CINXE.COM
Exergy - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Exergy - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"56f3ec44-b823-4dbd-b6b8-6aa3f6180ae2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Exergy","wgTitle":"Exergy","wgCurRevisionId":1250205873,"wgRevisionId":1250205873,"wgArticleId":1075005,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with dead external links","Articles with dead external links from July 2022","CS1 maint: multiple names: authors list","Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from February 2009","Articles with unsourced statements from December 2020","Articles needing additional references from March 2023","All articles needing additional references", "Articles with unsourced statements from March 2015","Articles needing additional references from December 2020","Thermodynamic free energy","State functions","Ecological economics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Exergy","wgRelevantArticleId":1075005,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false, "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q663290","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage": "ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Exergy - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Exergy"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Exergy&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Exergy"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Exergy rootpage-Exergy skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Exergy" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Exergy" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Exergy" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Exergy" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Terminology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Terminology"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Terminology</span> </div> </a> <ul id="toc-Terminology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Implications"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Implications</span> </div> </a> <ul id="toc-Implications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Mathematical_description" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mathematical_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Mathematical description</span> </div> </a> <button aria-controls="toc-Mathematical_description-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical description subsection</span> </button> <ul id="toc-Mathematical_description-sublist" class="vector-toc-list"> <li id="toc-An_application_of_the_second_law_of_thermodynamics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#An_application_of_the_second_law_of_thermodynamics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>An application of the second law of thermodynamics</span> </div> </a> <ul id="toc-An_application_of_the_second_law_of_thermodynamics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_historical_and_cultural_tangent" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_historical_and_cultural_tangent"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>A historical and cultural tangent</span> </div> </a> <ul id="toc-A_historical_and_cultural_tangent-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_potential_for_every_thermodynamic_situation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_potential_for_every_thermodynamic_situation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>A potential for every thermodynamic situation</span> </div> </a> <ul id="toc-A_potential_for_every_thermodynamic_situation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exergy_Analysis_involving_Radiative_Heat_Transfer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exergy_Analysis_involving_Radiative_Heat_Transfer"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Exergy Analysis involving Radiative Heat Transfer</span> </div> </a> <ul id="toc-Exergy_Analysis_involving_Radiative_Heat_Transfer-sublist" class="vector-toc-list"> <li id="toc-Exergy_Flux_of_Radiation_with_an_Arbitrary_Spectrum_(including_Sunlight)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Exergy_Flux_of_Radiation_with_an_Arbitrary_Spectrum_(including_Sunlight)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.1</span> <span>Exergy Flux of Radiation with an Arbitrary Spectrum (including Sunlight)</span> </div> </a> <ul id="toc-Exergy_Flux_of_Radiation_with_an_Arbitrary_Spectrum_(including_Sunlight)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Exergy_Flux_of_Sunlight" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_Exergy_Flux_of_Sunlight"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.2</span> <span>The Exergy Flux of Sunlight</span> </div> </a> <ul id="toc-The_Exergy_Flux_of_Sunlight-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Chemical_exergy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chemical_exergy"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Chemical exergy</span> </div> </a> <ul id="toc-Chemical_exergy-sublist" class="vector-toc-list"> <li id="toc-Important_equations" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Important_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.1</span> <span>Important equations</span> </div> </a> <ul id="toc-Important_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Total_exergy" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Total_exergy"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.2</span> <span>Total exergy</span> </div> </a> <ul