CINXE.COM
Search results for: detection algorithm
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: detection algorithm</title> <meta name="description" content="Search results for: detection algorithm"> <meta name="keywords" content="detection algorithm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="detection algorithm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="detection algorithm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6533</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: detection algorithm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6323</span> A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Turan">Cemil Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shukri%20Salman"> Mohammad Shukri Salman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filtering" title="adaptive filtering">adaptive filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20system%20identification" title=" sparse system identification"> sparse system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=TD-LMS%20algorithm" title=" TD-LMS algorithm"> TD-LMS algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=VSSLMS%20algorithm" title=" VSSLMS algorithm"> VSSLMS algorithm</a> </p> <a href="https://publications.waset.org/abstracts/72335/a-transform-domain-function-controlled-vsslms-algorithm-for-sparse-system-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6322</span> mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yang">Yang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Liu"> Dan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20flow%20anomaly%20detection%20%28NAD%29" title="network flow anomaly detection (NAD)">network flow anomaly detection (NAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-teacher%20knowledge%20distillation" title=" multi-teacher knowledge distillation"> multi-teacher knowledge distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/156811/mkdnad-a-network-flow-anomaly-detection-method-based-on-multi-teacher-knowledge-distillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6321</span> Adaptive Online Object Tracking via Positive and Negative Models Matching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaomei%20Li">Shaomei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yawen%20Wang"> Yawen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Gao"> Chao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title="object tracking">object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20drift" title=" tracking drift"> tracking drift</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20least%20squares%20analysis" title=" partial least squares analysis"> partial least squares analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20and%20negative%20models%20matching" title=" positive and negative models matching"> positive and negative models matching</a> </p> <a href="https://publications.waset.org/abstracts/19382/adaptive-online-object-tracking-via-positive-and-negative-models-matching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6320</span> A Hybrid ICA-GA Algorithm for Solving Multiobjective Optimization of Production Planning Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Ramzi%20Jasim">Omar Ramzi Jasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Sultan%20Ashour"> Jalal Sultan Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production Planning or Master Production Schedule (MPS) is a key interface between marketing and manufacturing, since it links customer service directly to efficient use of production resources. Mismanagement of the MPS is considered as one of fundamental problems in operation and it can potentially lead to poor customer satisfaction. In this paper, a hybrid evolutionary algorithm (ICA-GA) is presented, which integrates the merits of both imperialist competitive algorithm (ICA) and genetic algorithm (GA) for solving multi-objective MPS problems. In the presented algorithm, the colonies in each empire has be represented a small population and communicate with each other using genetic operators. By testing on 5 production scenarios, the numerical results of ICA-GA algorithm show the efficiency and capabilities of the hybrid algorithm in finding the optimum solutions. The ICA-GA solutions yield the lower inventory level and keep customer satisfaction high and the required overtime is also lower, compared with results of GA and SA in all production scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=master%20production%20scheduling" title="master production scheduling">master production scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=imperialist%20competitive%20algorithm" title=" imperialist competitive algorithm"> imperialist competitive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a> </p> <a href="https://publications.waset.org/abstracts/46493/a-hybrid-ica-ga-algorithm-for-solving-multiobjective-optimization-of-production-planning-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6319</span> Rapid Detection System of Airborne Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kei%20Takenaka"> Kei Takenaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viruses" title="viruses">viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=sampler" title=" sampler"> sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=mist" title=" mist"> mist</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes" title=" fluorescent dyes"> fluorescent dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=microreaction" title=" microreaction"> microreaction</a> </p> <a href="https://publications.waset.org/abstracts/2700/rapid-detection-system-of-airborne-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6318</span> RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayron%20Sanchez">Jayron Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Analyn%20Yumang"> Analyn Yumang</a>, <a href="https://publications.waset.org/abstracts/search?q=Felicito%20Caluyo"> Felicito Caluyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The visually