intervals/Definition" title="Real numbers/Intervals/Definition">open interval</a>, and let <br />\mathdisp {f \colon I \longrightarrow \R} { }<br /> be a <a href="/wiki/Real_function/Derivative_function/Definition" title="Real function/Derivative function/Definition">differentiable function</a>.}<br />\factsegue {Then the following statements hold.} <br />\factconclusion {\enumerationthree {The function $f$ is increasing \extrabracket {decreasing} {} {} on $I$, if and only if <br />\mathrelationchain<br />{\relationchain<br />{f'(x) }<br />{ \geq }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} \extrabracket {<br />\mathrelationchain<br />{\relationchain<br />{f'(x) }<br />{ \leq }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{}} {} {} holds for all <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \in }{I }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} } {If <br />\mathrelationchain<br />{\relationchain<br />{f'(x) }<br />{ \geq }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds for all <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \in }{I }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and $f'$ has only finitely many zeroes, then $f$ is strictly increasing. } {If <br />\mathrelationchain<br />{\relationchain<br />{f'(x) }<br />{ \leq }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds for all <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \in }{I }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and $f'$ has only finitely many zeroes, then $f$ is strictly decreasing.}}<br />\factextra {}<br /> }<br />{ </p> <div> <p>(1). It is enough to prove the statements for increasing functions. If $f$ is increasing and <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \in }{I }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} then the <a href="/wiki/Difference_quotient/D_in_R/Definition" title="Difference quotient/D in R/Definition">difference quotient</a> fulfills <br />\mathrelationchaindisplay<br />{\relationchain<br />{ \frac{f(x+h) -f(x) }{h} }<br />{ \geq} { 0 }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{} for every $h$ with <br />\mathrelationchain<br />{\relationchain<br />{x+h }<br />{ \in }{I }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} This estimate carries over to the limit as \mathl{h \rightarrow 0}{,} and this limit is \mathl{f'(x)}{.}<br /> Suppose now that the derivative is $\geq 0$. We assume, in order to obtain a contradiction, that there exist two points <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ < }{x' }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} in $I$ with <br />\mathrelationchain<br />{\relationchain<br />{f(x) }<br />{ > }{f(x') }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Due to the <a href="/wiki/Differentiable_functions/Mean_value_theorem/Fact" title="Differentiable functions/Mean value theorem/Fact">mean value theorem</a>, there exists some $c$ with <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ < }{c }<br />{ < }{x' }<br />{ }{ }<br />{ }{ }<br />} {}{}{} and <br />\mathrelationchaindisplay<br />{\relationchain<br />{f'(c) }<br />{ =} {\frac{f(x') - f(x)}{x'-x} }<br />{ <} {0 }<br />{ } { }<br />{ } { }<br />} {}{}{,} which contradicts the condition.<br /> (2). Suppose now that <br />\mathrelationchain<br />{\relationchain<br />{f'(x) }<br />{ > }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds with finitely many exceptions. We assume that <br />\mathrelationchain<br />{\relationchain<br />{f(x) }<br />{ = }{f(x') }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds for two points <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ < }{x' }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Since $f$ is increasing, due to the first part, it follows that $f$ is constant on the interval \mathl{[x,x']}{.} But then <br />\mathrelationchain<br />{\relationchain<br />{f' }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} on this interval, which contradicts the condition that $f'$ has only finitely many zeroes.