CINXE.COM

Search results for: sintering technology

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sintering technology</title> <meta name="description" content="Search results for: sintering technology"> <meta name="keywords" content="sintering technology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sintering technology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sintering technology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7892</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sintering technology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7892</span> Recycling of Tea: A Prepared Lithium Anode Material Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yea-Chyi%20Lin">Yea-Chyi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinn-Dar%20Wu"> Shinn-Dar Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ping%20Chung"> Chien-Ping Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tea is not only part of the daily lives of the Chinese people, but also represents an essence of their culture. A manufactured tea is prepared with other complicated steps for self-cultivation. Tea drinking promotes friendship and is etiquette in Chinese ceremony. Tea was discovered in China and introduced worldwide. Tea is generally used as herbal medicine. Paowan of tea can be used as plant composts and deodorant as well as for moisture proof-package. Tea prepared via carbon material technology resulted in the increase of its value. Carbon material technology uses graphite. With the battery anode material, tea can also become a new carbon material element. It has a fiber carbon structure that can retain the advantage of tea ontology. Therefore, this study provides a new preparation method through special sintering technology equipment with a gas counter-current system of 300°C to 400°C and 400°C to 900°C. The recovery of carbonization was up to 80% or more. This study addresses tea recycling technology and shows charred sintering method and loss from solving grinder to obtain a good fiber carbon structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling%20technology" title="recycling technology">recycling technology</a>, <a href="https://publications.waset.org/abstracts/search?q=tea" title=" tea"> tea</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering%20technology" title=" sintering technology"> sintering technology</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/5224/recycling-of-tea-a-prepared-lithium-anode-material-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7891</span> Dependence of Dielectric Properties on Sintering Conditions of Lead Free KNN Ceramics Modified With Li-Sb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roopam%20Gaur">Roopam Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chandramani%20Singh"> K. Chandramani Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhapiyari%20Laishram"> Radhapiyari Laishram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to produce lead free piezoceramics with optimum piezoelectric and dielectric properties, KNN modified with Li+ (as an A site dopant) and Sb5+ (as a B site dopant) (K0.49Na0.49Li0.02) (Nb0.96Sb0.04) O3 (referred as KNLNS in this paper) have been synthesized using solid state reaction method and conventional sintering technique. The ceramics were sintered in the narrow range of 10500C-10900C for 2-3 hours to get precise information about sintering parameters. Detailed study of dependence of microstructural, dielectric and piezoelectric properties on sintering conditions was then carried out. The study suggests that the volatility of the highly hygroscopic KNN ceramics is not only sensitive to sintering temperatures but also to sintering durations. By merely reducing the sintering duration for a given sintering temperature we saw an increase in the density of the samples which was supported by the increase in dielectric constants of the ceramics. And since density directly or indirectly affects almost all the associated properties, other dielectric and piezoelectric properties were also enhanced as we approached towards the most suitable sintering temperature and duration combination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title="piezoelectric">piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=Li" title=" Li"> Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sb" title=" Sb"> Sb</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20sintering" title=" conventional sintering"> conventional sintering</a> </p> <a href="https://publications.waset.org/abstracts/28869/dependence-of-dielectric-properties-on-sintering-conditions-of-lead-free-knn-ceramics-modified-with-li-sb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7890</span> A Study on the Magnetic and Mechanical Properties of Nd-Fe-B Sintered Magnets According to Sintering Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Kim">J. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Park"> S. Y. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Lim"> K. M. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Hyun"> S. K. Hyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of sintering temperature on the magnetic and mechanical properties of Nd-Fe-B sintered magnets has been investigated in this study. The sintering temperature changed from 950°C to 1120°C. While remanence and hardness of the magnets increased with increasing sintering temperature, the coercivity first increased, and then decreased. The optimum magnetic and mechanical properties of the magnets were obtained at the sintering temperature of 1050°C. In order to clarify the reason for the variation on magnetic and mechanical properties of the magnets, we systematically analyzed the microstructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20and%20mechanical%20property" title="magnetic and mechanical property">magnetic and mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered%20Nd-Fe-B%20magnet" title=" sintered Nd-Fe-B magnet"> sintered Nd-Fe-B magnet</a> </p> <a href="https://publications.waset.org/abstracts/29293/a-study-on-the-magnetic-and-mechanical-properties-of-nd-fe-b-sintered-magnets-according-to-sintering-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7889</span> Study on Sintering System of Calcium Barium Sulphoaluminate by XRD Quantitative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaopeng%20Shang">Xiaopeng Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20YU"> Xin YU</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20CHANG"> Jun CHANG</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium barium sulphoaluminate (CBSA), derived from calcium sulphoaluminate(CSA), has excellent cementitious properties. In this study, the sintering system of CBSA with a theoretical stoichiometric Ca3BaAl6SO16 was investigated. Rietveld refinement was performed using TOPAS 4.2 software to quantitatively calculate the content of CBSA and the actual ionic site occupancy of Ba2+. The results indicate that the contents of Ca4-xBaxAl6SO16 increases with increasing sintering temperature in the 1200℃-1400℃ ranges. When sintered at 1400℃ for 180min, the content of CBSA reaches 88.4%. However, CBSA begins to decompose at 1440℃ and the content of which decreases. The replacement rate of Ba2+ was also enlarged by increasing sintering temperature and prolonged sintering time. Sintering at 1400℃ for 180min is considered as the optimum when replacement rate of Ba2+ and the content of CBSA were taken into account. Ca3.2Ba0.8Al6SO16 with a content of 88.4% was synthesized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20barium%20sulphoaluminate" title="calcium barium sulphoaluminate">calcium barium sulphoaluminate</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering%20system" title=" sintering system"> sintering system</a>, <a href="https://publications.waset.org/abstracts/search?q=Ba2%2B%20replacement%20rate" title=" Ba2+ replacement rate"> Ba2+ replacement rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Rietveld%20refinement" title=" Rietveld refinement"> Rietveld refinement</a> </p> <a href="https://publications.waset.org/abstracts/32946/study-on-sintering-system-of-calcium-barium-sulphoaluminate-by-xrd-quantitative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7888</span> Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Jong%20Choi">Hyun-Jong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kwak"> Minjun Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo-Won%20Seo"> Doo-Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Kuk%20Woo"> Sang-Kuk Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Dong%20Kim"> Sun-Dong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Sintering" title="Co-Sintering">Co-Sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=GDC-LSCF" title=" GDC-LSCF"> GDC-LSCF</a>, <a href="https://publications.waset.org/abstracts/search?q=Sintering%20Aid" title=" Sintering Aid"> Sintering Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20Oxide%20Cells" title=" solid Oxide Cells"> solid Oxide Cells</a> </p> <a href="https://publications.waset.org/abstracts/66228/performance-and-processing-evaluation-of-solid-oxide-cells-by-co-sintering-of-gdc-buffer-layer-and-lscf-air-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7887</span> Sintering Atmosphere Effects on the Densification of Al-SiC Compacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Pieczonka">Tadeusz Pieczonka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Kazior"> Jan Kazior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of SiC powder addition on densification of Al-SiC compacts during sintering in different atmospheres was investigated. It was performed in a dilatometer in flowing nitrogen, nitrogen/hydrogen (95/5 by volume) and argon. Fine, F500 grade of SiC powder was used. Mixtures containing 10 and 30 vol.% of SiC reinforcement were prepared in a Turbula mixer. Green compacts of about 82% of theoretical density were made of each mixture. For comparison, compacts made of pure aluminum powder were also investigated. It was shown that nitrogen is the best sintering atmosphere because only in this atmosphere did shrinkage take place. Its amount is lowered by ceramic powder addition, i.e. the more SiC the less densification occurs. Additionally, the formation of clusters enhanced in compacts containing 30 vol.