CINXE.COM

Introduction to general relativity - Wikipedia

<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Introduction to general relativity - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"461fab68-7ead-415b-89bb-bea3912d00ca","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Introduction_to_general_relativity","wgTitle":"Introduction to general relativity","wgCurRevisionId":1248098003, "wgRevisionId":1248098003,"wgArticleId":1411100,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Introduction_to_general_relativity","wgRelevantArticleId":1411100,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true}, "wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym": "Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy", "autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir" :"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"de","autonym":"Deutsch","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{ "lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym" :"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"he","autonym":"עברית","dir":"rtl"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"it","autonym":"italiano","dir":"ltr"},{"lang":"iu", "autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym": "कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली", "dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang": "myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{ "lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang": "rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym": "slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sv","autonym":"svenska","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang" :"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{ "lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang", "ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new", "nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q2743587","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","ext.tmh.player.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready", "mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","ext.scribunto.logs","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.tmh.player.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/2/24/Cassini-science-br.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1733"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/2/24/Cassini-science-br.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1155"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="924"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Introduction to general relativity - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Introduction_to_general_relativity"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Introduction_to_general_relativity rootpage-Introduction_to_general_relativity stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&amp;returnto=Introduction+to+general+relativity" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&amp;returnto=Introduction+to+general+relativity" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en&amp;utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Introduction to general relativity</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Introduction_to_general_relativity" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Introduction_to_general_relativity" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&amp;returnto=Introduction+to+general+relativity" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is a non-technical introduction to the subject. For the main encyclopedia article, see <a href="/wiki/General_relativity" title="General relativity">General relativity</a>.</div> <p><b>General relativity</b> is a <a href="/wiki/Scientific_theory" title="Scientific theory">theory</a> of <a href="/wiki/Gravitation" class="mw-redirect" title="Gravitation">gravitation</a> developed by <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>. </p><figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Cassini-science-br.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Cassini-science-br.jpg/236px-Cassini-science-br.jpg" decoding="async" width="236" height="341" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Cassini-science-br.jpg/354px-Cassini-science-br.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Cassini-science-br.jpg/472px-Cassini-science-br.jpg 2x" data-file-width="640" data-file-height="924"></a><figcaption>High-precision test of general relativity by the <i><a href="/wiki/Cassini-Huygens" class="mw-redirect" title="Cassini-Huygens">Cassini</a></i> space probe (artist's impression): radio signals sent between the Earth and the probe (green wave) are <a href="/wiki/Shapiro_effect" class="mw-redirect" title="Shapiro effect">delayed</a> by the warping of <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> (blue lines) due to the <a href="/wiki/Sun" title="Sun">Sun</a>'s mass.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"> <p>By the beginning of the 20th century, <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">Newton's law of universal gravitation</a> had been accepted for more than two hundred years as a valid description of the gravitational force between masses. In Newton's model, gravity is the result of an attractive force between massive objects. Although even Newton was troubled by the unknown nature of that force, the basic framework was extremely successful at describing motion. </p><p>Experiments and observations show that Einstein's description of gravitation accounts for several effects that are unexplained by Newton's law, such as minute anomalies in the <a href="/wiki/Orbit" title="Orbit">orbits</a> of <a href="/wiki/Mercury_(planet)" title="Mercury (planet)">Mercury</a> and other <a href="/wiki/Planet" title="Planet">planets</a>. General relativity also predicts novel effects of gravity, such as <a href="/wiki/Gravitational_wave" title="Gravitational wave">gravitational waves</a>, <a href="/wiki/Gravitational_lens" title="Gravitational lens">gravitational lensing</a> and an effect of gravity on time known as <a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">gravitational time dilation</a>. Many of these predictions have been confirmed by experiment or observation, <a href="/wiki/Gravitational_wave_observation" class="mw-redirect" title="Gravitational wave observation">most recently gravitational waves</a>. </p><p>General relativity has developed into an essential tool in modern <a href="/wiki/Astrophysics" title="Astrophysics">astrophysics</a>. It provides the foundation for the current understanding of <a href="/wiki/Black_hole" title="Black hole">black holes</a>, regions of space where the gravitational effect is strong enough that even light cannot escape. Their strong gravity is thought to be responsible for the intense <a href="/wiki/Radiation" title="Radiation">radiation</a> emitted by certain types of astronomical objects (such as <a href="/wiki/Active_galactic_nucleus" title="Active galactic nucleus">active galactic nuclei</a> or <a href="/wiki/Microquasar" title="Microquasar">microquasars</a>). General relativity is also part of the framework of the standard <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a> model of <a href="/wiki/Physical_cosmology" title="Physical cosmology">cosmology</a>. </p><p>Although general relativity is not the only relativistic theory of gravity, it is the simplest one that is consistent with the experimental data. Nevertheless, a number of open questions remain, the most fundamental of which is how general relativity can be reconciled with the laws of <a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">quantum physics</a> to produce a complete and self-consistent theory of <a href="/wiki/Quantum_gravity" title="Quantum gravity">quantum gravity</a>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#From_special_to_general_relativity"><span class="tocnumber">1</span> <span class="toctext">From special to general relativity</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Equivalence_principle"><span class="tocnumber">1.1</span> <span class="toctext">Equivalence principle</span></a></li> <li class="toclevel-2 tocsection-3"><a href="#Gravity_and_acceleration"><span class="tocnumber">1.2</span> <span class="toctext">Gravity and acceleration</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Physical_consequences"><span class="tocnumber">1.3</span> <span class="toctext">Physical consequences</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Tidal_effects"><span class="tocnumber">1.4</span> <span class="toctext">Tidal effects</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#From_acceleration_to_geometry"><span class="tocnumber">1.5</span> <span class="toctext">From acceleration to geometry</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-7"><a href="#Geometry_and_gravitation"><span class="tocnumber">2</span> <span class="toctext">Geometry and gravitation</span></a> <ul> <li class="toclevel-2 tocsection-8"><a href="#Probing_the_gravitational_field"><span class="tocnumber">2.1</span> <span class="toctext">Probing the gravitational field</span></a></li> <li class="toclevel-2 tocsection-9"><a href="#Sources_of_gravity"><span class="tocnumber">2.2</span> <span class="toctext">Sources of gravity</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Einstein's_equations"><span class="tocnumber">2.3</span> <span class="toctext">Einstein's equations</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-11"><a href="#Experiments"><span class="tocnumber">3</span> <span class="toctext">Experiments</span></a></li> <li class="toclevel-1 tocsection-12"><a href="#Astrophysical_applications"><span class="tocnumber">4</span> <span class="toctext">Astrophysical applications</span></a> <ul> <li class="toclevel-2 tocsection-13"><a href="#Gravitational_lensing"><span class="tocnumber">4.1</span> <span class="toctext">Gravitational lensing</span></a></li> <li class="toclevel-2 tocsection-14"><a href="#Gravitational_waves"><span class="tocnumber">4.2</span> <span class="toctext">Gravitational waves</span></a></li> <li class="toclevel-2 tocsection-15"><a href="#Black_holes"><span class="tocnumber">4.3</span> <span class="toctext">Black holes</span></a></li> <li class="toclevel-2 tocsection-16"><a href="#Cosmology"><span class="tocnumber">4.4</span> <span class="toctext">Cosmology</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-17"><a href="#Modern_research"><span class="tocnumber">5</span> <span class="toctext">Modern research</span></a></li> <li class="toclevel-1 tocsection-18"><a href="#See_also"><span class="tocnumber">6</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-19"><a href="#References"><span class="tocnumber">7</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-20"><a href="#Bibliography"><span class="tocnumber">8</span> <span class="toctext">Bibliography</span></a></li> <li class="toclevel-1 tocsection-21"><a href="#External_links"><span class="tocnumber">9</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="From_special_to_general_relativity">From special to general relativity</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=1" title="Edit section: From special to general relativity" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>In September 1905, <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> published his theory of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>, which reconciles <a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">Newton's laws of motion</a> with <a href="/wiki/Classical_electromagnetism" title="Classical electromagnetism">electrodynamics</a> (the interaction between objects with <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>). Special relativity introduced a new framework for all of physics by proposing new concepts of <a href="/wiki/Space" title="Space">space</a> and time. Some then-accepted physical theories were inconsistent with that framework; a key example was Newton's theory of <a href="/wiki/Gravitation" class="mw-redirect" title="Gravitation">gravity</a>, which describes the mutual attraction experienced by bodies due to their mass. </p><p>Several physicists, including Einstein, searched for a theory that would reconcile Newton's law of gravity and special relativity. Only Einstein's theory proved to be consistent with experiments and observations. To understand the theory's basic ideas, it is instructive to follow Einstein's thinking between 1907 and 1915, from his simple <a href="/wiki/Thought_experiment" title="Thought experiment">thought experiment</a> involving an observer in free fall to his fully geometric theory of gravity.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Equivalence_principle">Equivalence principle</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=2" title="Edit section: Equivalence principle" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></div> <p>A person in a <a href="/wiki/Free_fall" title="Free fall">free-falling</a> elevator experiences <a href="/wiki/Weightlessness" title="Weightlessness">weightlessness</a>; objects either float motionless or drift at constant speed. Since everything in the elevator is falling together, no gravitational effect can be observed. In this way, the experiences of an observer in free fall are indistinguishable from those of an observer in deep space, far from any significant source of gravity. Such observers are the privileged ("inertial") observers Einstein described in his theory of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>: observers for whom <a href="/wiki/Light" title="Light">light</a> travels along straight lines at constant speed.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Einstein hypothesized that the similar experiences of weightless observers and inertial observers in special relativity represented a fundamental property of gravity, and he made this the cornerstone of his theory of general relativity, formalized in his <a href="/wiki/Equivalence_principle" title="Equivalence principle">equivalence principle</a>. Roughly speaking, the principle states that a person in a free-falling elevator cannot tell that they are in free fall. Every experiment in such a free-falling environment has the same results as it would for an observer at rest or moving uniformly in deep space, far from all sources of gravity.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gravity_and_acceleration">Gravity and acceleration</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=3" title="Edit section: Gravity and acceleration" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Elevator_gravity.svg" class="mw-file-description"><noscript><img alt="refer to adjacent text" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Elevator_gravity.svg/236px-Elevator_gravity.svg.png" decoding="async" width="236" height="157" class="mw-file-element" data-file-width="600" data-file-height="400"></noscript><span class="lazy-image-placeholder" style="width: 236px;height: 157px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Elevator_gravity.svg/236px-Elevator_gravity.svg.png" data-alt="refer to adjacent text" data-width="236" data-height="157" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Elevator_gravity.svg/354px-Elevator_gravity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Elevator_gravity.svg/472px-Elevator_gravity.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a><figcaption>Ball falling to the floor in an accelerating rocket (left) and on Earth (right). The effect is identical.</figcaption></figure> <p>Most effects of gravity vanish in <a href="/wiki/Free_fall" title="Free fall">free fall</a>, but effects that seem the same as those of gravity can be <i>produced</i> by an <a href="/wiki/Acceleration" title="Acceleration">accelerated</a> frame of reference. An observer in a closed room cannot tell which of the following two scenarios is true: </p> <ul><li>Objects are falling to the floor because the room is resting on the surface of the Earth and the objects are being pulled down by gravity.</li> <li>Objects are falling to the floor because the room is aboard a rocket in space, which is accelerating at 9.81 m/s<sup>2</sup>, the <a href="/wiki/Standard_gravity" title="Standard gravity">standard gravity</a> on Earth, and is far from any source of gravity. The objects are being pulled towards the floor by the same "inertial force" that presses the driver of an accelerating car into the back of their seat.</li></ul> <p>Conversely, any effect observed in an accelerated reference frame should also be observed in a gravitational field of corresponding strength. This principle allowed Einstein to predict several novel effects of gravity in 1907 (<style data-mw-deduplicate="TemplateStyles:r1033199720">.mw-parser-output div.crossreference{padding-left:0}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><span role="note" class="hatnote navigation-not-searchable crossreference selfref">see <a href="#Physical_consequences">§ Physical consequences</a>, below</span>). </p><p>An observer in an accelerated reference frame must introduce what physicists call <a href="/wiki/Fictitious_force" title="Fictitious force">fictitious forces</a> to account for the acceleration experienced by the observer and objects around them. In the example of the driver being pressed into their seat, the force felt by the driver is one example; another is the force one can feel while pulling the arms up and out if attempting to spin around like a top. Einstein's master insight was that the constant, familiar pull of the Earth's gravitational field <i>is fundamentally the same as these fictitious forces</i>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> The apparent magnitude of the fictitious forces always appears to be proportional to the mass of any object on which they act – for instance, the driver's seat exerts just enough force to accelerate the driver at the same rate as the car. By analogy, Einstein proposed that an object in a gravitational field should feel a gravitational force proportional to its mass, as embodied in <a href="/wiki/Newton%27s_law_of_gravitation" class="mw-redirect" title="Newton's law of gravitation">Newton's law of gravitation</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Physical_consequences">Physical consequences</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=4" title="Edit section: Physical consequences" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In 1907, Einstein was still eight years away from completing the general theory of relativity. Nonetheless, he was able to make a number of novel, testable predictions that were based on his starting point for developing his new theory: the equivalence principle.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Gravitational_red-shifting2.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Gravitational_red-shifting2.png/200px-Gravitational_red-shifting2.png" decoding="async" width="200" height="267" class="mw-file-element" data-file-width="480" data-file-height="640"></noscript><span class="lazy-image-placeholder" style="width: 200px;height: 267px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Gravitational_red-shifting2.png/200px-Gravitational_red-shifting2.png" data-width="200" data-height="267" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Gravitational_red-shifting2.png/300px-Gravitational_red-shifting2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Gravitational_red-shifting2.png/400px-Gravitational_red-shifting2.png 2x" data-class="mw-file-element">&nbsp;</span></a><figcaption>The gravitational redshift of a light wave as it moves upwards against a gravitational field (caused by the yellow star below)</figcaption></figure> <p>The first new effect is the <a href="/wiki/Gravitational_redshift" title="Gravitational redshift">gravitational frequency shift</a> of light. Consider two observers aboard an accelerating rocket-ship. Aboard such a ship, there is a natural concept of "up" and "down": the direction in which the ship accelerates is "up", and free-floating objects accelerate in the opposite direction, falling "downward". Assume that one of the observers is "higher up" than the other. When the lower observer sends a light signal to the higher observer, the acceleration of the ship causes the light to be <a href="/wiki/Redshift" title="Redshift">red-shifted</a>, as may be calculated from <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>; the second observer will measure a lower <a href="/wiki/Frequency" title="Frequency">frequency</a> for the light than the first sent out. Conversely, light sent from the higher observer to the lower is <a href="/wiki/Blueshift" class="mw-redirect" title="Blueshift">blue-shifted</a>, that is, shifted towards higher frequencies.