CINXE.COM
Search results for: sesquiterpenes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sesquiterpenes</title> <meta name="description" content="Search results for: sesquiterpenes"> <meta name="keywords" content="sesquiterpenes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sesquiterpenes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sesquiterpenes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sesquiterpenes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Eudesmane-Type Sesquiterpenes from Laggera alata Inhibiting Angiogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ning">Liang Ning</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Hau%20Yin"> Chung Hau Yin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Angiogenesis is the process of new blood vessel development. It has been recognized as a therapeutic target for blocking cancer growth four decades ago. Vascular sprouting is initiated by pro-angiogenic factors. Vascular endothelial cell growth factor (VEGF) plays a central role in angiogenic initiation, many patients with cancer or ocular neovascularization have been benefited from anti-VEGF therapy. Emerging approaches impacting in the later stages of vessel remodeling and maturation are expected to improve clinical efficacy. TIE receptor as well as the corresponding angiopoietin ligands, were identified as another endothelial cell specific receptor tyrosine kinase signaling system. Much efforts were made to reduce the activity of angiopoietin-TIE receptor axis. Two eudesmane-type sesquiterpenes from laggera alata, namely, 15-dihydrocostic acid and ilicic acid were found with strong anti-angiogenic properties in zebrafish model. Meanwhile, the mRNA expression levels of VEGFR2 and TIE2 pathway related genes were down-regulated in the sesquiterpenes treated zebrafish embryos. Besides, in human umbilical vein endothelial cells (HUVECs), the sesquiterpenes have the ability to inhibit VEGF-induced HUVECs proliferation and migration at non-toxic concentration. Moreover, angiopoietin-2 induced TIE2 phosphorylation was inhibited by the sesquiterpenes, the inhibitory effect was detected in angiopoietin-1 induced HUVECs proliferation as well. Thus, we hypothesized the anti-angiogenic activity of the compounds may via the inhibition of VEGF and TIE2 related pathways. How the compounds come into play as the pathways inhibitors need to be evaluated in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laggera%20alata" title="Laggera alata">Laggera alata</a>, <a href="https://publications.waset.org/abstracts/search?q=eudesmane-type%20sesquiterpene" title=" eudesmane-type sesquiterpene"> eudesmane-type sesquiterpene</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-angiogenesis" title=" anti-angiogenesis"> anti-angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=VEGF" title=" VEGF"> VEGF</a>, <a href="https://publications.waset.org/abstracts/search?q=angiopoietin" title=" angiopoietin"> angiopoietin</a>, <a href="https://publications.waset.org/abstracts/search?q=TIE2" title=" TIE2"> TIE2</a> </p> <a href="https://publications.waset.org/abstracts/45292/eudesmane-type-sesquiterpenes-from-laggera-alata-inhibiting-angiogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Asymmetric Synthesis and Biological Study of Suberosanes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Kousara">Mohammad Kousara</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7oise%20Dumas"> Françoise Dumas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Ibrahim"> Rama Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%ABlle%20Dubois"> Joëlle Dubois</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%ABl%20Raingeaud"> Joël Raingeaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suberosanes are a small group of marine natural sesquiterpenes discovered since 1996 by Boyd, Sheu and Qi from three gorgonians. Their skeleton was previously found in quadranes produced by the terrestrial fungus Aspergillus terreus. Up to date, eleven suberosanes are described from which (-)-suberosanone and (-)-suberosenol A are reaching the picomolar cytotoxicity level on human solid tumors cell lines. Due to their impressive cytotoxic properties and their limited availability, we undertook an asymmetric synthesis of the most active members of this family in order to get insight into their absolute configurations and their biological properties. The challenge of their synthesis is the regio- and stereoselective elaboration of the compact bridged tricyclic skeleton with up to five all adjacent asymmetric centers, including a central quaternary carbon one. Our strategy is based on an aza-ene-synthesis key step which is regio-and stereo-controlled by the choice of a chiral amine enantiomer. it approach is concise and flexible, the enantiopur ABC tricyclic intermediate that have been synthesized being the common precursor of suberosanes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suberosanes" title="suberosanes">suberosanes</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20synthesis" title=" asymmetric synthesis"> asymmetric synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpenes" title=" sesquiterpenes"> sesquiterpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=quadranes" title=" quadranes"> quadranes</a> </p> <a