% SiC, is also responsible for limiting the shrinkage. Microstructural examinations of sintered composites revealed that sintering of compacts occurs in the presence of the liquid phase exclusively in nitrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-SiC%20composites" title="Al-SiC composites">Al-SiC composites</a>, <a href="https://publications.waset.org/abstracts/search?q=densification" title=" densification"> densification</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering%20atmosphere" title=" sintering atmosphere"> sintering atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/8778/sintering-atmosphere-effects-on-the-densification-of-al-sic-compacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7886</span> Dielectric Properties of La2MoO6 Ceramics at Microwave Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yih-Chien%20Chen">Yih-Chien Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20You"> Yu-Cheng You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave dielectric properties of La2MoO6 ceramics were investigated with a view to their application in mobile communication. La2MoO6 ceramics were prepared by the conventional solid-state method with various sintering conditions. The X-ray diffraction peaks of La2MoO6 ceramic did not vary significantly with sintering conditions. The average grain size of La2MoO6 ceramics increased as the temperature and time of sintering increased. A maximum density of 5.67 g/cm3, a dielectric constants (εr) of 14.1, a quality factor (Q×f) of 68,000 GHz, and a temperature coefficient of resonant frequency (τf) of -56 ppm/℃ were obtained when La2MoO6 ceramics that were sintered at 1300 ℃ for 4h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramics" title="ceramics">ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20dielectric%20properties" title=" microwave dielectric properties"> microwave dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=La2MoO6" title=" La2MoO6"> La2MoO6</a> </p> <a href="https://publications.waset.org/abstracts/69632/dielectric-properties-of-la2moo6-ceramics-at-microwave-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7885</span> Microstructure and Sintering of Boron-Alloyed Martensitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jin%20Tsai"> Yu-Jin Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Huai%20Chang"> Ching-Huai Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a versatile technique for achieving effective densification of powder metallurgy (PM) steels and other materials. The aim of this study was to examine the influences of 0.6 wt% boron on the microstructure and LPS behavior of boron-alloyed 410 martensitic stainless steel. The results showed that adding 0.6 wt% boron can obviously promote the LPS due to a eutectic reaction and increase the sintered density of 410 stainless steel. The density was much increased by 1.06 g/cm³ after 1225ºC sintering. Increasing the sintering temperature from 1225ºC to 1275ºC did not obviously improve the sintered density. After sintering at 1225ºC~1275ºC, the matrix was fully martensitic, and intragranular borides were extensively found due to the solidification of eutectic liquid. The microstructure after LPS consisted of the martensitic matrix and (Fe, Cr)2B boride, as identified by electron backscatter diffraction (EBSD) and electron probe micro-analysis (EPMA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/73936/microstructure-and-sintering-of-boron-alloyed-martensitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7884</span> Influence of Sintering Temperature on Microhardness and Tribological Properties of Equi-Atomic Ti-Al-Mo-Si-W Multicomponent Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20L.%20Kanyane">Rudolf L. Kanyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolaus%20Malatji"> Nicolaus Malatji</a>, <a href="https://publications.waset.org/abstracts/search?q=Patritia%20A.%20Popoola"> Patritia A. Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tribological failure of materials during application can lead to catastrophic events which also carry economic penalties. High entropy alloys (HEAs) have shown outstanding tribological properties in applications such as mechanical parts were moving parts under high friction are required. This work aims to investigate the effect of sintering temperature on microhardness properties and tribological properties of novel equiatomic TiAlMoSiW HEAs fabricated via spark plasma sintering. The effect of Spark plasma sintering temperature on morphological evolution and phase formation was also investigated. The microstructure and the phases formed for the developed HEAs were examined using scanning electron microscopy (SEM) and X-ray diffractometry (XRD) respectively. The microhardness and tribological properties were studied using a diamond base microhardness tester Rtec tribometer. The developed HEAs showed improved mechanical properties as the sintering temperature increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sintering" title="sintering">sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloy" title=" high entropy alloy"> high entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/103173/influence-of-sintering-temperature-on-microhardness-and-tribological-properties-of-equi-atomic-ti-al-mo-si-w-multicomponent-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7883</span> Microwave Sintering and Its Application on Cemented Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rumman%20M.%20D.