<br /> </p> </div> }</div> <p><br /> </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Polynomial function/Function behavior from differentiability/Fact}<br />{Corollary}<br />{}<br />{ <p>A real <a href="/wiki/Polynomial/Field/1/Definition" title="Polynomial/Field/1/Definition">polynomial function</a> <br />\mathdisp {f \colon \R \longrightarrow \R} { }<br /> of <a href="/wiki/Polynomial/1/Degree/Definition" title="Polynomial/1/Degree/Definition">degree</a> <br />\mathrelationchain<br />{\relationchain<br />{ d }<br />{ \geq }{ 1 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} has at most \mathl{d-1}{} <a href="/wiki/Real_function/Local_maximum_and_minimum/Definition" title="Real function/Local maximum and minimum/Definition">local extrema</a>, and one can partition the real numbers into at most $d$ intervals, on which $f$ is alternatingly <a href="/wiki/Real_function/Strictly_increasing/Definition" title="Real function/Strictly increasing/Definition">strictly increasing</a> or <a href="/wiki/Real_function/Strictly_decreasing/Definition" title="Real function/Strictly decreasing/Definition">strictly decreasing</a>. </p> }<br />{See <a href="/wiki/Polynomial_function/Function_behavior_from_differentiability/Fact/Proof/Exercise" title="Polynomial function/Function behavior from differentiability/Fact/Proof/Exercise">Exercise 15.14 </a>.}</div> <p><br /> </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Real function/Extrema/Second derivative/Fact}<br />{Corollary}<br />{}<br />{ <p>\factsituation {Let $I$ denote a <a href="/wiki/Real_numbers/Intervals/Definition" title="Real numbers/Intervals/Definition">real interval</a>, <br />\mathdisp {f \colon I \longrightarrow \R} { }<br /> a twice <a href="/wiki/Continuously_differentiable/R/Definition" title="Continuously differentiable/R/Definition">continuously differentiable</a> <a href="/wiki/Mapping/Definition" title="Mapping/Definition">function</a>, and <br />\mathrelationchain<br />{\relationchain<br />{a }<br />{ \in }{I }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} an inner point of the interval.}<br />\factcondition {Suppose that <br />\mathrelationchain<br />{\relationchain<br />{ f'(a) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds.}<br />\factsegue {Then the following statements hold.} <br />\factconclusion {\enumerationtwo {If <br />\mathrelationchain<br />{\relationchain<br />{f^{\prime \prime }(a) }<br />{ > }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds, then $f$ has an isolated local minimum in $a$. } {If <br />\mathrelationchain<br />{\relationchain<br />{ f^{ \prime \prime}(a) }<br />{ < }{0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds, then $f$ has an isolated local maximum in $a$. }}<br />\factextra {}<br /> </p> }<br />{See <a href="/wiki/Real_function/Extrema/Second_derivative/Fact/Proof/Exercise" title="Real function/Extrema/Second derivative/Fact/Proof/Exercise">Exercise 15.15 </a>.}</div> <p><br /> We will encounter a more general statement in <a href="/wiki/Real_function/Extrema/Higher_derivatives/Fact" title="Real function/Extrema/Higher derivatives/Fact">Theorem 17.4 </a>. </p><p><br /> <br /> <br /> <br /> <br /> \subtitle {General mean value theorem and L'Hôpital's rule} </p><p>The following statement is called also the \keyword {general mean value theorem} {.} </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Differentiable function/Mean value theorem/Quotient version/Fact}<br />{Theorem}<br />{}<br />{ <p>\factsituation {Let <br />\mathrelationchain<br />{\relationchain<br />{b }<br />{ > }{a }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and suppose that <br />\mathdisp {f,g \colon [a,b] \longrightarrow \R} { }<br /> are <a href="/wiki/Real_function/Continuity_in_a_Point/General/Definition" title="Real function/Continuity in a Point/General/Definition">continuous</a> functions which are <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a> on \mathl{]a,b[}{} and such that <br />\mathrelationchaindisplay<br />{\relationchain<br />{ g'(x) }<br />{ \neq} {0 }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{} for all <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \in }{{]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.