href="https://publications.waset.org/abstracts/172533/asymmetric-synthesis-and-biological-study-of-suberosanes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Order Russulales of Basidiomycota: Systematics, Ecology and Chemotaxonomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Clericuzio">Marco Clericuzio</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Vizzini"> Alfredo Vizzini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The secondary metabolites of Russulales (one of the main orders of phylum Basidiomycota), have been studied. They are mainly terpenoids, with sesquiterpenes being the most common ones, but also triterpenoids and prenylated phenols have been isolated. We found that classes of specific compounds seem to be often allied to systematic groupings, so that they may have chemotaxonomic significance. Moreover, the ecological implications of such metabolites, as well as their biological activities, are discussed. Lately, we have focused our attention on the anti-arthropod activity of Russula metabolites, in particular on the toxicity against mites and other crop pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemotaxonomy" title="chemotaxonomy">chemotaxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=russulales" title=" russulales"> russulales</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a> </p> <a href="https://publications.waset.org/abstracts/123286/the-order-russulales-of-basidiomycota-systematics-ecology-and-chemotaxonomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Chemopreventive Properties of Cannabis sativa L. var. USO31 in Relation to Its Phenolic and Terpenoid Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonella%20Di%20Sotto">Antonella Di Sotto</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinzia%20Ingallina"> Cinzia Ingallina</a>, <a href="https://publications.waset.org/abstracts/search?q=Caterina%20Fraschetti"> Caterina Fraschetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Circi"> Simone Circi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcello%20Locatelli"> Marcello Locatelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Carradori"> Simone Carradori</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Mazzanti"> Gabriela Mazzanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Luisa%20Mannina"> Luisa Mannina</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Di%20Giacomo"> Silvia Di Giacomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cannabis sativa L. is one of the oldest cultivated plant species known not only for its voluptuous use but also for the wide application in food, textile, and therapeutic industries. Recently, the progress of biotechnologies applied to medicinal plants has allowed to produce different hemp varieties with low content of psychotropic phytoconstituents (tetrahydrocannabinol < 0.2% w/v), thus leading to a renewed industrial and therapeutic interest for this plant. In this context, in order to discover new potential remedies of pharmaceutical and/or nutraceutical interest, the chemopreventive properties of different organic and hydroalcoholic extracts, obtained from the inflorescences of C. sativa L. var. USO31, collected in June and September harvesting, were assessed. Particularly, the antimutagenic activity towards the oxidative DNA-damage induced by tert-butyl hydroperoxide (t-BOOH) was evaluated, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging power of the samples were assessed as possible mechanisms of antimutagenicity. Furthermore, the ability of the extracts to inhibit the glucose-6-phosphate dehydrogenase (G6PD), whose overexpression has been found to play a critical role in neoplastic transformation and tumor progression, has been studied as a possible chemopreventive strategy. A careful phytochemical characterization of the extracts for phenolic and terpenoid composition has been obtained by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) methods. Under our experimental condition, all the extracts were found able to interfere with the tBOOH-induced mutagenicity in WP2uvrAR strain, although with different potency and effectiveness. The organic extracts from both the harvesting periods were found to be the main effective antimutagenic samples, reaching about a 55% inhibition of the tBOOH-mutagenicity at the highest concentration tested (250 μg/ml). All the extracts exhibited radical scavenger activity against DPPH and ABTS radicals, with a higher potency of the hydroalcoholic samples. The organic extracts were also able to inhibit the G6PD enzyme, being the samples from September harvesting the highly potent (about 50% inhibition respect to the vehicle). At the phytochemical analysis, all the extracts resulted to contain both polar and apolar phenolic compounds. The HPLC analysis revealed the presence of catechin and rutin as the major constituents of the hydroalcoholic extracts, with lower levels of quercetin and ferulic acid. The monoterpene carvacrol was found to be an ubiquitarian constituent. At GC-MS analysis, different terpenoids, among which caryophyllene sesquiterpenes, were identified. This evidence suggests a possible role of both polyphenols and terpenoids in the chemopreventive