id="toc-Total_exergy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Irreversibility" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Irreversibility"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Irreversibility</span> </div> </a> <ul id="toc-Irreversibility-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Engineering_applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Engineering_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Engineering applications</span> </div> </a> <ul id="toc-Engineering_applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_in_natural_resource_utilization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications_in_natural_resource_utilization"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Applications in natural resource utilization</span> </div> </a> <ul id="toc-Applications_in_natural_resource_utilization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_in_sustainability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications_in_sustainability"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Applications in sustainability</span> </div> </a> <ul id="toc-Applications_in_sustainability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exergy_and_environmental_policy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exergy_and_environmental_policy"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Exergy and environmental policy</span> </div> </a> <ul id="toc-Exergy_and_environmental_policy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Assigning_one_thermodynamically_obtained_value_to_an_economic_good" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Assigning_one_thermodynamically_obtained_value_to_an_economic_good"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Assigning one thermodynamically obtained value to an economic good</span> </div> </a> <ul id="toc-Assigning_one_thermodynamically_obtained_value_to_an_economic_good-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implications_in_the_development_of_complex_physical_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Implications_in_the_development_of_complex_physical_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Implications in the development of complex physical systems</span> </div> </a> <ul id="toc-Implications_in_the_development_of_complex_physical_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Philosophical_and_cosmological_implications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Philosophical_and_cosmological_implications"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Philosophical and cosmological implications</span> </div> </a> <ul id="toc-Philosophical_and_cosmological_implications-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Quality_of_energy_types" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Quality_of_energy_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Quality of energy types</span> </div> </a> <button aria-controls="toc-Quality_of_energy_types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Quality of energy types subsection</span> </button> <ul id="toc-Quality_of_energy_types-sublist" class="vector-toc-list"> <li id="toc-Exergy_of_heat_available_at_a_temperature" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exergy_of_heat_available_at_a_temperature"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Exergy of heat available at a temperature</span> </div> </a> <ul id="toc-Exergy_of_heat_available_at_a_temperature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_with_economic_value" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Connection_with_economic_value"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Connection with economic value</span> </div> </a> <ul id="toc-Connection_with_economic_value-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exergy_based_Life_Cycle_Assessment_(LCA)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exergy_based_Life_Cycle_Assessment_(LCA)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Exergy based Life Cycle Assessment (LCA)</span> </div> </a> <ul id="toc-Exergy_based_Life_Cycle_Assessment_(LCA)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Carnot" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Carnot"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Carnot</span> </div> </a> <ul id="toc-Carnot-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gibbs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gibbs"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Gibbs</span> </div> </a> <ul id="toc-Gibbs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Helmholtz" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Helmholtz"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Helmholtz</span> </div> </a> <ul id="toc-Helmholtz-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rant" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rant"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Rant</span> </div> </a> <ul id="toc-Rant-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Exergy</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 32 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-32" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">32 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A5%D9%83%D8%B3%D8%B1%D8%AC%D9%8A" title="إكسرجي – Arabic" lang="ar" hreflang="ar" data-title="إكسرجي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D0%B5%D1%80%D0%B3%D1%96%D1%8F" title="Эксергія – Belarusian" lang="be" hreflang="be" data-title="Эксергія" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Eksergija" title="Eksergija – Bosnian" lang="bs" hreflang="bs" data-title="Eksergija" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Exergia" title="Exergia – Catalan" lang="ca" hreflang="ca" data-title="Exergia" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Exergie" title="Exergie – German" lang="de" hreflang="de" data-title="Exergie" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Exerg%C3%ADa" title="Exergía – Spanish" lang="es" hreflang="es" data-title="Exergía" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Exergia" title="Exergia – Basque" lang="eu" hreflang="eu" data-title="Exergia" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%DA%A9%D8%B3%D8%B1%DA%98%DB%8C" title="اکسرژی – Persian" lang="fa" hreflang="fa" data-title="اکسرژی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Exergie" title="Exergie – French" lang="fr" hreflang="fr" data-title="Exergie" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%97%91%EC%84%9C%EC%A7%80" title="엑서지 – Korean" lang="ko" hreflang="ko" data-title="엑서지" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Eksergija" title="Eksergija – Croatian" lang="hr" hreflang="hr" data-title="Eksergija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Exergia" title="Exergia – Italian" lang="it" hreflang="it" data-title="Exergia" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Exergie" title="Exergie – Dutch" lang="nl" hreflang="nl" data-title="Exergie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%AF%E3%82%BB%E3%83%AB%E3%82%AE%E3%83%BC" title="エクセルギー – Japanese" lang="ja" hreflang="ja" data-title="エクセルギー" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Eksergi" title="Eksergi – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Eksergi" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Eksergi" title="Eksergi – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Eksergi" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Egzergia" title="Egzergia – Polish" lang="pl" hreflang="pl" data-title="Egzergia" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Exergia" title="Exergia – Portuguese" lang="pt" hreflang="pt" data-title="Exergia" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Exergie" title="Exergie – Romanian" lang="ro" hreflang="ro" data-title="Exergie" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D0%B5%D1%80%D0%B3%D0%B8%D1%8F" title="Эксергия – Russian" lang="ru" hreflang="ru" data-title="Эксергия" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Eksergjia" title="Eksergjia – Albanian" lang="sq" hreflang="sq" data-title="Eksergjia" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Exergia" title="Exergia – Slovak" lang="sk" hreflang="sk" data-title="Exergia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Eksergija_in_anergija" title="Eksergija in anergija – Slovenian" lang="sl" hreflang="sl" data-title="Eksergija in anergija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Eksergija" title="Eksergija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Eksergija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Eksergia" title="Eksergia – Finnish" lang="fi" hreflang="fi" data-title="Eksergia" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Exergi" title="Exergi – Swedish" lang="sv" hreflang="sv" data-title="Exergi" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Ekserji" title="Ekserji – Turkish" lang="tr" hreflang="tr" data-title="Ekserji" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%95%D0%BA%D1%81%D0%B5%D1%80%D0%B3%D1%96%D1%8F" title="Ексергія – Ukrainian" lang="uk" hreflang="uk" data-title="Ексергія" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E3%B6%B2" title="㶲 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="㶲" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E3%B6%B2" title="㶲 – Wu" lang="wuu" hreflang="wuu" data-title="㶲" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E3%B6%B2" title="㶲 – Cantonese" lang="yue" hreflang="yue" data-title="㶲" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E3%B6%B2" title="㶲 – Chinese" lang="zh" hreflang="zh" data-title="㶲" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q663290#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Exergy" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Exergy" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Exergy"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Exergy&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Exergy&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Exergy"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Exergy&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Exergy&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Exergy" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Exergy" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Exergy&oldid=1250205873" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Exergy&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Exergy&id=1250205873&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FExergy"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FExergy"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Exergy&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Exergy&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q663290" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Maximum energy available for use</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Available energy" redirects here. For the concept in particle physics, see <a href="/wiki/Available_energy_(particle_collision)" title="Available energy (particle collision)">Available energy (particle collision)</a>.