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Einstein argued that such frequency shifts must also be observed in a gravitational field. This is illustrated in the figure at left, which shows a light wave that is gradually red-shifted as it works its way upwards against the gravitational acceleration. This effect has been confirmed experimentally, as described <a href="#Experiments">below</a>. </p><p>This gravitational frequency shift corresponds to a <a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">gravitational time dilation</a>: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field. </p><p>It is important to stress that, for each observer, there are no observable changes of the flow of time for events or processes that are at rest in his or her reference frame. Five-minute-eggs as timed by each observer's clock have the same consistency; as one year passes on each clock, each observer ages by that amount; each clock, in short, is in perfect agreement with all processes happening in its immediate vicinity. It is only when the clocks are compared between separate observers that one can notice that time runs more slowly for the lower observer than for the higher.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> This effect is minute, but it too has been confirmed experimentally in multiple experiments, as described <a href="#Experiments">below</a>. </p><p>In a similar way, Einstein predicted the <a href="/wiki/Tests_of_general_relativity#Deflection_of_light_by_the_Sun" title="Tests of general relativity">gravitational deflection of light</a>: in a gravitational field, light is deflected downward, to the center of the gravitational field. Quantitatively, his results were off by a factor of two; the correct derivation requires a more complete formulation of the theory of general relativity, not just the equivalence principle.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Tidal_effects">Tidal effects</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=5" title="Edit section: Tidal effects" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Tide_fall.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Tide_fall.png/150px-Tide_fall.png" decoding="async" width="150" height="282" class="mw-file-element" data-file-width="159" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 150px;height: 282px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Tide_fall.png/150px-Tide_fall.png" data-width="150" data-height="282" data-srcset="//upload.wikimedia.org/wikipedia/commons/2/2c/Tide_fall.png 1.5x" data-class="mw-file-element">&nbsp;</span></a><figcaption>Two bodies falling towards the center of the Earth accelerate towards each other as they fall.</figcaption></figure> <p>The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that <a href="/wiki/Fictitious_force" title="Fictitious force">fictitious forces</a> are to be expected, provides a suitable explanation. But a freely falling reference frame on one side of the Earth cannot explain why the people on the opposite side of the Earth experience a gravitational pull in the opposite direction. </p><p>A more basic manifestation of the same effect involves two bodies that are falling side by side towards the Earth, with a similar position and velocity. In a reference frame that is in free fall alongside these bodies, they appear to hover weightlessly – but not exactly so. These bodies are not falling in precisely the same direction, but towards a single point in space: namely, the Earth's <a href="/wiki/Center_of_mass" title="Center of mass">center of gravity</a>. Consequently, there is a component of each body's motion towards the other (see the figure). In a small environment such as a freely falling lift, this relative acceleration is minuscule, while for <a href="/wiki/Skydiver" class="mw-redirect" title="Skydiver">skydivers</a> on opposite sides of the Earth, the effect is large. Such differences in force are also responsible for the <a href="/wiki/Tide" title="Tide">tides</a> in the Earth's oceans, so the term "<a href="/wiki/Tidal_effect" class="mw-redirect" title="Tidal effect">tidal effect</a>" is used for this phenomenon. </p><p>The equivalence between inertia and gravity cannot explain tidal effects – it cannot explain variations in the gravitational field.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> For that, a theory is needed which describes the way that matter (such as the large mass of the Earth) affects the inertial environment around it. </p> <div class="mw-heading mw-heading3"><h3 id="From_acceleration_to_geometry">From acceleration to geometry</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=6" title="Edit section: From acceleration to geometry" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>While Einstein was exploring the equivalence of gravity and acceleration as well as the role of tidal forces, he discovered several analogies with the <a href="/wiki/Geometry" title="Geometry">geometry</a> of <a href="/wiki/Surface_(mathematics)" title="Surface (mathematics)">surfaces</a>. An example is the transition from an inertial reference frame (in which free particles coast along straight paths at constant speeds) to a rotating reference frame (in which <a href="/wiki/Fictitious_force" title="Fictitious force">fictitious forces</a> have to be introduced in order to explain particle motion): this is analogous to the transition from a <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a> (in which the coordinate lines are straight lines) to a <a href="/wiki/Curvilinear_coordinates" title="Curvilinear coordinates">curved coordinate system</a> (where coordinate lines need not be straight). </p><p>A deeper analogy relates tidal forces with a property of surfaces called <i><a href="/wiki/Curvature" title="Curvature">curvature</a></i>. For gravitational fields, the absence or presence of tidal forces determines whether or not the influence of gravity can be eliminated by choosing a freely falling reference frame. Similarly, the absence or presence of curvature determines whether or not a surface is <a href="/wiki/Isometry" title="Isometry">equivalent</a> to a <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">plane</a>. In the summer of 1912, inspired by these analogies, Einstein searched for a geometric formulation of gravity.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p><p>The elementary objects of <a href="/wiki/Geometry" title="Geometry">geometry </a>– <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a>, <a href="/wiki/Line_(mathematics)" class="mw-redirect" title="Line (mathematics)">lines</a>, <a href="/wiki/Triangle" title="Triangle">triangles</a> – are traditionally defined in three-dimensional <a href="/wiki/Space" title="Space">space</a> or on two-dimensional <a href="/wiki/Surface_(mathematics)" title="Surface (mathematics)">surfaces</a>. In 1907, <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a>, Einstein's former mathematics professor at the Swiss Federal Polytechnic, introduced <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a>, a geometric formulation of Einstein's <a href="/wiki/Special_theory_of_relativity" class="mw-redirect" title="Special theory of relativity">special theory of relativity</a> where the geometry included not only <a href="/wiki/Space" title="Space">space</a> but also time. The basic entity of this new geometry is four-<a href="/wiki/Dimension" title="Dimension">dimensional</a> <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>. The orbits of moving bodies are <a href="/wiki/World_line" title="World line">curves in spacetime</a>; the orbits of bodies moving at constant speed without changing direction correspond to straight lines.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>The geometry of general curved surfaces was developed in the early 19th century by <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a>. This geometry had in turn been generalized to higher-dimensional spaces in <a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a> introduced by <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> in the 1850s. With the help of Riemannian geometry, Einstein formulated a geometric description of gravity in which Minkowski's spacetime is replaced by distorted, curved spacetime, just as curved surfaces are a generalization of ordinary plane surfaces. <b>Embedding Diagrams</b> are used to illustrate curved spacetime in educational contexts.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>After he had realized the validity of this geometric analogy, it took Einstein a further three years to find the missing cornerstone of his theory: the equations describing how <a href="/wiki/Matter" title="Matter">matter</a> influences spacetime's curvature. Having formulated what are now known as <a href="/wiki/Einstein%27s_equations" class="mw-redirect" title="Einstein's equations">Einstein's equations</a> (or, more precisely, his field equations of gravity), he presented his new theory of gravity at several sessions of the <a href="/wiki/Prussian_Academy_of_Sciences" title="Prussian Academy of Sciences">Prussian Academy of Sciences</a> in late 1915, culminating in his final presentation on November 25, 1915.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Geometry_and_gravitation">Geometry and gravitation</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=7" title="Edit section: Geometry and gravitation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Paraphrasing <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">John Wheeler</a>, Einstein's geometric theory of gravity can be summarized as: <i>spacetime tells matter how to move; matter tells spacetime how to curve</i>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> What this means is addressed in the following three sections, which explore the motion of so-called <a href="/wiki/Test_particle" title="Test particle">test particles</a>, examine which properties of matter serve as a source for gravity, and, finally, introduce Einstein's equations, which relate these matter properties to the curvature of spacetime. </p> <div class="mw-heading mw-heading3"><h3 id="Probing_the_gravitational_field">Probing the gravitational field</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=8" title="Edit section: Probing the gravitational field" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Earth_geo.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Earth_geo.png/236px-Earth_geo.png" decoding="async" width="236" height="211" class="mw-file-element" data-file-width="268" data-file-height="240"></noscript><span class="lazy-image-placeholder" style="width: 236px;height: 211px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Earth_geo.png/236px-Earth_geo.png" data-width="236" data-height="211" data-srcset="//upload.wikimedia.org/wikipedia/commons/4/40/Earth_geo.png 1.5x" data-class="mw-file-element">&nbsp;</span></a><figcaption>Converging geodesics: two lines of longitude (green) that start out in parallel at the equator (red) but converge to meet at the pole</figcaption></figure> <p>In order to map a body's gravitational influence, it is useful to think about what physicists call probe or <a href="/wiki/Test_particle" title="Test particle">test particles</a>: particles that are influenced by gravity, but are so small and light that we can neglect their own gravitational effect. In the absence of gravity and other external forces, a test particle moves along a straight line at a constant speed. In the language of <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>, this is equivalent to saying that such test particles move along straight <a href="/wiki/World_lines" class="mw-redirect" title="World lines">world lines</a> in spacetime. In the presence of gravity, spacetime is <a href="/wiki/Non-Euclidean" class="mw-redirect" title="Non-Euclidean">non-Euclidean</a>, or <a href="/wiki/Curvature" title="Curvature">curved</a>, and in curved spacetime straight world lines may not exist. Instead, test particles move along lines called <a href="/wiki/Geodesic" title="Geodesic">geodesics</a>, which are "as straight as possible", that is, they follow the shortest path between starting and ending points, taking the curvature into consideration. </p><p>A simple analogy is the following: In <a href="/wiki/Geodesy" title="Geodesy">geodesy</a>, the science of measuring Earth's size and shape, a geodesic is the shortest route between two points on the Earth's surface. Approximately, such a route is a <a href="/wiki/Circle_segment" class="mw-redirect" title="Circle segment">segment</a> of a <a href="/wiki/Great_circle" title="Great circle">great circle</a>, such as a <a href="/wiki/Line_of_longitude" class="mw-redirect" title="Line of longitude">line of longitude</a> or the <a href="/wiki/Equator" title="Equator">equator</a>. These paths are certainly not straight, simply because they must follow the curvature of the Earth's surface. But they are as straight as is possible subject to this constraint. </p><p>The properties of geodesics differ from those of straight lines. For example, on a plane, parallel lines never meet, but this is not so for geodesics on the surface of the Earth: for example, lines of longitude are parallel at the equator, but intersect at the poles. Analogously, the world lines of test particles in free fall are <a href="/wiki/Geodesic_(general_relativity)" class="mw-redirect" title="Geodesic (general relativity)">spacetime geodesics</a>, the straightest possible lines in spacetime. But still there are crucial differences between them and the truly straight lines that can be traced out in the gravity-free spacetime of special relativity. In special relativity, parallel geodesics remain parallel. In a gravitational field with tidal effects, this will not, in general, be the case. If, for example, two bodies are initially at rest relative to each other, but are then dropped in the Earth's gravitational field, they will move towards each other as they fall towards the Earth's center.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>Compared with planets and other astronomical bodies, the objects of everyday life (people, cars, houses, even mountains) have little mass. Where such objects are concerned, the laws governing the behavior of test particles are sufficient to describe what happens. Notably, in order to deflect a test particle from its geodesic path, an external force must be applied. A chair someone is sitting on applies an external upwards force preventing the person from <a href="/wiki/Freefall" class="mw-redirect" title="Freefall">falling freely</a> towards <a href="/wiki/Travel_to_the_Earth%27s_center" title="Travel to the Earth's center">the center of the Earth</a> and thus following a geodesic, which they would otherwise be doing without the chair there, or any other matter in between them and the center point of the Earth. In this way, general relativity explains the daily experience of gravity on the surface of the Earth <i>not</i> as the downwards pull of a gravitational force, but as the upwards push of external forces. These forces deflect all bodies resting on the Earth's surface from the geodesics they would otherwise follow.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> For objects massive enough that their own gravitational influence cannot be neglected, the laws of motion are somewhat more complicated than for test particles, although it remains true that spacetime tells matter how to move.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sources_of_gravity">Sources of gravity</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=9" title="Edit section: Sources of gravity" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In <a href="/wiki/Law_of_universal_gravitation" class="mw-redirect" title="Law of universal gravitation">Newton's description of gravity</a>, the gravitational force is caused by matter. More precisely, it is caused by a specific property of material objects: their <a href="/wiki/Mass" title="Mass">mass</a>. In Einstein's theory and related <a href="/wiki/Theories_of_gravitation" class="mw-redirect" title="Theories of gravitation">theories of gravitation</a>, curvature at every point in spacetime is also caused by whatever matter is present. Here, too, mass is a key property in determining the gravitational influence of matter. But in a relativistic theory of gravity, mass cannot be the only source of gravity. Relativity links mass with energy, and energy with momentum. </p><p>The equivalence between mass and <a href="/wiki/Energy" title="Energy">energy</a>, as expressed by the formula <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence"><i>E</i> = <i>mc</i><sup><small>2</small></sup></a>, is the most famous consequence of special relativity. In relativity, mass and energy are two different ways of describing one physical quantity. If a physical system has energy, it also has the corresponding mass, and vice versa. In particular, all properties of a body that are associated with energy, such as its <a href="/wiki/Temperature" title="Temperature">temperature</a> or the <a href="/wiki/Binding_energy" title="Binding energy">binding energy</a> of systems such as <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nuclei</a> or <a href="/wiki/Molecule" title="Molecule">molecules</a>, contribute to that body's mass, and hence act as sources of gravity.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>In special relativity, energy is closely connected to <a href="/wiki/Momentum" title="Momentum">momentum</a>. In special relativity, just as space and time are different aspects of a more comprehensive entity called spacetime, energy and momentum are merely different aspects of a unified, four-dimensional quantity that physicists call <a href="/wiki/Four-momentum" title="Four-momentum">four-momentum</a>. In consequence, if energy is a source of gravity, momentum must be a source as well. The same is true for quantities that are directly related to energy and momentum, namely internal <a href="/wiki/Pressure" title="Pressure">pressure</a> and <a href="/wiki/Tension_(physics)" title="Tension (physics)">tension</a>. Taken together, in general relativity it is mass, energy, momentum, pressure and tension that serve as sources of gravity: they are how matter tells spacetime how to curve. In the theory's mathematical formulation, all these quantities are but aspects of a more general physical quantity called the <a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">energy–momentum tensor</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Einstein's_equations"><span id="Einstein.27s_equations"></span>Einstein's equations</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=10" title="Edit section: Einstein's equations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Einstein%27s_equations" class="mw-redirect" title="Einstein's equations">Einstein's equations</a> are the centerpiece of general relativity. They provide a precise formulation of the relationship between spacetime geometry and the properties of matter, using the language of mathematics. More concretely, they are formulated using the concepts of <a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a>, in which the geometric properties of a space (or a spacetime) are described by a quantity called a <a href="/wiki/Metric_tensor" title="Metric tensor">metric</a>. The metric encodes the information needed to compute the fundamental geometric notions of distance and angle in a curved space (or spacetime). </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Metric_globe.