properties of the extracts from the inflorescences of C. sativa var. USO31. According to the literature, carvacrol and caryophyllene sesquiterpenes can contribute to the strong antimutagenicity although the role of all the hemp phytocomplex cannot be excluded. In conclusion, present results highlight a possible interest for the inflorescences of C. sativa var. USO31 as source of bioactive molecules and stimulate further studies in order to characterize its possible application for nutraceutical and pharmaceutical purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimutagenicity" title="antimutagenicity">antimutagenicity</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose-6-phosphate%20dehydrogenase" title=" glucose-6-phosphate dehydrogenase"> glucose-6-phosphate dehydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20inflorescences" title=" hemp inflorescences"> hemp inflorescences</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceuticals" title=" nutraceuticals"> nutraceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpenes" title=" sesquiterpenes"> sesquiterpenes</a> </p> <a href="https://publications.waset.org/abstracts/97311/chemopreventive-properties-of-cannabis-sativa-l-var-uso31-in-relation-to-its-phenolic-and-terpenoid-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oils of Different Pinus Species from Kosovo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatbardh%C3%AB%20%20Kurti">Fatbardhë Kurti</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20%20Beretta"> Giangiacomo Beretta</a>, <a href="https://publications.waset.org/abstracts/search?q=Behxhet%20%20Mustafa"> Behxhet Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Gelmini"> Fabrizio Gelmini</a>, <a href="https://publications.waset.org/abstracts/search?q=Avni%20Hajdari"> Avni Hajdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical profile, antioxidant and antimicrobial activity of total and fractionated essential oils (EOs) (F1 – hexane, F2 – hexane/diethyl ether, F3 – diethyl ether) derived from five Pinus species (Pinus heldreichii, P. peuce, P. mugo, Pinus nigra, P. sylvestris), were investigated. The hydrodistilled EOs and their chromatographic fractions (direct solid phase extraction, SPE) were analysed by GC-MS and 112 compounds separated and identified. The main constituents were α-pinene, β-pinene, D-limonene, β-caryophyllene, germacrene D, bornyl acetate and 3-carene. The antioxidant activities of total EOs were lower than those of the corresponding fractions, with F2 the strongest in all cases. EOs and fractions showed different degrees of antibacterial efficacy against different microbial pathogens (moderately strong antimicrobial activity against C. albicans and C. krusei ,while low or no activity against E. faecalis and E. coli strains). The detected inhibition zones and MICs for the EOs and fractions were in the range of 14 -35 mm and 0.125 - 1% (v/v), respectively. The components responsible for the antioxidant and antimicrobial activity were oxygenated monoterpenes and sesquiterpenes recovered in the polar EO fractions. These activities seem to be regulated by reciprocal interactions among the different subclasses of phytochemical species present in the EOs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antagonism" title="antagonism">antagonism</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fractions" title=" fractions"> fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=pinus" title=" pinus"> pinus</a> </p> <a href="https://publications.waset.org/abstracts/79577/chemical-composition-antioxidant-and-antimicrobial-activities-of-the-essential-oils-of-different-pinus-species-from-kosovo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Comparative Antibacterial Property of Matured Trunk and Stem Bark Extract of Tamarindus indica L., Preformulation, Development and Quality Control of Cream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20T.%20Jacinto">A. M. T. Jacinto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.O.%20Osi"> M.O. Osi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tamarind has various medicinal properties among which is its antibacterial property. Its bark contains saponins, alkaloids, sesquiterpenes and tannins. It is rich in phlobapenes which is responsible for antibacterial property. The objective of the study was to determine which bark will produce the highest antibacterial property, develop it into a topical cream and evaluate its quality and characteristics. Powdered barks of Tamarind were extracted by soxhlet method using 70% acetone. Stem bark produced a higher yield than trunk bark (5.85 g vs. 4.73 g). It was found that the trunk bark was more sensitive than stem bark to microorganisms namely Staphylococcus aureus, Corynebacterium minutissimum, and Streptococcus spp. Sensitivity of trunk bark can be attributed to a more developed phytoconstituents. Dermal sensitization test on both sexes of rabbits using the following concentrations: 100%, 40% and 20% of extract showed that Tamarind has no irritating property and therefore safe for formulation into an antibacterial cream. Excipients used for formulation such as methyl paraben, propyl paraben, stearyl alcohol and white petrolatum were compatible with the