CINXE.COM

Search results for: Radiator

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Radiator</title> <meta name="description" content="Search results for: Radiator"> <meta name="keywords" content="Radiator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Radiator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Radiator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Radiator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Thermal Analysis of Automobile Radiator Using Nanofluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sumanth">S. Sumanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Babu%20Rao%20Ponangi"> Babu Rao Ponangi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Seetharamu"> K. N. Seetharamu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the technology is emerging day by day, there is a need for some better methodology which will enhance the performance of radiator. Nanofluid is the one area which has promised the enhancement of the radiator performance. Currently, nanofluid has got a well effective solution for enhancing the performance of the automobile radiators. Suspending the nano sized particle in the base fluid, which has got better thermal conductivity value when compared to a base fluid, is preferably considered for nanofluid. In the current work, at first mathematical formulation has been carried out, which will govern the performance of the radiator. Current work is justified by plotting the graph for different parameters. Current work justifies the enhancement of radiator performance using nanofluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=radiator%20performance" title=" radiator performance"> radiator performance</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20aluminium%20oxide%20%28%CE%B3-Al2O3%29" title=" gamma aluminium oxide (γ-Al2O3)"> gamma aluminium oxide (γ-Al2O3)</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide%20%28TiO2%29" title=" titanium dioxide (TiO2)"> titanium dioxide (TiO2)</a> </p> <a href="https://publications.waset.org/abstracts/57521/thermal-analysis-of-automobile-radiator-using-nanofluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> CFD Simulation of Forced Convection Nanofluid Heat Transfer in the Automotive Radiator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Movafagh">Sina Movafagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Bakhshan"> Younes Bakhshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated numerically. Different concentrations of nanofluids have been investigated by the addition of Al2O3 nano-particles into the water. Also, the effect of the inlet temperature of nanofluid on the performance of radiator is studied. Results show that with an increase of inlet temperature the outlet temperature and pressure drop along the radiator increase. Also, it has been observed that increase of nono-particle concentration will result in an increase in heat transfer rate within the radiator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20radiator" title=" car radiator"> car radiator</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a> </p> <a href="https://publications.waset.org/abstracts/24731/cfd-simulation-of-forced-convection-nanofluid-heat-transfer-in-the-automotive-radiator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Movafagh">S. Movafagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bakhshan"> Y. Bakhshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title="forced convection">forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=radiator" title=" radiator"> radiator</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a> </p> <a href="https://publications.waset.org/abstracts/24737/heat-transfer-enhancement-via-using-al2o3water-nanofluid-in-car-radiator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramnath%20Narhete">Ramnath Narhete</a>, <a href="https://publications.waset.org/abstracts/search?q=Saket%20Pandey"> Saket Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Puran%20Gour"> Puran Gour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-band%20E" title=" dual-band E"> dual-band E</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-band%20L" title=" dual-band L"> dual-band L</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20radiator" title=" compact radiator"> compact radiator</a> </p> <a href="https://publications.waset.org/abstracts/28512/dual-band-antenna-design-with-compact-radiator-for-255258-ghz-wlan-application-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinda%20Sabrina">Malinda Sabrina</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Andree%20Yohanes"> F. Andree Yohanes</a>, <a href="https://publications.waset.org/abstracts/search?q=Khoerul%20Anwar"> Khoerul Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20noise" title="aerodynamics noise">aerodynamics noise</a>, <a href="https://publications.waset.org/abstracts/search?q=hemi-anechoic%20chamber" title=" hemi-anechoic chamber"> hemi-anechoic chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=radiator%20cooling%20fan" title=" radiator cooling fan"> radiator cooling fan</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20pressure%20level" title=" sound pressure level"> sound pressure level</a> </p> <a href="https://publications.waset.org/abstracts/63282/experimental-study-on-aerodynamic-noise-of-radiator-cooling-fan-with-different-diameter-in-hemi-anechoic-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Investigating and Comparing the Performance of Baseboard and Panel Radiators by Calculating the Thermal Comfort Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Erfan%20Doraki">Mohammad Erfan Doraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salehi"> Mohammad Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to evaluate the performance of Baseboard and Panel radiators with thermal comfort coefficient, A room with specific dimensions was modeled with Ansys fluent and DesignBuilder, then calculated the speed and temperature parameters in different parts of the room in two modes of using Panel and Baseboard radiators and it turned out that use of Baseboard radiators has a more