%20Raihanuzzaman">Rumman M. D. Raihanuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Chang%20Chuan"> Lee Chang Chuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zonghan%20Xie"> Zonghan Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghomashchi"> Reza Ghomashchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbides" title="cemented carbides">cemented carbides</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20sintering" title=" microwave sintering"> microwave sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties "> mechanical properties </a> </p> <a href="https://publications.waset.org/abstracts/32637/microwave-sintering-and-its-application-on-cemented-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7882</span> Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Wei%20Huang">Kai-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20capture" title="carbon dioxide capture">carbon dioxide capture</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20contactor" title=" membrane contactor"> membrane contactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title=" ceramic membrane"> ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fiber%20membrane" title=" ceramic hollow fiber membrane"> ceramic hollow fiber membrane</a> </p> <a href="https://publications.waset.org/abstracts/21521/preparation-of-ceramic-hollow-fiber-membranes-for-co2-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7881</span> Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Z.%20Manuel">B. Z. Manuel</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Esmeralda"> H. D. Esmeralda</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Felipe"> H. S. Felipe</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20H%C3%A9ctor"> D. R. Héctor</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20de%20la%20Torre%20Sebasti%C3%A1n"> D. de la Torre Sebastián</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20L.%20Diego"> R. L. Diego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composites" title="aluminum matrix composites">aluminum matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallics" title=" intermetallics"> intermetallics</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a> </p> <a href="https://publications.waset.org/abstracts/6545/spark-plasma-sintering-of-aluminum-based-composites-reinforced-by-nanocrystalline-carbon-coated-intermetallic-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7880</span> Liquid Phase Sintering of Boron-Alloyed Powder Metallurgy Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih-Jie%20Lin"> Zih-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a feasible means for decreasing the porosity of powder metallurgy (PM) Fe-based material without substantially increase the production cost. The aim of this study was to investigate the effect of 0.6 wt% boron on the densification of PM 304L stainless steel by LPS. The results indicated that the increase in the sintered density of 304L+0.6B steel is obvious after 1250 ºC sintering, and eutectic structures with borides are observed at the interfaces of the raw steel powders. Differential scanning calorimetry (DSC) results show that liquid is generated at 1244ºC during sintering. The boride in the eutectic structure is rich in boron and chromium atoms and is deficient in nickel atoms, as identified by electron probe micro-analyzer (EPMA). Furthermore, the sintered densities of 304L and 304L+0.6B steels sintered at 1300 ºC are 6.99 g/cm3 and 7.69 g/cm3, respectively, indicating that boron is a suitable alloying element for facilitating LPS of PM 304L stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/62892/liquid-phase-sintering-of-boron-alloyed-powder-metallurgy-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7879</span> Novel Ti/Al-Cr-Fe Metal Matrix Composites Prepared by Spark Plasma Sintering with Excellent Wear Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruitao%20Li">Ruitao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhili%20Dong"> Zhili Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nay%20Win%20Khun"> Nay Win Khun</a>, <a href="https://publications.waset.org/abstracts/search?q=Khiam%20Aik%20Khor"> Khiam Aik Khor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, microstructure and sintering mechanism as well as wear resistance properties of Ti/Al-Cr-Fe metal matrix composites (MMCs) fabricated by spark plasma sintering (SPS) with Ti as matrix and Al-Cr-Fe as reinforcement were investigated. Phases and microstructure of the sintered samples were analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Wear resistance properties were tested by ball-on-disk method. An Al3Ti ring forms around each Al-Cr-Fe particle as the bonding layer between Ti and Al-Cr-Fe particles. The Al content in Al-Cr-Fe particles experiences a decrease from 70 at.% to 60 at.% in the sintering process. And these particles consist of quasicrystalline icosahedral AlCrFe and quasicrystal approximants γ-brass Al8(Cr,Fe)5 and Al9(Cr,Fe)4 in the sintered compact. The addition of Al-Cr-Fe particles into the Ti matrix can improve the microhardness by about 40% and the wear resistance is improved by more than 50% due to the increase in the microhardness and the change of wear mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composites" title="metal matrix composites">metal matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/9410/novel-tial-cr-fe-metal-matrix-composites-prepared-by-spark-plasma-sintering-with-excellent-wear-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7878</span> Determination of Sintering Parameters of TiB₂ – Ti₃SiC₂ Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilge%20Yaman%20Islak">Bilge Yaman Islak</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20Ayas"> Erhan Ayas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The densification behavior of TiB₂ – Ti₃SiC₂ composites is investigated for temperatures in the range of 1200°C to 1400°C, for the pressure of 40 and 50MPa, and for holding time between 15-30 min by spark plasma sintering (SPS) technique. Ti, Si, TiC and 5 wt.