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Metric_globe.png/236px-Metric_globe.png" decoding="async" width="236" height="226" class="mw-file-element" data-file-width="242" data-file-height="232"></noscript><span class="lazy-image-placeholder" style="width: 236px;height: 226px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Metric_globe.png/236px-Metric_globe.png" data-width="236" data-height="226" data-srcset="//upload.wikimedia.org/wikipedia/commons/a/a0/Metric_globe.png 1.5x" data-class="mw-file-element">&nbsp;</span></a><figcaption>Distances, at different latitudes, corresponding to 30 degrees difference in longitude</figcaption></figure> <p>A spherical surface like that of the Earth provides a simple example. The location of any point on the surface can be described by two coordinates: the geographic <a href="/wiki/Latitude" title="Latitude">latitude</a> and <a href="/wiki/Longitude" title="Longitude">longitude</a>. Unlike the Cartesian coordinates of the plane, coordinate differences are not the same as distances on the surface, as shown in the diagram on the right: for someone at the equator, moving 30 degrees of longitude westward (magenta line) corresponds to a distance of roughly 3,300 kilometers (2,100 mi), while for someone at a latitude of 55 degrees, moving 30 degrees of longitude westward (blue line) covers a distance of merely 1,900 kilometers (1,200 mi). Coordinates therefore do not provide enough information to describe the geometry of a spherical surface, or indeed the geometry of any more complicated space or spacetime. That information is precisely what is encoded in the metric, which is a function defined at each point of the surface (or space, or spacetime) and relates coordinate differences to differences in distance. All other quantities that are of interest in geometry, such as the length of any given curve, or the angle at which two curves meet, can be computed from this metric function.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>The metric function and its rate of change from point to point can be used to define a geometrical quantity called the <a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a>, which describes exactly how the <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>, the spacetime in the theory of relativity, is curved at each point. As has already been mentioned, the matter content of the spacetime defines another quantity, the <a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">energy–momentum tensor</a> <b>T</b>, and the principle that "spacetime tells matter how to move, and matter tells spacetime how to curve" means that these quantities must be related to each other. Einstein formulated this relation by using the Riemann curvature tensor and the metric to define another geometrical quantity <b>G</b>, now called the <a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a>, which describes some aspects of the way spacetime is curved. <i>Einstein's equation</i> then states that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {G} ={\frac {8\pi G}{c^{4}}}\mathbf {T} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">G</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>8</mn> <mi>π<!-- π --></mi> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {G} ={\frac {8\pi G}{c^{4}}}\mathbf {T} ,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2355f02fa3f9943a839ee32662431091f9bc9df2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.863ex; height:5.676ex;" alt="{\displaystyle \mathbf {G} ={\frac {8\pi G}{c^{4}}}\mathbf {T} ,}"></noscript><span class="lazy-image-placeholder" style="width: 12.863ex;height: 5.676ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2355f02fa3f9943a839ee32662431091f9bc9df2" data-alt="{\displaystyle \mathbf {G} ={\frac {8\pi G}{c^{4}}}\mathbf {T} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></dd></dl> <p>i.e., up to a constant multiple, the quantity <b>G</b> (which measures curvature) is equated with the quantity <b>T</b> (which measures matter content). Here, <i>G</i> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a> of Newtonian gravity, and <i>c</i> is the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a> from special relativity. </p><p>This equation is often referred to in the plural as <i>Einstein's equations</i>, since the quantities <b>G</b> and <b>T</b> are each determined by several functions of the coordinates of spacetime, and the equations equate each of these component functions.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Exact_solutions_of_Einstein%27s_field_equations" class="mw-redirect" title="Exact solutions of Einstein's field equations">A solution of these equations</a> describes a particular geometry of <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>; for example, the <a href="/wiki/Schwarzschild_metric" title="Schwarzschild metric">Schwarzschild solution</a> describes the geometry around a spherical, non-rotating mass such as a <a href="/wiki/Star" title="Star">star</a> or a <a href="/wiki/Black_hole" title="Black hole">black hole</a>, whereas the <a href="/wiki/Kerr_metric" title="Kerr metric">Kerr solution</a> describes a rotating black hole. Still other solutions can describe a <a href="/wiki/Gravitational_wave" title="Gravitational wave">gravitational wave</a> or, in the case of the <a href="/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric">Friedmann–Lemaître–Robertson–Walker solution</a>, an expanding universe. The simplest solution is the uncurved <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a>, the spacetime described by special relativity.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Experiments">Experiments</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=11" title="Edit section: Experiments" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>No scientific theory is self-evidently true; each is a model that must be checked by experiment. <a href="/wiki/Newton%27s_law_of_gravity" class="mw-redirect" title="Newton's law of gravity">Newton's law of gravity</a> was accepted because it accounted for the motion of planets and moons in the <a href="/wiki/Solar_System" title="Solar System">Solar System</a> with considerable accuracy. As the precision of experimental measurements gradually improved, some discrepancies with Newton's predictions were observed, and these were accounted for in the general theory of relativity. Similarly, the predictions of general relativity must also be checked with experiment, and Einstein himself devised three tests now known as the classical tests of the theory: </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Newtonianvseinsteinianorbits.gif" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Newtonianvseinsteinianorbits.gif/200px-Newtonianvseinsteinianorbits.gif" decoding="async" width="200" height="200" class="mw-file-element" data-file-width="597" data-file-height="597"></noscript><span class="lazy-image-placeholder" style="width: 200px;height: 200px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Newtonianvseinsteinianorbits.gif/200px-Newtonianvseinsteinianorbits.gif" data-width="200" data-height="200" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Newtonianvseinsteinianorbits.gif/300px-Newtonianvseinsteinianorbits.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Newtonianvseinsteinianorbits.gif/400px-Newtonianvseinsteinianorbits.gif 2x" data-class="mw-file-element">&nbsp;</span></a><figcaption>Newtonian (red) vs. Einsteinian orbit (blue) of a single planet orbiting a spherical star</figcaption></figure> <ul><li>Newtonian gravity predicts that the <a href="/wiki/Orbit" title="Orbit">orbit</a> which a single <a href="/wiki/Planet" title="Planet">planet</a> traces around a perfectly spherical <a href="/wiki/Star" title="Star">star</a> should be an <a href="/wiki/Ellipse" title="Ellipse">ellipse</a>. Einstein's theory predicts a more complicated curve: the planet behaves as if it were travelling around an ellipse, but at the same time, the ellipse as a whole is rotating slowly around the star. In the diagram on the right, the ellipse predicted by Newtonian gravity is shown in red, and part of the orbit predicted by Einstein in blue. For a planet orbiting the Sun, this deviation from Newton's orbits is known as the <a href="/wiki/Tests_of_general_relativity#Perihelion_precession_of_Mercury" title="Tests of general relativity">anomalous perihelion shift</a>. The first measurement of this effect, for the planet <a href="/wiki/Mercury_(planet)" title="Mercury (planet)">Mercury</a>, dates back to 1859. The most accurate results for Mercury and for other planets to date are based on measurements which were undertaken between 1966 and 1990, using <a href="/wiki/Radio_telescope" title="Radio telescope">radio telescopes</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> General relativity predicts the correct anomalous perihelion shift for all planets where this can be measured accurately (<a href="/wiki/Mercury_(planet)" title="Mercury (planet)">Mercury</a>, <a href="/wiki/Venus" title="Venus">Venus</a> and the Earth).</li> <li>According to general relativity, light does not travel along straight lines when it propagates in a gravitational field. Instead, it is <a href="/wiki/Tests_of_general_relativity#Deflection_of_light_by_the_Sun" title="Tests of general relativity">deflected</a> in the presence of massive bodies. In particular, starlight is deflected as it passes near the Sun, leading to apparent shifts of up to 1.75 <a href="/wiki/Minute_of_arc" class="mw-redirect" title="Minute of arc">arc seconds</a> in the stars' positions in the sky (an arc second is equal to 1/3600 of a <a href="/wiki/Degree_(angle)" title="Degree (angle)">degree</a>). In the framework of Newtonian gravity, a heuristic argument can be made that leads to light deflection by half that amount. The different predictions can be tested by observing stars that are close to the Sun during a <a href="/wiki/Solar_eclipse" title="Solar eclipse">solar eclipse</a>. In this way, a British expedition to West Africa in 1919, directed by <a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Arthur Eddington</a>, confirmed that Einstein's prediction was correct, and the Newtonian predictions wrong, via observation of the <a href="/wiki/Solar_eclipse_of_May_29,_1919" title="Solar eclipse of May 29, 1919">May 1919 eclipse</a>. Eddington's results were not very accurate; subsequent observations of the deflection of the light of distant <a href="/wiki/Quasar" title="Quasar">quasars</a> by the Sun, which utilize highly accurate techniques of <a href="/wiki/Radio_astronomy" title="Radio astronomy">radio astronomy</a>, have confirmed Eddington's results with significantly better precision (the first such measurements date from 1967, the most recent comprehensive analysis from 2004).<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Gravitational_redshift" title="Gravitational redshift">Gravitational redshift</a> was first measured in a laboratory setting in 1959 by <a href="/wiki/Pound%E2%80%93Rebka_experiment" title="Pound–Rebka experiment">Pound and Rebka</a>. It is also seen in astrophysical measurements, notably for light escaping the <a href="/wiki/White_dwarf" title="White dwarf">white dwarf</a> <a href="/wiki/Sirius_B" class="mw-redirect" title="Sirius B">Sirius B</a>. The related <a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">gravitational time dilation</a> effect has been measured by transporting <a href="/wiki/Atomic_clock" title="Atomic clock">atomic clocks</a> to altitudes of between tens and tens of thousands of kilometers (first by <a href="/wiki/Hafele%E2%80%93Keating_experiment" title="Hafele–Keating experiment">Hafele and Keating</a> in 1971; most accurately to date by <a href="/wiki/Gravity_Probe_A" title="Gravity Probe A">Gravity Probe A</a> launched in 1976).<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></li></ul> <p>Of these tests, only the perihelion advance of Mercury was known prior to Einstein's final publication of general relativity in 1916. The subsequent experimental confirmation of his other predictions, especially the first measurements of the deflection of light by the sun in 1919, catapulted Einstein to international stardom.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> These three experiments justified adopting general relativity over Newton's theory and, incidentally, over a number of <a href="/wiki/Alternatives_to_general_relativity" title="Alternatives to general relativity">alternatives to general relativity</a> that had been proposed. </p><p>Further tests of general relativity include precision measurements of the <a href="/wiki/Shapiro_effect" class="mw-redirect" title="Shapiro effect">Shapiro effect</a> or gravitational time delay for light, measured in 2002 by the <a href="/wiki/Cassini-Huygens" class="mw-redirect" title="Cassini-Huygens">Cassini</a> space probe. One set of tests focuses on effects predicted by general relativity for the behavior of <a href="/wiki/Gyroscopes" class="mw-redirect" title="Gyroscopes">gyroscopes</a> travelling through space. One of these effects, <a href="/wiki/Geodetic_effect" title="Geodetic effect">geodetic precession</a>, has been tested with the <a href="/wiki/Lunar_Laser_Ranging_Experiment" class="mw-redirect" title="Lunar Laser Ranging Experiment">Lunar Laser Ranging Experiment</a> (high-precision measurements of the orbit of the <a href="/wiki/Moon" title="Moon">Moon</a>). Another, which is related to rotating masses, is called <a href="/wiki/Frame-dragging" title="Frame-dragging">frame-dragging</a>. The geodetic and frame-dragging effects were both tested by the <a href="/wiki/Gravity_Probe_B" title="Gravity Probe B">Gravity Probe B</a> satellite experiment launched in 2004, with results confirming relativity to within 0.5% and 15%, respectively, as of December 2008.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p>By cosmic standards, gravity throughout the solar system is weak. Since the differences between the predictions of Einstein's and Newton's theories are most pronounced when gravity is strong, physicists have long been interested in testing various relativistic effects in a setting with comparatively strong gravitational fields. This has become possible thanks to precision observations of <a href="/wiki/Binary_pulsar" title="Binary pulsar">binary pulsars</a>. In such a star system, two highly compact <a href="/wiki/Neutron_star" title="Neutron star">neutron stars</a> orbit each other. At least one of them is a <a href="/wiki/Pulsar" title="Pulsar">pulsar</a> – an astronomical object that emits a tight beam of radiowaves. These beams strike the Earth at very regular intervals, similarly to the way that the rotating beam of a lighthouse means that an observer sees the lighthouse blink, and can be observed as a highly regular series of pulses. General relativity predicts specific deviations from the regularity of these radio pulses. For instance, at times when the radio waves pass close to the other neutron star, they should be deflected by the star's gravitational field. The observed pulse patterns are impressively close to those predicted by general relativity.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p>One particular set of observations is related to eminently useful practical applications, namely to <a href="/wiki/Satellite_navigation_system" class="mw-redirect" title="Satellite navigation system">satellite navigation systems</a> such as the <a href="/wiki/Global_Positioning_System" title="Global Positioning System">Global Positioning System</a> that are used for both precise <a href="/wiki/Navigation" title="Navigation">positioning</a> and <a href="/wiki/Timekeeping" class="mw-redirect" title="Timekeeping">timekeeping</a>. Such systems rely on two sets of <a href="/wiki/Atomic_clocks" class="mw-redirect" title="Atomic clocks">atomic clocks</a>: clocks aboard satellites orbiting the Earth, and reference clocks stationed on the Earth's surface. General relativity predicts that these two sets of clocks should tick at slightly different rates, due to their different motions (an effect already predicted by special relativity) and their different positions within the Earth's gravitational field. In order to ensure the system's accuracy, either the satellite clocks are slowed down by a relativistic factor, or that same factor is made part of the evaluation algorithm. In turn, tests of the system's accuracy (especially the very thorough measurements that are part of the definition of <a href="/wiki/UTC" class="mw-redirect" title="UTC">universal coordinated time</a>) are testament to the validity of the relativistic predictions.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>A number of other tests have probed the validity of various versions of the <a href="/wiki/Equivalence_principle" title="Equivalence principle">equivalence principle</a>; strictly speaking, all measurements of gravitational time dilation are tests of the <a href="/wiki/Weak_equivalence_principle" class="mw-redirect" title="Weak equivalence principle">weak version of that principle</a>, not of general relativity itself. So far, general relativity has passed all observational tests.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Astrophysical_applications">Astrophysical applications</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=12" title="Edit section: Astrophysical applications" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>Models based on general relativity play an important role in <a href="/wiki/Astrophysics" title="Astrophysics">astrophysics</a>; the success of these models is further testament to the theory's validity. </p> <div class="mw-heading mw-heading3"><h3 id="Gravitational_lensing">Gravitational lensing</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=13" title="Edit section: Gravitational lensing" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Einstein_cross.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Einstein_cross.jpg/220px-Einstein_cross.jpg" decoding="async" width="220" height="212" class="mw-file-element" data-file-width="1915" data-file-height="1849"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 212px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Einstein_cross.jpg/220px-Einstein_cross.jpg" data-width="220" data-height="212" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Einstein_cross.jpg/330px-Einstein_cross.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Einstein_cross.jpg/440px-Einstein_cross.jpg 2x" data-class="mw-file-element">&nbsp;</span></a><figcaption>The <a href="/wiki/Einstein_Cross" title="Einstein Cross">Einstein Cross</a>: four images of the same distant <a href="/wiki/Quasar" title="Quasar">quasar</a>, produced by a <a href="/wiki/Gravitational_lens" title="Gravitational lens">gravitational lens</a> (the much closer foreground galaxy <a href="/wiki/Huchra%27s_lens" title="Huchra's lens">Huchra's lens</a>)</figcaption></figure> <p>Since light is deflected in a gravitational field, it is possible for the light of a distant object to reach an observer along two or more paths. For instance, light of a very distant object such as a <a href="/wiki/Quasar" title="Quasar">quasar</a> can pass along one side of a massive <a href="/wiki/Galaxy" title="Galaxy">galaxy</a> and be deflected slightly so as to reach an observer on Earth, while light passing along the opposite side of that same galaxy is deflected as well, reaching the same observer from a slightly different direction. As a result, that particular observer will see one astronomical object in two different places in the night sky. This kind of focussing is well known when it comes to <a href="/wiki/Optical_lens" class="mw-redirect" title="Optical lens">optical lenses</a>, and hence the corresponding gravitational effect is called <a href="/wiki/Gravitational_lensing" class="mw-redirect" title="Gravitational lensing">gravitational lensing</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Observational_astronomy" title="Observational astronomy">Observational astronomy</a> uses lensing effects as an important tool to infer properties of the lensing object. Even in cases where that object is not directly visible, the shape of a lensed image provides information about the <a href="/wiki/Mass" title="Mass">mass</a> distribution responsible for the light deflection. In particular, gravitational lensing provides one way to measure the distribution of <a href="/wiki/Dark_matter" title="Dark matter">dark matter</a>, which does not give off light and can be observed only by its gravitational effects. One particularly interesting application are large-scale observations, where the lensing masses are spread out over a significant fraction of the observable universe, and can be used to obtain information about the large-scale properties and evolution of our cosmos.