uniform temperature and speed distribution, but in a Panel radiator, the room is warmer. Then, by calculating the thermal comfort indices, It was shown that using a Panel radiator is a more favorable environment and using a Baseboard radiator is a more uniform environment in terms of thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radiator" title="Radiator">Radiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Baseboard" title=" Baseboard"> Baseboard</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal" title=" optimal"> optimal</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20coefficient" title=" comfort coefficient"> comfort coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat "> heat </a> </p> <a href="https://publications.waset.org/abstracts/134114/investigating-and-comparing-the-performance-of-baseboard-and-panel-radiators-by-calculating-the-thermal-comfort-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Investigation of Night Cooling Event, Experimental Radiator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Karampour">Fatemeh Karampour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the hot climate countries, especially those countries with great desert area, such as Iran, a considerable part of the energy is consumed due to cooling and air conditioning system in a hot season. So it is important to find a renewable energy supply for cooling systems. Although, there are few consistent researches in this field of renewable energy in compare with other fields. This research is presenting a study on performance of a night cooling radiator and working fluid storage for night time operation and day time resting periods. In these experiments, we didn’t expose any heating load but focused only on the possibility of system combination and its potential cooling effect. A very simple radiator has been designed in south of Iran, Shiraz, in order to perform this study. The radiator has been insulated with polystyrene foam and bubbled plastic sheets have been used as top cover. Using a single bubbled plastic sheet, the radiator temperature reached 0°C which is 20°C lower than minimum ambient temperature. Putting a small storage tank in the line increased the radiator’s minimum temperature at night; however, provided some cool fluid source for hot days of Shiraz that easily reaches 40°C. The results have shown very good cooling potential without heating load and acceptable temperature increasing during hot day with a small, short term storage tank. Future studies can make the system more effective and applicable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=night%20cooling" title="night cooling">night cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20set%20up" title=" experimental set up"> experimental set up</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20radiator" title=" cooling radiator"> cooling radiator</a>, <a href="https://publications.waset.org/abstracts/search?q=chill%20storage" title=" chill storage"> chill storage</a> </p> <a href="https://publications.waset.org/abstracts/103772/investigation-of-night-cooling-event-experimental-radiator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Studies on Lucrative Design of a Waste Heat Recovery System for Air Conditioners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20Bala">Ashwin Bala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Panthalaraja%20Kumaran"> K. Panthalaraja Kumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Prithviraj"> S. Prithviraj</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Pradeep"> R. Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Udhayakumar"> J. Udhayakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajith"> S. Ajith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, studies have been carried out for an in-house design of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Theoretical studies have been carried to optimizing the flow rate for getting maximum output with a minimum size of the heater. Critical diameter, wall thickness, and total length of the water pipeline have been estimated from the conventional heat transfer model. Several combinations of pipeline shapes viz., spiral, coil, zigzag wound through the radiator has been attempted and accordingly shape has been optimized using heat transfer analyses. The initial condition is declared based on the water flow rate and temperature. Through the parametric analytical studies we have conjectured that water flow rate, temperature difference between incoming water and radiator skin temperature, pipe material, radiator material, geometry of the water pipe viz., length, diameter, and wall thickness are having bearing on the lucrative design of a waste heat recovery system for air conditioners. Results generated through the numerical studies have been validated using an in-house waste heat recovery system for air conditioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioner%20design" title="air conditioner design">air conditioner design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion%20system" title=" energy conversion system"> energy conversion system</a>, <a href="https://publications.waset.org/abstracts/search?q=radiator%20design%20for%20energy%20recovery%20systems" title=" radiator design for energy recovery systems"> radiator design for energy recovery systems</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery%20system" title=" waste heat recovery system "> waste heat recovery system </a> </p> <a href="https://publications.waset.org/abstracts/36217/studies-on-lucrative-design-of-a-waste-heat-recovery-system-for-air-conditioners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20K.