Tamarind acetone extract through Differential Scanning Calorimetry except sodium lauryl sulfate that exhibited crystallization when subjected at 200˚C. The method of manufacture used in cream is fusion, therefore strict compliance of processing temperature should be observed to prevent polymorphism. Quality control tests of formulated cream based on USP 30 and Philippine Pharmacopeia were satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title=" differential scanning calorimetry"> differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=dermal%20sensitization" title=" dermal sensitization"> dermal sensitization</a> </p> <a href="https://publications.waset.org/abstracts/16974/comparative-antibacterial-property-of-matured-trunk-and-stem-bark-extract-of-tamarindus-indica-l-preformulation-development-and-quality-control-of-cream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Anatomical and Histological Characters of Cymbopogon nardus Roots and Its Mutagenic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pravaree%20Phuneerub">Pravaree Phuneerub</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanida%20Palanuvej"> Chanida Palanuvej</a>, <a href="https://publications.waset.org/abstracts/search?q=Nijsiri%20Ruangrungsi"> Nijsiri Ruangrungsi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cymbopogon nardus Rendel (Family Gramineae) is commonly known as citronella grass. The dried root of C. nardus is used for antipyretic, anti-inflammation, anti-analgesic and anticancer in traditional Thai medicine. Transverse sectional and pulverized C. nardus root were illustrated. The volatile oil was extracted from oil gland by hydrodistillation and analysed by GC/MS. Cymbopogon nardus root was exhaustively extracted by continuously maceration in ethanol and water respectively. The mutagenic and antimutagenic properties of the ethanol extract and fractionated water extract of C. nardus root were evaluated by Ames assay using the S. typhimurium strains TA98 and TA100 as the models. The result indicated that the anatomical character of root transverse section displayed epidermis, parenchyma, oil gland, phloem, xylem vessel, endodermis and pith. Histological characters of root powder showed parenchyma containing oleoresin, parenchyma in longitudinal view, reticulate vessel, annular vessel, starch granules and fragment of fiber. The root volatile oil was rich in sesquiterpenes dominated by elemol (22.87%) and alpha-eudesmol (16.09%). For mutagenic activity, the both extracts of C. nardus were no mutagenic toward S. typhimurium strains TA98 and TA100. Furthermore, the ethanol extract and fractionated water extract of C. nardus root demonstrated strong antimutagenic effect against of nitrite treated 1-aminopyrene to S. typhimurium strains TA98 and TA100. This present investigation suggested that the dried root extract of C. nardus can be further developed as promising antimutagenic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20nardus" title="Cymbopogon nardus">Cymbopogon nardus</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20oil%20analysis" title=" volatile oil analysis"> volatile oil analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mutagenic" title=" mutagenic"> mutagenic</a>, <a href="https://publications.waset.org/abstracts/search?q=antimutagenic%20effect" title=" antimutagenic effect"> antimutagenic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Ames%20Salmonella%20assay" title=" Ames Salmonella assay"> Ames Salmonella assay</a> </p> <a href="https://publications.waset.org/abstracts/19042/anatomical-and-histological-characters-of-cymbopogon-nardus-roots-and-its-mutagenic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Combining Transcriptomics, Bioinformatics, Biosynthesis Networks and Chromatographic Analyses for Cotton Gossypium hirsutum L. Defense Volatiles Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Villamar-Torres">Ronald Villamar-Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Staudt"> Michael Staudt</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Viot"> Christopher Viot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton Gossypium hirsutum L. is one of the most important industrial crops, producing the world leading natural textile fiber, but is very prone to arthropod attacks that reduce crop yield and quality. Cotton cultivation, therefore, makes an outstanding use of chemical pesticides. In reaction to herbivorous arthropods, cotton plants nevertheless show natural defense reactions, in particular through volatile organic compounds (VOCs) emissions. These natural defense mechanisms are nowadays underutilized but have a very high potential for cotton cultivation, and elucidating their genetic bases will help to improve their use. Simulating herbivory attacks by mechanical wounding of cotton plants in greenhouse, we studied by qPCR the changes in gene expression for genes of the terpenoids biosynthesis pathway. Differentially expressed genes corresponded to higher levels of the terpenoids biosynthesis pathway and not to enzymes synthesizing particular terpenoids. The genes were mapped on the G. hirsutum L. reference genome; their global relationships inside the general metabolic pathways and the biosynthesis of secondary metabolites