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gravitational_waves">Gravitational waves</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=14" title="Edit section: Gravitational waves" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational waves</a>, a direct consequence of Einstein's theory, are distortions of geometry that propagate at the speed of light, and can be thought of as ripples in spacetime. They should not be confused with the <a href="/wiki/Gravity_wave" title="Gravity wave">gravity waves</a> of <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, which are a different concept. </p><p>In February 2016, the Advanced <a href="/wiki/LIGO" title="LIGO">LIGO</a> team announced that they had directly <a href="/wiki/Gravitational_wave_observation" class="mw-redirect" title="Gravitational wave observation">observed gravitational waves</a> from a <a href="/wiki/Black_hole" title="Black hole">black hole</a> merger.<sup id="cite_ref-Abbot_35-0" class="reference"><a href="#cite_note-Abbot-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p>Indirectly, the effect of gravitational waves had been detected in observations of specific binary stars. Such pairs of stars <a href="/wiki/Orbit" title="Orbit">orbit</a> each other and, as they do so, gradually lose energy by emitting gravitational waves. For ordinary stars like the Sun, this energy loss would be too small to be detectable, but this energy loss was observed in 1974 in a <a href="/wiki/Binary_pulsar" title="Binary pulsar">binary pulsar</a> called <a href="/wiki/PSR1913%2B16" class="mw-redirect" title="PSR1913+16">PSR1913+16</a>. In such a system, one of the orbiting stars is a pulsar. This has two consequences: a pulsar is an extremely dense object known as a <a href="/wiki/Neutron_star" title="Neutron star">neutron star</a>, for which gravitational wave emission is much stronger than for ordinary stars. Also, a pulsar emits a narrow beam of <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic radiation</a> from its magnetic poles. As the pulsar rotates, its beam sweeps over the Earth, where it is seen as a regular series of radio pulses, just as a ship at sea observes regular flashes of light from the rotating light in a lighthouse. This regular pattern of radio pulses functions as a highly accurate "clock". It can be used to time the double star's orbital period, and it reacts sensitively to distortions of spacetime in its immediate neighborhood. </p><p>The discoverers of PSR1913+16, <a href="/wiki/Russell_Alan_Hulse" title="Russell Alan Hulse">Russell Hulse</a> and <a href="/wiki/Joseph_Hooton_Taylor,_Jr." class="mw-redirect" title="Joseph Hooton Taylor, Jr.">Joseph Taylor</a>, were awarded the <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a> in 1993. Since then, several other binary pulsars have been found. The most useful are those in which both stars are pulsars, since they provide accurate tests of general relativity.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>Currently, a number of land-based <a href="/wiki/Gravitational_wave_detector" class="mw-redirect" title="Gravitational wave detector">gravitational wave detectors</a> are in operation, and a mission to launch a space-based detector, <a href="/wiki/Laser_Interferometer_Space_Antenna" title="Laser Interferometer Space Antenna">LISA</a>, is currently under development, with a precursor mission (<a href="/wiki/LISA_Pathfinder" title="LISA Pathfinder">LISA Pathfinder</a>) which was launched in 2015. Gravitational wave observations can be used to obtain information about compact objects such as neutron stars and black holes, and also to probe the state of the early <a href="/wiki/Universe" title="Universe">universe</a> fractions of a second after the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Black_holes">Black holes</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=15" title="Edit section: Black holes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:M87_jet.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/M87_jet.jpg/200px-M87_jet.jpg" decoding="async" width="200" height="209" class="mw-file-element" data-file-width="1222" data-file-height="1276"></noscript><span class="lazy-image-placeholder" style="width: 200px;height: 209px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/M87_jet.jpg/200px-M87_jet.jpg" data-width="200" data-height="209" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/M87_jet.jpg/300px-M87_jet.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/39/M87_jet.jpg/400px-M87_jet.jpg 2x" data-class="mw-file-element">&nbsp;</span></a><figcaption>Black hole-powered jet emanating from the central region of the galaxy <a href="/wiki/Messier_87" title="Messier 87">M87</a></figcaption></figure> <p>When mass is concentrated into a sufficiently <a href="/wiki/Hoop_conjecture" title="Hoop conjecture">compact</a> region of space, general relativity predicts the formation of a <a href="/wiki/Black_hole" title="Black hole">black hole</a> – a region of space with a gravitational effect so strong that not even light can escape. Certain types of black holes are thought to be the final state in the <a href="/wiki/Stellar_evolution" title="Stellar evolution">evolution</a> of massive <a href="/wiki/Star" title="Star">stars</a>. On the other hand, <a href="/wiki/Supermassive_black_hole" title="Supermassive black hole">supermassive black holes</a> with the mass of <a href="/wiki/Million" class="mw-redirect" title="Million">millions</a> or <a href="/wiki/1000000000_(number)" class="mw-redirect" title="1000000000 (number)">billions</a> of <a href="/wiki/Sun" title="Sun">Suns</a> are assumed to reside in the cores of most <a href="/wiki/Galaxy" title="Galaxy">galaxies</a>, and they play a key role in current models of how galaxies have formed over the past billions of years.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p><p>Matter falling onto a compact object is one of the most efficient mechanisms for releasing <a href="/wiki/Energy" title="Energy">energy</a> in the form of <a href="/wiki/Radiation" title="Radiation">radiation</a>, and matter falling onto black holes is thought to be responsible for some of the brightest astronomical phenomena imaginable. Notable examples of great interest to astronomers are <a href="/wiki/Quasars" class="mw-redirect" title="Quasars">quasars</a> and other types of <a href="/wiki/Active_galactic_nucleus" title="Active galactic nucleus">active galactic nuclei</a>. Under the right conditions, falling matter accumulating around a black hole can lead to the formation of <a href="/wiki/Relativistic_jet" class="mw-redirect" title="Relativistic jet">jets</a>, in which focused beams of matter are flung away into space at speeds near <a href="/wiki/Lightspeed" class="mw-redirect" title="Lightspeed">that of light</a>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p><p>There are several properties that make black holes the most promising sources of gravitational waves. One reason is that black holes are the most compact objects that can orbit each other as part of a binary system; as a result, the gravitational waves emitted by such a system are especially strong. Another reason follows from what are called <a href="/wiki/No-hair_theorem" title="No-hair theorem">black-hole uniqueness theorems</a>: over time, black holes retain only a minimal set of distinguishing features (these theorems have become known as "no-hair" theorems), regardless of the starting geometric shape. For instance, in the long term, the collapse of a hypothetical matter cube will not result in a cube-shaped black hole. Instead, the resulting black hole will be indistinguishable from a black hole formed by the collapse of a spherical mass. In its transition to a spherical shape, the black hole formed by the collapse of a more complicated shape will emit gravitational waves.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cosmology">Cosmology</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=16" title="Edit section: Cosmology" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:WMAP_image_of_the_CMB_anisotropy.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/WMAP_image_of_the_CMB_anisotropy.jpg/236px-WMAP_image_of_the_CMB_anisotropy.jpg" decoding="async" width="236" height="137" class="mw-file-element" data-file-width="2198" data-file-height="1274"></noscript><span class="lazy-image-placeholder" style="width: 236px;height: 137px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/WMAP_image_of_the_CMB_anisotropy.jpg/236px-WMAP_image_of_the_CMB_anisotropy.jpg" data-width="236" data-height="137" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/WMAP_image_of_the_CMB_anisotropy.jpg/354px-WMAP_image_of_the_CMB_anisotropy.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c1/WMAP_image_of_the_CMB_anisotropy.jpg/472px-WMAP_image_of_the_CMB_anisotropy.jpg 2x" data-class="mw-file-element">&nbsp;</span></a><figcaption>An image, created using data from the <a href="/wiki/WMAP" class="mw-redirect" title="WMAP">WMAP</a> satellite telescope, of the <a href="/wiki/Radiation" title="Radiation">radiation</a> emitted no more than a few hundred thousand years after the Big Bang</figcaption></figure> <p>One of the most important aspects of general relativity is that it can be applied to the <a href="/wiki/Universe" title="Universe">universe</a> as a whole. A key point is that, on large scales, our universe appears to be constructed along very simple lines: all current observations suggest that, on average, the structure of the cosmos should be approximately the same, regardless of an observer's location or direction of observation: the universe is approximately <a href="/wiki/Homogeneity_(physics)" title="Homogeneity (physics)">homogeneous</a> and <a href="/wiki/Isotropic" class="mw-redirect" title="Isotropic">isotropic</a>. Such comparatively simple universes can be described by simple solutions of Einstein's equations. The current <a href="/wiki/Physical_cosmology" title="Physical cosmology">cosmological models</a> of the universe are obtained by combining these simple solutions to general relativity with theories describing the properties of the universe's <a href="/wiki/Matter" title="Matter">matter</a> content, namely <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, <a href="/wiki/Nuclear_physics" title="Nuclear physics">nuclear-</a> and <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a>. According to these models, our present universe emerged from an extremely dense high-temperature state – the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a> – roughly 14 <a href="/wiki/1000000000_(number)" class="mw-redirect" title="1000000000 (number)">billion</a> <a href="/wiki/Year" title="Year">years</a> ago and has been <a href="/wiki/Cosmic_expansion" class="mw-redirect" title="Cosmic expansion">expanding</a> ever since.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> </p><p>Einstein's equations can be generalized by adding a term called the <a href="/wiki/Cosmological_constant" title="Cosmological constant">cosmological constant</a>. When this term is present, <a href="/wiki/Vacuum" title="Vacuum">empty space</a> itself acts as a source of attractive (or, less commonly, repulsive) gravity. Einstein originally introduced this term in his pioneering 1917 paper on cosmology, with a very specific motivation: contemporary cosmological thought held the universe to be static, and the additional term was required for constructing static model universes within the framework of general relativity. When it became apparent that the universe is not static, but expanding, Einstein was quick to discard this additional term. Since the end of the 1990s, however, astronomical evidence indicating an <a href="/wiki/Acceleration" title="Acceleration">accelerating</a> expansion consistent with a cosmological constant – or, equivalently, with a particular and ubiquitous kind of <a href="/wiki/Dark_energy" title="Dark energy">dark energy</a> – has steadily been accumulating.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Modern_research">Modern research</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=17" title="Edit section: Modern research" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <p>General relativity is very successful in providing a framework for accurate models which describe an impressive array of physical phenomena. On the other hand, there are many interesting open questions, and in particular, the theory as a whole is almost certainly incomplete.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>In contrast to all other modern theories of <a href="/wiki/Fundamental_interaction" title="Fundamental interaction">fundamental interactions</a>, general relativity is a <a href="/wiki/Classical_physics" title="Classical physics">classical</a> theory: it does not include the effects of <a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">quantum physics</a>. The quest for a quantum version of general relativity addresses one of the most fundamental <a href="/wiki/List_of_unsolved_problems_in_physics" title="List of unsolved problems in physics">open questions</a> in physics. While there are promising candidates for such a theory of <a href="/wiki/Quantum_gravity" title="Quantum gravity">quantum gravity</a>, notably <a href="/wiki/String_theory" title="String theory">string theory</a> and <a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">loop quantum gravity</a>, there is at present no consistent and complete theory. It has long been hoped that a theory of quantum gravity would also eliminate another problematic feature of general relativity: the presence of <a href="/wiki/Spacetime_singularity" class="mw-redirect" title="Spacetime singularity">spacetime singularities</a>. These singularities are boundaries ("sharp edges") of spacetime at which geometry becomes ill-defined, with the consequence that general relativity itself loses its predictive power. Furthermore, there are so-called <a href="/wiki/Penrose-Hawking_singularity_theorems" class="mw-redirect" title="Penrose-Hawking singularity theorems">singularity theorems</a> which predict that such singularities <i>must</i> exist within the universe if the laws of general relativity were to hold without any quantum modifications. The best-known examples are the singularities associated with the model universes that describe black holes and the <a href="/wiki/Big_Bang" title="Big Bang">beginning of the universe</a>.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p><p>Other attempts to modify general relativity have been made in the context of <a href="/wiki/Cosmology" title="Cosmology">cosmology</a>. In the modern cosmological models, most energy in the universe is in forms that have never been detected directly, namely <a href="/wiki/Dark_energy" title="Dark energy">dark energy</a> and <a href="/wiki/Dark_matter" title="Dark matter">dark matter</a>. There have been several controversial proposals to remove the need for these enigmatic forms of matter and energy, by modifying the laws governing gravity and the dynamics of <a href="/wiki/Cosmic_expansion" class="mw-redirect" title="Cosmic expansion">cosmic expansion</a>, for example <a href="/wiki/Modified_Newtonian_dynamics" title="Modified Newtonian dynamics">modified Newtonian dynamics</a>.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p><p>Beyond the challenges of quantum effects and cosmology, research on general relativity is rich with possibilities for further exploration: mathematical relativists explore the nature of singularities and the fundamental properties of Einstein's equations,<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> and ever more comprehensive computer simulations of specific spacetimes (such as those describing merging black holes) are run.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> More than one hundred years after the theory was first published, research is more active than ever.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=18" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Introduction_to_the_mathematics_of_general_relativity" title="Introduction to the mathematics of general relativity">Introduction to the mathematics of general relativity</a></li> <li><a href="/wiki/Special_relativity" title="Special relativity">Special relativity</a></li> <li><a href="/wiki/History_of_general_relativity" title="History of general relativity">History of general relativity</a></li> <li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Tests of general relativity</a></li> <li><a href="/wiki/Numerical_relativity" title="Numerical relativity">Numerical relativity</a></li> <li><a href="/wiki/Derivations_of_the_Lorentz_transformations" title="Derivations of the Lorentz transformations">Derivations of the Lorentz transformations</a></li> <li><a href="/wiki/General_relativity#Further_reading" title="General relativity">List of books on general relativity</a></li></ul></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=19" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">This development is traced e.g. in <a href="#CITEREFRenn2005">Renn 2005</a>, p. 110ff., in chapters 9 through 15 of <a href="#CITEREFPais1982">Pais 1982</a>, and in <a href="#CITEREFJanssen2005">Janssen 2005</a>. A precis of Newtonian gravity can be found in <a href="#CITEREFSchutz2003">Schutz 2003</a>, chapters 2–4. It is impossible to say whether the problem of Newtonian gravity crossed Einstein's mind before 1907, but, by his own admission, his first serious attempts to reconcile that theory with special relativity date to that year, cf. <a href="#CITEREFPais1982">Pais 1982</a>, p. 178.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">This is described in detail in chapter 2 of <a href="#CITEREFWheeler1990">Wheeler 1990</a>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">While the equivalence principle is still part of modern expositions of general relativity, there are some differences between the modern version and Einstein's original concept, cf. <a href="#CITEREFNorton1985">Norton 1985</a>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">E. g. <a href="#CITEREFJanssen2005">Janssen 2005</a>, p. 64f. Einstein himself also explains this in section XX of his non-technical book Einstein 1961. Following earlier ideas by <a href="/wiki/Ernst_Mach" title="Ernst Mach">Ernst Mach</a>, Einstein also explored <a href="/wiki/Centrifugal_forces" class="mw-redirect" title="Centrifugal forces">centrifugal forces</a> and their gravitational analogue, cf. <a href="#CITEREFStachel1989">Stachel 1989</a>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Einstein explained this in section XX of Einstein 1961. He considered an object "suspended" by a rope from the ceiling of a room aboard an accelerating rocket: from inside the room it looks as if gravitation is pulling the object down with a force proportional to its mass, but from outside the rocket it looks as if the rope is simply transferring the acceleration of the rocket to the object, and must therefore exert just the "force" to do so.