%20Vinu">Anand K. Vinu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaishnav%20Vimal"> Vaishnav Vimal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasi%20Gopalan"> Sasi Gopalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title="passive cooling">passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=CubeSat" title=" CubeSat"> CubeSat</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20satellite" title=" stationary satellite"> stationary satellite</a> </p> <a href="https://publications.waset.org/abstracts/159472/solar-cell-packed-and-insulator-fused-panels-for-efficient-cooling-in-cubesat-and-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raoudane%20Bouziyan">Raoudane Bouziyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawser%20Mohammad%20Tawhid"> Kawser Mohammad Tawhid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEKO" title="FEKO">FEKO</a>, <a href="https://publications.waset.org/abstracts/search?q=HFSS" title=" HFSS"> HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20band" title=" dual band"> dual band</a>, <a href="https://publications.waset.org/abstracts/search?q=shorted%20annular%20ring%20patch" title=" shorted annular ring patch"> shorted annular ring patch</a> </p> <a href="https://publications.waset.org/abstracts/12262/investigation-of-a-novel-dual-band-microstripwaveguide-hybrid-antenna-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Jun-Hong">Chen Jun-Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Pu"> He Pu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Wen-Quan"> Tao Wen-Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEMFC%20system" title="PEMFC system">PEMFC system</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20identification" title=" parameter identification"> parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20control" title=" temperature control"> temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuzzy-PID" title=" Fuzzy-PID"> Fuzzy-PID</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF-PID" title=" RBF-PID"> RBF-PID</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitic%20power" title=" parasitic power"> parasitic power</a> </p> <a href="https://publications.waset.org/abstracts/183259/modeling-and-temperature-control-of-water-cooled-pemfc-system-using-intelligent-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Investigating Constructions and Operation of Internal Combustion Engine Water Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20G%C4%99ca">Michał Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski"> Konrad Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Bara%C5%84ski"> Grzegorz Barański</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water pump in the compression-ignition internal combustion engine transports a hot coolant along a system of ducts from the engine block to the radiator where coolant temperature is lowered. This part needs to maintain a constant volumetric flow rate. Its power should be regulated to avoid a significant drop in pressure if a coolant flow decreases. The internal combustion engine cooling system uses centrifugal pumps for suction. The paper investigates 4 constructions of engine pumps. The pumps are from diesel engine of a maximum power of 75 kW. Each of them has a different rotor shape, diameter and width. The test stand was created and the geometry inside the all 4 engine blocks was mapped. For a given pump speed on the inverter of the electric engine motor, the valve position was changed and volumetric flow rate, pressure, and power were recorded. Pump speed was regulated from 1200 RPM to 7000 RPM every 300 RPM. The volumetric flow rates and pressure drops for the pump speeds and efficiencies were specified. Accordingly, the operations of each pump were mapped. Our research was to select a pump for the aircraft compression-ignition engine. There was calculated a pressure drop at a given flow on the block and radiator of the designed aircraft engine. The water pump should be lightweight and have a low power demand. This fact shall affect the shape of a rotor and bearings. The pump volumetric flow rate was assumed as 3 kg/s (previous AVL BOOST research model) where the temperature difference was 5°C between the inlet (90°C) and outlet (95°C). Increasing pump speed above the boundary flow power defined by pressure and volumetric flow rate does not increase it but pump efficiency decreases. The maximum total pump efficiency (PCC) is 45-50%. When the pump is driven by low speeds with a 90% closed valve, its overall efficiency drops to 15-20%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title="aircraft engine">aircraft engine</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pump" title=" water pump"> water pump</a> </p> <a href="https://publications.waset.org/abstracts/81471/investigating-constructions-and-operation-of-internal-combustion-engine-water-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Numerical Analysis of Heat Transfer in Water Channels of the Opposed-Piston Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Bialy">Michal Bialy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Szlachetka"> Marcin Szlachetka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko"> Mateusz Paszko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the CFD results of heat transfer in water channels in the engine body. The research engine was a newly designed Diesel combustion engine. The engine has three cylinders with three pairs of opposed pistons inside. The engine will be able to generate 100 kW mechanical power at a crankshaft speed of 3,800-4,000 rpm. The water channels are in the engine body along the axis of the three cylinders. These channels are around the three combustion chambers. The water channels transfer combustion heat that occurs the cylinders to the external radiator. This CFD research was based on the ANSYS Fluent software and aimed to optimize the geometry of the water channels. These channels should have a maximum flow of heat from the combustion chamber or the external radiator. Based on the parallel simulation research, the boundary and initial conditions enabled us to specify average values of key parameters for our numerical analysis. Our simulation used the average momentum equations and turbulence model k-epsilon double equation. There was also used a real k-epsilon model with a function of a standard wall. The turbulence intensity factor was 10%. The working fluid mass flow rate was calculated for a single typical value, specified in line with the research into the flow rate of automotive engine cooling pumps used in engines of similar power. The research uses a series of geometric models which differ, for instance, in the shape of the cross-section of the channel along the axis of the cylinder. The results are presented as colourful distribution maps of temperature, speed fields and heat flow through the cylinder walls. Due to limitations of space, our paper presents the results on the most representative geometric model only. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys%20fluent" title="Ansys fluent">Ansys fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20engine" title=" combustion engine"> combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20CFD" title=" computational fluid dynamics CFD"> computational fluid dynamics CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20system" title=" cooling system"> cooling system</a> </p> <a href="https://publications.waset.org/abstracts/81466/numerical-analysis-of-heat-transfer-in-water-channels-of-the-opposed-piston-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Misoc">Florian Misoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Okhio"> Cyril Okhio</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Tolbert"> Joshua Tolbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Carlin"> Nick Carlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ramey"> Thomas Ramey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine" title="stirling engine">stirling engine</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-thermal" title=" solar-thermal"> solar-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20inverter" title=" power inverter"> power inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=alternator" title=" alternator"> alternator</a> </p> <a href="https://publications.waset.org/abstracts/84756/solar-thermal-electric-stirling-engine-powered-system-for-residential-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Dual Band Shared Aperture Antenna for 5G Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zunnurain%20Ahmad">Zunnurain Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents design of a dual band antenna for the 5G communications in the millimeter wave band. As opposed to conventional patch antennas which are limited to single narrow band operation a shared aperture concept is utilized for this antenna. The patch aperture is coupled through two rectangular slots etched on a thin printed circuit board (100μm). The patch is elevated in air thus avoiding excitation of surface waves and minimizing dielectric losses at millimeter wave frequencies. With this approach the radiator can cover lower band of 28 GHz and upper band of 37/ 39 GHz dedicated for the fifth generation communications. The simulated radiation efficiency of the antenna stays above 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave" title=" millimeter wave"> millimeter wave</a>, <a href="https://publications.waset.org/abstracts/search?q=5G" title=" 5G"> 5G</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a> </p> <a href="https://publications.waset.org/abstracts/184487/dual-band-shared-aperture-antenna-for-5g-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> A CMOS Capacitor Array for ESPAR with Fast Switching Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Sup%20Kim">Jin-Sup Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Se-Hwan%20Choi"> Se-Hwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Young%20Lee"> Jae-Young Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 8-bit CMOS capacitor array is designed for using in electrically steerable passive array radiator (ESPAR). The proposed capacitor array shows the fast response time in rising and falling characteristics. Compared to other works in silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technologies, it shows a comparable tuning range and switching time with low power consumption. Using the 0.18um CMOS, the capacitor array features a tuning range of 1.5 to 12.9 pF at 2.4GHz. Including the 2X4 decoder for control interface, the Chip size is 350um X 145um. Current consumption is about 80 nA at 1.8 V operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20capacitor%20array" title="CMOS capacitor array">CMOS capacitor array</a>, <a href="https://publications.waset.org/abstracts/search?q=ESPAR" title=" ESPAR"> ESPAR</a>, <a href="https://publications.waset.org/abstracts/search?q=SOI" title=" SOI"> SOI</a>, <a href="https://publications.waset.org/abstracts/search?q=SOS" title=" SOS"> SOS</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20time" title=" switching time"> switching time</a> </p> <a href="https://publications.waset.org/abstracts/24058/a-cmos-capacitor-array-for-espar-with-fast-switching-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Design of H-Shape X-band Application Electrically Small Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riki%20H.%20Patel">Riki H. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpan%20H.%20Desai"> Arpan H. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Trushit%20Upadhyaya"> Trushit Upadhyaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new small electrically antenna rectangular X- band micro-strip patch antenna loaded with material Rogers RT/duroid 5870 (tm). The present discussion focuses on small Electrically antenna which are electrically small compared to wave length the performance of electrically small antenna are closely related to their electrical size, the gain can be increased to maintain the efficiency of the radiator. Basically micro-strip Patch antennas have been used in satellite communications and for their good characteristics such as lightness, low cost, and so on. Here in the design H- shape folded dipole, which increase the band width of the antenna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrically%20small%20antennas" title="electrically small antennas">electrically small antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=X-band%20application" title=" X-band application"> X-band application</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna" title=" antenna"> antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-strip%20patch" title=" micro-strip