CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;16 of 16 results for author: <span class="mathjax">Veis, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Veis%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Veis, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Veis%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Veis, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01641">arXiv:2304.01641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01641">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Highly-Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Shaotang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sol%C3%A9%2C+A+P">Andr茅s Pinar Sol茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mat%C4%9Bj%2C+A">Adam Mat臎j</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guangwu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stetsovych%2C+O">Oleksandr Stetsovych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soler%2C+D">Diego Soler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huimin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telychko%2C+M">Mykola Telychko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+M">Manish Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brabec%2C+J">Jiri Brabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jishan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jelinek%2C+P">Pavel Jelinek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01641v1-abstract-short" style="display: inline;"> Open-shell benzenoid polycyclic aromatic hydrocarbons, known as magnetic nanographenes, exhibit unconventional p-magnetism arising from topological frustration or strong electronic-electron (e-e) interaction. Imprinting multiple strongly entangled spins into polyradical nanographenes creates a major paradigm shift in realizing non-trivial collective quantum behaviors and exotic quantum phases in o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01641v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01641v1-abstract-full" style="display: none;"> Open-shell benzenoid polycyclic aromatic hydrocarbons, known as magnetic nanographenes, exhibit unconventional p-magnetism arising from topological frustration or strong electronic-electron (e-e) interaction. Imprinting multiple strongly entangled spins into polyradical nanographenes creates a major paradigm shift in realizing non-trivial collective quantum behaviors and exotic quantum phases in organic quantum materials. However, conventional design approaches are limited by a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here, we present a novel design strategy combing topological frustration and e-e interactions to fabricate the largest fully-fused open-shell nanographene reported to date, a &#39;butterfly&#39;-shaped tetraradical on Au(111). We employed bond-resolved scanning tunneling microscopy and spin excitation spectroscopy to unambiguously resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harboring a many-body singlet ground state and strong multi-spin entanglement, which can be well described by many-body calculations. Furthermore, we demonstrate that the nickelocene magnetic probe can sense highly-correlated spin states in nanographene. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes not only presents exciting opportunities for realizing non-trivial quantum magnetism and phases in organic materials but also paves the way toward high-density ultrafast spintronic devices and quantum information technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01641v1-abstract-full').style.display = 'none'; document.getElementById('2304.01641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16289">arXiv:2210.16289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.16289">pdf</a>, <a href="https://arxiv.org/format/2210.16289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Projection-based Density Matrix Renormalization Group in Density Functional Theory Embedding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beran%2C+P">Pavel Beran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pernal%2C+K">Katarzyna Pernal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pavosevic%2C+F">Fabijan Pavosevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16289v1-abstract-short" style="display: inline;"> The density matrix renormalization group (DMRG) method has already proved itself as a very efficient and accurate computational method, which can treat large active spaces and capture the major part of strong correlation. Its application on larger molecules is, however, limited by its own computational scaling as well as demands of methods for treatment of the missing dynamical electron correlatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16289v1-abstract-full').style.display = 'inline'; document.getElementById('2210.16289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16289v1-abstract-full" style="display: none;"> The density matrix renormalization group (DMRG) method has already proved itself as a very efficient and accurate computational method, which can treat large active spaces and capture the major part of strong correlation. Its application on larger molecules is, however, limited by its own computational scaling as well as demands of methods for treatment of the missing dynamical electron correlation. In this work, we present the first step in the direction of combining DMRG with density functional theory (DFT), one of the most employed quantum chemical methods with favourable scaling, by means of the projection-based wave function (WF)-in-DFT embedding. On the two proof-of-concept but important molecular examples, we demonstrate that the developed DMRG-in-DFT approach provides a very accurate description of molecules with a strongly correlated fragment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16289v1-abstract-full').style.display = 