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">More specifically, Einstein's calculations, which are described in chapter 11b of <a href="#CITEREFPais1982">Pais 1982</a>, use the equivalence principle, the equivalence of gravity and inertial forces, and the results of special relativity for the propagation of light and for accelerated observers (the latter by considering, at each moment, the instantaneous <a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">inertial frame of reference</a> associated with such an accelerated observer).</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">This effect can be derived directly within special relativity, either by looking at the equivalent situation of two observers in an accelerated rocket-ship or by looking at a falling elevator; in both situations, the frequency shift has an equivalent description as a <a href="/wiki/Doppler_shift" class="mw-redirect" title="Doppler shift">Doppler shift</a> between certain inertial frames. For simple derivations of this, see <a href="#CITEREFHarrison2002">Harrison 2002</a>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">See chapter 12 of <a href="#CITEREFMermin2005">Mermin 2005</a>.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Cf. <a href="#CITEREFEhlersRindler1997">Ehlers &amp; Rindler 1997</a>; for a non-technical presentation, see <a href="#CITEREFP%C3%B6ssel2007">Pössel 2007</a>.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">These and other tidal effects are described in <a href="#CITEREFWheeler1990">Wheeler 1990</a>, pp. 83–91.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Tides and their geometric interpretation are explained in chapter 5 of <a href="#CITEREFWheeler1990">Wheeler 1990</a>. This part of the historical development is traced in <a href="#CITEREFPais1982">Pais 1982</a>, section 12b.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">For elementary presentations of the concept of spacetime, see the first section in chapter 2 of <a href="#CITEREFThorne1994">Thorne 1994</a>, and <a href="#CITEREFGreene2004">Greene 2004</a>, p. 47–61. More complete treatments on a fairly elementary level can be found e.g. in <a href="#CITEREFMermin2005">Mermin 2005</a> and in <a href="#CITEREFWheeler1990">Wheeler 1990</a>, chapters 8 and 9.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMarolf1999" class="citation cs2">Marolf, Donald (1999), "Spacetime Embedding Diagrams for Black Holes", <i>General Relativity and Gravitation</i>, <b>31</b> (6): 919–944, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/9806123">gr-qc/9806123</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999GReGr..31..919M">1999GReGr..31..919M</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1026646507201">10.1023/A:1026646507201</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12502462">12502462</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=General+Relativity+and+Gravitation&amp;rft.atitle=Spacetime+Embedding+Diagrams+for+Black+Holes&amp;rft.volume=31&amp;rft.issue=6&amp;rft.pages=919-944&amp;rft.date=1999&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F9806123&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12502462%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1026646507201&amp;rft_id=info%3Abibcode%2F1999GReGr..31..919M&amp;rft.aulast=Marolf&amp;rft.aufirst=Donald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">See <a href="#CITEREFWheeler1990">Wheeler 1990</a>, chapters 8 and 9 for vivid illustrations of curved spacetime.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Einstein's struggle to find the correct field equations is traced in chapters 13–15 of <a href="#CITEREFPais1982">Pais 1982</a>.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">E.g. p. xi in <a href="#CITEREFWheeler1990">Wheeler 1990</a>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">A thorough, yet accessible account of basic differential geometry and its application in general relativity can be found in <a href="#CITEREFGeroch1978">Geroch 1978</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">See chapter 10 of <a href="#CITEREFWheeler1990">Wheeler 1990</a>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">In fact, when starting from the complete theory, Einstein's equation can be used to derive these more complicated laws of motion for matter as a consequence of geometry, but deriving from this the motion of idealized test particles is a highly non-trivial task, cf. <a href="#CITEREFPoisson2004">Poisson 2004</a>.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">A simple explanation of mass–energy equivalence can be found in sections 3.8 and 3.9 of <a href="#CITEREFGiulini2005">Giulini 2005</a>.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">See chapter 6 of <a href="#CITEREFWheeler1990">Wheeler 1990</a>.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">For a more detailed definition of the metric, but one that is more informal than a textbook presentation, see chapter 14.4 of <a href="#CITEREFPenrose2004">Penrose 2004</a>.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">The geometrical meaning of Einstein's equations is explored in chapters 7 and 8 of <a href="#CITEREFWheeler1990">Wheeler 1990</a>; cf. box 2.6 in <a href="#CITEREFThorne1994">Thorne 1994</a>. An introduction using only very simple mathematics is given in chapter 19 of <a href="#CITEREFSchutz2003">Schutz 2003</a>.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">The most important solutions are listed in every <a href="/wiki/General_relativity#Further_reading" title="General relativity">textbook on general relativity</a>; for a (technical) summary of our current understanding, see <a href="#CITEREFFriedrich2005">Friedrich 2005</a>.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">More precisely, these are <a href="/wiki/VLBI" class="mw-redirect" title="VLBI">VLBI</a> measurements of planetary positions; see chapter 5 of <a href="#CITEREFWill1993">Will 1993</a> and section 3.5 of <a href="#CITEREFWill2006">Will 2006</a>.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">For the historical measurements, see <a href="#CITEREFHartl2005">Hartl 2005</a>, <a href="#CITEREFKennefick2005">Kennefick 2005</a>, and <a href="#CITEREFKennefick2007">Kennefick 2007</a>; Soldner's original derivation in the framework of Newton's theory is <a href="#CITEREFvon_Soldner1804">von Soldner 1804</a>. For the most precise measurements to date, see <a href="#CITEREFBertotti2005">Bertotti 2005</a>.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">See <a href="#CITEREFKennefick2005">Kennefick 2005</a> and chapter 3 of <a href="#CITEREFWill1993">Will 1993</a>. For the Sirius B measurements, see <a href="#CITEREFTrimbleBarstow2007">Trimble &amp; Barstow 2007</a>.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a href="#CITEREFPais1982">Pais 1982</a>, Mercury on pp. 253–254, Einstein's rise to fame in sections 16b and 16c.</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEveritt,_C.W.F.Parkinson,_B.W.2009" class="citation cs2">Everitt, C.W.F.; Parkinson, B.W. (2009), <a rel="nofollow" class="external text" href="http://einstein.stanford.edu/content/final_report/GPB_Final_NASA_Report-020509-web.pdf"><i>Gravity Probe B Science Results—NASA Final Report</i></a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">, retrieved <span class="nowrap">2009-05-02</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravity+Probe+B+Science+Results%E2%80%94NASA+Final+Report&amp;rft.date=2009&amp;rft.au=Everitt%2C+C.W.F.&amp;rft.au=Parkinson%2C+B.W.&amp;rft_id=http%3A%2F%2Feinstein.stanford.edu%2Fcontent%2Ffinal_report%2FGPB_Final_NASA_Report-020509-web.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a href="#CITEREFKramer2004">Kramer 2004</a>.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">An accessible account of relativistic effects in the global positioning system can be found in <a href="#CITEREFAshby2002">Ashby 2002</a>; details are given in <a href="#CITEREFAshby2003">Ashby 2003</a>.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">An accessible introduction to tests of general relativity is <a href="#CITEREFWill1993">Will 1993</a>; a more technical, up-to-date account is <a href="#CITEREFWill2006">Will 2006</a>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">The geometry of such situations is explored in chapter 23 of <a href="#CITEREFSchutz2003">Schutz 2003</a>.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Introductions to gravitational lensing and its applications can be found on the webpages <a href="#CITEREFNewbury1997">Newbury 1997</a> and <a href="#CITEREFLochner2007">Lochner 2007</a>.</span> </li> <li id="cite_note-Abbot-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Abbot_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFB._P._Abbott2016" class="citation cs2">B. P. Abbott; et al. (LIGO Scientific and Virgo Collaborations) (2016), "Observation of Gravitational Waves from a Binary Black Hole Merger", <i>Physical Review Letters</i>, <b>116</b> (6): 061102, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.03837">1602.03837</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvL.116f1102A">2016PhRvL.116f1102A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.116.061102">10.1103/PhysRevLett.116.061102</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26918975">26918975</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124959784">124959784</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Observation+of+Gravitational+Waves+from+a+Binary+Black+Hole+Merger&amp;rft.volume=116&amp;rft.issue=6&amp;rft.pages=061102&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124959784%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016PhRvL.116f1102A&amp;rft_id=info%3Aarxiv%2F1602.03837&amp;rft_id=info%3Apmid%2F26918975&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.116.061102&amp;rft.au=B.+P.+Abbott&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchutz2003">Schutz 2003</a>, pp. 317–321; <a href="#CITEREFBartusiak2000">Bartusiak 2000</a>, pp. 70–86.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">The ongoing search for gravitational waves is described in <a href="#CITEREFBartusiak2000">Bartusiak 2000</a> and in <a href="#CITEREFBlairMcNamara1997">Blair &amp; McNamara 1997</a>.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">For an overview of the history of black hole physics from its beginnings in the early 20th century to modern times, see the very readable account by <a href="#CITEREFThorne1994">Thorne 1994</a>. For an up-to-date account of the role of black holes in structure formation, see <a href="#CITEREFSpringelWhiteJenkinsFrenk2005">Springel et al. 2005</a>; a brief summary can be found in the related article <a href="#CITEREFGnedin2005">Gnedin 2005</a>.</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">See chapter 8 of <a href="#CITEREFSparkeGallagher2007">Sparke &amp; Gallagher 2007</a> and <a href="#CITEREFDisney1998">Disney 1998</a>. A treatment that is more thorough, yet involves only comparatively little mathematics can be found in <a href="#CITEREFRobson1996">Robson 1996</a>.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">An elementary introduction to the black hole uniqueness theorems can be found in <a href="#CITEREFChrusciel2006">Chrusciel 2006</a> and in <a href="#CITEREFThorne1994">Thorne 1994</a>, pp. 272–286.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Detailed information can be found in Ned Wright's Cosmology Tutorial and FAQ, <a href="#CITEREFWright2007">Wright 2007</a>; a very readable introduction is <a href="#CITEREFHogan1999">Hogan 1999</a>. Using undergraduate mathematics but avoiding the advanced mathematical tools of general relativity, <a href="#CITEREFBerry1989">Berry 1989</a> provides a more thorough presentation.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">Einstein's original paper is <a href="#CITEREFEinstein1917">Einstein 1917</a>; good descriptions of more modern developments can be found in <a href="#CITEREFCowen2001">Cowen 2001</a> and <a href="#CITEREFCaldwell2004">Caldwell 2004</a>.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">Cf. <a href="#CITEREFMaddox1998">Maddox 1998</a>, pp. 52–59 and 98–122; <a href="#CITEREFPenrose2004">Penrose 2004</a>, section 34.1 and chapter 30.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">With a focus on string theory, the search for quantum gravity is described in <a href="#CITEREFGreene1999">Greene 1999</a>; for an account from the point of view of loop quantum gravity, see <a href="#CITEREFSmolin2001">Smolin 2001</a>.</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">For dark matter, see <a href="#CITEREFMilgrom2002">Milgrom 2002</a>; for dark energy, <a href="#CITEREFCaldwell2004">Caldwell 2004</a></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">See <a href="#CITEREFFriedrich2005">Friedrich 2005</a>.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">A review of the various problems and the techniques being developed to overcome them, see <a href="#CITEREFLehner2002">Lehner 2002</a>.</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">A good starting point for a snapshot of present-day research in relativity is the electronic review journal <a rel="nofollow" class="external text" href="http://relativity.livingreviews.org">Living Reviews in Relativity</a>.</span> </li> </ol></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=20" title="Edit section: Bibliography" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-8 collapsible-block" id="mf-section-8"> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAshby2002" class="citation cs2">Ashby, Neil (2002), <a rel="nofollow" class="external text" href="http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/GPS/Neil_Ashby_Relativity_GPS.pdf">"Relativity and the Global Positioning System"</a> <span class="cs1-format">(PDF)</span>, <i>Physics Today</i>, <b>55</b> (5): 41–47, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhT....55e..41A">2002PhT....55e..41A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1485583">10.1063/1.1485583</a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253894">5253894</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28163638">28163638</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Today&amp;rft.atitle=Relativity+and+the+Global+Positioning+System&amp;rft.volume=55&amp;rft.issue=5&amp;rft.pages=41-47&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5253894%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F28163638&amp;rft_id=info%3Adoi%2F10.1063%2F1.1485583&amp;rft_id=info%3Abibcode%2F2002PhT....55e..41A&amp;rft.aulast=Ashby&amp;rft.aufirst=Neil&amp;rft_id=http%3A%2F%2Fwww.ipgp.jussieu.fr%2F~tarantola%2FFiles%2FProfessional%2FGPS%2FNeil_Ashby_Relativity_GPS.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAshby2003" class="citation cs2">Ashby, Neil (2003), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070704102558/http://relativity.livingreviews.org/Articles/lrr-2003-1/index.html">"Relativity in the Global Positioning System"</a>, <i>Living Reviews in Relativity</i>, <b>6</b> (1): 1, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003LRR.....6....1A">2003LRR.....6....1A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.12942%2Flrr-2003-1">10.12942/lrr-2003-1</a></span>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253894">5253894</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28163638">28163638</a>, archived from <a rel="nofollow" class="external text" href="http://relativity.livingreviews.org/Articles/lrr-2003-1/index.html">the original</a> on 2007-07-04<span class="reference-accessdate">, retrieved <span class="nowrap">2007-07-06</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Living+Reviews+in+Relativity&amp;rft.atitle=Relativity+in+the+Global+Positioning+System&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=1&amp;rft.date=2003&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5253894%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F28163638&amp;rft_id=info%3Adoi%2F10.12942%2Flrr-2003-1&amp;rft_id=info%3Abibcode%2F2003LRR.....6....1A&amp;rft.aulast=Ashby&amp;rft.aufirst=Neil&amp;rft_id=http%3A%2F%2Frelativity.livingreviews.org%2FArticles%2Flrr-2003-1%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartusiak2000" class="citation cs2">Bartusiak, Marcia (2000), <i>Einstein's Unfinished Symphony: Listening to the Sounds of Space-Time</i>, Berkley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-425-18620-6" title="Special:BookSources/978-0-425-18620-6"><bdi>978-0-425-18620-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Einstein%27s+Unfinished+Symphony%3A+Listening+to+the+Sounds+of+Space-Time&amp;rft.pub=Berkley&amp;rft.date=2000&amp;rft.isbn=978-0-425-18620-6&amp;rft.aulast=Bartusiak&amp;rft.aufirst=Marcia&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerry1989" class="citation cs2">Berry, Michael V. (1989), <i>Principles of Cosmology and Gravitation</i> (1989 reprinted ed.), Institute of Physics Publishing, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-85274-037-9" title="Special:BookSources/0-85274-037-9"><bdi>0-85274-037-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Cosmology+and+Gravitation&amp;rft.edition=1989+reprinted&amp;rft.pub=Institute+of+Physics+Publishing&amp;rft.date=1989&amp;rft.isbn=0-85274-037-9&amp;rft.aulast=Berry&amp;rft.aufirst=Michael+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBertotti2005" class="citation cs2"><a href="/wiki/Bruno_Bertotti" title="Bruno Bertotti">Bertotti, Bruno</a> (2005), "The Cassini Experiment: Investigating the Nature of Gravity", in Renn, Jürgen (ed.), <i>One hundred authors for Einstein</i>, Wiley-VCH, pp. 402–405, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-527-40574-7" title="Special:BookSources/3-527-40574-7"><bdi>3-527-40574-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Cassini+Experiment%3A+Investigating+the+Nature+of+Gravity&amp;rft.btitle=One+hundred+authors+for+Einstein&amp;rft.pages=402-405&amp;rft.pub=Wiley-VCH&amp;rft.date=2005&amp;rft.isbn=3-527-40574-7&amp;rft.aulast=Bertotti&amp;rft.aufirst=Bruno&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlairMcNamara1997" class="citation cs2"><a href="/wiki/David_Blair_(physicist)" title="David Blair (physicist)">Blair, David</a>; McNamara, Geoff (1997), <a rel="nofollow" class="external text" href="https://archive.org/details/isbn_9780738201375"><i>Ripples on a Cosmic Sea. The Search for Gravitational Waves</i></a>, Perseus, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7382-0137-5" title="Special:BookSources/0-7382-0137-5"><bdi>0-7382-0137-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ripples+on+a+Cosmic+Sea.+The+Search+for+Gravitational+Waves&amp;rft.pub=Perseus&amp;rft.date=1997&amp;rft.isbn=0-7382-0137-5&amp;rft.aulast=Blair&amp;rft.aufirst=David&amp;rft.au=McNamara%2C+Geoff&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fisbn_9780738201375&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwell2004" class="citation cs2">Caldwell, Robert R. (2004), <a rel="nofollow" class="external text" href="http://physicsworld.com/cws/article/print/2004/may/30/dark-energy">"Dark Energy"</a>, <i>Physics World</i>, <b>17</b> (5): 37–42, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2058-7058%2F17%2F5%2F36">10.1088/2058-7058/17/5/36</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+World&amp;rft.atitle=Dark+Energy&amp;rft.volume=17&amp;rft.issue=5&amp;rft.pages=37-42&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1088%2F2058-7058%2F17%2F5%2F36&amp;rft.aulast=Caldwell&amp;rft.aufirst=Robert+R.&amp;rft_id=http%3A%2F%2Fphysicsworld.com%2Fcws%2Farticle%2Fprint%2F2004%2Fmay%2F30%2Fdark-energy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChrusciel2006" class="citation cs2">Chrusciel, Piotr (2006), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110414115127/http://www.einstein-online.info/spotlights/bh_uniqueness">"How many different kinds of black hole are there?"