patch"> micro-strip patch</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20antenna" title=" frequency antenna"> frequency antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=feed" title=" feed"> feed</a>, <a href="https://publications.waset.org/abstracts/search?q=gain" title=" gain"> gain</a> </p> <a href="https://publications.waset.org/abstracts/32279/design-of-h-shape-x-band-application-electrically-small-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homin%20Kim">Homin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungjo%20Byun"> Hyungjo Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Do"> Jinyoung Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongil%20Lee"> Yongil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin"> Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungbae%20Lee"> Seungbae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20room%20design" title=" engine room design"> engine room design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20hydraulics" title=" mobile hydraulics"> mobile hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/61957/thermal-and-acoustic-design-of-mobile-hydraulic-vehicle-engine-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Influence of Meteorological Properties on the Power of Night Radiation Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othmane%20Fahim">Othmane Fahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoual%20Belouaggadia.%20Charifa%20David"> Naoual Belouaggadia. Charifa David</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ezzine"> Mohamed Ezzine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping.&nbsp;Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel &ldquo;PVT&rdquo; made of aluminum.&nbsp;The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 &deg;C, 2.5 &deg;C on the first day respectively in Marrakech and Casablanca, and 0.2 &deg;C and 3.2 &deg;C on the second night.&nbsp;Power varied between 110.16 and 32.01 W/m&sup2; marked in Marrakech, to be the most suitable area to practice night cooling by night radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20buildings" title="smart buildings">smart buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20cooling" title=" radiative cooling"> radiative cooling</a> </p> <a href="https://publications.waset.org/abstracts/109594/the-influence-of-meteorological-properties-on-the-power-of-night-radiation-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naser%20Ojaroudi%20Parchin">Naser Ojaroudi Parchin</a>, <a href="https://publications.waset.org/abstracts/search?q=Haleh%20Jahanbakhsh%20Basherlou"> Haleh Jahanbakhsh Basherlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Raed%20A.%20Abd-Alhameed"> Raed A. Abd-Alhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20S.%20Excell"> Peter S. Excell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75&times;150 mm<sup>2</sup>. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S<sub>11</sub> &le; -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S<sub>11</sub> &le; -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20communications" title="cellular communications">cellular communications</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-input%2Fmultiple-output%20systems" title=" multiple-input/multiple-output systems"> multiple-input/multiple-output systems</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile-phone%20antenna" title=" mobile-phone antenna"> mobile-phone antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20diversity" title=" polarization diversity"> polarization diversity</a> </p> <a href="https://publications.waset.org/abstracts/111449/dual-polarized-multi-antenna-system-for-massive-mimo-cellular-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Design of a Dual Polarized Resonator Antenna for Mobile Communication System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Fhafhiem">N. Fhafhiem</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krachodnok"> P. Krachodnok</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wongsan"> R. Wongsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 &ndash; 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title="metamaterial">metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20band%20gap" title=" electromagnetic band gap"> electromagnetic band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20polarization" title=" dual polarization"> dual polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator%20antenna" title=" resonator antenna"> resonator antenna</a> </p> <a href="https://publications.waset.org/abstracts/12371/design-of-a-dual-polarized-resonator-antenna-for-mobile-communication-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Miniaturized and Compact Monopole Corner Antenna with a Periodic Slot Truncated and T-Inverted Stub-Tuning for Ultra Wideband Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dakir">R. Dakir</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zbitou"> J. Zbitou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mouhsen"> Ahmed Mouhsen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Errkik"> A. Errkik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tajmouati"> A. Tajmouati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Latrach"> M. Latrach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and analysis of a new compact and miniaturized monopole antenna structure for ultra wideband (UWB) wireless applications are presented and suggested in this paper. The proposed antenna structure is based on corner radiator patch with T-shaped slot and fed by mictostrip feed line with a partial ground plane combined a periodic rectangular slot and inverted T-stub tuning to increase the bandwidth. The design parameters and the performance of the suggested antenna are investigated by using 'CST Microwave Studio' and Advanced Design System. The final prototype of the proposed antenna operates from 3GHZ to 25GHz, corresponding to wide input impedance bandwidth around (157.14%) with a size of 16*24mm2 and can be easily integrated with radio-frequency or microwave circuits with low cost manufacturing. Details of the UWB antenna design and both simulated and measured results are described and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB" title="UWB">UWB</a>, <a href="https://publications.waset.org/abstracts/search?q=T-shaped%20slots" title=" T-shaped slots"> T-shaped slots</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=stub%20tuning" title=" stub tuning"> stub tuning</a> </p> <a href="https://publications.waset.org/abstracts/69269/miniaturized-and-compact-monopole-corner-antenna-with-a-periodic-slot-truncated-and-t-inverted-stub-tuning-for-ultra-wideband-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uwa%20C.