'none'; document.getElementById('2210.16289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.02340">arXiv:2204.02340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.02340">pdf</a>, <a href="https://arxiv.org/format/2204.02340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient adiabatic connection approach for strongly correlated systems. Application to singlet-triplet gaps of biradicals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Drwal%2C+D">Daria Drwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beran%2C+P">Pavel Beran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hapka%2C+M">Micha艂 Hapka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Modrzejewski%2C+M">Marcin Modrzejewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+A">Adam Sok贸艂</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pernal%2C+K">Katarzyna Pernal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.02340v1-abstract-short" style="display: inline;"> Strong correlation can be essentially captured with multireference wavefunction methods such as complete active space self-consistent field (CASSCF) or density matrix renormalization group (DMRG). Still, an accurate description of the electronic structure of strongly correlated systems requires accounting for the dynamic electron correlation, which CASSCF and DMRG largely miss. In this work a new&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02340v1-abstract-full').style.display = 'inline'; document.getElementById('2204.02340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.02340v1-abstract-full" style="display: none;"> Strong correlation can be essentially captured with multireference wavefunction methods such as complete active space self-consistent field (CASSCF) or density matrix renormalization group (DMRG). Still, an accurate description of the electronic structure of strongly correlated systems requires accounting for the dynamic electron correlation, which CASSCF and DMRG largely miss. In this work a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The AC$_{\rm n}$ method accounts for terms up to the desired order n in the coupling constant, is rigorously size-consistent, free from instabilities and intruder states. It employs the particle-hole multireference random phase approximation and the Cholesky decomposition technique, which leads to a computational cost growing with the fifth power of the system size. Thanks to AC$_{\rm n}$ depending solely on one- and two-electron CAS reduced density matrix, the method is much more efficient than existing ab initio dynamic correlation methods for strong correlation. AC$_{\rm n}$ affords excellent results for singlet-triplet gaps of challenging organic biradicals. Development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02340v1-abstract-full').style.display = 'none'; document.getElementById('2204.02340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.12803">arXiv:2108.12803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.12803">pdf</a>, <a href="https://arxiv.org/format/2108.12803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Density matrix renormalization group with dynamical correlation via adiabatic connection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beran%2C+P">Pavel Beran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matou%C5%A1ek%2C+M">Mikul谩拧 Matou拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hapka%2C+M">Micha艂 Hapka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pernal%2C+K">Katarzyna Pernal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.12803v1-abstract-short" style="display: inline;"> The quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as one of the methods of choice for calculations of strongly correlated molecular systems. Despite its great ability to capture strong electronic correlation in large active spaces, it is not suitable for computations of dynamical electron correlation. In this work, we present a new approa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12803v1-abstract-full').style.display = 'inline'; document.getElementById('2108.12803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.12803v1-abstract-full" style="display: none;"> The quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as one of the methods of choice for calculations of strongly correlated molecular systems. Despite its great ability to capture strong electronic correlation in large active spaces, it is not suitable for computations of dynamical electron correlation. In this work, we present a new approach to the electronic structure problem of strongly correlated molecules, in which DMRG is responsible for a proper description of the strong correlation, whereas dynamical correlation is computed via the recently developed adiabatic connection (AC) technique, which requires only up to two-body active space reduced density matrices. We report encouraging results of this approach on typical candidates for DMRG computations, namely the $n$-acenes ($n = 2 \rightarrow 7$), Fe(II)-porphyrin, and Fe$_3$S$_4$ cluster. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.12803v1-abstract-full').style.display = 'none'; document.getElementById('2108.12803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01754">arXiv:2105.01754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.01754">pdf</a>, <a href="https://arxiv.org/format/2105.01754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.1c00830">10.1021/acs.jctc.1c00830 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Effect of Geometry, Spin and Orbital Optimization in Achieving Accurate, Fully-Correlated Results for Iron-Sulfur Cubanes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mejuto-Zaera%2C+C">Carlos Mejuto-Zaera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzeli%2C+D">Demeter Tzeli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams-Young%2C+D">David Williams-Young</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tubman%2C+N+M">Norm M. Tubman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matou%C5%A1ek%2C+M">Mikul谩拧 