</a>, <i><a href="/wiki/Einstein_Online" class="mw-redirect" title="Einstein Online">Einstein Online</a></i>, <a href="/wiki/Max_Planck_Institute_for_Gravitational_Physics" title="Max Planck Institute for Gravitational Physics">Max Planck Institute for Gravitational Physics</a>, archived from <a rel="nofollow" class="external text" href="http://www.einstein-online.info/spotlights/bh_uniqueness/">the original</a> on 2011-04-14<span class="reference-accessdate">, retrieved <span class="nowrap">2007-07-15</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Einstein+Online&amp;rft.atitle=How+many+different+kinds+of+black+hole+are+there%3F&amp;rft.date=2006&amp;rft.aulast=Chrusciel&amp;rft.aufirst=Piotr&amp;rft_id=http%3A%2F%2Fwww.einstein-online.info%2Fspotlights%2Fbh_uniqueness%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCowen2001" class="citation cs2">Cowen, Ron (2001), "A Dark Force in the Universe", <i>Science News</i>, <b>159</b> (14): 218–220, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3981642">10.2307/3981642</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3981642">3981642</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+News&amp;rft.atitle=A+Dark+Force+in+the+Universe&amp;rft.volume=159&amp;rft.issue=14&amp;rft.pages=218-220&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.2307%2F3981642&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3981642%23id-name%3DJSTOR&amp;rft.aulast=Cowen&amp;rft.aufirst=Ron&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDisney1998" class="citation cs2">Disney, Michael (1998), "A New Look at Quasars", <i>Scientific American</i>, <b>278</b> (6): 52–57, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998SciAm.278f..52D">1998SciAm.278f..52D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fscientificamerican0698-52">10.1038/scientificamerican0698-52</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+American&amp;rft.atitle=A+New+Look+at+Quasars&amp;rft.volume=278&amp;rft.issue=6&amp;rft.pages=52-57&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1038%2Fscientificamerican0698-52&amp;rft_id=info%3Abibcode%2F1998SciAm.278f..52D&amp;rft.aulast=Disney&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEhlersRindler1997" class="citation cs2">Ehlers, Jürgen; <a href="/wiki/Wolfgang_Rindler" title="Wolfgang Rindler">Rindler, Wolfgang</a> (1997), "Local and Global Light Bending in Einstein's and other Gravitational Theories", <i>General Relativity and Gravitation</i>, <b>29</b> (4): 519–529, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997GReGr..29..519E">1997GReGr..29..519E</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1018843001842">10.1023/A:1018843001842</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11858%2F00-001M-0000-0013-5AB5-4">11858/00-001M-0000-0013-5AB5-4</a></span>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118162303">118162303</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=General+Relativity+and+Gravitation&amp;rft.atitle=Local+and+Global+Light+Bending+in+Einstein%27s+and+other+Gravitational+Theories&amp;rft.volume=29&amp;rft.issue=4&amp;rft.pages=519-529&amp;rft.date=1997&amp;rft_id=info%3Ahdl%2F11858%2F00-001M-0000-0013-5AB5-4&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118162303%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1018843001842&amp;rft_id=info%3Abibcode%2F1997GReGr..29..519E&amp;rft.aulast=Ehlers&amp;rft.aufirst=J%C3%BCrgen&amp;rft.au=Rindler%2C+Wolfgang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein1917" class="citation cs2"><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein, Albert</a> (1917), "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie", <i>Sitzungsberichte der Preußischen Akademie der Wissenschaften</i>: 142</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sitzungsberichte+der+Preu%C3%9Fischen+Akademie+der+Wissenschaften&amp;rft.atitle=Kosmologische+Betrachtungen+zur+allgemeinen+Relativit%C3%A4tstheorie&amp;rft.pages=142&amp;rft.date=1917&amp;rft.aulast=Einstein&amp;rft.aufirst=Albert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein1961" class="citation cs2"><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein, Albert</a> (1961), <a rel="nofollow" class="external text" href="https://www.gutenberg.org/ebooks/5001"><i>Relativity. The special and general theory</i></a>, Crown Publishers</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relativity.+The+special+and+general+theory&amp;rft.pub=Crown+Publishers&amp;rft.date=1961&amp;rft.aulast=Einstein&amp;rft.aufirst=Albert&amp;rft_id=https%3A%2F%2Fwww.gutenberg.org%2Febooks%2F5001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedrich2005" class="citation cs2">Friedrich, Helmut (2005), "Is general relativity 'essentially understood'?", <i>Annalen der Physik</i>, <b>15</b> (1–2): 84–108, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0508016">gr-qc/0508016</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006AnP...518...84F">2006AnP...518...84F</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.200510173">10.1002/andp.200510173</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:37236624">37236624</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=Is+general+relativity+%27essentially+understood%27%3F&amp;rft.volume=15&amp;rft.issue=1%E2%80%932&amp;rft.pages=84-108&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0508016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A37236624%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.200510173&amp;rft_id=info%3Abibcode%2F2006AnP...518...84F&amp;rft.aulast=Friedrich&amp;rft.aufirst=Helmut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeroch1978" class="citation cs2">Geroch, Robert (1978), <i>General relativity from A to B</i>, University of Chicago Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-226-28864-1" title="Special:BookSources/0-226-28864-1"><bdi>0-226-28864-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+relativity+from+A+to+B&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1978&amp;rft.isbn=0-226-28864-1&amp;rft.aulast=Geroch&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiulini2005" class="citation cs2">Giulini, Domenico (2005), <i>Special relativity. A first encounter</i>, Oxford University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-856746-4" title="Special:BookSources/0-19-856746-4"><bdi>0-19-856746-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Special+relativity.+A+first+encounter&amp;rft.pub=Oxford+University+Press&amp;rft.date=2005&amp;rft.isbn=0-19-856746-4&amp;rft.aulast=Giulini&amp;rft.aufirst=Domenico&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGnedin2005" class="citation cs2">Gnedin, Nickolay Y. (2005), "Digitizing the Universe", <i>Nature</i>, <b>435</b> (7042): 572–573, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005Natur.435..572G">2005Natur.435..572G</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F435572a">10.1038/435572a</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15931201">15931201</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3023436">3023436</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Digitizing+the+Universe&amp;rft.volume=435&amp;rft.issue=7042&amp;rft.pages=572-573&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1038%2F435572a&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3023436%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F15931201&amp;rft_id=info%3Abibcode%2F2005Natur.435..572G&amp;rft.aulast=Gnedin&amp;rft.aufirst=Nickolay+Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreene1999" class="citation cs2"><a href="/wiki/Brian_Greene" title="Brian Greene">Greene, Brian</a> (1999), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/elegantuniverses0000gree"><i>The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory</i></a></span>, Vintage, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-375-70811-1" title="Special:BookSources/0-375-70811-1"><bdi>0-375-70811-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Elegant+Universe%3A+Superstrings%2C+Hidden+Dimensions%2C+and+the+Quest+for+the+Ultimate+Theory&amp;rft.pub=Vintage&amp;rft.date=1999&amp;rft.isbn=0-375-70811-1&amp;rft.aulast=Greene&amp;rft.aufirst=Brian&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felegantuniverses0000gree&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreene2004" class="citation cs2"><a href="/wiki/Brian_Greene" title="Brian Greene">Greene, Brian</a> (2004), <a href="/wiki/The_Fabric_of_the_Cosmos:_Space,_Time,_and_the_Texture_of_Reality" class="mw-redirect" title="The Fabric of the Cosmos: Space, Time, and the Texture of Reality"><i>The Fabric of the Cosmos: Space, Time, and the Texture of Reality</i></a>, A. A. Knopf, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004fcst.book.....G">2004fcst.book.....G</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-375-41288-3" title="Special:BookSources/0-375-41288-3"><bdi>0-375-41288-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Fabric+of+the+Cosmos%3A+Space%2C+Time%2C+and+the+Texture+of+Reality&amp;rft.pub=A.+A.+Knopf&amp;rft.date=2004&amp;rft_id=info%3Abibcode%2F2004fcst.book.....G&amp;rft.isbn=0-375-41288-3&amp;rft.aulast=Greene&amp;rft.aufirst=Brian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrison2002" class="citation cs2">Harrison, David M. (2002), <a rel="nofollow" class="external text" href="http://www.upscale.utoronto.ca/GeneralInterest/Harrison/GenRel/TimeDilation.pdf"><i>A Non-mathematical Proof of Gravitational Time Dilation</i></a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">, retrieved <span class="nowrap">2007-05-06</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Non-mathematical+Proof+of+Gravitational+Time+Dilation&amp;rft.date=2002&amp;rft.aulast=Harrison&amp;rft.aufirst=David+M.&amp;rft_id=http%3A%2F%2Fwww.upscale.utoronto.ca%2FGeneralInterest%2FHarrison%2FGenRel%2FTimeDilation.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartl2005" class="citation cs2">Hartl, Gerhard (2005), "The Confirmation of the General Theory of Relativity by the British Eclipse Expedition of 1919", in Renn, Jürgen (ed.), <i>One hundred authors for Einstein</i>, Wiley-VCH, pp. 182–187, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-527-40574-7" title="Special:BookSources/3-527-40574-7"><bdi>3-527-40574-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Confirmation+of+the+General+Theory+of+Relativity+by+the+British+Eclipse+Expedition+of+1919&amp;rft.btitle=One+hundred+authors+for+Einstein&amp;rft.pages=182-187&amp;rft.pub=Wiley-VCH&amp;rft.date=2005&amp;rft.isbn=3-527-40574-7&amp;rft.aulast=Hartl&amp;rft.aufirst=Gerhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHogan1999" class="citation cs2">Hogan, Craig J. (1999), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/littlebookofbigb0000hoga"><i>The Little Book of the Big Bang. A Cosmic Primer</i></a></span>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-98385-6" title="Special:BookSources/0-387-98385-6"><bdi>0-387-98385-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Little+Book+of+the+Big+Bang.+A+Cosmic+Primer&amp;rft.pub=Springer&amp;rft.date=1999&amp;rft.isbn=0-387-98385-6&amp;rft.aulast=Hogan&amp;rft.aufirst=Craig+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flittlebookofbigb0000hoga&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJanssen2005" class="citation cs2">Janssen, Michel (2005), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170713055330/https://netfiles.umn.edu/users/janss011/home%20page/potsandholes.pdf">"Of pots and holes: Einstein's bumpy road to general relativity"</a> <span class="cs1-format">(PDF)</span>, <i>Annalen der Physik</i>, <b>14</b> (S1): 58–85, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AnP...517S..58J">2005AnP...517S..58J</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.200410130">10.1002/andp.200410130</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10641693">10641693</a>, archived from <a rel="nofollow" class="external text" href="https://netfiles.umn.edu/users/janss011/home%20page/potsandholes.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2017-07-13<span class="reference-accessdate">, retrieved <span class="nowrap">2013-07-15</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=Of+pots+and+holes%3A+Einstein%27s+bumpy+road+to+general+relativity&amp;rft.volume=14&amp;rft.issue=S1&amp;rft.pages=58-85&amp;rft.date=2005&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10641693%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.200410130&amp;rft_id=info%3Abibcode%2F2005AnP...517S..58J&amp;rft.aulast=Janssen&amp;rft.aufirst=Michel&amp;rft_id=https%3A%2F%2Fnetfiles.umn.edu%2Fusers%2Fjanss011%2Fhome%2520page%2Fpotsandholes.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKennefick2005" class="citation cs2">Kennefick, Daniel (2005), "Astronomers Test General Relativity: Light-bending and the Solar Redshift", in Renn, Jürgen (ed.), <i>One hundred authors for Einstein</i>, Wiley-VCH, pp. 178–181, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-527-40574-7" title="Special:BookSources/3-527-40574-7"><bdi>3-527-40574-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Astronomers+Test+General+Relativity%3A+Light-bending+and+the+Solar+Redshift&amp;rft.btitle=One+hundred+authors+for+Einstein&amp;rft.pages=178-181&amp;rft.pub=Wiley-VCH&amp;rft.date=2005&amp;rft.isbn=3-527-40574-7&amp;rft.aulast=Kennefick&amp;rft.aufirst=Daniel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKennefick2007" class="citation cs2">Kennefick, Daniel (2007), "Not Only Because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition", <i>Proceedings of the 7th Conference on the History of General Relativity, Tenerife, 2005</i>, vol. 0709, p. 685, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0709.0685">0709.0685</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007arXiv0709.0685K">2007arXiv0709.0685K</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.shpsa.2012.07.010">10.1016/j.shpsa.2012.07.010</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119203172">119203172</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Not+Only+Because+of+Theory%3A+Dyson%2C+Eddington+and+the+Competing+Myths+of+the+1919+Eclipse+Expedition&amp;rft.btitle=Proceedings+of+the+7th+Conference+on+the+History+of+General+Relativity%2C+Tenerife%2C+2005&amp;rft.pages=685&amp;rft.date=2007&amp;rft_id=info%3Aarxiv%2F0709.0685&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119203172%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.shpsa.2012.07.010&amp;rft_id=info%3Abibcode%2F2007arXiv0709.0685K&amp;rft.aulast=Kennefick&amp;rft.aufirst=Daniel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKramer2004" class="citation cs2">Kramer, Michael (2004), "Millisecond Pulsars as Tools of Fundamental Physics", in Karshenboim, S. G.; Peik, E. (eds.), <i>Astrophysics, Clocks and Fundamental Constants</i>, Lecture Notes in Physics, vol. 648, Springer, pp. 33–54, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0405178">astro-ph/0405178</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fb13178">10.1007/b13178</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-21967-5" title="Special:BookSources/978-3-540-21967-5"><bdi>978-3-540-21967-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Millisecond+Pulsars+as+Tools+of+Fundamental+Physics&amp;rft.btitle=Astrophysics%2C+Clocks+and+Fundamental+Constants&amp;rft.series=Lecture+Notes+in+Physics&amp;rft.pages=33-54&amp;rft.pub=Springer&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0405178&amp;rft_id=info%3Adoi%2F10.1007%2Fb13178&amp;rft.isbn=978-3-540-21967-5&amp;rft.aulast=Kramer&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLehner2002" class="citation cs2">Lehner, Luis (2002), "Numerical Relativity: Status and Prospects", <i>Proceedings of the 16th International Conference on General Relativity and Gravitation, held 15–21 July 2001 in Durban</i>, p. 210, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0202055">gr-qc/0202055</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002grg..conf..210L">2002grg..conf..210L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789812776556_0010">10.1142/9789812776556_0010</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-238-171-2" title="Special:BookSources/978-981-238-171-2"><bdi>978-981-238-171-2</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9145148">9145148</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Numerical+Relativity%3A+Status+and+Prospects&amp;rft.btitle=Proceedings+of+the+16th+International+Conference+on+General+Relativity+and+Gravitation%2C+held+15%E2%80%9321+July+2001+in+Durban&amp;rft.pages=210&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9145148%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2002grg..conf..210L&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0202055&amp;rft_id=info%3Adoi%2F10.1142%2F9789812776556_0010&amp;rft.isbn=978-981-238-171-2&amp;rft.aulast=Lehner&amp;rft.aufirst=Luis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLochner2007" class="citation cs2">Lochner, Jim, ed. (2007), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070617115947/http://imagine.gsfc.nasa.gov/docs/features/news/grav_lens.html">"Gravitational Lensing"</a>, <i>Imagine the Universe Website</i>, NASA GSFC, archived from <a rel="nofollow" class="external text" href="https://imagine.gsfc.nasa.gov/docs/features/news/grav_lens.html">the original</a> on 2007-06-17<span class="reference-accessdate">, retrieved <span class="nowrap">2007-06-12</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Imagine+the+Universe+Website&amp;rft.atitle=Gravitational+Lensing&amp;rft.date=2007&amp;rft_id=http%3A%2F%2Fimagine.gsfc.nasa.gov%2Fdocs%2Ffeatures%2Fnews%2Fgrav_lens.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaddox1998" class="citation cs2"><a href="/wiki/John_Maddox" title="John Maddox">Maddox, John</a> (1998), <a rel="nofollow" class="external text" href="https://archive.org/details/whatremainstobed00madd"><i>What Remains To Be Discovered</i></a>, Macmillan, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-684-82292-X" title="Special:BookSources/0-684-82292-X"><bdi>0-684-82292-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=What+Remains+To+Be+Discovered&amp;rft.pub=Macmillan&amp;rft.date=1998&amp;rft.isbn=0-684-82292-X&amp;rft.aulast=Maddox&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fwhatremainstobed00madd&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMermin2005" class="citation cs2"><a href="/wiki/David_Mermin" class="mw-redirect" title="David Mermin">Mermin, N. David</a> (2005), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/itsabouttimeunde0000merm"><i>It's About Time. Understanding Einstein's Relativity</i></a></span>, Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-691-12201-6" title="Special:BookSources/0-691-12201-6"><bdi>0-691-12201-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=It%27s+About+Time.+Understanding+Einstein%27s+Relativity&amp;rft.pub=Princeton+University+Press&amp;rft.date=2005&amp;rft.isbn=0-691-12201-6&amp;rft.aulast=Mermin&amp;rft.aufirst=N.+David&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fitsabouttimeunde0000merm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilgrom2002" class="citation cs2">Milgrom, Mordehai (2002), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110610164644/http://www.sciamdigital.com/index.cfm?fa=Products.ViewIssuePreview&amp;ARTICLEID_CHAR=724C1E4B-FFD5-46F4-963E-7610EC8B7EC&amp;sc=I100322">"Does dark matter really exist?"</a>, <i>Scientific American</i>, <b>287</b> (2): 30–37, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002SciAm.287b..42M">2002SciAm.287b..42M</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fscientificamerican0802-42">10.1038/scientificamerican0802-42</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12140952">12140952</a>, archived from <a rel="nofollow" class="external text" href="http://www.sciamdigital.com/index.cfm?fa=Products.ViewIssuePreview&amp;ARTICLEID_CHAR=724C1E4B-FFD5-46F4-963E-7610EC8B7EC&amp;sc=I100322">the original</a> on 2011-06-10<span class="reference-accessdate">, retrieved <span class="nowrap">2007-06-13</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+American&amp;rft.atitle=Does+dark+matter+really+exist%3F&amp;rft.volume=287&amp;rft.issue=2&amp;rft.pages=30-37&amp;rft.date=2002&amp;rft_id=info%3Apmid%2F12140952&amp;rft_id=info%3Adoi%2F10.1038%2Fscientificamerican0802-42&amp;rft_id=info%3Abibcode%2F2002SciAm.287b..42M&amp;rft.aulast=Milgrom&amp;rft.aufirst=Mordehai&amp;rft_id=http%3A%2F%2Fwww.sciamdigital.com%2Findex.cfm%3Ffa%3DProducts.ViewIssuePreview%26ARTICLEID_CHAR%3D724C1E4B-FFD5-46F4-963E-7610EC8B7EC%26sc%3DI100322&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNorton1985" class="citation cs2">Norton, John D. (1985), <a rel="nofollow" class="external text" href="http://www.pitt.edu/~jdnorton/papers/ProfE_re-set.pdf">"What was Einstein's principle of equivalence?"