impaired individual may use a cane, guide dog or ask for assistance from a person. This study implemented the RFID technology which consists of a low-cost RFID reader and passive RFID tag cards. The passive RFID tag cards served as checkpoints for the visually impaired. The visually impaired was guided through audio output from the system while traversing the path. The study implemented an ultrasonic sensor in detecting static obstacles. The system generated an alternate path based on A* algorithm to avoid the obstacles. Alternate paths were also generated in case the visually impaired traversed outside the intended path to the destination. A* algorithm generated the shortest path to the destination by calculating the total cost of movement. The algorithm then selected the smallest movement cost as a successor to the current tag card. Several trials were conducted to determine the effect of obstacles in the time traversal of the visually impaired. A dependent sample t-test was applied for the statistical analysis of the study. Based on the analysis, the obstacles along the path generated delays while requesting for the alternate path because of the delay in transmission from the laptop to the device via ZigBee modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%2A%20algorithm" title="A* algorithm">A* algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID%20technology" title=" RFID technology"> RFID technology</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensor" title=" ultrasonic sensor"> ultrasonic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=ZigBee%20module" title=" ZigBee module"> ZigBee module</a> </p> <a href="https://publications.waset.org/abstracts/20113/rfid-based-indoor-navigation-with-obstacle-detection-based-on-a-algorithm-for-the-visually-impaired" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6317</span> Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Izosimov">Igor Izosimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinides%2Flanthanides%20detection" title="actinides/lanthanides detection">actinides/lanthanides detection</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20spectroscopy%20with%20time%20resolution" title=" laser spectroscopy with time resolution"> laser spectroscopy with time resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence%2Fchemiluminescence" title=" luminescence/chemiluminescence"> luminescence/chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=solutions" title=" solutions"> solutions</a> </p> <a href="https://publications.waset.org/abstracts/61605/application-of-laser-spectroscopy-for-detection-of-actinides-and-lanthanides-in-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6316</span> A Fast Version of the Generalized Multi-Directional Radon Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ines%20Elouedi">Ines Elouedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20Hammouda"> Atef Hammouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20generalized%20multi-directional%20Radon%20transform" title="fast generalized multi-directional Radon transform">fast generalized multi-directional Radon transform</a>, <a href="https://publications.waset.org/abstracts/search?q=curve" title=" curve"> curve</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20reconstruction" title=" exact reconstruction"> exact reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/69691/a-fast-version-of-the-generalized-multi-directional-radon-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6315</span> Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Navidi">Neda Navidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Jr.%20Landry"> Rene Jr. Landry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver%20behavior%20monitoring" title="driver behavior monitoring">driver behavior monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/72798/location-detection-of-vehicular-accident-using-global-navigation-satellite-systemsinertial-measurement-units-navigator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6314</span> An Algorithm for Herding Cows by a Swarm of Quadcopters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeryes%20Danial">Jeryes Danial</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosi%20Ben%20Asher"> Yosi Ben Asher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algorithms for controlling a swarm of robots is an active research field, out of which cattle herding is one of the most complex problems to solve. In this paper, we derive an independent herding algorithm that is specifically designed for a swarm of quadcopters. The algorithm works by devising flight trajectories that cause the cows to run-away in the desired direction and hence herd cows that are distributed in a given field towards a common gathering point. Unlike previously proposed swarm herding algorithms, this algorithm does not use a flocking model but rather stars each cow separately. The effectiveness of this algorithm is verified experimentally using a simulator. We use a special set of experiments attempting to demonstrate that the herding times of this algorithm correspond to field diameter small constant regardless of the number of cows in the field. This is an optimal result indicating that the algorithm groups the cows into intermediate groups and herd them as one forming ever closing bigger groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swarm" title="swarm">swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=independent" title=" independent"> independent</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed" title=" distributed"> distributed</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/134795/an-algorithm-for-herding-cows-by-a-swarm-of-quadcopters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6313</span> An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Mi">Hao Mi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yang"> Ming Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian-yue%20Yang"> Tian-yue Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title="remote