</div> <p><b>Exergy</b>, often referred to as "available <a href="/wiki/Energy" title="Energy">energy</a>" or "useful work potential", is a fundamental concept in the field of thermodynamics and engineering. It plays a crucial role in understanding and quantifying the quality of energy within a system and its potential to perform useful work. Exergy analysis has widespread applications in various fields, including energy engineering, environmental science, and industrial processes. </p><p>From a scientific and engineering perspective, second-law-based exergy analysis is valuable because it provides a number of benefits over energy analysis alone. These benefits include the basis for determining energy quality (or exergy content<sup id="cite_ref-dx.doi.org_1-0" class="reference"><a href="#cite_note-dx.doi.org-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ReferenceA_2-0" class="reference"><a href="#cite_note-ReferenceA-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ReferenceB_3-0" class="reference"><a href="#cite_note-ReferenceB-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>), enhancing the understanding of fundamental physical phenomena, and improving design, performance evaluation and optimization efforts. In <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, the exergy of a <a href="/wiki/System_(thermodynamics)" class="mw-redirect" title="System (thermodynamics)">system</a> is the maximum useful <a href="/wiki/Work_(thermodynamics)" title="Work (thermodynamics)">work</a> that can be produced as the system is brought into <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">equilibrium</a> with its environment by an ideal process.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> The specification of an "ideal process" allows the determination of "maximum work" production. From a conceptual perspective, exergy is the "ideal" potential of a system to do work or cause a change as it achieves equilibrium with its environment. Exergy is also known as "availability". Exergy is non-zero when there is dis-equilibrium between the system and its environment, and exergy is zero when equilibrium is established (the state of maximum <a href="/wiki/Entropy" title="Entropy">entropy</a> for the system plus its environment). </p><p>Determining exergy was one of the original goals of <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>. The term "exergy" was coined in 1956 by <a href="/wiki/Zoran_Rant" title="Zoran Rant">Zoran Rant</a> (1904–1972) by using the Greek <i><a href="https://en.wiktionary.org/wiki/%E1%BC%90%CE%BE" class="extiw" title="wikt:ἐξ">ex</a></i> and <i><a href="https://en.wiktionary.org/wiki/%E1%BC%94%CF%81%CE%B3%CE%BF%CE%BD" class="extiw" title="wikt:ἔργον">ergon</a></i>, meaning "from <a href="/wiki/Work_(thermodynamics)" title="Work (thermodynamics)">work</a>",<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><style data-mw-deduplicate="TemplateStyles:r1041539562">.mw-parser-output .citation{word-wrap:break-word}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}</style><sup class="citation nobold" id="ref_rant56a"><a href="#endnote_rant56a">[3]</a></sup> but the concept had been earlier developed by <a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">J. Willard Gibbs</a> (the namesake of <a href="/wiki/Gibbs_free_energy" title="Gibbs free energy">Gibbs free energy</a>) in 1873.<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><sup class="citation nobold" id="ref_gibbs1873"><a href="#endnote_gibbs1873">[4]</a></sup> </p><p>Energy is neither created nor destroyed, but is simply converted from one form to another (see <a href="/wiki/First_law_of_thermodynamics" title="First law of thermodynamics">First law of thermodynamics</a>). In contrast to energy, exergy is always destroyed when a process is non-ideal or <a href="/wiki/Irreversible_process" title="Irreversible process">irreversible</a> (see <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">Second law of thermodynamics</a>). To illustrate, when someone states that "I used a lot of energy running up that hill", the statement contradicts the first law. Although the energy is not consumed, intuitively we perceive that something is. The key point is that energy has quality or measures of usefulness, and this energy quality (or exergy content) is what is consumed or destroyed. This occurs because everything, all real processes, produce entropy and the destruction of exergy or the rate of "irreversibility" is proportional to this <a href="/wiki/Entropy" title="Entropy">entropy</a> production (<a href="/wiki/Gouy%E2%80%93Stodola_theorem" title="Gouy–Stodola theorem">Gouy–Stodola theorem</a>). Where entropy production may be calculated as the net increase in entropy of the system together with its surroundings. Entropy production is due to things such as friction, heat transfer across a finite temperature difference and mixing. In distinction from "exergy destruction", "exergy loss" is the transfer of exergy across the boundaries of a system, such as with mass or heat loss, where the exergy flow or transfer is potentially recoverable. The energy quality or exergy content of these mass and energy losses are low in many situations or applications, where exergy content is defined as the ratio of exergy to energy on a percentage basis. For example, while the exergy content of electrical work produced by a thermal power plant is 100%, the exergy content of low-grade heat rejected by the power plant, at say, 41 degrees Celsius, relative to an environment temperature of 25 degrees Celsius, is only 5%. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=1" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Exergy is a combination property<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> of a system and its environment because it depends on the state of both and is a consequence of dis-equilibrium between them. Exergy is neither a <a href="/wiki/List_of_thermodynamic_properties" title="List of thermodynamic properties">thermodynamic property</a> of matter nor a <a href="/wiki/Thermodynamic_potential" title="Thermodynamic potential">thermodynamic potential</a> of a system. Exergy and energy always have the same units, and the joule (symbol: J) is the unit of energy in the International System of Units (SI). The <a href="/wiki/Internal_energy" title="Internal energy">internal energy</a> of a system is always measured from a fixed reference state and is therefore always a <a href="/wiki/State_function" title="State function">state function</a>. Some authors define the exergy of the system to be changed when the environment changes, in which case it is not a state function. Other writers prefer<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2009)">citation needed</span></a></i>]</sup> a slightly alternate definition of the available energy or exergy of a system where the environment is firmly defined, as an unchangeable absolute reference state, and in this alternate definition, exergy becomes a property of the state of the system alone. </p><p>However, from a theoretical point of view, exergy may be defined without reference to any environment. If the intensive properties of different finitely extended elements of a system differ, there is always the possibility to extract mechanical work from the system.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Yet, with such an approach one has to abandon the requirement that the environment is large enough relative to the "system" such that its intensive properties, such as temperature, are unchanged due to its interaction with the system. So that exergy is defined in an absolute sense, it will be assumed in this article that, unless otherwise stated, that the environment's intensive properties are unchanged by its interaction with the system. </p><p>For a <a href="/wiki/Heat_engine" title="Heat engine">heat engine</a>, the exergy can be simply defined in an absolute sense, as the energy input times the <a href="/wiki/Carnot%27s_theorem_(thermodynamics)" title="Carnot's theorem (thermodynamics)">Carnot efficiency</a>, assuming the low-temperature heat reservoir is at the temperature of the environment. Since many systems can be modeled as a heat engine, this definition can be useful for many applications. </p> <div class="mw-heading mw-heading3"><h3 id="Terminology">Terminology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=2" title="Edit section: Terminology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The term exergy is also used, by analogy with its physical definition, in <a href="/wiki/Information_theory" title="Information theory">information theory</a> related to <a href="/wiki/Reversible_computing" title="Reversible computing">reversible computing</a>. Exergy is also synonymous with <i>available energy</i>, <i>exergic energy</i>, <i>essergy</i> (considered archaic), <i>utilizable energy</i>, <i>available useful work</i>, <i>maximum (or minimum) work</i>, <i>maximum (or minimum) work content</i>, <i><a href="/wiki/Reversible_process_(thermodynamics)" title="Reversible process (thermodynamics)">reversible</a> work</i>, <i>ideal work</i>, <i>availability</i> or <i>available work</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Implications">Implications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=3" title="Edit section: Implications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The exergy destruction of a cycle is the sum of the exergy destruction of the processes that compose that cycle. The exergy destruction of a cycle can also be determined without tracing the individual processes by considering the entire cycle as a single process and using one of the exergy destruction equations. </p> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For two thermal reservoirs at temperatures <i>T</i><sub>H</sub> and <i>T</i><sub>C</sub> < T<sub>H</sub>, as considered by Carnot, the exergy is the work <i>W</i> that can be done by a reversible engine. Specifically, with <i>Q</i><sub>H</sub> the heat provided by the hot reservoir, Carnot's analysis gives <i>W</i>/<i>Q</i><sub>H</sub> = (<i>T</i><sub>H</sub> − <i>T</i><sub>C</sub>)/<i>T</i><sub>H</sub>. Although, exergy or maximum work is determined by conceptually utilizing an ideal process, it is the property of a system in a given environment. Exergy analysis is not merely for reversible cycles, but for all cycles (including non-cyclic or non-ideal), and indeed for all thermodynamic processes. </p><p>As an example, consider the non-cyclic process of expansion of an ideal gas. For free expansion in an isolated system, the energy and temperature do not change, so by energy conservation no work is done. On the other hand, for expansion done against a moveable wall that always matched the (varying) pressure of the expanding gas (so the wall develops negligible kinetic energy), with no heat transfer (adiabatic wall), the maximum work would be done. This corresponds to the exergy. Thus, in terms of exergy, Carnot considered the exergy for a cyclic process with two thermal reservoirs (fixed temperatures). Just as the work done depends on the process, so the exergy depends on the process, reducing to Carnot's result for Carnot's case. </p><p>W. Thomson (from 1892, Lord Kelvin), as early as 1849 was exercised by what he called “lost energy”, which appears to be the same as “destroyed energy” and what has been called “anergy”. In 1874 he wrote that “lost energy” is the same as the energy dissipated by, e.g., friction, electrical conduction (electric field-driven charge diffusion), heat conduction (temperature-driven thermal diffusion), viscous processes (transverse momentum diffusion) and particle diffusion (ink in water). On the other hand, Kelvin did not indicate how to compute the “lost energy”. This awaited the 1931 and 1932 works of Onsager on irreversible processes. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_description">Mathematical description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=5" title="Edit section: Mathematical description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="An_application_of_the_second_law_of_thermodynamics">An application of the second law of thermodynamics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=6" title="Edit section: An application of the second law of thermodynamics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">Second law of thermodynamics</a></div> <p>Exergy uses <a href="/wiki/System_(thermodynamics)" class="mw-redirect" title="System (thermodynamics)">system boundaries</a> in a way that is unfamiliar to many. We imagine the presence of a <a href="/wiki/Carnot_heat_engine" title="Carnot heat engine">Carnot engine</a> between the system and its reference environment even though this engine does not exist in the real world. Its only purpose is to measure the results of a "what-if" scenario to represent the most efficient work interaction possible between the system and its surroundings. </p><p>If a real-world reference environment is chosen that behaves like an unlimited reservoir that remains unaltered by the system, then Carnot's speculation about the consequences of a system heading towards equilibrium with time is addressed by two equivalent mathematical statements. Let <i>B</i>, the exergy or available work, decrease with time, and <i>S</i><sub>total</sub>, the entropy of the system and its reference environment enclosed together in a larger <a href="/wiki/Isolated_system" title="Isolated system">isolated system</a>, increase with time: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} B}{\mathrm {d} t}}\leq 0{\mbox{ is equivalent to }}{\frac {\mathrm {d} S_{\text{total}}}{\mathrm {d} t}}\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>B</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> is equivalent to </mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>total</mtext> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} B}{\mathrm {d} t}}\leq 0{\mbox{ is equivalent to }}{\frac {\mathrm {d} S_{\text{total}}}{\mathrm {d} t}}\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e991473bc2c861672c7a7408bbe242130abd07a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:35.999ex; height:5.509ex;" alt="{\displaystyle {\frac {\mathrm {d} B}{\mathrm {d} t}}\leq 0{\mbox{ is equivalent to }}{\frac {\mathrm {d} S_{\text{total}}}{\mathrm {d} t}}\geq 0}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>For macroscopic systems (above the <a href="/wiki/Thermodynamic_limit" title="Thermodynamic limit">thermodynamic limit</a>), these statements are both expressions of the <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a> if the following expression is used for exergy: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=U+P_{R}V-T_{R}S-\sum _{i}\mu _{i,R}N_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mi>U</mi> <mo>+</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>V</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>S</mi> <mo>−<!-- − --></mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>R</mi> </mrow> </msub> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=U+P_{R}V-T_{R}S-\sum _{i}\mu _{i,R}N_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1c095a405749ecdf27175703059f5c43b45ecac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.576ex; height:5.509ex;" alt="{\displaystyle B=U+P_{R}V-T_{R}S-\sum _{i}\mu _{i,R}N_{i}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>where the <a href="/wiki/Extensive_quantity" class="mw-redirect" title="Extensive quantity">extensive quantities</a> for the system are: <i>U</i> = <a href="/wiki/Internal_energy" title="Internal energy">Internal energy</a>, <i>V</i> = <a href="/wiki/Volume" title="Volume">Volume</a>, and <i>N</i><sub>i</sub> = <a href="/wiki/Mole_(unit)" title="Mole (unit)">Moles</a> of component <i>i</i>. The <a href="/wiki/Intensive_quantity" class="mw-redirect" title="Intensive quantity">intensive quantities</a> for the surroundings are: <i>P</i><sub>R</sub> = <a href="/wiki/Pressure" title="Pressure">Pressure</a>, <i>T</i><sub>R</sub> = <a href="/wiki/Temperature" title="Temperature">temperature</a>, <i>μ</i><sub>i, R </sub> = <a href="/wiki/Chemical_potential" title="Chemical potential">Chemical potential</a> of component <i>i</i>. Indeed the total entropy of the universe reads: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{\mathrm {total} }=-B/T_{R}=S-U/T_{R}-P_{R}V/T_{R}+\sum _{i}\mu _{i,R}N_{i}/T_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> </mrow> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mi>S</mi> <mo>−<!