</a> <span class="cs1-format">(PDF)</span>, <i>Studies in History and Philosophy of Science</i>, <b>16</b> (3): 203–246, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985SHPSA..16..203N">1985SHPSA..16..203N</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0039-3681%2885%2990002-0">10.1016/0039-3681(85)90002-0</a><span class="reference-accessdate">, retrieved <span class="nowrap">2007-06-11</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Studies+in+History+and+Philosophy+of+Science&amp;rft.atitle=What+was+Einstein%27s+principle+of+equivalence%3F&amp;rft.volume=16&amp;rft.issue=3&amp;rft.pages=203-246&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1016%2F0039-3681%2885%2990002-0&amp;rft_id=info%3Abibcode%2F1985SHPSA..16..203N&amp;rft.aulast=Norton&amp;rft.aufirst=John+D.&amp;rft_id=http%3A%2F%2Fwww.pitt.edu%2F~jdnorton%2Fpapers%2FProfE_re-set.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewbury1997" class="citation cs2">Newbury, Pete (1997), <a rel="nofollow" class="external text" href="https://archive.today/20121206023615/http://www.iam.ubc.ca/old_pages/newbury/lenses/research.html"><i>Gravitational lensing webpages</i></a>, archived from <a rel="nofollow" class="external text" href="http://www.iam.ubc.ca/old_pages/newbury/lenses/research.html">the original</a> on 2012-12-06<span class="reference-accessdate">, retrieved <span class="nowrap">2007-06-12</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitational+lensing+webpages&amp;rft.date=1997&amp;rft.aulast=Newbury&amp;rft.aufirst=Pete&amp;rft_id=http%3A%2F%2Fwww.iam.ubc.ca%2Fold_pages%2Fnewbury%2Flenses%2Fresearch.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNieto2006" class="citation cs2">Nieto, Michael Martin (2006), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070629140354/http://www.europhysicsnews.com/full/42/article4.pdf">"The quest to understand the Pioneer anomaly"</a> <span class="cs1-format">(PDF)</span>, <i>Europhysics News</i>, <b>37</b> (6): 30–34, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0702017">gr-qc/0702017</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006ENews..37f..30N">2006ENews..37f..30N</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2Fepn%3A2006604">10.1051/epn:2006604</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118949889">118949889</a>, archived from <a rel="nofollow" class="external text" href="http://www.europhysicsnews.com/full/42/article4.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2007-06-29</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Europhysics+News&amp;rft.atitle=The+quest+to+understand+the+Pioneer+anomaly&amp;rft.volume=37&amp;rft.issue=6&amp;rft.pages=30-34&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0702017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118949889%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1051%2Fepn%3A2006604&amp;rft_id=info%3Abibcode%2F2006ENews..37f..30N&amp;rft.aulast=Nieto&amp;rft.aufirst=Michael+Martin&amp;rft_id=http%3A%2F%2Fwww.europhysicsnews.com%2Ffull%2F42%2Farticle4.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPais1982" class="citation cs2"><a href="/wiki/Abraham_Pais" title="Abraham Pais">Pais, Abraham</a> (1982), <a rel="nofollow" class="external text" href="https://archive.org/details/subtleislordscie00pais"><i><span></span>'Subtle is the Lord ...' The Science and life of Albert Einstein</i></a>, Oxford University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-853907-X" title="Special:BookSources/0-19-853907-X"><bdi>0-19-853907-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%27Subtle+is+the+Lord+...%27+The+Science+and+life+of+Albert+Einstein&amp;rft.pub=Oxford+University+Press&amp;rft.date=1982&amp;rft.isbn=0-19-853907-X&amp;rft.aulast=Pais&amp;rft.aufirst=Abraham&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsubtleislordscie00pais&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenrose2004" class="citation cs2"><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose, Roger</a> (2004), <a rel="nofollow" class="external text" href="https://archive.org/details/roadtorealitycom00penr_0"><i>The Road to Reality</i></a>, A. A. Knopf, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-679-45443-8" title="Special:BookSources/0-679-45443-8"><bdi>0-679-45443-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Road+to+Reality&amp;rft.pub=A.+A.+Knopf&amp;rft.date=2004&amp;rft.isbn=0-679-45443-8&amp;rft.aulast=Penrose&amp;rft.aufirst=Roger&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Froadtorealitycom00penr_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPössel2007" class="citation cs2">Pössel, M. (2007), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070503120913/http://www.einstein-online.info/en/spotlights/equivalence_deflection/index.html">"The equivalence principle and the deflection of light"</a>, <i><a href="/wiki/Einstein_Online" class="mw-redirect" title="Einstein Online">Einstein Online</a></i>, <a href="/wiki/Max_Planck_Institute_for_Gravitational_Physics" title="Max Planck Institute for Gravitational Physics">Max Planck Institute for Gravitational Physics</a>, archived from <a rel="nofollow" class="external text" href="http://www.einstein-online.info/en/spotlights/equivalence_deflection/index.html">the original</a> on 2007-05-03<span class="reference-accessdate">, retrieved <span class="nowrap">2007-05-06</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Einstein+Online&amp;rft.atitle=The+equivalence+principle+and+the+deflection+of+light&amp;rft.date=2007&amp;rft.aulast=P%C3%B6ssel&amp;rft.aufirst=M.&amp;rft_id=http%3A%2F%2Fwww.einstein-online.info%2Fen%2Fspotlights%2Fequivalence_deflection%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoisson2004" class="citation cs2">Poisson, Eric (2004), "The Motion of Point Particles in Curved Spacetime", <i>Living Rev. Relativ.</i>, <b>7</b> (1): 6, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0306052">gr-qc/0306052</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004LRR.....7....6P">2004LRR.....7....6P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.12942%2Flrr-2004-6">10.12942/lrr-2004-6</a></span>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256043">5256043</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28179866">28179866</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Living+Rev.+Relativ.&amp;rft.atitle=The+Motion+of+Point+Particles+in+Curved+Spacetime&amp;rft.volume=7&amp;rft.issue=1&amp;rft.pages=6&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5256043%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2004LRR.....7....6P&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0306052&amp;rft_id=info%3Apmid%2F28179866&amp;rft_id=info%3Adoi%2F10.12942%2Flrr-2004-6&amp;rft.aulast=Poisson&amp;rft.aufirst=Eric&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRenn2005" class="citation cs2">Renn, Jürgen, ed. (2005), <i>Albert Einstein – Chief Engineer of the Universe: Einstein's Life and Work in Context</i>, Berlin: Wiley-VCH, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-527-40571-2" title="Special:BookSources/3-527-40571-2"><bdi>3-527-40571-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Albert+Einstein+%E2%80%93+Chief+Engineer+of+the+Universe%3A+Einstein%27s+Life+and+Work+in+Context&amp;rft.place=Berlin&amp;rft.pub=Wiley-VCH&amp;rft.date=2005&amp;rft.isbn=3-527-40571-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobson1996" class="citation cs2">Robson, Ian (1996), <i>Active galactic nuclei</i>, John Wiley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-95853-0" title="Special:BookSources/0-471-95853-0"><bdi>0-471-95853-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Active+galactic+nuclei&amp;rft.pub=John+Wiley&amp;rft.date=1996&amp;rft.isbn=0-471-95853-0&amp;rft.aulast=Robson&amp;rft.aufirst=Ian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchutz2003" class="citation cs2">Schutz, Bernard F. (2003), <i>Gravity from the ground up</i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-45506-5" title="Special:BookSources/0-521-45506-5"><bdi>0-521-45506-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravity+from+the+ground+up&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.isbn=0-521-45506-5&amp;rft.aulast=Schutz&amp;rft.aufirst=Bernard+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmolin2001" class="citation cs2"><a href="/wiki/Lee_Smolin" title="Lee Smolin">Smolin, Lee</a> (2001), <a href="/wiki/Three_Roads_to_Quantum_Gravity" title="Three Roads to Quantum Gravity"><i>Three Roads to Quantum Gravity</i></a>, Basic, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-465-07835-4" title="Special:BookSources/0-465-07835-4"><bdi>0-465-07835-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Three+Roads+to+Quantum+Gravity&amp;rft.pub=Basic&amp;rft.date=2001&amp;rft.isbn=0-465-07835-4&amp;rft.aulast=Smolin&amp;rft.aufirst=Lee&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Soldner1804" class="citation cs2">von Soldner, Johann Georg (1804), <span class="cs1-ws-icon" title="s:de:Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung"><a class="external text" href="https://en.wikisource.org/wiki/de:Ueber_die_Ablenkung_eines_Lichtstrals_von_seiner_geradlinigen_Bewegung">"Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung, durch die Attraktion eines Weltkörpers, an welchem er nahe vorbei geht" </a></span>, <i>Berliner Astronomisches Jahrbuch</i>: 161–172</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Berliner+Astronomisches+Jahrbuch&amp;rft.atitle=Ueber+die+Ablenkung+eines+Lichtstrals+von+seiner+geradlinigen+Bewegung%2C+durch+die+Attraktion+eines+Weltk%C3%B6rpers%2C+an+welchem+er+nahe+vorbei+geht&amp;rft.pages=161-172&amp;rft.date=1804&amp;rft.aulast=von+Soldner&amp;rft.aufirst=Johann+Georg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSparkeGallagher2007" class="citation cs2"><a href="/wiki/Linda_Sparke" title="Linda Sparke">Sparke, Linda S.</a>; Gallagher, John S. (2007), <i>Galaxies in the universe – An introduction</i>, Cambridge University Press, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007gitu.book.....S">2007gitu.book.....S</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-85593-8" title="Special:BookSources/978-0-521-85593-8"><bdi>978-0-521-85593-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Galaxies+in+the+universe+%E2%80%93+An+introduction&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft_id=info%3Abibcode%2F2007gitu.book.....S&amp;rft.isbn=978-0-521-85593-8&amp;rft.aulast=Sparke&amp;rft.aufirst=Linda+S.&amp;rft.au=Gallagher%2C+John+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpringelWhiteJenkinsFrenk2005" class="citation cs2">Springel, Volker; White, Simon D. M.; Jenkins, Adrian; Frenk, Carlos S.; Yoshida, N; Gao, L; Navarro, J; Thacker, R; Croton, D; et al. (2005), <a rel="nofollow" class="external text" href="https://deepblue.lib.umich.edu/bitstream/2027.42/62586/1/nature03597.pdf">"Simulations of the formation, evolution and clustering of galaxies and quasars"</a> <span class="cs1-format">(PDF)</span>, <i>Nature</i>, <b>435</b> (7042): 629–636, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0504097">astro-ph/0504097</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005Natur.435..629S">2005Natur.435..629S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature03597">10.1038/nature03597</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2027.42%2F62586">2027.42/62586</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15931216">15931216</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4383030">4383030</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Simulations+of+the+formation%2C+evolution+and+clustering+of+galaxies+and+quasars&amp;rft.volume=435&amp;rft.issue=7042&amp;rft.pages=629-636&amp;rft.date=2005&amp;rft_id=info%3Ahdl%2F2027.42%2F62586&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4383030%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2005Natur.435..629S&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0504097&amp;rft_id=info%3Apmid%2F15931216&amp;rft_id=info%3Adoi%2F10.1038%2Fnature03597&amp;rft.aulast=Springel&amp;rft.aufirst=Volker&amp;rft.au=White%2C+Simon+D.+M.&amp;rft.au=Jenkins%2C+Adrian&amp;rft.au=Frenk%2C+Carlos+S.&amp;rft.au=Yoshida%2C+N&amp;rft.au=Gao%2C+L&amp;rft.au=Navarro%2C+J&amp;rft.au=Thacker%2C+R&amp;rft.au=Croton%2C+D&amp;rft.au=Helly%2C+John&amp;rft.au=Peacock%2C+John+A.&amp;rft.au=Cole%2C+Shaun&amp;rft.au=Thomas%2C+Peter&amp;rft.au=Couchman%2C+Hugh&amp;rft.au=Evrard%2C+August&amp;rft.au=Colberg%2C+J%C3%B6rg&amp;rft.au=Pearce%2C+Frazer&amp;rft_id=https%3A%2F%2Fdeepblue.lib.umich.edu%2Fbitstream%2F2027.42%2F62586%2F1%2Fnature03597.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStachel1989" class="citation cs2"><a href="/wiki/John_Stachel" title="John Stachel">Stachel, John</a> (1989), "The Rigidly Rotating Disk as the 'Missing Link in the History of General Relativity'<span class="cs1-kern-right"></span>", in Howard, D.; Stachel, J. (eds.), <i>Einstein and the History of General Relativity</i>, Einstein Studies, vol. 1, Birkhäuser, pp. 48–62, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8176-3392-8" title="Special:BookSources/0-8176-3392-8"><bdi>0-8176-3392-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Rigidly+Rotating+Disk+as+the+%27Missing+Link+in+the+History+of+General+Relativity%27&amp;rft.btitle=Einstein+and+the+History+of+General+Relativity&amp;rft.series=Einstein+Studies&amp;rft.pages=48-62&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=1989&amp;rft.isbn=0-8176-3392-8&amp;rft.aulast=Stachel&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThorne1994" class="citation cs2"><a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne, Kip</a> (1994), <i>Black Holes and Time Warps: Einstein's Outrageous Legacy</i>, W W Norton &amp; Company, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-393-31276-3" title="Special:BookSources/0-393-31276-3"><bdi>0-393-31276-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Black+Holes+and+Time+Warps%3A+Einstein%27s+Outrageous+Legacy&amp;rft.pub=W+W+Norton+%26+Company&amp;rft.date=1994&amp;rft.isbn=0-393-31276-3&amp;rft.aulast=Thorne&amp;rft.aufirst=Kip&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrimbleBarstow2007" class="citation cs2"><a href="/wiki/Virginia_Trimble" class="mw-redirect" title="Virginia Trimble">Trimble, Virginia</a>; Barstow, Martin (2007), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110828094228/http://www.einstein-online.info/spotlights/redshift_white_dwarfs">"Gravitational redshift and White Dwarf stars"</a>, <i><a href="/wiki/Einstein_Online" class="mw-redirect" title="Einstein Online">Einstein Online</a></i>, <a href="/wiki/Max_Planck_Institute_for_Gravitational_Physics" title="Max Planck Institute for Gravitational Physics">Max Planck Institute for Gravitational Physics</a>, archived from <a rel="nofollow" class="external text" href="http://www.einstein-online.info/spotlights/redshift_white_dwarfs/">the original</a> on 2011-08-28<span class="reference-accessdate">, retrieved <span class="nowrap">2007-06-13</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Einstein+Online&amp;rft.atitle=Gravitational+redshift+and+White+Dwarf+stars&amp;rft.date=2007&amp;rft.aulast=Trimble&amp;rft.aufirst=Virginia&amp;rft.au=Barstow%2C+Martin&amp;rft_id=http%3A%2F%2Fwww.einstein-online.info%2Fspotlights%2Fredshift_white_dwarfs%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWheeler1990" class="citation cs2"><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler, John A.</a> (1990), <i>A Journey Into Gravity and Spacetime</i>, Scientific American Library, San Francisco: W. H. Freeman, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-6034-7" title="Special:BookSources/0-7167-6034-7"><bdi>0-7167-6034-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Journey+Into+Gravity+and+Spacetime&amp;rft.place=San+Francisco&amp;rft.series=Scientific+American+Library&amp;rft.pub=W.+H.+Freeman&amp;rft.date=1990&amp;rft.isbn=0-7167-6034-7&amp;rft.aulast=Wheeler&amp;rft.aufirst=John+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWill1993" class="citation cs2"><a href="/wiki/Clifford_Will" class="mw-redirect" title="Clifford Will">Will, Clifford M.</a> (1993), <i>Was Einstein Right?</i>, Oxford University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-286170-0" title="Special:BookSources/0-19-286170-0"><bdi>0-19-286170-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Was+Einstein+Right%3F&amp;rft.pub=Oxford+University+Press&amp;rft.date=1993&amp;rft.isbn=0-19-286170-0&amp;rft.aulast=Will&amp;rft.aufirst=Clifford+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWill2006" class="citation cs2"><a href="/wiki/Clifford_Will" class="mw-redirect" title="Clifford Will">Will, Clifford M.</a> (2006), "The Confrontation between General Relativity and Experiment", <i>Living Rev. Relativ.</i>, <b>9</b> (1): 3, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0510072">gr-qc/0510072</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006LRR.....9....3W">2006LRR.....9....3W</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.12942%2Flrr-2006-3">10.12942/lrr-2006-3</a></span>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256066">5256066</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28179873">28179873</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Living+Rev.+Relativ.&amp;rft.atitle=The+Confrontation+between+General+Relativity+and+Experiment&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=3&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5256066%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2006LRR.....9....3W&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0510072&amp;rft_id=info%3Apmid%2F28179873&amp;rft_id=info%3Adoi%2F10.12942%2Flrr-2006-3&amp;rft.aulast=Will&amp;rft.aufirst=Clifford+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWright2007" class="citation cs2">Wright, Ned (2007), <a rel="nofollow" class="external text" href="http://www.astro.ucla.edu/~wright/cosmolog.htm"><i>Cosmology tutorial and FAQ</i></a>, University of California at Los Angeles<span class="reference-accessdate">, retrieved <span class="nowrap">2007-06-12</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cosmology+tutorial+and+FAQ&amp;rft.pub=University+of+California+at+Los+Angeles&amp;rft.date=2007&amp;rft.aulast=Wright&amp;rft.aufirst=Ned&amp;rft_id=http%3A%2F%2Fwww.astro.ucla.edu%2F~wright%2Fcosmolog.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIntroduction+to+general+relativity" class="Z3988"></span></li></ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=edit&amp;section=21" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-9 collapsible-block" id="mf-section-9"> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" data-file-width="400" data-file-height="400"></noscript><span class="lazy-image-placeholder" style="width: 40px;height: 40px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" data-alt="" data-width="40" data-height="40" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-class="mw-file-element">&nbsp;</span></span></span></div> <div class="side-box-text plainlist">Wikibooks has a book on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/General_relativity" class="extiw" title="wikibooks:General relativity">General relativity</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" data-file-width="1024" data-file-height="1376"></noscript><span class="lazy-image-placeholder" style="width: 30px;height: 40px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" data-alt="" data-width="30" data-height="40" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-class="mw-file-element">&nbsp;</span></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:General_relativity" class="extiw" title="commons:Category:General relativity">General relativity</a></span>.