monitoring">remote monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20Linux%20system" title=" embedded Linux system"> embedded Linux system</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/101979/an-intelligent-nondestructive-testing-system-of-ultrasonic-infrared-thermal-imaging-based-on-embedded-linux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6312</span> Determination of Frequency Relay Setting during Distributed Generators Islanding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Kandil">Tarek Kandil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameen%20Ali"> Ameen Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20relay" title="frequency relay">frequency relay</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=islanding%20detection" title=" islanding detection"> islanding detection</a>, <a href="https://publications.waset.org/abstracts/search?q=relay%20setting" title=" relay setting"> relay setting</a> </p> <a href="https://publications.waset.org/abstracts/18304/determination-of-frequency-relay-setting-during-distributed-generators-islanding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6311</span> Determining Abnomal Behaviors in UAV Robots for Trajectory Control in Teleoperation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiwon%20Yeom">Kiwon Yeom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change points are abrupt variations in a data sequence. Detection of change points is useful in modeling, analyzing, and predicting time series in application areas such as robotics and teleoperation. In this paper, a change point is defined to be a discontinuity in one of its derivatives. This paper presents a reliable method for detecting discontinuities within a three-dimensional trajectory data. The problem of determining one or more discontinuities is considered in regular and irregular trajectory data from teleoperation. We examine the geometric detection algorithm and illustrate the use of the method on real data examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20point" title="change point">change point</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuity" title=" discontinuity"> discontinuity</a>, <a href="https://publications.waset.org/abstracts/search?q=teleoperation" title=" teleoperation"> teleoperation</a>, <a href="https://publications.waset.org/abstracts/search?q=abrupt%20variation" title=" abrupt variation"> abrupt variation</a> </p> <a href="https://publications.waset.org/abstracts/78413/determining-abnomal-behaviors-in-uav-robots-for-trajectory-control-in-teleoperation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6310</span> Riesz Mixture Model for Brain Tumor Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Zitouni">Mouna Zitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariem%20Tounsi">Mariem Tounsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title="EM algorithm">EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Riesz%20probability%20distribution" title=" Riesz probability distribution"> Riesz probability distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Wishart%20probability%20distribution" title=" Wishart probability distribution"> Wishart probability distribution</a> </p> <a href="https://publications.waset.org/abstracts/192126/riesz-mixture-model-for-brain-tumor-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6309</span> Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Shankar%20Bharathi">S. Shankar Bharathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallic%20surface" title="metallic surface">metallic surface</a>, <a href="https://publications.waset.org/abstracts/search?q=scratches" title=" scratches"> scratches</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hausdorff%20dilation%20distance" title=" hausdorff dilation distance"> hausdorff dilation distance</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision"> machine vision</a> </p> <a href="https://publications.waset.org/abstracts/34958/iterative-segmentation-and-application-of-hausdorff-dilation-distance-in-defect-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6308</span> A Review Paper on Data Mining and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikander%20Singh%20Cheema">Sikander Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20Kaur"> Jasmeen Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=KDD" title=" KDD"> KDD</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20mining" title=" descriptive mining"> descriptive mining</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20mining" title=" predictive mining"> predictive mining</a> </p> <a href="https://publications.waset.org/abstracts/43637/a-review-paper-on-data-mining-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6307</span> Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouredine%20Benouzza">Nouredine Benouzza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hamida%20Boudinar"> Ahmed Hamida Boudinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeddine%20Bendiabdellah"> Azeddine Bendiabdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squirrel%20cage%20motor" title="squirrel cage motor">squirrel cage motor</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentricity%20faults" title=" eccentricity faults"> eccentricity faults</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20spectral%20analysis" title=" current spectral analysis"> current spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20slot%20harmonic" title=" rotor slot harmonic"> rotor slot harmonic</a> </p> <a href="https://publications.waset.org/abstracts/71112/induction-motor-eccentricity-fault-recognition-using-rotor-slot-harmonic-with-stator-current-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6306</span> Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lan%20Du">Lan Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Dai"> Hui Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title="change detection">change detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20Aperture%20Radar%20%28SAR%29" title=" Synthetic