%20A.">Uwa C. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamiru%20T."> Jamiru T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Nb-Mo" title="Al-Cu-Nb-Mo">Al-Cu-Nb-Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy" title=" alloy"> alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/165125/experimental-study-of-the-electrical-conductivity-and-thermal-conductivity-property-of-micro-based-al-cu-nb-mo-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Investigation on Phase Change Device for Satellite Thermal Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Hao%20Chen">Meng-Hao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Der%20Huang"> Jeng-Der Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ray%20Chen"> Chia-Ray Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this study <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material%20%28PCM%29" title="phase change material (PCM)">phase change material (PCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20control" title=" thermal control"> thermal control</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=supercooling" title=" supercooling"> supercooling</a> </p> <a href="https://publications.waset.org/abstracts/44723/investigation-on-phase-change-device-for-satellite-thermal-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Design and Construction of a Solar Mobile Anaerobic Digestor for Rural Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20M.%20Moreira">César M. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20Pazmi%C3%B1o-Hern%C3%A1ndez"> Marco A. Pazmiño-Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20Pazmi%C3%B1o-Barreno"> Marco A. Pazmiño-Barreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Griffin"> Kyle Griffin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratap%20Pullammanappallil"> Pratap Pullammanappallil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An anaerobic digestion system that was completely operated on solar power (both photovoltaic and solar thermal energy), and mounted on a trailer to make it mobile, was designed and constructed. A 55-gallon batch digester was placed within a chamber that was heated by hot water pumped through a radiator. Hot water was produced by a solar thermal collector and photovoltaic panels charged a battery which operated pumps for recirculating water. It was found that the temperature in the heating chamber was maintained above ambient temperature but it follows the same trend as ambient temperature. The temperature difference between the chamber and ambient values was not constant but varied with time of day. Advantageously, the temperature difference was highest during night and early morning and lowest near noon. In winter, when ambient temperature dipped to 2 °C during early morning hours, the chamber temperature did not drop below 10 °C. Model simulations showed that even if the digester is subjected to diurnal variations of temperature (as observed in winter of a subtropical region), about 63 % of the waste that would have been processed under constant digester temperature of 38 °C, can still be processed. The cost of the digester system without the trailer was $1,800. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-mobile" title=" solar-mobile"> solar-mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20communities" title=" rural communities"> rural communities</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a> </p> <a href="https://publications.waset.org/abstracts/75513/design-and-construction-of-a-solar-mobile-anaerobic-digestor-for-rural-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Controlling of Water Temperature during the Electrocoagulation Process Using an Innovative Flow Columns -Electrocoagulation Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20Hashim">Khalid S. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Shaw"> Andy Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20Alkhaddar"> Rafid Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20Ortoneda%20Pedrola"> Montserrat Ortoneda Pedrola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 35 0C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-35 0C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 35 0C to the vicinity of 28 0C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.8 0C and from 29.8 to 31.9 0C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 28 0C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 35 0C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20temperature" title="water temperature">water temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20column" title=" flow column"> flow column</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a> </p> <a href="https://publications.waset.org/abstracts/32976/controlling-of-water-temperature-during-the-electrocoagulation-process-using-an-innovative-flow-columns-electrocoagulation-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20pretreatment" title="biomass pretreatment">biomass pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20fragmentation" title=" mechanical fragmentation"> mechanical fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a> </p> <a href="https://publications.waset.org/abstracts/3541/device-for-mechanical-fragmentation-of-organic-substrates-before-methane-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> An Innovative Use of Flow Columns in Electrocoagulation Reactor to Control Water Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20Hashim">Khalid S. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Shaw"> Andy Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20Alkhaddar"> Rafid Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Phipps"> David Phipps</a>, <a href="https://publications.waset.org/abstracts/search?q=Ortoneda%20Pedrola"> Ortoneda Pedrola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature is an essential parameter in the electrocoagulation process (EC) as it governs the solubility of electrodes and the precipitates and the collision rate of particles in water being treated. Although it has been about 100 years since the EC technology was invented and applied in water and wastewater treatment, the effects of temperature on the its performance were insufficiently investigated. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container supplied with a flow column consisted of perorated discoid electrodes that made from aluminium. The flow column has been installed vertically, half submerged in the water being treated, inside a plastic cylinder. The unsubmerged part of the flow column works as a radiator for the water being treated. In order to investigate the performance of ECR1; water samples with different initial temperatures (15, 20, 25, 30, and 35 °C) to the ECR1 for 20 min. Temperature of effluent water samples were measured using Hanna meter (Model: HI 98130). The obtained results demonstrated that the ECR1 reduced water temperature from 35, 30, and 25 °C to 24.6, 23.8, and 21.8 °C respectively. While low water temperature, 15 °C, increased slowly to reach 19.1 °C after 15 minutes and kept the same level till the end of the treatment period. At the same time, water sample with initial temperature of 20 °C showed almost a steady level of temperature along the treatment process, where the temperature increased negligibly from 20 to 20.1 °C after 20 minutes of treatment. In conclusion, ECR1 is able to control the temperature of water being treated around the room temperature even when the initial temperature was high (35 °C) or low (15 °C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title="electrocoagulation">electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20column" title=" flow column"> flow column</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20temperature" title=" water temperature"> water temperature</a> </p> <a href="https://publications.waset.org/abstracts/34852/an-innovative-use-of-flow-columns-in-electrocoagulation-reactor-to-control-water-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Interior Noise Reduction of Construction Equipment Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Jawale">Pradeep Jawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20Supare"> Sharad Supare</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kumar%20Jain"> Sachin Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagesh%20Walke"> Nagesh Walke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interior%20noise" title="interior noise">interior noise</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=CEV" title=" CEV"> CEV</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20source%20identification" title=" noise source identification"> noise source identification</a> </p> <a href="https://publications.waset.org/abstracts/185117/interior-noise-reduction-of-construction-equipment-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Investigation of a Natural Convection Heat Sink for LEDs Based on Micro Heat Pipe Array-Rectangular Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wang">Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaohua%20Zhao"> Yaohua Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Diao"> Yanhua Diao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exponential growth of the lighting industry has rendered traditional thermal technologies inadequate for addressing the thermal management challenges inherent to high-power light-emitting diode (LED) technology. To enhance the thermal management of LEDs, this study proposes a heat sink configuration that integrates a miniature heat pipe array based on phase change technology with rectangular channels. The thermal performance of the heat sink was evaluated through experimental testing, and the results demonstrated that when the input power was 100W, 150W, and 200W, the temperatures of the LED substrate were 47.64℃, 56.78℃, and 69.06℃, respectively. Additionally, the maximum temperature difference of the MHPA in the vertical direction was observed to be 0.32℃, 0.30℃, and 0.30℃, respectively. The results demonstrate that the heat sink not only effectively dissipates the heat generated by the LEDs, but also exhibits excellent temperature uniformity. In consideration of the experimental measurement outcomes, a corresponding numerical model was developed as part of this study. Following the model validation, the effect of the structural parameters of the heat sink on its heat dissipation efficacy was examined through the use of response surface methodology (RSM) analysis. The rectangular channel width, channel height, channel length, number of channel cross-sections, and channel cross-section spacing were selected as the input parameters, while the LED substrate temperature and the total mass of the heat sink were regarded as the response variables. Subsequently, the response was subjected to an analysis of variance (ANOVA), which yielded a regression model that predicted the response based on the input variables. This offers some direction for the design of the radiator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light-emitting%20diodes" title="light-emitting diodes">light-emitting diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title=" heat pipe"> heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/188938/investigation-of-a-natural-convection-heat-sink-for-leds-based-on-micro-heat-pipe-array-rectangular-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Radiator&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Radiator&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10