</div></div> </div> <style data-mw-deduplicate="TemplateStyles:r1235611614">.mw-parser-output .spoken-wikipedia{border:1px solid #a2a9b1;background-color:var(--background-color-interactive-subtle,#f8f9fa);margin:0.5em 0;padding:0.2em;line-height:1.5em;font-size:90%}.mw-parser-output .spoken-wikipedia-header{text-align:center}.mw-parser-output .spoken-wikipedia-listen-to{font-weight:bold}.mw-parser-output .spoken-wikipedia-files{text-align:center;margin-top:10px;margin-bottom:0.4em}.mw-parser-output .spoken-wikipedia-icon{float:left;margin-left:5px;margin-top:10px}.mw-parser-output .spoken-wikipedia-disclaimer{margin-left:60px;margin-top:10px;font-size:95%;line-height:1.4em}.mw-parser-output .spoken-wikipedia-footer{margin-top:10px;text-align:center}@media(min-width:720px){.mw-parser-output .spoken-wikipedia{width:20em;float:right;clear:right;margin-left:1em}}</style><div class="spoken-wikipedia noprint haudio"><div class="spoken-wikipedia-header"><span class="spoken-wikipedia-listen-to">Listen to this article</span> (<span class="duration"><span class="min">49</span> minutes</span>)</div><div class="spoken-wikipedia-files"><figure class="mw-halign-center" typeof="mw:File"><span><audio id="mwe_player_0" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="200" style="width:200px;" data-durationhint="2964" data-mwtitle="En-Introduction_to_General_Relativity-article.ogg" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/2/2f/En-Introduction_to_General_Relativity-article.ogg" type='audio/ogg; codecs="vorbis"' data-width="0" data-height="0"></source><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/2/2f/En-Introduction_to_General_Relativity-article.ogg/En-Introduction_to_General_Relativity-article.ogg.mp3" type="audio/mpeg" data-transcodekey="mp3" data-width="0" data-height="0"></source></audio></span><figcaption></figcaption></figure> </div><div class="spoken-wikipedia-icon"><span typeof="mw:File"><span title="Spoken Wikipedia"><noscript><img alt="Spoken Wikipedia icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/45px-Sound-icon.svg.png" decoding="async" width="45" height="34" class="mw-file-element" data-file-width="128" data-file-height="96"></noscript><span class="lazy-image-placeholder" style="width: 45px;height: 34px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/45px-Sound-icon.svg.png" data-alt="Spoken Wikipedia icon" data-width="45" data-height="34" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/68px-Sound-icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/90px-Sound-icon.svg.png 2x" data-class="mw-file-element">&nbsp;</span></span></span></div><div class="spoken-wikipedia-disclaimer"><a href="/wiki/File:En-Introduction_to_General_Relativity-article.ogg" title="File:En-Introduction to General Relativity-article.ogg">This audio file</a> was created from a revision of this article dated 9 May 2021<span style="display:none"> (<span class="bday dtstart published updated itvstart">2021-05-09</span>)</span>, and does not reflect subsequent edits.</div><div class="spoken-wikipedia-footer">(<a href="/wiki/Wikipedia:Media_help" class="mw-redirect" title="Wikipedia:Media help">Audio help</a> · <a href="/wiki/Wikipedia:Spoken_articles" title="Wikipedia:Spoken articles">More spoken articles</a>)</div></div> <p><i>Additional resources, including more advanced material, can be found in <a href="/wiki/General_relativity_resources" class="mw-redirect" title="General relativity resources">General relativity resources</a>.</i> </p> <ul><li><a rel="nofollow" class="external text" href="https://www.einstein-online.info/en/">Einstein Online</a>. Website featuring articles on a variety of aspects of relativistic physics for a general audience, hosted by the <a href="/wiki/Max_Planck_Institute_for_Gravitational_Physics" title="Max Planck Institute for Gravitational Physics">Max Planck Institute for Gravitational Physics</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090603075208/http://archive.ncsa.uiuc.edu/Cyberia/NumRel/NumRelHome.html">NCSA Spacetime Wrinkles</a>. Website produced by the <a href="/wiki/Numerical_relativity" title="Numerical relativity">numerical relativity</a> group at the <a href="/wiki/National_Center_for_Supercomputing_Applications" title="National Center for Supercomputing Applications">National Center for Supercomputing Applications</a>, featuring an elementary introduction to general relativity, black holes and <a href="/wiki/Gravitational_wave" title="Gravitational wave">gravitational waves</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><noscript><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/17px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="17" height="19" class="mw-file-element" data-file-width="530" data-file-height="600"></noscript><span class="lazy-image-placeholder" style="width: 17px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/17px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" data-alt="icon" data-width="17" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/26px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/34px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><noscript><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/19px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="19" height="19" class="mw-file-element" data-file-width="128" data-file-height="128"></noscript><span class="lazy-image-placeholder" style="width: 19px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/19px-Nuvola_apps_edu_mathematics_blue-p.svg.png" data-alt="icon" data-width="19" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/29px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/38px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/19px-Crab_Nebula.jpg" decoding="async" width="19" height="19" class="mw-file-element" data-file-width="3864" data-file-height="3864"></noscript><span class="lazy-image-placeholder" style="width: 19px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/19px-Crab_Nebula.jpg" data-alt="" data-width="19" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/29px-Crab_Nebula.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/38px-Crab_Nebula.jpg 2x" data-class="mw-file-element">&nbsp;</span></span></span> </span><a href="/wiki/Portal:Astronomy" title="Portal:Astronomy">Astronomy</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:He1523a.jpg" class="mw-file-description"><noscript><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/16px-He1523a.jpg" decoding="async" width="16" height="19" class="mw-file-element" data-file-width="180" data-file-height="207"></noscript><span class="lazy-image-placeholder" style="width: 16px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/16px-He1523a.jpg" data-alt="icon" data-width="16" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/25px-He1523a.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/33px-He1523a.jpg 2x" data-class="mw-file-element">&nbsp;</span></a></span> </span><a href="/wiki/Portal:Stars" title="Portal:Stars">Stars</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/19px-RocketSunIcon.svg.png" decoding="async" width="19" height="19" class="mw-file-element" data-file-width="128" data-file-height="128"></noscript><span class="lazy-image-placeholder" style="width: 19px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/19px-RocketSunIcon.svg.png" data-alt="" data-width="19" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/29px-RocketSunIcon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/38px-RocketSunIcon.svg.png 2x" data-class="mw-file-element">&nbsp;</span></span></span> </span><a href="/wiki/Portal:Spaceflight" title="Portal:Spaceflight">Spaceflight</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/21px-Earth-moon.jpg" decoding="async" width="21" height="17" class="mw-file-element" data-file-width="3000" data-file-height="2400"></noscript><span class="lazy-image-placeholder" style="width: 21px;height: 17px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/21px-Earth-moon.jpg" data-alt="" data-width="21" data-height="17" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/32px-Earth-moon.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/42px-Earth-moon.jpg 2x" data-class="mw-file-element">&nbsp;</span></span></span> </span><a href="/wiki/Portal:Outer_space" title="Portal:Outer space">Outer space</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/15px-Solar_system.jpg" decoding="async" width="15" height="19" class="mw-file-element" data-file-width="4500" data-file-height="5600"></noscript><span class="lazy-image-placeholder" style="width: 15px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/15px-Solar_system.jpg" data-alt="" data-width="15" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/23px-Solar_system.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/30px-Solar_system.jpg 2x" data-class="mw-file-element">&nbsp;</span></span></span> </span><a href="/wiki/Portal:Solar_System" title="Portal:Solar System">Solar System</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kalzium.svg" class="mw-file-description"><noscript><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/19px-Nuvola_apps_kalzium.svg.png" decoding="async" width="19" height="19" class="mw-file-element" data-file-width="128" data-file-height="128"></noscript><span class="lazy-image-placeholder" style="width: 19px;height: 19px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/19px-Nuvola_apps_kalzium.svg.png" data-alt="icon" data-width="19" data-height="19" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/29px-Nuvola_apps_kalzium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/38px-Nuvola_apps_kalzium.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span> </span><a href="/wiki/Portal:Science" title="Portal:Science">Science</a></li></ul></div> <p class="mw-empty-elt"> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐jl9dk Cached time: 20241122141035 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.241 seconds Real time usage: 1.517 seconds Preprocessor visited node count: 5191/1000000 Post‐expand include size: 209712/2097152 bytes Template argument size: 2634/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 205509/5000000 bytes Lua time usage: 0.790/10.000 seconds Lua memory usage: 11192359/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1216.264 1 -total 31.96% 388.683 55 Template:Citation 23.33% 283.765 1 Template:Reflist 11.93% 145.058 1 Template:General_relativity_sidebar 11.69% 142.144 1 Template:Sidebar_with_collapsible_lists 11.37% 138.346 79 Template:Harvnb 7.37% 89.686 1 Template:Short_description 6.30% 76.615 1 Template:Spoken_Wikipedia 5.45% 66.335 2 Template:Sister_project 5.29% 64.300 2 Template:Side_box --> <!-- Saved in parser cache with key enwiki:pcache:idhash:1411100-0!canonical and timestamp 20241122141035 and revision id 1248098003. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.033 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Introduction_to_general_relativity&amp;oldid=1248098003">https://en.wikipedia.org/w/index.php?title=Introduction_to_general_relativity&amp;oldid=1248098003</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Introduction_to_general_relativity&amp;action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Slowking Man" data-user-gender="unknown" data-timestamp="1727455478"> <span>Last edited on 27 September 2024, at 16:44</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AF%D8%AE%D9%84_%D8%A5%D9%84%D9%89_%D8%A7%D9%84%D9%86%D8%B3%D8%A8%D9%8A%D8%A9_%D8%A7%D9%84%D8%B9%D8%A7%D9%85%D8%A9" title="مدخل إلى النسبية العامة – Arabic" lang="ar" hreflang="ar" data-title="مدخل إلى النسبية العامة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%BE%E0%A6%A7%E0%A6%BE%E0%A6%B0%E0%A6%A3_%E0%A6%86%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BF%E0%A6%95%E0%A6%A4%E0%A6%BE%E0%A6%B0_%E0%A6%AD%E0%A7%82%E0%A6%AE%E0%A6%BF%E0%A6%95%E0%A6%BE" title="সাধারণ আপেক্ষিকতার ভূমিকা – Bangla" lang="bn" hreflang="bn" data-title="সাধারণ আপেক্ষিকতার ভূমিকা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%92%D1%8A%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B2_%D0%BE%D0%B1%D1%89%D0%B0%D1%82%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Въведение в общата теория на относителността – Bulgarian" lang="bg" hreflang="bg" data-title="Въведение в общата теория на относителността" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Introducci%C3%B3_a_la_relativitat_general" title="Introducció a la relativitat general – Catalan" lang="ca" hreflang="ca" data-title="Introducció a la relativitat general" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%B9%CF%83%CE%B1%CE%B3%CF%89%CE%B3%CE%AE_%CF%83%CF%84%CE%B7_%CE%B3%CE%B5%CE%BD%CE%B9%CE%BA%CE%AE_%CF%83%CF%87%CE%B5%CF%84%CE%B9%CE%BA%CF%8C%CF%84%CE%B7%CF%84%CE%B1" title="Εισαγωγή στη γενική σχετικότητα – Greek" lang="el" hreflang="el" data-title="Εισαγωγή στη γενική σχετικότητα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Introducci%C3%B3n_a_la_relatividad_general" title="Introducción a la relatividad general – Spanish" lang="es" hreflang="es" data-title="Introducción a la relatividad general" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://fa.wikipedia.org/wiki/%D8%A2%D8%B4%D9%86%D8%A7%DB%8C%DB%8C_%D8%A8%D8%A7_%D9%86%D8%B3%D8%A8%DB%8C%D8%AA_%D8%B9%D8%A7%D9%85" title="آشنایی با نسبیت عام – Persian" lang="fa" hreflang="fa" data-title="آشنایی با نسبیت عام" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Introduction_%C3%A0_la_relativit%C3%A9_g%C3%A9n%C3%A9rale" title="Introduction à la relativité générale – French" lang="fr" hreflang="fr" data-title="Introduction à la relativité générale" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://ko.wikipedia.org/wiki/%EC%9D%BC%EB%B0%98%EC%83%81%EB%8C%80%EB%A1%A0_%EA%B0%9C%EB%A1%A0" title="일반상대론 개론 – Korean" lang="ko" hreflang="ko" data-title="일반상대론 개론" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Pengantar_relativitas_umum" title="Pengantar relativitas umum – Indonesian" lang="id" hreflang="id" data-title="Pengantar relativitas umum" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%9B%B8%E5%AF%BE%E6%80%A7%E7%90%86%E8%AB%96%E3%81%AE%E6%A6%82%E8%AA%AC" title="一般相対性理論の概説 – Japanese" lang="ja" hreflang="ja" data-title="一般相対性理論の概説" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Introdu%C3%A7%C3%A3o_%C3%A0_relatividade_geral" title="Introdução à relatividade geral – Portuguese" lang="pt" hreflang="pt" data-title="Introdução à relatividade geral" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9A%E0%B8%97%E0%B8%99%E0%B8%B3%E0%B8%97%E0%B8%A4%E0%B8%A9%E0%B8%8E%E0%B8%B5%E0%B8%AA%E0%B8%B1%E0%B8%A1%E0%B8%9E%E0%B8%B1%E0%B8%97%E0%B8%98%E0%B8%A0%E0%B8%B2%E0%B8%9E%E0%B8%97%E0%B8%B1%E0%B9%88%E0%B8%A7%E0%B9%84%E0%B8%9B" title="บทนำทฤษฎีสัมพัทธภาพทั่วไป – Thai" lang="th" hreflang="th" data-title="บทนำทฤษฎีสัมพัทธภาพทั่วไป" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Genel_g%C3%B6relili%C4%9Fe_giri%C5%9F" title="Genel göreliliğe giriş – Turkish" lang="tr" hreflang="tr" data-title="Genel göreliliğe giriş" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://vi.wikipedia.org/wiki/Gi%E1%BB%9Bi_thi%E1%BB%87u_thuy%E1%BA%BFt_t%C6%B0%C6%A1ng_%C4%91%E1%BB%91i_r%E1%BB%99ng" title="Giới thiệu thuyết tương đối rộng – Vietnamese" lang="vi" hreflang="vi" data-title="Giới thiệu thuyết tương đối rộng" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://zh.wikipedia.org/wiki/%E5%BB%A3%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96%E5%85%A5%E9%96%80" title="廣義相對論入門 – Chinese" lang="zh" hreflang="zh" data-title="廣義相對論入門" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 27 September 2024, at 16:44<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Introduction_to_general_relativity&amp;mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-vz8dh","wgBackendResponseTime":211,"wgPageParseReport":{"limitreport":{"cputime":"1.241","walltime":"1.517","ppvisitednodes":{"value":5191,"limit":1000000},"postexpandincludesize":{"value":209712,"limit":2097152},"templateargumentsize":{"value":2634,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":205509,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1216.264 1 -total"," 31.96% 388.683 55 Template:Citation"," 23.33% 283.765 1 Template:Reflist"," 11.93% 145.058 1 Template:General_relativity_sidebar"," 11.69% 142.144 1 Template:Sidebar_with_collapsible_lists"," 11.37% 138.346 79 Template:Harvnb"," 7.37% 89.686 1 Template:Short_description"," 6.30% 76.615 1 Template:Spoken_Wikipedia"," 5.45% 66.335 2 Template:Sister_project"," 5.29% 64.300 2 Template:Side_box"]},"scribunto":{"limitreport-timeusage":{"value":"0.790","limit":"10.000"},"limitreport-memusage":{"value":11192359,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\nanchor_id_list = table#1 {\n [\"CITEREFAshby2002\"] = 1,\n [\"CITEREFAshby2003\"] = 1,\n [\"CITEREFB._P._Abbott2016\"] = 1,\n [\"CITEREFBartusiak2000\"] = 1,\n [\"CITEREFBerry1989\"] = 1,\n [\"CITEREFBertotti2005\"] = 1,\n [\"CITEREFBlairMcNamara1997\"] = 1,\n [\"CITEREFCaldwell2004\"] = 1,\n [\"CITEREFChrusciel2006\"] = 1,\n [\"CITEREFCowen2001\"] = 1,\n [\"CITEREFDisney1998\"] = 1,\n [\"CITEREFEhlersRindler1997\"] = 1,\n [\"CITEREFEinstein1917\"] = 1,\n [\"CITEREFEinstein1961\"] = 1,\n [\"CITEREFEveritt,_C.W.F.Parkinson,_B.W.2009\"] = 1,\n [\"CITEREFFriedrich2005\"] = 1,\n [\"CITEREFGeroch1978\"] = 1,\n [\"CITEREFGiulini2005\"] = 1,\n [\"CITEREFGnedin2005\"] = 1,\n [\"CITEREFGreene1999\"] = 1,\n [\"CITEREFGreene2004\"] = 1,\n [\"CITEREFHarrison2002\"] = 1,\n [\"CITEREFHartl2005\"] = 1,\n [\"CITEREFHogan1999\"] = 1,\n [\"CITEREFJanssen2005\"] = 1,\n [\"CITEREFKennefick2005\"] = 1,\n [\"CITEREFKennefick2007\"] = 1,\n [\"CITEREFKramer2004\"] = 1,\n [\"CITEREFLehner2002\"] = 1,\n [\"CITEREFLochner2007\"] = 1,\n [\"CITEREFMaddox1998\"] = 1,\n [\"CITEREFMarolf1999\"] = 1,\n [\"CITEREFMermin2005\"] = 1,\n [\"CITEREFMilgrom2002\"] = 1,\n [\"CITEREFNewbury1997\"] = 1,\n [\"CITEREFNieto2006\"] = 1,\n [\"CITEREFNorton1985\"] = 1,\n [\"CITEREFPais1982\"] = 1,\n [\"CITEREFPenrose2004\"] = 1,\n [\"CITEREFPoisson2004\"] = 1,\n [\"CITEREFPössel2007\"] = 1,\n [\"CITEREFRenn2005\"] = 1,\n [\"CITEREFRobson1996\"] = 1,\n [\"CITEREFSchutz2003\"] = 1,\n [\"CITEREFSmolin2001\"] = 1,\n [\"CITEREFSparkeGallagher2007\"] = 1,\n [\"CITEREFSpringelWhiteJenkinsFrenk2005\"] = 1,\n [\"CITEREFStachel1989\"] = 1,\n [\"CITEREFThorne1994\"] = 1,\n [\"CITEREFTrimbleBarstow2007\"] = 1,\n [\"CITEREFWheeler1990\"] = 1,\n [\"CITEREFWill1993\"] = 1,\n [\"CITEREFWill2006\"] = 1,\n [\"CITEREFWright2007\"] = 1,\n [\"CITEREFvon_Soldner1804\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Citation\"] = 55,\n [\"Colend\"] = 1,\n [\"Cols\"] = 1,\n [\"Commons category\"] = 1,\n [\"Convert\"] = 2,\n [\"DEFAULTSORT:General relativity, Introduction to\"] = 1,\n [\"Featured article\"] = 1,\n [\"General relativity sidebar\"] = 1,\n [\"Harvnb\"] = 79,\n [\"Introductory article\"] = 1,\n [\"Introductory science articles\"] = 1,\n [\"Main\"] = 1,\n [\"Portal bar\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Relativity\"] = 1,\n [\"See below\"] = 1,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Smallsup\"] = 1,\n [\"Snd\"] = 1,\n [\"Spoken Wikipedia\"] = 1,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-jl9dk","timestamp":"20241122141035","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Introduction to general relativity","url":"https:\/\/en.wikipedia.org\/wiki\/Introduction_to_general_relativity","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2743587","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2743587","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-01-19T15:47:30Z","dateModified":"2024-09-27T16:44:38Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/24\/Cassini-science-br.jpg","headline":"non-technical introduction to the theory of gravity by Albert Einstein"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10