were visualized with iPath2. The chromatographic profiles of VOCs emissions indicated first monoterpenes and sesquiterpenes emissions, dominantly four molecules known to be involved in plant reactions to arthropod attacks. As a result, the study permitted to identify potential key genes for the emission of volatile terpenoids by cotton plants in reaction to an arthropod attack, opening possibilities for molecular-assisted cotton breeding in benefit of smallholder cotton growers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosynthesis%20pathways" title="biosynthesis pathways">biosynthesis pathways</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanisms%20of%20plant%20defense" title=" mechanisms of plant defense"> mechanisms of plant defense</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/85874/combining-transcriptomics-bioinformatics-biosynthesis-networks-and-chromatographic-analyses-for-cotton-gossypium-hirsutum-l-defense-volatiles-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Chemical Composition and Larvicidal Activity of Essential Oils Derived from Piper Longepetiolatum and Piper Brachypetiolatum (Piperaceae) Against Aedes Aegypti Larvae (Culicidae) Were Investigated</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suelen%20C.%20Lima">Suelen C. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20de%20Oliveira"> André C. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemary%20A.%20Roque"> Rosemary A. Roque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dengue is fatal arboviruses transmitted by the A. aegypti mosquito to more than 100 countries, for which the WHO estimates that 2.5 million people will be infected by these disease. The widespread of these diseases is due, among other factors, to the resistance that A. aegypti has to several commercial insecticides. On the other hand, natural products based on plants of the genus Piper (Piperaceae) are characterized by their insecticidal activities against mosquitoes. Piper longepetiolatum and Piper brachypetiolatum are species with wide distribution in the State of Amazonas. However, there is no investigation of phytochemical or biological of these plants against mosquitoes such as A. aegypti. The main of this study was to identify the chemical composition of the essential oil (EOs) from P. longepetiolatum and P. brachypetiolatum and to evaluate the biological activity against A. aegypti. The EOs were extracted by hydrodistillation from leaves (200 g) of P. longepetiolatum and P. brachypetiolatum and analyzed by GC-MS and GC-FID. The main compounds β-caryophyllene (99.9% of purity) and E-nerolidol (99.4% of purity) were purchased from Sigma-Aldrich® Brazil. The larvicidal activity of EOs (20 to 100 ppm), β-caryophyllene and E-nerolidol (10 to 50 ppm) was performed according to WHO protocol against A. aegypti larvae. The GC-MS and GC-FID analysis of EOs from P. longepetiolatum and P. brachypetiolatum indicated the majority presence of β-caryophyllene (35.42%) and E-nerolidol (49.79%), respectively. The results showed that all natural products presented larvicidal activity against A. aegypti. In this aspect, the OE from P. brachypetiolatum (LC50 of 15.51 ppm and LC90 of 22.79 ppm) was more active than the OE from P. longepetiolatum (LC50 of 47.17 ppm and LC90 of 69.60 ppm) (p < 0.05). Regarding of main compounds, E-nerolidol (LC50 of 9.50 ppm and LC90 of 23.89 ppm) showed higher larvicidal activity than the β-caryophyllene compound (LC50 of 79.00 ppm and LC90 of 230.91 ppm) (p < 0.05). The larvae treated with these natural products showed tremors and lethargic movements, suggesting that these natural products have neurotoxic action. These observations support studies to investigate the mechanism of action. This is the first record of the chemical composition and larvicidal activity of the EO from P. longepetiolatum and P. brachypetiolatum rich in β-caryophyllene and E-nerolidol against A. aegypti larvae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperaceae" title="piperaceae">piperaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=aedes" title=" aedes"> aedes</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpenes" title=" sesquiterpenes"> sesquiterpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a> </p> <a href="https://publications.waset.org/abstracts/175157/the-chemical-composition-and-larvicidal-activity-of-essential-oils-derived-from-piper-longepetiolatum-and-piper-brachypetiolatum-piperaceae-against-aedes-aegypti-larvae-culicidae-were-investigated" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Assessment of Antiplasmodial and Some Other Biological Activities, Essential Oil Constituents, and Phytochemical Screening of Azadirachta indica Grown in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawit%20Chankaye">Dawit Chankaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Azadirachta indica is the most versatile medicinal plant known as “the village pharmacy”. The plant is known for its broad spectrum of biological activity in India and various countries throughout history by many different human cultures. The present study was undertaken to determine the antimalarial and antidiabetic properties of the leaf extracts of A. indica grown in Ethiopia when treated in