Aperture Radar (SAR)"> Synthetic Aperture Radar (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Scale-Invariant%20Feature%20Transformation%20%28SIFT%29" title=" Scale-Invariant Feature Transformation (SIFT)"> Scale-Invariant Feature Transformation (SIFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/66992/change-detection-method-based-on-scale-invariant-feature-transformation-keypoints-and-segmentation-for-synthetic-aperture-radar-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6305</span> Optimum Design of Grillage Systems Using Firefly Algorithm Optimization Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Erdal">F. Erdal</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Dogan"> E. Dogan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Uz"> F. E. Uz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, firefly optimization based optimum design algorithm is presented for the grillage systems. Naming of the algorithm is derived from the fireflies, whose sense of movement is taken as a model in the development of the algorithm. Fireflies’ being unisex and attraction between each other constitute the basis of the algorithm. The design algorithm considers the displacement and strength constraints which are implemented from LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for the transverse and longitudinal beams of the grillage system among 272 discrete W-section designations given in LRFD-AISC so that the design limitations described in LRFD are satisfied and the weight of the system is confined to be minimal. Number of design examples is considered to demonstrate the efficiency of the algorithm presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%EF%AC%82y%20algorithm" title="firefly algorithm">firefly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20grillage%20systems" title=" steel grillage systems"> steel grillage systems</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20design" title=" optimum design"> optimum design</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20search%20techniques" title=" stochastic search techniques"> stochastic search techniques</a> </p> <a href="https://publications.waset.org/abstracts/14634/optimum-design-of-grillage-systems-using-firefly-algorithm-optimization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6304</span> Optimized Road Lane Detection Through a Combined Canny Edge Detection, Hough Transform, and Scaleable Region Masking Toward Autonomous Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samane%20Sharifi%20Monfared">Samane Sharifi Monfared</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavdie%20Rada"> Lavdie Rada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, autonomous vehicles are developing rapidly toward facilitating human car driving. One of the main issues is road lane detection for a suitable guidance direction and car accident prevention. This paper aims to improve and optimize road line detection based on a combination of camera calibration, the Hough transform, and Canny edge detection. The video processing is implemented using the Open CV library with the novelty of having a scale able region masking. The aim of the study is to introduce automatic road lane detection techniques with the user’s minimum manual intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hough%20transform" title="hough transform">hough transform</a>, <a href="https://publications.waset.org/abstracts/search?q=canny%20edge%20detection" title=" canny edge detection"> canny edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=scaleable%20masking" title=" scaleable masking"> scaleable masking</a>, <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title=" camera calibration"> camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=improving%20the%20quality%20of%20image" title=" improving the quality of image"> improving the quality of image</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20processing" title=" video processing"> video processing</a> </p> <a href="https://publications.waset.org/abstracts/156139/optimized-road-lane-detection-through-a-combined-canny-edge-detection-hough-transform-and-scaleable-region-masking-toward-autonomous-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6303</span> Edge Detection in Low Contrast Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K.%20Pandey"> Rajesh K. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20contrast%20image" title="low contrast image">low contrast image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20differentiator" title="fractional order differentiator">fractional order differentiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian%20%28LoG%29%20method" title="Laplacian of Gaussian (LoG) method">Laplacian of Gaussian (LoG) method</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%20polynomial" title=" chebyshev polynomial"> chebyshev polynomial</a> </p> <a href="https://publications.waset.org/abstracts/21264/edge-detection-in-low-contrast-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6302</span> Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Lafuente%20Alc%C3%A1zar">Beatriz Lafuente Alcázar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yash%20Wani"> Yash Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20J.