CINXE.COM
Search results for: Calotropis procera
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Calotropis procera</title> <meta name="description" content="Search results for: Calotropis procera"> <meta name="keywords" content="Calotropis procera"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Calotropis procera" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Calotropis procera"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Calotropis procera</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Structure Elucidation of Isolated Active Compounds from Nigella sativa and Calotropis procera and Their Efficacy for Treatment of Asthma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intisar%20S.%20A.%20Elzein">Intisar S. A. Elzein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Saudi Arabia parts of Nigella sativa, and Calotropis procera are commonly used in folk medicine for the treatment of asthma, bronchitis, cough, eczema and other diseases. The purpose of the study is to identify chemical constituents of Nigella sativa seed and Calotropis procera leave isolated by the bioassay guided fractionation process and find out their relevance to the alleged efficacy of the plant in treating asthma. The medicinal properties of both plants for asthma treatment referred to the rich abundance of thymoquinone and phytol compounds isolated from the essential oil of their seed and leave extracts, which they can form a part of molecules of vitamin K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asthma" title="asthma">asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=Calotropis%20procera" title=" Calotropis procera"> Calotropis procera</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20constituents" title=" chemical constituents"> chemical constituents</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20K" title=" vitamin K"> vitamin K</a> </p> <a href="https://publications.waset.org/abstracts/75562/structure-elucidation-of-isolated-active-compounds-from-nigella-sativa-and-calotropis-procera-and-their-efficacy-for-treatment-of-asthma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Inhouse Inhibitor for Mitigating Corrosion in the Algerian Oil and Gas Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Didouh">Hadjer Didouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hadj%20Meliani"> Mohamed Hadj Meliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzeddine%20Sameut%20Bouhaik"> Izzeddine Sameut Bouhaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As global demand for natural gas intensifies, Algeria is increasing its production to meet this rising need, placing significant strain on the nation's extensive pipeline infrastructure. Sonatrach, Algeria's national oil and gas company, faces persistent challenges from metal corrosion, particularly microbiologically influenced corrosion (MIC), leading to substantial economic losses. This study investigates the corrosion-inhibiting properties of Calotropis procera extracts, known as karanka, as a sustainable alternative to conventional inhibitors, which often pose environmental risks. The Calotropis procera extracts were evaluated for their efficacy on carbon steel API 5L X52 through electrochemical techniques, including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), under simulated operational conditions at varying concentrations, particularly at 10%, and elevated temperatures up to 60°C. The results demonstrated remarkable inhibition efficiency, achieving 96.73% at 60°C, attributed to the formation of a stable protective film on the metal surface that suppressed anodic and cathodic corrosion reactions. Scanning electron microscopy (SEM) confirmed the stability and adherence of these protective films, while EIS analysis indicated a significant increase in charge transfer resistance, highlighting the extract's effectiveness in enhancing corrosion resistance. The abundant availability of Calotropis procera in Algeria and its low-cost extraction processes present a promising opportunity for sustainable biocorrosion management strategies in the oil and gas industry, reinforcing the potential of plant-based extracts as viable alternatives to synthetic inhibitors for environmentally friendly corrosion control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title="corrosion inhibition">corrosion inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=calotropis%20procera" title=" calotropis procera"> calotropis procera</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiologically%20influenced%20corrosion" title=" microbiologically influenced corrosion"> microbiologically influenced corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20inhibitor" title=" eco-friendly inhibitor"> eco-friendly inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/191069/inhouse-inhibitor-for-mitigating-corrosion-in-the-algerian-oil-and-gas-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Sheidaei">Masoud Sheidaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad-Reza%20Kordasti"> Mohammad-Reza Kordasti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Koohdar"> Fahimeh Koohdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population%20genetics" title="population genetics">population genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20genetic" title=" landscape genetic"> landscape genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Calotreropis%20procera" title=" Calotreropis procera"> Calotreropis procera</a>, <a href="https://publications.waset.org/abstracts/search?q=niche%20modeling" title=" niche modeling"> niche modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SCoT%20markers" title=" SCoT markers"> SCoT markers</a> </p> <a href="https://publications.waset.org/abstracts/164970/identifying-environmental-adaptive-genetic-loci-in-caloteropis-procera-estabragh-population-genetics-and-landscape-genetic-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Non-Steroidal Anti-inflammatory Drugs, Plant Extracts, and Characterized Microparticles to Modulate Antimicrobial Resistance of Epidemic Meca Positive S. Aureus of Dairy Origin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amjad%20I.%20Aqib">Amjad I. Aqib</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanza%20R.%20Khan"> Shanza R. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Ahmad"> Tanveer Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20R.%20Shah"> Syed A. R. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Naseer"> Muhammad A. Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shoaib"> Muhammad Shoaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Sarwar"> Iqra Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20F.%20A.%20Kulyar"> Muhammad F. A. Kulyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20A.%20Bhutta"> Zeeshan A. Bhutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20A.%20Khan"> Mumtaz A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahboob%20Ali"> Mahboob Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20Yasmeen"> Khadija Yasmeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study focused on resistance modulation of dairy linked epidemic mec A positive S. aureus for resistance modulation by plant extract (Eucalyptus globolus, Calotropis procera), NSAIDs, and star like microparticles. Zinc oxide {ZnO}c and {Zn (OH)₂} microparticles were synthesized by solvothermal method and characterized by calcination, X-ray diffraction (XRD), and scanning electron microscope (SEM). Plant extracts were prepared by the Soxhlet extraction method. The study found 34% of subclinical samples (n=200) positive for S. aureus from dairy milk having significant (p < 0.05) association of assumed risk factors with pathogen. The antimicrobial assay showed 55, 42, 41, and 41% of S. aureus resistant to oxacillin, ciprofloxacin, streptomycin, and enoxacin. Amoxicillin showed the highest percentage of increase in zone of inhibitions (ZOI) at 100mg of Calotropis procera extract (31.29%) followed by 1mg/mL (28.91%) and 10mg/mL (21.68%) of Eucalyptus globolus. Amoxicillin increased ZOI by 42.85, 37.32, 29.05, and 22.78% in combination with 500 ug/ml with each of diclofenac, aspirin, ibuprofen, and meloxicam, respectively. Fractional inhibitory concentration indices (FICIs) showed synergism of amoxicillin with diclofenac and aspirin and indifferent synergy with ibuprofen and meloxicam. The preliminary in vitro finding of combination of microparticles with amoxicillin proved to be synergistic, giving rise to 26.74% and 14.85% increase in ZOI of amoxicillin in combination with zinc oxide and zinc hydroxide, respectively. The modulated antimicrobial resistance incurred by NSAIDs, plant extracts, and microparticles against pathogenic S. aureus invite immediate attention to probe alternative antimicrobial sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title="antimicrobial resistance">antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20milk" title=" dairy milk"> dairy milk</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=NSIDs" title=" NSIDs"> NSIDs</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20modulation" title=" resistance modulation"> resistance modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus"> S. aureus</a> </p> <a href="https://publications.waset.org/abstracts/129936/non-steroidal-anti-inflammatory-drugs-plant-extracts-and-characterized-microparticles-to-modulate-antimicrobial-resistance-of-epidemic-meca-positive-s-aureus-of-dairy-origin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Marker Active Compound Identification of Calotropis gigantea Roots Extract as an Anticancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roihatul%20Mutiah">Roihatul Mutiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukardiman"> Sukardiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Aty%20Widyawaruyanti"> Aty Widyawaruyanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calotropis gigantiea (L.) R. Br (Apocynaceae) commonly called as “Biduri” or “giant milk weed” is a well-known weed to many cultures for treating various disorders. Several studies reported that C.gigantea roots has anticancer activity. The main aim of this research was to isolate and identify an active marker compound of C.gigantea roots for quality control purpose of its extract in the development as