vivo. This work has also been concerned with determining essential oil composition and the antimicrobial activity of the plant in vitro. Methods: Leaf extracts were prepared using three different selected solvents. Standard and clinical isolates were treated with extracts of the leaves of A. indica using the agar well diffusion method. The antimalarial and antidiabetic tests were conducted in vivo in mice. Phytochemical screening was done using various chemical tests, and the volatile oil constituents were determined using gas chromatography-mass spectrometry (GC/MS). Results: In vivo antimalarial activity studies showed 85.23%, 69.01%, and 81.54% suppression of parasitemia for 70% ethanol, acetone, and water extracts, respectively. The extracts collected from the leaves also showed reduced blood sugar levels in alloxan-induced diabetic mice. In addition, the solvent extracts were shown to have an inhibitory effect on the growth of microorganisms under the study. The minimum inhibitory concentration (MIC) ranged from 850 to 1050 µg/ml. Notably, the phytochemical investigation of the ethanol extracts showed the presence of secondary metabolites. Seventeen compounds (mainly sesquiterpenes) that represent 75.45% of the essential oil were characterized by GC/MS analysis. Conclusion: Extracts examined in this study indicated that the leaf of A. indica grown in Ethiopia retained the biological activities demonstrating the extent equivalent to when it was grown in its natural habitat. In addition, phytochemical investigation and GC/MS analysis of volatile oil constituents showed comparable results to those presented in India and elsewhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title="Azadirachta indica">Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=vivo" title=" vivo"> vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=antimalarial%20activity" title=" antimalarial activity"> antimalarial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antidiabetic%20activity" title=" antidiabetic activity"> antidiabetic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=alloxan" title=" alloxan"> alloxan</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical" title=" phytochemical"> phytochemical</a> </p> <a href="https://publications.waset.org/abstracts/171066/assessment-of-antiplasmodial-and-some-other-biological-activities-essential-oil-constituents-and-phytochemical-screening-of-azadirachta-indica-grown-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Eucalyptus camaldulensis Leaves Attacked by the Gall Wasp Leptocybe invasa: A Phyto-Volatile Constituents Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20El-Sayed%20Mohamed">Maged El-Sayed Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eucalyptus camaldulensis is one on the most well-known species of the genus Eucalyptus in the Middle east, its importance relay on the high production of its unique volatile constituents which exhibits many medicinal and pharmacological activities. The gall-forming wasp (Leptocybe invasa) has recently come into sight as the main pest attacking E. camaldulensis and causing severe injury. The wasp lays its eggs in the petiole and midrib of leaves and stems of young shoots of E. camaldulensis, which leads to gall formation. Gall formation by L. invasa damages growing shoot and leaves of Eucalyptus, resulting in abscission of leaves and drying. AIM: This study is an attempt to investigate the effect of the gall wasp (Leptocybe invasa) attack on the volatile constitutes of E. camaldulensis. This could help in the control of this wasp through stimulating plant defenses or production of a new allelochemicals or insecticide. The study of volatile constitutes of Eucalyptus before and after attack by the wasp can help the re-use and recycle of the infected Eucalyptus trees for new pharmacological and medicinal activities. Methodology: The fresh gall wasp-attacked and healthy leaves (100 g each) were cut and immediately subjected to hydrodistillation using Clevenger-type apparatus for 3 hours. The volatile fractions isolated were analyzed using Gas chromatography/mass spectrometry (GC/MS). Kovat’s retention indices (RI) were calculated with respect to a set of co-injected standard hydrocarbons (C10-C28). Compounds were identified by comparing their spectral data and retention indices with Wiley Registry of Mass Spectral Data 10th edition (April 2013), NIST 11 Mass Spectral Library (NIST11/2011/EPA/NIH) and literature data. Results: Fifty-nine components representing 89.13 and 88.60% of the total volatile fraction content respectively were quantitatively analyzed. Twenty-six major compounds at an average concentration greater than 0.1 ± 0.02% have been used for the statistical comparison. From those major components, twenty-one were found in both the attacked and healthy Eucalyptus leaves’ fractions in different concentration and five components, mono terpene p-Mentha-2-4(8) diene and the sesquiterpenes δ-elemene, β-elemene, E-caryophyllene and Bicyclogermacrene, were unique and only produced in the attacked-leaves’ fraction. CONCLUSION: Newly produced components or those commonly found in the volatile fraction and changed in concentration could represent a part of the plant defense mechanisms or might