-- − --></mo> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>R</mi> </mrow> </msub> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{\mathrm {total} }=-B/T_{R}=S-U/T_{R}-P_{R}V/T_{R}+\sum _{i}\mu _{i,R}N_{i}/T_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/215b1f4abfadb98a2d936d76caca4e95c0fdf5f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:57.682ex; height:5.509ex;" alt="{\displaystyle S_{\mathrm {total} }=-B/T_{R}=S-U/T_{R}-P_{R}V/T_{R}+\sum _{i}\mu _{i,R}N_{i}/T_{R}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span>)</b></td></tr></tbody></table> <p>the second term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -U/T_{R}-P_{R}V/T_{R}+\sum _{i}\mu _{i,R}N_{i}/T_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>R</mi> </mrow> </msub> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -U/T_{R}-P_{R}V/T_{R}+\sum _{i}\mu _{i,R}N_{i}/T_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/981c67cb40b0f56c1426d0fb8aaed1fbe68a378a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.343ex; height:5.509ex;" alt="{\displaystyle -U/T_{R}-P_{R}V/T_{R}+\sum _{i}\mu _{i,R}N_{i}/T_{R}}"></span> being the entropy of the surroundings to within a constant. </p><p>Individual terms also often have names attached to them: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{R}V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{R}V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dc8cfb0ef5be8243642ad5e0229010a267dade" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.759ex; height:2.509ex;" alt="{\displaystyle P_{R}V}"></span> is called "available PV work", <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{R}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{R}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e337921088df9481e7fc18316989a81ccc20d6b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.336ex; height:2.509ex;" alt="{\displaystyle T_{R}S}"></span> is called "entropic loss" or "heat loss" and the final term is called "available chemical energy." </p><p>Other <a href="/wiki/Thermodynamic_potential" title="Thermodynamic potential">thermodynamic potentials</a> may be used to replace internal energy so long as proper care is taken in recognizing which natural variables correspond to which potential. For the recommended nomenclature of these potentials, see (Alberty, 2001)<sup class="plainlinks nourlexpansion citation" id="ref_alberty01"><a class="external autonumber" href="https://en.wikipedia.org/wiki/Exergy#endnote_alberty01">[2]</a></sup>. Equation (<b><a href="#math_2">2</a></b>) is useful for processes where system volume, entropy, and the number of moles of various components change because internal energy is also a function of these variables and no others. </p><p>An alternative definition of internal energy does not separate available chemical potential from <i>U</i>. This expression is useful (when substituted into equation (<b><a href="#math_1">1</a></b>)) for processes where system volume and entropy change, but no chemical reaction occurs: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=U[\mu _{1},\mu _{2},\ldots ,\mu _{n}]+P_{R}V-T_{R}S=U[{\boldsymbol {\mu }}]+P_{R}V-T_{R}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mi>U</mi> <mo stretchy="false">[</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>+</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>V</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>S</mi> <mo>=</mo> <mi>U</mi> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">μ<!-- μ --></mi> </mrow> <mo stretchy="false">]</mo> <mo>+</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>V</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=U[\mu _{1},\mu _{2},\ldots ,\mu _{n}]+P_{R}V-T_{R}S=U[{\boldsymbol {\mu }}]+P_{R}V-T_{R}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300120a4bf1443b3023653924baa96f4506a3206" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.056ex; height:2.843ex;" alt="{\displaystyle B=U[\mu _{1},\mu _{2},\ldots ,\mu _{n}]+P_{R}V-T_{R}S=U[{\boldsymbol {\mu }}]+P_{R}V-T_{R}S}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span>)</b></td></tr></tbody></table> <p>In this case, a given set of chemicals at a given entropy and volume will have a single numerical value for this thermodynamic potential. A <a href="/wiki/Phase_(matter)" title="Phase (matter)">multi-state</a> system may complicate or simplify the problem because the <a href="/wiki/Gibbs_phase_rule" class="mw-redirect" title="Gibbs phase rule">Gibbs phase rule</a> predicts that intensive quantities will no longer be completely independent from each other. </p> <div class="mw-heading mw-heading3"><h3 id="A_historical_and_cultural_tangent">A historical and cultural tangent</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=7" title="Edit section: A historical and cultural tangent"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1848, <a href="/wiki/William_Thomson,_1st_Baron_Kelvin" class="mw-redirect" title="William Thomson, 1st Baron Kelvin">William Thomson, 1st Baron Kelvin</a>, asked (and immediately answered) the question </p> <dl><dd>Is there any principle on which an absolute thermometric scale can be founded? It appears to me that Carnot's theory of the motive power of heat enables us to give an affirmative answer.