anticancer natural product. The isolation methods was bioactivity guided column chromatography, TLC, and HPLC. Evaluated anticancer activity of there substances using MTT assay methods. Identification structure active compound by UV, 1HNMR, 13CNMR, HMBC, HMQC spectral and other references. The result showed that the marker active compound was identical as Calotropin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calotropin" title="calotropin">calotropin</a>, <a href="https://publications.waset.org/abstracts/search?q=Calotropis%20gigantea" title=" Calotropis gigantea"> Calotropis gigantea</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer" title=" anticancer"> anticancer</a>, <a href="https://publications.waset.org/abstracts/search?q=marker%20active" title=" marker active"> marker active</a> </p> <a href="https://publications.waset.org/abstracts/59024/the-marker-active-compound-identification-of-calotropis-gigantea-roots-extract-as-an-anticancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Lal">Deepali Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Summerwar"> Sudha Summerwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoutsna%20Pandey"> Jyoutsna Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation%20plant" title="distillation plant">distillation plant</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone" title=" acetone"> acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol" title=" alcohol"> alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=pipette" title=" pipette"> pipette</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20leaves" title=" castor leaves"> castor leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=grams%20pods" title=" grams pods"> grams pods</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae%20of%20helicoverpa%20armigera" title=" larvae of helicoverpa armigera"> larvae of helicoverpa armigera</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=vails" title=" vails"> vails</a>, <a href="https://publications.waset.org/abstracts/search?q=jars" title=" jars"> jars</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/48194/efficacy-of-some-plant-extract-against-larvae-and-pupae-of-american-bollworm-helicoverpa-armigera-including-the-effect-on-peritropme-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Sandy Soil Properties under Different Plant Cover Types in Drylands, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayan%20Elsiddig%20Eltaib">Rayan Elsiddig Eltaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamanaka%20Norikazu"> Yamanaka Norikazu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubarak%20Abdelrahman%20Abdalla"> Mubarak Abdelrahman Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of Acacia Senegal, Calotropis procera, Leptadenia pyrotechnica, Ziziphus spina Christi, Balanites aegyptiaca, Indigofera oblongigolia, Arachis hypogea and Sesimum indicum grown in the western region of White Nile State on soil properties of the 0-10, 10-30, 30-60 and 60-90 cm depths. Soil properties were: pH(paste), electrical conductivity of the saturation extract (ECe), total N (TN), organic carbon (OC), soluble K, available P, aggregate stability and water holding capacity. Triplicate Soil samples were collected after the end of the rainy season using 5 cm diameter auger. Results indicated that pH, ECe and TN were not significantly different among plant cover types. In the top 10-30 cm depth, OC under all types was significantly higher than the control (4.1 to 7.7 fold). The highest (0.085%) OC was found under the Z. spina Christi and A. Senegal whereas the lowest (0.045%) was reported under the A. hypogea. In the 10-30 cm depth, with the exception of A. hypogea, Z. spina christi and S. indicum, P content was almost similar but significantly higher than the control by 72 to 129%. In the 10-30 cm depth, K content under the S. indicum (0.46 meq/L) was exceptionally high followed by Z. spina christi (0.102 meq/L) as compared to the control (0.029 meq/L). Water holding capacity and aggregate stability of the top 0-10 cm depth were not significantly different among plant cover types. Based on the fact that accumulation of organic matter in the soil profile of any ecosystem is an important indicator of soil quality, results of this study may conclude that (1) cultivation of A.senegal, B.aegyptiaca and Z. spina Christi improved soil quality whereas (2) cultivation of A. hypogea or soil that is solely invaded with C. procera and L.pyrotechnica may induce soil degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canopy" title="canopy">canopy</a>, <a href="https://publications.waset.org/abstracts/search?q=crops" title=" crops"> crops</a>, <a href="https://publications.waset.org/abstracts/search?q=shrubs" title=" shrubs"> shrubs</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=trees" title=" trees"> trees</a> </p> <a href="https://publications.waset.org/abstracts/48162/sandy-soil-properties-under-different-plant-cover-types-in-drylands-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Role of Inflammatory Markers in Arthritic Rats Treated with Ethanolic Bark Extract of Albizia procera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sangeetha">M. Sangeetha</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chamundeeswari"> D. Chamundeeswari</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Saravanababu"> C. Saravanababu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rose"> C. Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gopal"> V. Gopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt"><span lang="EN-US">Rheumatoid arthritis (RA) is a chronic, progressive, systemic inflammatory disorder affecting the synovial joints and typically producing symmetrical arthritis that leads to joint destruction, which is responsible for the deformity and disability. Despite improvements in the treatment of RA over the past decade, there still is a need for new therapeutic agents that are efficacious, less expensive, and free of severe adverse reactions. The present study aimed to investigate role of inflammatory markers in arthritic rats treated with ethanolic bark extract of <i>Albizia procera</i>. The protective effect of ethanolic bark extract of <i>Albizia procera </i>against complete Freund’s adjuvant (CFA) induced arthritis in rats. Arthritis was induced by an intradermal injection of 0.1 ml FCA in the foot pad of left hind limb of rats. ETBE (100 and 200 mg/kg b.wt./p.o) and the reference drug diclofenac (25 mg/kg b.wt./p.o) were administered to arthritic rats. Paw volume was measured for all the animals before inducing arthritis and thereafter once in seven days by using plethysmometer for 42 days. Gene expression of inflammatory markers such as IL-1β and IL-10 were investigated in paw tissues. Up regulation of IL-1β and Down regulation IL-10 were observed in CFA injected rats when compared to normal rats. ETBE attenuated these alterations dose dependently when compared to the vehicle treated rats. These results provide insights into the mechanism of anti-arthritic activity, and unravel potential therapeutic use of <i>Albizia procera </i>in arthritis.<o:p> </o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFA-Complete%20Freund%E2%80%99s%20adjuvant" title="CFA-Complete Freund’s adjuvant">CFA-Complete Freund’s adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=ETBE%20%E2%80%93%20ethanolic%20bark%20extract" title=" ETBE – ethanolic bark extract"> ETBE – ethanolic bark extract</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-%20interleukins" title=" IL- interleukins"> IL- interleukins</a>, <a href="https://publications.waset.org/abstracts/search?q=RA-rheumatoid%20arthritis" title=" RA-rheumatoid arthritis"> RA-rheumatoid arthritis</a> </p> <a href="https://publications.waset.org/abstracts/52352/role-of-inflammatory-markers-in-arthritic-rats-treated-with-ethanolic-bark-extract-of-albizia-procera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindaye%20Teshome">Mindaye Teshome</a>, <a href="https://publications.waset.org/abstracts/search?q=Evaldo%20Mu%C3%B1oz%20Braz"> Evaldo Muñoz Braz</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20M.%20Eleto%20Torres"> Carlos M. M. Eleto Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Mattos"> Patricia Mattos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logging" title="logging">logging</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20model" title=" growth model"> growth model</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20cycle" title=" cutting cycle"> cutting cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20logging%20diameter" title=" minimum logging diameter"> minimum logging diameter</a> </p> <a href="https://publications.waset.org/abstracts/161513/sustainable-wood-harvesting-from-juniperus-procera-trees-managed-under-a-participatory-forest-management-scheme-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Daniel%20Iduh">Stephen Daniel Iduh</a>, <a href="https://publications.waset.org/abstracts/search?q=Evans%20Chidi%20Egwin"> Evans Chidi Egwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20Kudirat%20Shittu"> Oluwatosin Kudirat Shittu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title="biosynthesis">biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=calotropis%20procera" title=" calotropis procera"> calotropis procera</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/18866/green-synthesis-and-characterisation-of-gold-nanoparticles-from-the-stem-bark-and-leaves-of-khaya-senegalensis-and-its-cytotoxicity-on-mcf7-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Distribution and Population Status of Canis spp. Threats and Conservation in Lehri Nature Park, Salt Range, District Jhelum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saad">Muhammad Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=AzherBaig"> AzherBaig</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Maqsood"> Anwar Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waseem"> Muhammad Waseem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The grey wolf has been ranked endangered and Asiatic jackal as near threatened in Pakistan. Scientific data on population and threats to these species are not available in Pakistan, which is required for their proper management and conservation. The present study was conducted