Matou拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brabec%2C+J">Jiri Brabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xantheas%2C+S+S">Sotiris S. Xantheas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Jong%2C+W+A">Wibe A. de Jong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01754v2-abstract-short" style="display: inline;"> Iron-sulfur clusters comprise an important functional motif of the catalytic centers of biological systems, capable of enabling important chemical transformations at ambient conditions. This remarkable capability derives from a notoriously complex electronic structure that is characterized by a high density of states that is sensitive to geometric changes. The spectral sensitivity to subtle geomet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01754v2-abstract-full').style.display = 'inline'; document.getElementById('2105.01754v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01754v2-abstract-full" style="display: none;"> Iron-sulfur clusters comprise an important functional motif of the catalytic centers of biological systems, capable of enabling important chemical transformations at ambient conditions. This remarkable capability derives from a notoriously complex electronic structure that is characterized by a high density of states that is sensitive to geometric changes. The spectral sensitivity to subtle geometric changes has received little attention from fully-correlated calculations, owing partly to the exceptional computational complexity for treating these large and correlated systems accurately. To provide insight into this aspect, we report the first Complete Active Space Self Consistent Field (CASSCF) calculations for different geometries of cubane-based clusters using two complementary, fully-correlated solvers: spin-pure Adaptive Sampling Configuration Interaction (ASCI) and Density Matrix Renormalization Group (DMRG). We find that the previously established picture of a double-exchange driven magnetic structure, with minute energy gaps (&lt; 1 mHa) between consecutive spin states, has a weak dependence on the underlying geometry. However, the spin gap between the lowest singlet and the highest spin states is strongly geometry dependent, changing by an order of magnitude upon slight deformations that are still within biologically relevant parameters. The CASSCF orbital optimization procedure, using active spaces as large as 86 electrons in 52 orbitals, was found to reduce this gap by a factor of two compared to typical mean-field orbital approaches. Our results clearly demonstrate the need for performing highly correlated calculations to unveil the challenging electronic structure of these complex catalytic centers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01754v2-abstract-full').style.display = 'none'; document.getElementById('2105.01754v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 6 tables plus SI (12 pages, 3 figures, 9 tables)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04557">arXiv:2006.04557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.04557">pdf</a>, <a href="https://arxiv.org/format/2006.04557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> DMRG on top of plane-wave Kohn-Sham orbitals: case study of defected boron nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barcza%2C+G">Gergely Barcza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iv%C3%A1dy%2C+V">Viktor Iv谩dy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szilv%C3%A1si%2C+T">Tibor Szilv谩si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=V%C3%B6r%C3%B6s%2C+M">M谩rton V枚r枚s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gali%2C+%C3%81">脕d谩m Gali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04557v1-abstract-short" style="display: inline;"> In this paper, we analyze the numerical aspects of the inherently multi-reference density matrix renormalization group (DMRG) calculations on top of the periodic Kohn-Sham density functional theory (DFT) using the complete active space (CAS) approach. Following the technical outline related to the computation of the Hamiltonian matrix elements and to the construction of the active space, we illust&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04557v1-abstract-full').style.display = 'inline'; document.getElementById('2006.04557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04557v1-abstract-full" style="display: none;"> In this paper, we analyze the numerical aspects of the inherently multi-reference density matrix renormalization group (DMRG) calculations on top of the periodic Kohn-Sham density functional theory (DFT) using the complete active space (CAS) approach. Following the technical outline related to the computation of the Hamiltonian matrix elements and to the construction of the active space, we illustrate the potential of the framework by studying the vertical many-body energy spectrum of hexagonal boron nitride (hBN) nano-flakes embedding a single boron vacancy point defect with prominent multi-reference character. We investigate the consistency of the DMRG energy spectrum from the perspective of sample size, basis size, and active space selection protocol. Results obtained from standard quantum chemical atom-centered basis calculations and plane-wave based counterparts show excellent agreement. Furthermore, we also discuss the spectrum of the periodic sheet which is in good agreement with extrapolated data of finite clusters. These results pave the way toward applying DMRG method in extended correlated solid state systems, such as point qubit in wide band gap semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04557v1-abstract-full').style.display = 'none'; document.getElementById('2006.04557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.05352">arXiv:2001.05352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.05352">pdf</a>, <a href="https://arxiv.org/format/2001.05352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5144974">10.1063/1.5144974 