}} <br />\factconclusion {Then <br />\mathrelationchain<br />{\relationchain<br />{ g(b) }<br />{ \neq }{ g(a) }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and there exists some <br />\mathrelationchain<br />{\relationchain<br />{c }<br />{ \in }{{]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} such that <br />\mathrelationchaindisplay<br />{\relationchain<br />{ \frac{f(b)-f(a)}{g(b)-g(a)} }<br />{ =} {\frac{f'(c)}{g'(c)} }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.}}<br />\factextra {}<br /> }<br />{ </p> <div> <p>The statement <br />\mathrelationchaindisplay<br />{\relationchain<br />{g(a) }<br />{ \neq} {g(b) }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{} follows from <a href="/wiki/Real_function/Theorem_of_Rolle/Fact" title="Real function/Theorem of Rolle/Fact">Theorem 15.4 </a>. We consider the auxiliary function <br />\mathrelationchaindisplay<br />{\relationchain<br />{ h(x) }<br />{ \defeq} { f(x)- { \frac{ f(b)-f(a) }{ g(b)-g(a) } } g(x) }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.} We have <br />\mathrelationchainalign<br />{\relationchainalign<br />{ h(a) }<br />{ =} { f(a)- { \frac{ f(b)-f(a) }{ g(b)-g(a) } } g(a) }<br />{ =} { { \frac{ f(a) g(b) - f(a)g(a) -f(b)g(a)+f(a)g(a) }{ g(b)-g(a) } } }<br />{ =} { { \frac{ f(a) g(b)-f(b)g(a) }{ g(b)-g(a) } } }<br />{ =} { { \frac{ f(b)g(b) - f(b) g(a)-f(b)g(b)+f(a)g(b) }{ g(b)-g(a) } } }<br />} {<br />\relationchainextensionalign<br />{ =} { f(b) - { \frac{ f(b)-f(a) }{ g(b)-g(a) } } g(b) }<br />{ =} { h(b) }<br />{ } {}<br />{ } {}<br />} {}{.} Therefore, <br />\mathrelationchain<br />{\relationchain<br />{h(a) }<br />{ = }{h(b) }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and <a href="/wiki/Real_function/Theorem_of_Rolle/Fact" title="Real function/Theorem of Rolle/Fact">Theorem 15.4 </a> yields the existence of some <br />\mathrelationchain<br />{\relationchain<br />{c }<br />{ \in }{{]a,b[} }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} with <br />\mathrelationchaindisplay<br />{\relationchain<br />{h'(c) }<br />{ =} { 0 }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.} Rearranging proves the claim. </p> </div> }</div> <p><br /> From this version, one can recover the mean value theorem, by taking for $g$ the identity. </p><p><br /><br /><br /><br /><br />\image{ \begin{center}<br />\includegraphics[width=5.5cm]{\imageinclude {Guillaume_de_lHopital.jpg} }<br />\end{center} <br />\imagetext {<a href="https://en.wikipedia.org/wiki/Guillaume_de_l%27H%C3%B4pital" class="extiw" title="w:Guillaume de l'Hôpital"> L’Hospital (1661-1704)</a>} }<br /><br />\imagelicense { Guillaume de l'Hôpital.jpg } {} {Bemoeial} {Commons} {PD} {}<br /> <br /> </p><p>For the computation of the limit of a function, the following method called \keyword {L'Hôpital's rule} {} helps. </p> <div class="latex"><br /><br /><br />\inputfactproof<br />{Hospital/Differentiable in inner interval/Fact}<br />{Corollary}<br />{}<br />{ <p>\factsituation {Let <br />\mathrelationchain<br />{\relationchain<br />{I }<br />{ \subseteq }{ \R }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} denote an <a href="/wiki/Real_numbers/Intervals/Definition" title="Real numbers/Intervals/Definition">open interval</a>, and let <br />\mathrelationchain<br />{\relationchain<br />{ a }<br />{ \in }{ I }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} denote a point. Suppose that <br />\mathdisp {f,g \colon I \longrightarrow \R} { }<br /> are <a href="/wiki/Real_function/Continuity_in_a_Point/General/Definition" title="Real function/Continuity in a Point/General/Definition">continuous functions</a>,}<br />\factcondition {which are <a href="/wiki/Differentiable_function/D_in_R/Via_limit/Definition" title="Differentiable