be an element of the plant allelopathic and communication mechanisms. Identification of the components of the gall wasp-damaged leaves can help in their recycling for different physiological, pharmacological and medicinal uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eucalyptus%20camaldulensis" title="Eucalyptus camaldulensis">Eucalyptus camaldulensis</a>, <a href="https://publications.waset.org/abstracts/search?q=eucalyptus%20recycling" title=" eucalyptus recycling"> eucalyptus recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=gall%20wasp" title=" gall wasp"> gall wasp</a>, <a href="https://publications.waset.org/abstracts/search?q=Leptocybe%20invasa" title=" Leptocybe invasa"> Leptocybe invasa</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20defense%20mechanisms" title=" plant defense mechanisms"> plant defense mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=Terpene%20fraction" title=" Terpene fraction"> Terpene fraction</a> </p> <a href="https://publications.waset.org/abstracts/41348/eucalyptus-camaldulensis-leaves-attacked-by-the-gall-wasp-leptocybe-invasa-a-phyto-volatile-constituents-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Chemistry and Biological Activity of Feed Additive for Poultry Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malkhaz%20Jokhadze">Malkhaz Jokhadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakhtang%20Mshvildadze"> Vakhtang Mshvildadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Levan%20Makaradze"> Levan Makaradze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterine%20Mosidze"> Ekaterine Mosidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Salome%20Barbaqadze"> Salome Barbaqadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Murtazashvili"> Mariam Murtazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Dali%20Berashvili"> Dali Berashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Koba%20sivsivadze"> Koba sivsivadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasha%20Bakuridze"> Lasha Bakuridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliosha%20Bakuridze"> Aliosha Bakuridze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils are one of the most important groups of biologically active substances present in plants. Due to the chemical diversity of components, essential oils and their preparations have a wide spectrum of pharmacological action. They have bactericidal, antiviral, fungicidal, antiprotozoal, anti-inflammatory, spasmolytic, sedative and other activities. They are expectorant, spasmolytic, sedative, hypotensive, secretion enhancing, antioxidant remedies. Based on preliminary pharmacological studies, we have developed a formulation called “Phytobiotic” containing essential oils, a feed additive for poultry as an alternative to antibiotics. Phytobiotic is a water-soluble powder containing a composition of essential oils of thyme, clary, monarda and auxiliary substances: dry extract of liquorice and inhalation lactose. On this stage of research, the goal was to study the chemical composition of provided phytobiotic, identify the main substances and determine their quantity, investigate the biological activity of phytobiotic through <em>in vitro</em> and <em>in vivo</em> studies. Using gas chromatography-mass spectrometry, 38 components were identified in phytobiotic, representing acyclic-, monocyclic-, bicyclic-, and sesquiterpenes. Together with identification of main active substances, their quantitative content was determined, including acyclic terpene alcohol β-linalool, acyclic terpene ketone linalyl acetate, monocyclic terpenes: D-limonene and γ-terpinene, monocyclic aromatic terpene thymol. Provided phytobiotic has pronounced and at the same time broad spectrum of antibacterial activity. In the cell model, phytobiotic showed weak antioxidant activity, and it was stronger in the ORAC (chemical model) tests. Meanwhile anti-inflammatory activity was also observed. When fowls were supplied feed enriched with phytobiotic, it was observed that gained weight of the chickens in the experimental group exceeded the same data for the control group during the entire period of the experiment. The survival rate of broilers in the experimental group during the growth period was 98% compared to -94% in the control group. As a result of conducted researches probable four different mechanisms which are important for the action of phytobiotics were identified: sensory, metabolic, antioxidant and antibacterial action. General toxic, possible local irritant and allergenic effects of phytobiotic were also investigated. Performed assays proved that formulation is safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clary" title="clary">clary</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=monarda" title=" monarda"> monarda</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry" title=" poultry"> poultry</a>, <a href="https://publications.waset.org/abstracts/search?q=phytobiotics" title=" phytobiotics"> phytobiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=thyme" title=" thyme"> thyme</a> </p> <a href="https://publications.waset.org/abstracts/134867/chemistry-and-biological-activity-of-feed-additive-for-poultry-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>