% TiB₂ were used to synthesize TiB₂ – Ti₃SiC₂ composites and the effect of different sintering parameters on the densification and phase evolution of these composites were investigated. The bulk densities were determined by using the Archimedes method. The polished and fractured surfaces of the samples were examined using a scanning electron microscope equipped with an energy dispersive spectroscopy (EDS). The phase analyses were accomplished by using the X-Ray diffractometer. Sintering temperature and holding time are found to play a dominant role in the phase development of composites. TiₓCᵧ and TiSi₂ secondary phases were found in 5 wt.%TiB₂ – Ti₃SiC₂ composites densified at 1200°C and 1400°C under the pressure of 40 MPa, due to decomposition of Ti₃SiC₂. The results indicated that 5 wt.%TiB₂ – Ti₃SiC₂ composites were densified into the dense parts with a relative density of 98.77% by sintering at 1300 °C, for 15 min, under a pressure of 50 MPa via SPS without the formation of any other ancillary phase. This work was funded and supported by Scientific Research Projects Commission of Eskisehir Osmangazi University with the Project Number 201915C103 (2019-2517). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=densification" title="densification">densification</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20evolution" title=" phase evolution"> phase evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=TiB%E2%82%82%20%E2%80%93%20Ti%E2%82%83SiC%E2%82%82%20composites" title=" TiB₂ – Ti₃SiC₂ composites"> TiB₂ – Ti₃SiC₂ composites</a> </p> <a href="https://publications.waset.org/abstracts/116033/determination-of-sintering-parameters-of-tib2-ti3sic2-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7877</span> Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aung%20Kyaw%20Moe">Aung Kyaw Moe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukin%20Evgeny%20Stepanovich"> Lukin Evgeny Stepanovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Popova%20Nelya%20Alexandrovna"> Popova Nelya Alexandrovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of the additive content in the Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 &deg;С and 1550 &deg;С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=corundum" title=" corundum"> corundum</a> </p> <a href="https://publications.waset.org/abstracts/84591/sintering-of-composite-ceramic-based-on-corundum-with-additive-in-the-al2o3-tio2-mno-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7876</span> Mechanical Properties of Selective Laser Sintered 304L Stainless Steel Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Liu">Shijie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehnming%20Lin"> Jehnming Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study mainly discussed the mechanical properties of selective laser sintered 304L stainless steel powder specimen. According to a single layer specimen sintering, the microstructure and porosity were observed to find out the proper sintering parameters. A multi-layer sintering experiment was conducted. Based on the microstructure and the integration between layers, the suitable parameters were found out. Finally, the sintered specimens were examined by metallographical inspection, hardness test, tensile test, and surface morphology measurement. The structure of the molten powder coated with unmelted powder was found in metallographic test. The hardness of the sintered stainless steel powder is greater than the raw material. The tensile strength is less than the raw material, and it is corresponding to different scanning paths. The specimen will have different patterns of cracking. It was found that the helical scanning path specimen will have a warpage deformation at the edge of the specimen. The S-scan path specimen surface is relatively flat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20sintering" title="laser sintering">laser sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering%20path" title=" sintering path"> sintering path</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/100033/mechanical-properties-of-selective-laser-sintered-304l-stainless-steel-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7875</span> Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yonetken">Ahmet Yonetken</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Erol"> Ayhan Erol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic-metal%20composites" title="ceramic-metal composites">ceramic-metal composites</a>, <a href="https://publications.waset.org/abstracts/search?q=proporties" title=" proporties"> proporties</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/92071/production-and-characterization-of-al-bn-composite-materials-by-using-powder-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7874</span> Impact of Iron Doping on Induction Heating during Spark Plasma Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hua%20Tan">Hua Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Salamon"> David Salamon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, γ-Al2O3 powders doped with various amounts of iron were sintered via SPS process. Two heating modes – auto and manual mode were applied to observe the role of electrical induction on heating. Temperature, electric current, and pulse pattern were experimented with grade iron γ-Al2O3 powders. Phase transformation of γ to α -Al2O3 serves as a direct indicator of internal temperature, independently on measured outside temperature. That pulsing in SPS is also able to induce internal heating due to its strong electromagnetic field when dopants are conductive metals (e.g., iron) is proofed during