function/D in R/Via limit/Definition">differentiable</a> on \mathl{I \setminus \{ a \}}{,} fulfilling <br />\mathrelationchain<br />{\relationchain<br />{ f( a ) }<br />{ = }{ g( a ) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} and with <br />\mathrelationchain<br />{\relationchain<br />{ g'(x) }<br />{ \neq }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} for <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ \neq }{a }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Moreover, suppose that the <a href="/wiki/Function/R/Limit/Epsilon/Definition" title="Function/R/Limit/Epsilon/Definition">limit</a> <br />\mathrelationchaindisplay<br />{\relationchain<br />{w }<br />{ \defeq} { \operatorname{lim}_{ x \rightarrow a } \, \frac{f'(x)}{g'(x)} }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{} exists.} <br />\factconclusion {Then also the limit <br />\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, \frac{f(x)}{g(x)}} { }<br /> exists, and it also equals $w$.}<br />\factextra {}<br /> }<br />{ </p> <div> <p>Because $g'$ has no zero in the interval and <br />\mathrelationchain<br />{\relationchain<br />{ g(a) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} holds, it follows, because of <a href="/wiki/Real_function/Theorem_of_Rolle/Fact" title="Real function/Theorem of Rolle/Fact">Theorem 15.4 </a>, that $a$ is the only zero of $g$. Let \mathl{{ \left( x_n \right) }_{n \in \N }}{} denote a <a href="/wiki/Real_numbers/Sequence/Definition" title="Real numbers/Sequence/Definition">sequence</a> in \mathl{I \setminus \{ a \}}{,} <a href="/wiki/Real_numbers/Sequence/Limit_and_convergence/Definition" title="Real numbers/Sequence/Limit and convergence/Definition">converging</a> to $a$. </p><p>For every $x_n$ there exists, due to <a href="/wiki/Differentiable_function/Mean_value_theorem/Quotient_version/Fact" title="Differentiable function/Mean value theorem/Quotient version/Fact">Theorem 15.10 </a>, applied to the interval \mathcor {} {I_n \defeq [x_n, a ]} {or} {[ a ,x_n]} {,} a $c_n$ </p> \extrabracket {in the interior\extrafootnote {<div> <p>The \definitionword {interior}{} of a <a href="/wiki/Real_numbers/Intervals/Definition" title="Real numbers/Intervals/Definition">real interval</a> <br />\mathrelationchain<br />{\relationchain<br />{ I }<br />{ \subseteq }{ \R }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{} </p> is the interval without the boundaries. </div>} {} {} <p>of $I_n$,} {} {} fulfilling <br />\mathrelationchaindisplay<br />{\relationchain<br />{ \frac{f(x_n)-f( a )}{g( x_n )-g( a ) } }<br />{ =} { \frac{f'(c_n)}{g'(c_n)} }<br />{ } { }<br />{ } { }<br />{ } { }<br />} {}{}{.} The sequence \mathl{{ \left( c_n \right) }_{n \in \N }}{} converges also to $a$, so that, because of the condition, the right-hand side converges to <br />\mathrelationchain<br />{\relationchain<br />{ \frac{f'( a )}{g'( a )} }<br />{ = }{ w }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} Therefore, also the left-hand side converges to $w$, and, because of <br />\mathrelationchain<br />{\relationchain<br />{ f( a ) }<br />{ = }{ g( a ) }<br />{ = }{ 0 }<br />{ }{ }<br />{ }{ }<br />} {}{}{,} this means that \mathl{\frac{f(x_n)}{g(x_n)}}{} converges to $w$. </p> </div> }</div> <p><br /> <br /><br /><br />\inputexample{}<br />{ </p> <div> <p>The <a href="/wiki/Polynomial/Field/1/Definition" title="Polynomial/Field/1/Definition">polynomials</a> <br />\mathdisp {3x^2-5x-2 \text{ and } x^3-4x^2+x+6} { }<br /> have both a zero for <br />\mathrelationchain<br />{\relationchain<br />{x }<br />{ = }{2 }<br />{ }{ }<br />{ }{ }<br />{ }{ }<br />} {}{}{.} It is therefore not immediately clear whether the limit <br />\mathdisp {\operatorname{lim}_{ x \rightarrow 2 } \, \frac{ 3x^2-5x-2}{x^3-4x^2+x+6}} { }<br /> exists. Applying twice <a href="/wiki/Hospital/Differentiable_in_inner_interval/Fact" title="Hospital/Differentiable in inner interval/Fact">L'Hôpital's rule</a>, we get the existence and <br />\mathrelationchaindisplay<br />{\relationchain<br />{ \operatorname{lim}_{ x \rightarrow 2 } \, \frac{ 3x^2-5x-2}{x^3-4x^2+x+6} }<br />{ =} { \operatorname{lim}_{ x \rightarrow 2 } \, \frac{ 6x-5}{3x^2-8x+1} }<br />{ =} { \frac{7}{-3} }<br />{ =} { - \frac{7}{3} }<br />{ } { }<br />} {}{}{.