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards DMRG-tailored coupled cluster method in the 4c-relativistic domain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brandejs%2C+J">Jan Brandejs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vi%C5%A1%C5%88%C3%A1k%2C+J">Jakub Vi拧艌谩k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mih%C3%A1ly%2C+M">Mat茅 Mih谩ly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pittner%2C+J">Ji艡铆 Pittner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.05352v2-abstract-short" style="display: inline;"> There are three essential problems in computational relativistic chemistry: electrons moving at relativistic speeds, close lying states and dynamical correlation. Currently available quantum-chemical methods are capable of solving systems with one or two of these issues. However, there is a significant class of molecules, in which all the three effects are present. These are the heavier transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05352v2-abstract-full').style.display = 'inline'; document.getElementById('2001.05352v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.05352v2-abstract-full" style="display: none;"> There are three essential problems in computational relativistic chemistry: electrons moving at relativistic speeds, close lying states and dynamical correlation. Currently available quantum-chemical methods are capable of solving systems with one or two of these issues. However, there is a significant class of molecules, in which all the three effects are present. These are the heavier transition metal compounds, lanthanides and actinides with open d or f shells. For such systems, sufficiently accurate numerical methods are not available, which hinders the application of theoretical chemistry in this field. In this paper, we combine two numerical methods in order to address this challenging class of molecules. These are the relativistic versions of coupled cluster methods and density matrix renormalization group (DMRG) method. To the best of our knowledge, this is the first relativistic implementation of the coupled cluster method externally corrected by DMRG. The method brings a significant reduction of computational costs, as we demonstrate on the system of TlH, AsH and SbH. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05352v2-abstract-full').style.display = 'none'; document.getElementById('2001.05352v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04890">arXiv:2001.04890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.04890">pdf</a>, <a href="https://arxiv.org/format/2001.04890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Massively parallel quantum chemical density matrix renormalization group method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brabec%2C+J">Ji艡铆 Brabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brandejs%2C+J">Jan Brandejs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kowalski%2C+K">Karol Kowalski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xantheas%2C+S">Sotiris Xantheas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04890v2-abstract-short" style="display: inline;"> We present, to the best of our knowlegde, the first attempt to exploit the supercomputer platform for quantum chemical density matrix renormalization group (QC-DMRG) calculations. We have developed the parallel scheme based on the in-house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04890v2-abstract-full').style.display = 'inline'; document.getElementById('2001.04890v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04890v2-abstract-full" style="display: none;"> We present, to the best of our knowlegde, the first attempt to exploit the supercomputer platform for quantum chemical density matrix renormalization group (QC-DMRG) calculations. We have developed the parallel scheme based on the in-house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candidates for QC-DMRG calculations. In case of the largest calculation, which is the nitrogenase FeMo cofactor cluster with the active space comprising 113 electrons in 76 orbitals and bond dimension equal to 6000, our parallel approach scales up to approximately 2000 CPU cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04890v2-abstract-full').style.display = 'none'; document.getElementById('2001.04890v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">only acknowledgement corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00205">arXiv:1906.00205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.00205">pdf</a>, <a href="https://arxiv.org/format/1906.00205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.075137">10.1103/PhysRevB.104.075137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krumnow%2C+C">C. Krumnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">L. Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisert%2C+J">J. Eisert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰. Legeza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00205v3-abstract-short" style="display: inline;"> Tensor network methods have progressed from variational techniques based on matrix-product states able to compute properties of one-dimensional condensed-matter lattice models into methods rooted in more elaborate states such as projected entangled pair states aimed at simulating the physics of two-dimensional models. In this work, we advocate the paradigm that for two-dimensional fermionic models&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00205v3-abstract-full').style.display = 'inline'; document.getElementById('1906.00205v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00205v3-abstract-full" style="display: none;"> Tensor network methods have progressed from variational techniques based on matrix-product states able to compute properties of one-dimensional condensed-matter lattice models into methods rooted in more elaborate states such as projected entangled pair states aimed at simulating the physics of two-dimensional models. In this work, we advocate the paradigm that for two-dimensional fermionic models, matrix-product states are still applicable to significantly higher accuracy levels than direct embeddings into one-dimensional systems allow for. To do so, we exploit schemes of fermionic mode transformations and overcome the prejudice that one-dimensional embeddings need to be local. This approach takes the insight seriously that the suitable exploitation of both the manifold of matrix-product states and the unitary manifold of mode transformations can more accurately capture the natural correlation structure. By demonstrating the residual low levels of entanglement in emerging modes, we show that matrix-product states can describe ground states strikingly well. The power of the approach is exemplified by investigating a phase transition of spin-less fermions for lattice sizes up to 10x10. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00205v3-abstract-full').style.display = 'none'; document.getElementById('1906.00205v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, new material presented</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 075137 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.02682">arXiv:1902.02682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.02682">pdf</a>, <a href="https://arxiv.org/format/1902.02682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5093497">10.1063/1.5093497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum information-based analysis of electron-deficient bonds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brandejs%2C+J">Jan Brandejs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szalay%2C+S">Szil谩rd Szalay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barcza%2C+G">Gergely Barcza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pittner%2C+J">Ji艡铆 Pittner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.02682v1-abstract-short" style="display: inline;"> Recently, the correlation theory of the chemical bond was developed, which applies concepts of quantum information theory for the characterization of chemical bonds, based on the multiorbital correlations within the molecule. Here for the first time, we extend the use of this mathematical toolbox for the description of electron-deficient bonds. We start by verifying the theory on the textbook exam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02682v1-abstract-full').style.display = 'inline'; document.getElementById('1902.02682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.02682v1-abstract-full" style="display: none;"> Recently, the correlation theory of the chemical bond was developed, which applies concepts of quantum information theory for the characterization of chemical bonds, based on the multiorbital correlations within the molecule. Here for the first time, we extend the use of this mathematical toolbox for the description of electron-deficient bonds. We start by verifying the theory on the textbook example of a molecule with three-center two-electron bonds, namely the diborane(6). We then show that the correlation theory of the chemical bond is able to properly describe bonding situation in more exotic molecules which have been synthetized and characterized only recently, in particular the diborane molecule with four hydrogen atoms [diborane(4)] and neutral zerovalent s-block beryllium complex, whose surprising stability was attributed to a strong three-center two-electron $蟺$ bond stretching across the C-Be-C core. Our approach is of a high importance especially in the light of a constant chase after novel compounds with extraordinary properties where the bonding is expected to be unusual. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02682v1-abstract-full').style.display = 'none'; document.getElementById('1902.02682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07732">arXiv:1809.07732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07732">pdf</a>, <a href="https://arxiv.org/ps/1809.07732">ps</a>, <a href="https://arxiv.org/format/1809.07732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.8b00960">10.1021/acs.jctc.8b00960 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Faulstich%2C+F+M">Fabian M. Faulstich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%A1t%C3%A9%2C+M">Mih谩ly M谩t茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laestadius%2C+A">Andre Laestadius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Csirik%2C+M+A">Mih谩ly Andr谩s Csirik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antalik%2C+A">Andrej Antalik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brabec%2C+J">Ji艡铆 Brabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+R">Reinhold Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pittner%2C+J">Ji艡铆 Pittner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kvaal%2C+S">Simen Kvaal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07732v1-abstract-short" style="display: inline;"> In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate chemical properties of the used method, such as energy size extensivity and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07732v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07732v1-abstract-full" style="display: none;"> In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate chemical properties of the used method, such as energy size extensivity and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use of a so-called CAS-ext gap describing the basis splitting between the complete active space and the external part. Moreover, the behavior of the energy error as a function of the optimal basis splitting is discussed. We show numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual information, which are quantities that are used to choose the complete active space. Furthermore, we extend the mathematical analysis with a numerical study on the complete active space dependence of the error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07732v1-abstract-full').style.display = 'none'; document.getElementById('1809.07732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.01057">arXiv:1801.01057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.01057">pdf</a>, <a href="https://arxiv.org/format/1801.01057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.8b00022">10.1021/acs.jctc.8b00022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Full configuration interaction quantum Monte Carlo benchmark and multireference coupled cluster studies of tetramethyleneethane diradical </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antal%C3%ADk%2C+A">Andrej Antal铆k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alavi%2C+A">Ali Alavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pittner%2C+J">Ji艡铆 Pittner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.01057v1-abstract-short" style="display: inline;"> We have performed a FCI-quality benchmark calculation for the tetramethyleneethane molecule in cc-pVTZ basis set employing a subset of CASPT2(6,6) natural orbitals for the FCIQMC calculation. The results are in an excellent agreement with the previous large scale diffusion Monte Carlo calculations by Pozun et al. and available experimental results. Our computations verified that there is a maximum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01057v1-abstract-full').style.display = 'inline'; document.getElementById('1801.01057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.01057v1-abstract-full" style="display: none;"> We have performed a FCI-quality benchmark calculation for the tetramethyleneethane molecule in cc-pVTZ basis set employing a subset of CASPT2(6,6) natural orbitals for the FCIQMC calculation. The results are in an excellent agreement with the previous large scale diffusion Monte Carlo calculations by Pozun et al. and available experimental results. Our computations verified that there is a maximum on PES of the ground singlet state ($^1\text{A}$) $45^{\circ}$ torsional angle and the corresponding vertical singlet-triplet energy gap is $0.01$ eV. We have employed this benchmark for assessment of the accuracy of MkCCSDT and DMRG-tailored CCSD (TCCSD) methods. MR MkCCSDT with CAS(2,2) model space, though giving good values for the singlet-triplet energy gap, is not able to properly describe the shape of the multireference singlet PES. Similarly, DMRG(24,25) is not able to correctly capture the shape of the singlet surface, due to the missing dynamic correlation. On the other hand, the DMRG-tailored CCSD method describes the shape of the ground singlet state with an excellent accuracy, but for the correct ordering requires computation of the zero-spin-projection component of the triplet state ($^3\text{B}_1$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01057v1-abstract-full').style.display = 'none'; document.getElementById('1801.01057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Theory Comput. 2018, 14, 2439-2445 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06919">arXiv:1605.06919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06919">pdf</a>, <a href="https://arxiv.org/format/1605.06919">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-02447-z">10.1038/s41598-017-02447-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The correlation theory of the chemical bond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Szalay%2C+S">Szil谩rd Szalay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barcza%2C+G">Gergely Barcza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szilv%C3%A1si%2C+T">Tibor Szilv谩si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06919v3-abstract-short" style="display: inline;"> The quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06919v3-abstract-full').style.display = 'inline'; document.getElementById('1605.06919v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06919v3-abstract-full" style="display: none;"> The quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that. These make it possible to characterise quantitatively, how well a bonding picture describes the chemical system. As proof of concept, we apply the theory for the investigation of the bond structures of several molecules. We show that the non-existence of well-defined multiorbital correlation clustering provides a reason for debated bonding picture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06919v3-abstract-full').style.display = 'none'; document.getElementById('1605.06919v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor changes, recalculated results, conclusions unchanged. Molecular-physical applications in the main text, multipartite correlation theory in the appendix (10+13 pages, 3+7 figures), comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 7, Article number: 2237 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.03229">arXiv:1512.03229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.03229">pdf</a>, <a href="https://arxiv.org/ps/1512.03229">ps</a>, <a href="https://arxiv.org/format/1512.03229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C6CP00726K">10.1039/C6CP00726K <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> H眉ckel--Hubbard-Ohno modeling of $\boldsymbol蟺$-bonds in ethene and ethyne with application to trans-polyacetylene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tim%C3%A1r%2C+M">M谩t茅 Tim谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barcza%2C+G">Gergely Barcza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gebhard%2C+F">Florian Gebhard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">Libor Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰rs Legeza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.03229v1-abstract-short" style="display: inline;"> Quantum chemistry calculations provide the potential energy between two carbon atoms in ethane (H$_3$C$-$CH$_3$), ethene (H$_2$C$=$CH$_2$), and ethyne (HC$\equiv$CH) as a function of the atomic distance. Based on the energy function for the $蟽$-bond