%20Nimunkar"> Amit J. Nimunkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arrhythmia" title="arrhythmia">arrhythmia</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=R-peaks" title=" R-peaks"> R-peaks</a> </p> <a href="https://publications.waset.org/abstracts/153003/analysis-of-a-incresu-net-model-for-r-peak-detection-in-ecg-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6301</span> A Framework for Review Spam Detection Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadali%20Tavakoli">Mohammadali Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Heydari"> Atefeh Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuriati%20Ismail"> Zuriati Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Naomie%20Salim"> Naomie Salim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a high-quality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fake%20reviews" title="fake reviews">fake reviews</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20collection" title=" feature collection"> feature collection</a>, <a href="https://publications.waset.org/abstracts/search?q=opinion%20spam" title=" opinion spam"> opinion spam</a>, <a href="https://publications.waset.org/abstracts/search?q=spam%20detection" title=" spam detection"> spam detection</a> </p> <a href="https://publications.waset.org/abstracts/42751/a-framework-for-review-spam-detection-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6300</span> Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ramezanpanah">Zahra Ramezanpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Carvallo"> Joachim Carvallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelien%20Rodriguez"> Aurelien Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20graph%20network" title="temporal graph network">temporal graph network</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20security" title=" cyber security"> cyber security</a>, <a href="https://publications.waset.org/abstracts/search?q=IDS" title=" IDS"> IDS</a> </p> <a href="https://publications.waset.org/abstracts/150847/real-time-network-anomaly-detection-systems-based-on-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6299</span> Grid Pattern Recognition and Suppression in Computed Radiographic Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Belykh">Igor Belykh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid" title="grid">grid</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20radiography" title=" computed radiography"> computed radiography</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a> </p> <a href="https://publications.waset.org/abstracts/7833/grid-pattern-recognition-and-suppression-in-computed-radiographic-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6298</span> Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dasgupta">M. Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Banerjee"> S. Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20based%20reasoning" title="case based reasoning">case based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=exudates" title=" exudates"> exudates</a>, <a href="https://publications.waset.org/abstracts/search?q=retina%20image" title=" retina image"> retina image</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20based%20retrieval" title=" similarity based retrieval"> similarity based retrieval</a> </p> <a href="https://publications.waset.org/abstracts/2992/similarity-based-retrieval-in-case-based-reasoning-for-analysis-of-medical-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6297</span> An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20R.%20Ahmed">Muhammad R. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Aseeri"> Mohammed Aseeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20attack" title="internal attack">internal attack</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security" title=" network security"> network security</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a> </p> <a href="https://publications.waset.org/abstracts/26980/an-entropy-based-novel-algorithm-for-internal-attack-detection-in-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6296</span> Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrshad%20Khosraviani">Mehrshad Khosraviani</a>, <a href="https://publications.waset.org/abstracts/search?q=Faramarz%20Abbaspour%20Leyl%20Abadi"> Faramarz Abbaspour Leyl Abadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20immune%20system" title="artificial immune system">artificial immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormality%20detection" title=" abnormality detection"> abnormality detection</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title=" intrusion detection"> intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20networks" title=" computer networks"> computer networks</a> </p> <a href="https://publications.waset.org/abstracts/27977/introduce-a-new-model-of-anomaly-detection-in-computer-networks-using-artificial-immune-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6295</span> Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jigg%20Pelayo">Jigg Pelayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Villar"> Ricardo Villar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20value%20crop" title="high value crop">high value crop</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR"> LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=OBIA" title=" OBIA"> OBIA</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a> </p> <a href="https://publications.waset.org/abstracts/58602/algorithm-for-improved-tree-counting-and-detection-through-adaptive-machine-learning-approach-with-the-integration-of-watershed-transformation-and-local-maxima-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6294</span> A Machine Learning Approach for Detecting and Locating Hardware Trojans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaiwen%20Zheng">Kaiwen Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanting%20Zhou"> Wanting Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Tang"> Nan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li"> Lei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanhang%20He"> Yuanhang He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardware%20trojans" title="hardware trojans">hardware trojans</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20security" title=" hardware security"> hardware security</a> </p> <a href="https://publications.waset.org/abstracts/164285/a-machine-learning-approach-for-detecting-and-locating-hardware-trojans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=217">217</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=218">218</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detection%20algorithm&page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>