to collect data on distribution range, population status and threats to both of these Canis species in Lehri Nature Park. The data were collected using direct observations and indirect signs in the field. The population of grey wolf and Asiatic jackal were scattered into pocket of the study area and its surroundings. The current population of grey wolf was estimated 06 individuals and that of Asiatic jackal 28 individuals in the study area. The present study showed that grey wolf and Asiatic jackal were distributed in the northern and southern part of the study area having dense vegetation cover of tress and shrub between the altitudes of 330 m and 515 m. The research finding revealed that the scrub forest is the most preferred habitat of both the species but due to anthropogenic pressure the scrub forest is under severe threat. The dominant trees species were Acacia modesta, Zizyphus nummularia, and Prosopis juliflora and shrubs species of Dodonea-viscosa, Calotropis procera and Adhatoda vasica. Urial is one of the natural prey species: their population is low due to a number of reasons and therefore the maximum dependence of the wolves was on the livestock of the local and nomadic shepherds. The main prey species in the livestock was goats and sheep. The interviews were conducted with the eye witnesses of wolf attacks including livestock being killed by 5-6 numbers of wolves in different hamlets in the study area. The killing rate of the livestock by the wolves was greater when the nomadic shepherds were present in the area and decreased when they left the area. Presence of nomadic shepherds and killing rate has relation with the shifting of the wolves from the study area. It is further concluded that the population of the grey wolf and Asiatic jackal has decreased over time due to less availability of the natural prey species and habitat destruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wildlife%20ecology" title="wildlife ecology">wildlife ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20conservation" title=" population conservation"> population conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/7311/distribution-and-population-status-of-canis-spp-threats-and-conservation-in-lehri-nature-park-salt-range-district-jhelum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Anti -proliferative and Apoptotic Effects of Selected Saudi Herbs from the Rhamnaceae, Polygonaceae, and Apocynaceae Families Against Various Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allulu%20Yousef%20Alturki">Allulu Yousef Alturki</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghad%20Abdullah%20Alshafi"> Raghad Abdullah Alshafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Abdulaziz%20Alghashem"> Sara Abdulaziz Alghashem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Saleh%20Alghamdi"> Sahar Saleh Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Saad%20Suliman"> Rasha Saad Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20Alehaideb"> Zeyad Alehaideb</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Ali"> Rizwan Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is recognized as a worldwide public health concern. Therefore, there is a continuous quest to discover new effective medications with less side-effects. In recent years, researchers have shown an increased interest in medicinal plants as several plant species have shown promising biological activities. Thus, we seek to investigate three medicinal herbs that are commonly-found in the Middle Easternregion and yet have not been explored in depth, including plants belonging to the Rhamnaceae, Polygonaceae, and Apocynaceaeplant families. Initially, we investigated using three types of cancer cell lines for breast, colorectal, and liver cancers. We performed high Content Imaging (HCI)-Apoptosis Assay and ApoTox-Glo™ Triplex Assay on KAIMRC2 and HCT8 cell lines. The highest activity of HCI-Apoptosis Assay was with Calligonumcomosum and Ziziphusnummularia in ethanol, followed by Calotropis procera and Ziziphusnummularia in ethyl acetate. The IC50values for the families of Rhamnaceae, Polygonaceae, and Apocynaceae in HepG2 and HCT8 cell lines ranged from 0.089 to 9.84mg/mL and 0.080to 15.08mg/mL, respectively. Further screening was conducted on an additional two cell lines, namely the MDA-MB-231 and KAIMRC2, for selected seven extracts with the highest activity having IC50values ranged from 0.058 to0.51mg/mL and 0.029 to0.19mg/mL, respectively. Continuous scientific investigations to isolate and characterize the potent bioactive phytochemical(s) are warranted. Funding: The authors acknowledge financial support from King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia. Institutional Review Board Statement: The study was approved by the Institutional Review Board of the Institutional Review Board of King Abdullah International Medical Research Center (SP21R/463/12, 24 January 2022). Acknowledgments: The authors want to express their gratitude to the College of Pharmacy (COP) at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) and King Abdullah International Medical Research Center (KAIMRC) for their continued