SPS. Density and microstructure were investigated to explain the mechanism of induction heating. In addition, the role of electric pulsing and strong electromagnetic field on internal heating (induction heating) were compared and discussed. Internal heating by iron doping within electrically nonconductive samples is able to decrease sintering temperature and save energy, furthermore it is one explanation for unique features of this material fabrication technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title="spark plasma sintering">spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title=" induction heating"> induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/54836/impact-of-iron-doping-on-induction-heating-during-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7873</span> Onboard Heat, Pressure and Boil-Off Gas Treatment for Stacked NGH Tank Containers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jin%20Kang">Hee Jin Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite numerous studies on the reserves and availability of natural gas hydrates, the technology of transporting natural gas hydrates in large quantities to sea has not been put into practical use. Several natural gas hydrate transport technologies presented by the International Maritime Organization (IMO) are under preparation for commercialization. Among them, NGH tank container concept modularized transportation unit to prevent sintering effect during sea transportation. The natural gas hydrate can be vaporized in a certain part during the transportation. Unprocessed BOG increases the pressure inside the tank. Also, there is a risk of fire if you export the BOG out of the tank without proper handling. Therefore, in this study, we have studied the concept of technology to properly process BOG to modularize natural gas hydrate and to transport it to sea for long distance. The study is expected to contribute to the practical use of NGH tank container, which is a modular transport concept proposed to solve the sintering problem that occurs when transporting natural gas hydrate in the form of bulk cargo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natural%20gas%20hydrate" title="Natural gas hydrate">Natural gas hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=tank%20container" title=" tank container"> tank container</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20transportation" title=" marine transportation"> marine transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=boil-off%20gas" title=" boil-off gas"> boil-off gas</a> </p> <a href="https://publications.waset.org/abstracts/70771/onboard-heat-pressure-and-boil-off-gas-treatment-for-stacked-ngh-tank-containers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7872</span> Modeling and Analysis of Laser Sintering Process Scanning Time for Optimal Planning and Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarana%20Michael%20C.">Agarana Michael C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinlabi%20Esther%20T."> Akinlabi Esther T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pule%20Kholopane"> Pule Kholopane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to sustain the advantages of an advanced manufacturing technique, such as laser sintering, minimization of total processing cost of the parts being produced is very important. An efficient time management would usually very important in optimal cost attainment which would ultimately result in an efficient advanced manufacturing process planning and control. During Laser Scanning Process Scanning (SLS) procedures it is possible to adjust various manufacturing parameters which are used to influence the improvement of various mechanical and other properties of the products. In this study, Modelling and mathematical analysis, including sensitivity analysis, of the laser sintering process time were carried out. The results of the analyses were represented with graphs, from where conclusions were drawn. It was specifically observed that achievement of optimal total scanning time is key for economic efficiency which is required for sustainability of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20analysis" title="modeling and analysis">modeling and analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20planning%20and%20control" title=" optimal planning and control"> optimal planning and control</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20sintering%20process" title=" laser sintering process"> laser sintering process</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20time" title=" scanning time"> scanning time</a> </p> <a href="https://publications.waset.org/abstracts/158820/modeling-and-analysis-of-laser-sintering-process-scanning-time-for-optimal-planning-and-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7871</span> Novel Hybrid Ceramic Nanocomposites Fabricated by Rapid Sintering Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad">Iftikhar Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abulhakim%20Almajid"> Abulhakim Almajid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina (Al2O3) is an attractive structural ceramic however; brittleness turns Al2O3 down for advanced applications. Development of multi-phase phase ceramics systems is promising to curtail the brittleness and the incorporation of strong/elastic graphene, as third phase, into dual phase (Al2O3-SiC) is striking for mechanical upgrading purpose. Thin graphene nanosheets (GNS) were prepared by thermal exfoliation