} </p> </div><p> }<br /></p> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7d588db968‐flz4x Cached time: 20241105023336 Cache expiry: 2592000 Reduced expiry: false Complications: [] CPU time usage: 0.277 seconds Real time usage: 0.553 seconds Preprocessor visited node count: 12818/1000000 Post‐expand include size: 487395/2097152 bytes Template argument size: 153730/2097152 bytes Highest expansion depth: 38/100 Expensive parser function count: 39/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 0/5000000 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 521.815 1 -total 100.00% 521.815 1 Template:Latex 99.35% 518.437 1 Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_15 98.89% 516.034 1 Template:Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_design 98.30% 512.935 1 Template:Lecture_with_numbers 88.97% 464.284 4 Template:Mathematical_section 56.88% 296.820 7 Template:Inputfactproof 37.59% 196.160 1 Differentiable_functions/Mean_value_theorem/Section 29.80% 155.505 8 Template:Mathematical_text/Proof 29.01% 151.360 8 Template:Proofstructure --> <!-- Saved in parser cache with key enwikiversity:pcache:idhash:297516-0!canonical and timestamp 20241105023336 and revision id 2540849. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikiversity.org/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_15/latex&oldid=2540849">https://en.wikiversity.org/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_15/latex&oldid=2540849</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:Categories" title="Special:Categories">Category</a>: <ul><li><a href="/wiki/Category:Latexpage" title="Category:Latexpage">Latexpage</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 July 2023, at 14:10.</li> <li id="footer-info-copyright">Text is available under the <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike License</a>; additional terms may apply. By using this site, you agree to the <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a> and <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy Policy.</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikiversity:About">About Wikiversity</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikiversity:General_disclaimer">Disclaimers</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikiversity.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikiversity.org/w/index.php?title=Mathematics_for_Applied_Sciences_(Osnabr%C3%BCck_2023-2024)/Part_I/Lecture_15/latex&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-qjjsx","wgBackendResponseTime":115,"wgPageParseReport":{"limitreport":{"cputime":"0.277","walltime":"0.553","ppvisitednodes":{"value":12818,"limit":1000000},"postexpandincludesize":{"value":487395,"limit":2097152},"templateargumentsize":{"value":153730,"limit":2097152},"expansiondepth":{"value":38,"limit":100},"expensivefunctioncount":{"value":39,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":0,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 521.815 1 -total","100.00% 521.815 1 Template:Latex"," 99.35% 518.437 1 Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_15"," 98.89% 516.034 1 Template:Mathematics_for_Applied_Sciences_(Osnabrück_2023-2024)/Part_I/Lecture_design"," 98.30% 512.935 1 Template:Lecture_with_numbers"," 88.97% 464.284 4 Template:Mathematical_section"," 56.88% 296.820 7 Template:Inputfactproof"," 37.59% 196.160 1 Differentiable_functions/Mean_value_theorem/Section"," 29.80% 155.505 8 Template:Mathematical_text/Proof"," 29.01% 151.360 8 Template:Proofstructure"]},"cachereport":{"origin":"mw-web.eqiad.main-7d588db968-flz4x","timestamp":"20241105023336","ttl":2592000,"transientcontent":false}}});});</script> </body> </html>