support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhamnaceae" title="rhamnaceae">rhamnaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=polygonaceae" title=" polygonaceae"> polygonaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=apocynaceae" title=" apocynaceae"> apocynaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20products" title=" natural products"> natural products</a> </p> <a href="https://publications.waset.org/abstracts/155089/anti-proliferative-and-apoptotic-effects-of-selected-saudi-herbs-from-the-rhamnaceae-polygonaceae-and-apocynaceae-families-against-various-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Land Use, Land Cover Changes and Woody Vegetation Status of Tsimur Saint Gebriel Monastery, in Tigray Region, Northern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abraha%20Hatsey">Abraha Hatsey</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesibu%20Yahya"> Nesibu Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Abeje%20Eshete"> Abeje Eshete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethiopian Orthodox Tewahido Church has a long tradition of conserving the Church vegetation and is an area treated as a refugee camp for many endangered indigenous tree species in Northern Ethiopia. Though around 36,000 churches exist in Ethiopia, only a few churches have been studied so far. Thus, this study assessed the land use land cover change of 3km buffer (1986-2018) and the woody species diversity and regeneration status of Tsimur St. Gebriel monastery in Tigray region, Northern Ethiopia. For vegetation study, systematic sampling was used with 100m spacing between plots and between transects. Plot size was 20m*20m for the main plot and 2 subplots (5m*5m each) for the regeneration study. Tree height, diameter at breast height(DBH) and crown area were measured in the main plot for all trees with DBH ≥ 5cm. In the subplots, all seedlings and saplings were counted with DBH < 5cm. The data was analyzed on excel and Pass biodiversity software for diversity and evenness analysis. The major land cover classes identified include bare land, farmland, forest, shrubland and wetland. The extents of forest and shrubland were declined considerably due to bare land and agricultural land expansions within the 3km buffer, indicating an increasing pressure on the church forest. Regarding the vegetation status, A total of 19 species belonging to 13 families were recorded in the monastery. The diversity (H’) and evenness recorded were 2.4 and 0.5, respectively. The tree density (DBH ≥ 5cm) was 336/ha and a crown cover of 65%. Olea europaea was the dominant (6.4m2/ha out of 10.5m2 total basal area) and a frequent species (100%) with good regeneration in the monastery. The rest of the species are less frequent and are mostly confined to water sources with good site conditions. Juniperus procera (overharvested) and the other indigenous species were with few trees left and with no/very poor regeneration status. The species having poor density, frequency and regeneration (Junperus procera, Nuxia congesta Fersen and Jasminium abyssinica) need prior conservation and enrichment planting. The indigenous species could also serve as a potential seed source for the reproduction and restoration of nearby degraded landscapes. The buffer study also demonstrated expansion of agriculture and bare land, which could be a threat to the forest of the isolated monastery. Hence, restoring the buffer zone is the only guarantee for the healthy existence of the church forest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=church%20forests" title="church forests">church forests</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title=" land use change"> land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20status" title=" vegetation status"> vegetation status</a> </p> <a href="https://publications.waset.org/abstracts/138384/land-use-land-cover-changes-and-woody-vegetation-status-of-tsimur-saint-gebriel-monastery-in-tigray-region-northern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Antagonistic Effect of Indigenous Plant Extracts toward Dusky Cotton Bug, Oxycarenus laetus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rafiq%20Shahid">Muhammad Rafiq Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hassan"> Ali Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Umm-e-%20Rubab"> Umm-e- Rubab</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem"> Muhammad Nadeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insecticidal property of plant extracts was assessed toward dusky bug of cotton. Plant extracts consisted of bari pata (Ziziphus jajuba), Ak (Calotropis gigantean), Tobacco (Nicotiana tabacum), Bakine (Melia azedarach),Kanar (Nerium oleander),Kurtuma (Mitragyna speciosa) and one Control was also included with distilled water treatment. Forced feeding experiment was used to determine the antibiotic effect of bug plant extracts on dusky bug whereas Multi-choice experiment to determine the antixenosis/ repellent property of botanicals. It is evident from the results that mortality and antibiosis percentage of dusky bug due to the use of botanicals ranged from 15-95% and 