process and reinforced into dual phase ceramic system. The hybrid nanocomposite was consolidated by novel HF-IH (high-frequency induction heating) sintering furnace at 1500 °C under 50 MPa in vacuum conditions. Structural features and grain size of the resulting nanocomposite were analyzed by SEM and TEM whilst the mechanical properties were assessed by microhardness and nanoindentation techniques. The fracture toughness of the hybrid nanocomposites was appraised by direct crack measurement method. Electron microscopic investigations confirmed the preparation of thin (< 10 nm) graphene nanosheets (GNS). HF-IH sintering route condensed the three-phase (GNS-Al2O3-SiC) hybrid nanocomposite system to > 99% relative densities. SEM of the hybrid nanocomposites fractured surfaces revealed even distribution of the nanocomposite constituents and changed in fracture-mode. Structurally, 88% grain reduction into hybrid nanocomposite was also obtained. Mechanically, enhanced fracture toughness (50%) and hardness (53%) were also achieved for hybrid nanocomposites were attained against bench marked monolithic Al2O3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20nanocomposites" title=" hybrid nanocomposites"> hybrid nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20sintering" title=" rapid sintering"> rapid sintering</a> </p> <a href="https://publications.waset.org/abstracts/35558/novel-hybrid-ceramic-nanocomposites-fabricated-by-rapid-sintering-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7870</span> Concentrated Solar Energy Sintering of Multifunctional Metallic Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catalin%20Croitoru">Catalin Croitoru</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionut%20Claudiu%20Roata"> Ionut Claudiu Roata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Employing concentrated solar energy (CSE) for sintering metallic parts offers distinct advantages, notably in the rapid thermal cycling that significantly influences their microstructure and phase transitions. This study uses the thermal control that CSE affords, enhancing the mechanical properties and tailoring the functionality of nickel-based alloys. We synthesized bulk alloys by sintering Ni-Cr-Al-Y powders in varied ratios using a vertical solar furnace at PROMES-CNRS, Font-Romeu Odeillo, France. The process achieved optimal fusion at 800°C for 10 minutes, resulting in materials with a notable hydrophilic surface due to oxide formation. The alloys’ performance was evaluated through corrosion resistance tests in a 3.5% wt. NaCl solution, utilizing potentiodynamic scanning and electrochemical impedance spectroscopy. Our findings demonstrate the potential of CSE in advancing the material properties of nickel-based alloys for diverse applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20solar%20energy" title="concentrated solar energy">concentrated solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a> </p> <a href="https://publications.waset.org/abstracts/192237/concentrated-solar-energy-sintering-of-multifunctional-metallic-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7869</span> Effect of Particle Size on Sintering Characteristics of Injection Molded 316L Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20%C3%96zkan%20G%C3%BClsoy">H. Özkan Gülsoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonyraj%20Arockiasamy"> Antonyraj Arockiasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of powder injection molding technology for the fabrication of metallic and non-metallic components is of growing interest as the process considerably saves time and cost. Utilizing this fabrication method, full dense components are being prepared in various sizes. In this work, our effort is focused to study the densification behavior of the parts made using different size 316L stainless steel powders. The metal powders were admixed with an adequate amount of polymeric compounds and molded as standard tensile bars. Solvent and thermal debinding was carried out followed by sintering in ultra pure hydrogen atmosphere based on the differential scanning calorimetry (DSC) cycle. Mechanical property evaluation and microstructural characterization of the sintered specimens was performed using universal Instron tensile testing machine, Vicker’s microhardness tester, optical (OM) and scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction were used. The results are compared and analyzed to predict the strength and weakness of the test conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20injection%20molding" title="powder injection molding">powder injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title=" stainless steels"> stainless steels</a> </p> <a href="https://publications.waset.org/abstracts/35017/effect-of-particle-size-on-sintering-characteristics-of-injection-molded-316l-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7868</span> Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Y%C3%B6netken">A. Yönetken</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yakar"> A. Yakar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Pe%C5%9Fmen"> G. Peşmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=electroless%20nickel%20plating" title=" electroless nickel plating"> electroless nickel plating</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/47697/investigation-of-ceramic-metal-composites-produced-by-electroless-ni-plating-of-aln-astaloy-cr-m" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7867</span> Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y%C3%B6netken">Ahmet Yönetken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroless%20nickel%20plating" title="electroless nickel plating">electroless nickel plating</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic-metal%20composites" title=" ceramic-metal composites"> ceramic-metal composites</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/60726/production-and-investigation-of-ceramic-metal-composite-from-electroless-ni-plated-aln-and-al-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7866</span> Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20R.