in ethane, $V_蟽(r)$, we use the H眉ckel model with Hubbard--Ohno interaction for the $蟺$~electrons to describe the energies $V_{蟽蟺}(r)$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03229v1-abstract-full').style.display = 'inline'; document.getElementById('1512.03229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.03229v1-abstract-full" style="display: none;"> Quantum chemistry calculations provide the potential energy between two carbon atoms in ethane (H$_3$C$-$CH$_3$), ethene (H$_2$C$=$CH$_2$), and ethyne (HC$\equiv$CH) as a function of the atomic distance. Based on the energy function for the $蟽$-bond in ethane, $V_蟽(r)$, we use the H眉ckel model with Hubbard--Ohno interaction for the $蟺$~electrons to describe the energies $V_{蟽蟺}(r)$ and $V_{蟽蟺蟺}(r)$ for the $蟽蟺$ double bond in ethene and the $蟽蟺蟺$ triple bond in ethyne, respectively. The fit of the force functions shows that the Peierls coupling can be estimated with some precision whereas the Hubbard-Ohno parameters are insignificant at the distances under consideration. We apply the H眉ckel-Hubbard-Ohno model to describe the bond lengths and the energies of elementary electronic excitations of trans-polyacetylene, (CH)$_n$, and adjust the $蟽$-bond potential for conjugated polymers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03229v1-abstract-full').style.display = 'none'; document.getElementById('1512.03229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.00161">arXiv:1507.00161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.00161">pdf</a>, <a href="https://arxiv.org/format/1507.00161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.92.051303">10.1103/PhysRevC.92.051303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advanced density matrix renormalization group method for nuclear structure calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰. Legeza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">L. Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poves%2C+A">A. Poves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dukelsky%2C+J">J. Dukelsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.00161v1-abstract-short" style="display: inline;"> We present an efficient implementation of the Density Matrix Renormalization Group (DMRG) algorithm that includes an optimal ordering of the proton and neutron orbitals and an efficient expansion of the active space utilizing various concepts of quantum information theory. We first show how this new DMRG methodology could solve a previous $400$ KeV discrepancy in the ground state energy of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00161v1-abstract-full').style.display = 'inline'; document.getElementById('1507.00161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.00161v1-abstract-full" style="display: none;"> We present an efficient implementation of the Density Matrix Renormalization Group (DMRG) algorithm that includes an optimal ordering of the proton and neutron orbitals and an efficient expansion of the active space utilizing various concepts of quantum information theory. We first show how this new DMRG methodology could solve a previous $400$ KeV discrepancy in the ground state energy of $^{56}$Ni. We then report the first DMRG results in the $pf+g9/2$ shell model space for the ground $0^+$ and first $2^+$ states of $^{64}$Ge which are benchmarked with reference data obtained from Monte Carlo shell model. The corresponding correlation structure among the proton and neutron orbitals is determined in terms of the two-orbital mutual information. Based on such correlation graphs we propose several further algorithmic improvement possibilities that can be utilized in a new generation of tensor network based algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00161v1-abstract-full').style.display = 'none'; document.getElementById('1507.00161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 92, 051303 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.00042">arXiv:1504.00042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.00042">pdf</a>, <a href="https://arxiv.org/format/1504.00042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.210402">10.1103/PhysRevLett.117.210402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermionic orbital optimisation in tensor network states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krumnow%2C+C">C. Krumnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veis%2C+L">L. Veis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legeza%2C+%C3%96">脰. Legeza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisert%2C+J">J. Eisert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.00042v3-abstract-short" style="display: inline;"> Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such non-local fermionic systems is the choice of orbitals, it being far from clear what cho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.00042v3-abstract-full').style.display = 'inline'; document.getElementById('1504.00042v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.00042v3-abstract-full" style="display: none;"> Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such non-local fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic orbitals to make. In this work, we propose a way to overcome this challenge. We suggest a method intertwining the optimisation over matrix product states with suitable fermionic Gaussian mode transformations. The described algorithm generalises basis changes in the spirit of the Hartree-Fock method to matrix-product states, and provides a black box tool for basis optimisation in tensor network methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.00042v3-abstract-full').style.display = 'none'; document.getElementById('1504.00042v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures, added substantial material to signify improved numerical performance</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 210402 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10