20-87.3% respectively that was maximum in tobacoo extract followed by bakain and kurtama, minimum was on Ak, kanair and bakain extract. Non preference ranged from 14.28 to 85.7 where maximum non preference of dusky bug was found on bakain and kurtama followed by ak and kanair however minimum was on Bari pata extract. It was further found that local plant extract possessed insecticidal property toward dusky bug as well as also possesses repellency effect toward dusky bug, thus should be included in integrated pest management program of cotton in order to minimize the ill effects of pesticides it is compulsory to adopt eco-friendly methods of insect pest management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botanical%20extract" title="botanical extract">botanical extract</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20and%20repellency%20activity" title=" insecticidal and repellency activity"> insecticidal and repellency activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Gossypium%20hirsutum" title=" Gossypium hirsutum"> Gossypium hirsutum</a>, <a href="https://publications.waset.org/abstracts/search?q=oxycarenus%20laetus" title=" oxycarenus laetus"> oxycarenus laetus</a> </p> <a href="https://publications.waset.org/abstracts/15157/antagonistic-effect-of-indigenous-plant-extracts-toward-dusky-cotton-bug-oxycarenus-laetus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Role of Disturbed Dry Afromontane Forest of Ethiopia for Biodiversity Conservation and Carbon Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindaye%20Teshome">Mindaye Teshome</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesibu%20Yahya"> Nesibu Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Moreira%20Miquelino%20Eleto%20Torres"> Carlos Moreira Miquelino Eleto Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Manuel%20Villaa"> Pedro Manuel Villaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehari%20Alebachew"> Mehari Alebachew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arbagugu forest is one of the remnant dry Afromontane forests under severe anthropogenic disturbances in central Ethiopia. Despite this fact, up-to-date information is lacking about the status of the forest and its role in climate change mitigation. In this study, we evaluated the woody species composition, structure, biomass, and carbon stock in this forest. We employed a systematic random sampling design and established fifty-three sample plots (20 × 100 m) to collect the vegetation data. A total of 37 woody species belonging to 25 families were recorded. The density of seedlings, saplings, and matured trees were 1174, 101, and 84 stems ha-1, respectively. The total basal area of trees with DBH (diameter at breast height) ≥ 2 cm was 21.3 m2 ha-1. The characteristic trees of dry Afromontane Forest such as Podocarpus falcatus, Juniperus procera, and Olea europaea subsp. cuspidata exhibited a fair regeneration status. On the contrary, the least abundant species Lepidotrichilia volkensii, Canthium oligocarpum, Dovyalis verrucosa, Calpurnia aurea, and Maesa lanceolata exhibited good regeneration status. Some tree species such as Polyscias fulva, Schefflera abyssinica, Erythrina brucei, and Apodytes dimidiata lack regeneration. The total carbon stored in the forest ranged between 6.3 Mg C ha-1 and 835.6 Mg C ha-1. This value is equivalent to 639.6 Mg C ha-1. The forest had a very low number of woody species composition and diversity. The regeneration study also revealed that a significant number of tree species had unsatisfactory regeneration status. Besides, the forest had a lower carbon stock density compared with other dry Afromontane forests. This implies the urgent need for forest conservation and restoration activities by the local government, conservation practitioners, and other concerned bodies to maintain the forest and sustain the various ecosystem goods and services provided by the Arbagugu forest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aboveground%20biomass" title="aboveground biomass">aboveground biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20regeneration" title=" forest regeneration"> forest regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20conservation" title=" biodiversity conservation"> biodiversity conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=restoration" title=" restoration"> restoration</a> </p> <a href="https://publications.waset.org/abstracts/161576/the-role-of-disturbed-dry-afromontane-forest-of-ethiopia-for-biodiversity-conservation-and-carbon-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisaynew%20Tesfaw%20Admassu">Sisaynew Tesfaw Admassu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heritage%20structures" title="heritage structures">heritage structures</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20resin" title=" polyester resin"> polyester resin</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plates" title=" steel plates"> steel plates</a> </p> <a href="https://publications.waset.org/abstracts/172985/experimental-investigation-on-strengthening-of-timber-beam-using-glass-fibers-and-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>