%20Ammar">Hany R. Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalil%20A.%20Khalil"> Khalil A. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Sayed%20M.%20Sherif"> El-Sayed M. Sherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20aluminum%20alloys" title="nanocrystalline aluminum alloys">nanocrystalline aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperatures" title=" elevated temperatures"> elevated temperatures</a> </p> <a href="https://publications.waset.org/abstracts/14022/thermally-stable-nanocrystalline-aluminum-alloys-processed-by-mechanical-alloying-and-high-frequency-induction-heat-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7865</span> Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Yaghoubi">Hamed Yaghoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Salahi"> Esmaeil Salahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateme%20Taati"> Fateme Taati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20shrinkage" title="anisotropic shrinkage">anisotropic shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20material" title=" ceramic material"> ceramic material</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering%20process" title=" liquid phase sintering process"> liquid phase sintering process</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical-experimental%20procedure" title=" numerical-experimental procedure"> numerical-experimental procedure</a> </p> <a href="https://publications.waset.org/abstracts/62940/evaluation-of-rheological-properties-anisotropic-shrinkage-and-heterogeneous-densification-of-ceramic-materials-during-liquid-phase-sintering-by-numerical-experimental-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7864</span> Mechanical Properties of Spark Plasma Sintered 2024 AA Reinforced with TiB₂ and Nano Yttrium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Vidyasagar%20Chevuri">Suresh Vidyasagar Chevuri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Karunakar%20Chevuri"> D. B. Karunakar Chevuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main advantages of 'Metal Matrix Nano Composites (MMNCs)' include excellent mechanical performance, good wear resistance, low creep rate, etc. The method of fabrication of MMNCs is quite a challenge, which includes processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminum based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% keeping 1 wt% TiB2 constant are fabricated by Spark Plasma Sintering (SPS). The mechanical property like hardness is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with that of the composite developed. It is found that the yttrium addition increases the above-mentioned properties to some extent and then decreases gradually when yttrium wt% increases beyond a point between 0.3 and 0.4 wt%. High density is achieved in the samples fabricated by spark plasma sintering when compared to any other fabrication route, and uniform distribution of yttrium is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title="spark plasma sintering">spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=2024%20AA" title=" 2024 AA"> 2024 AA</a>, <a href="https://publications.waset.org/abstracts/search?q=yttrium%20addition" title=" yttrium addition"> yttrium addition</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20characterization" title=" microstructure characterization"> microstructure characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/65503/mechanical-properties-of-spark-plasma-sintered-2024-aa-reinforced-with-tib2-and-nano-yttrium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7863</span> Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewale%20O.%20Adegbenjo">Adewale O. Adegbenjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsie%20Nsiah-Baafi"> Elsie Nsiah-Baafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mxolisi%20B.%20Shongwe"> Mxolisi B. Shongwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercy%20Ramakokovhu"> Mercy Ramakokovhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Olubambi"> Peter A. Olubambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used &alpha;+&beta; alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650&ndash;850&deg;C temperature range at a constant heating rate, applied pressure and holding time of 100&deg;C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes&rsquo; principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers&rsquo; micro-indentation hardness of 360 HV were attained at 850&deg;C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/40521/dependence-of-densification-hardness-and-wear-behaviors-of-ti6al4v-powders-on-sintering-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=263">263</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=264">264</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sintering%20technology&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10