<sup class="plainlinks nourlexpansion citation" id="ref_kelvin1848"><a class="external autonumber" href="https://en.wikipedia.org/wiki/Exergy#endnote_kelvin1848">[3]</a></sup></dd></dl> <p>With the benefit of the hindsight contained in equation (<b><a href="#math_5">5</a></b>), we are able to understand the historical impact of Kelvin's idea on physics. Kelvin suggested that the best temperature scale would describe a constant ability for a unit of temperature in the surroundings to alter the available work from Carnot's engine. From equation (<b><a href="#math_3">3</a></b>): </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} B}{\mathrm {d} T_{R}}}=-S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>B</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} B}{\mathrm {d} T_{R}}}=-S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce99a74707b5497f9e1aeda22f2514960ad9dce7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.372ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} B}{\mathrm {d} T_{R}}}=-S}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">5</span>)</b></td></tr></tbody></table> <p><a href="/wiki/Rudolf_Clausius" title="Rudolf Clausius">Rudolf Clausius</a> recognized the presence of a <a href="/wiki/Proportionality_(mathematics)" title="Proportionality (mathematics)">proportionality</a> constant in Kelvin's analysis and gave it the name <a href="/wiki/Entropy" title="Entropy">entropy</a> in 1865 from the Greek for "transformation" because it quantifies the amount of energy lost during the conversion from heat to work. The available work from a Carnot engine is at its maximum when the surroundings are at a temperature of <a href="/wiki/Absolute_zero" title="Absolute zero">absolute zero</a>. </p><p>Physicists then, as now, often look at a property with the word "available" or "utilizable" in its name with a certain unease. The idea of what is available raises the question of "available to what?" and raises a concern about whether such a property is <a href="/wiki/Anthropocentrism" title="Anthropocentrism">anthropocentric</a>. Laws derived using such a property may not describe the universe but instead, describe what people wish to see. </p><p>The field of <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a> (beginning with the work of <a href="/wiki/Ludwig_Boltzmann" title="Ludwig Boltzmann">Ludwig Boltzmann</a> in developing the <a href="/wiki/Boltzmann_equation" title="Boltzmann equation">Boltzmann equation</a>) relieved many physicists of this concern. From this discipline, we now know that macroscopic properties may all be determined from properties on a microscopic scale where entropy is more "real" than temperature itself (<i>see <a href="/wiki/Thermodynamic_temperature" title="Thermodynamic temperature">Thermodynamic temperature</a></i>). Microscopic kinetic fluctuations among particles cause entropic loss, and this energy is unavailable for work because these fluctuations occur randomly in all directions. The anthropocentric act is taken, in the eyes of some physicists and engineers today, when someone draws a hypothetical boundary, in fact, he says: "This is my system. What occurs beyond it is surroundings." In this context, exergy is sometimes described as an anthropocentric property, both by some who use it and by some who don't. However, exergy is based on the dis-equilibrium between a system and its environment, so its very real and necessary to define the system distinctly from its environment. It can be agreed that entropy is generally viewed as a more fundamental property of matter than exergy. </p> <div class="mw-heading mw-heading3"><h3 id="A_potential_for_every_thermodynamic_situation">A potential for every thermodynamic situation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=8" title="Edit section: A potential for every thermodynamic situation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U[{\boldsymbol {\mu }}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">μ<!-- μ --></mi> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U[{\boldsymbol {\mu }}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a99cd6c956c0af36c028bcc19dd2a29459ab278f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.722ex; height:2.843ex;" alt="{\displaystyle U[{\boldsymbol {\mu }}]}"></span>,</span> the other <a href="/wiki/Thermodynamic_potential" title="Thermodynamic potential">thermodynamic potentials</a> are frequently used to determine exergy. For a given set of chemicals at a given entropy and pressure, <a href="/wiki/Enthalpy" title="Enthalpy">enthalpy</a> <i>H</i> is used in the expression: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=H-T_{R}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mi>H</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=H-T_{R}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec4cbf244892bf8b8f7c771f263909e56b1a202e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.103ex; height:2.509ex;" alt="{\displaystyle B=H-T_{R}S}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6" class="reference nourlexpansion" style="font-weight:bold;">6</span>)</b></td></tr></tbody></table> <p>For a given set of chemicals at a given temperature and volume, <a href="/wiki/Helmholtz_free_energy" title="Helmholtz free energy">Helmholtz free energy</a> <i>A</i> is used in the expression: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=A+P_{R}V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mi>A</mi> <mo>+</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=A+P_{R}V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684e6107ca72182e7888cd7693296b852fd09e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.205ex; height:2.509ex;" alt="{\displaystyle B=A+P_{R}V}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_7" class="reference nourlexpansion" style="font-weight:bold;">7</span>)</b></td></tr></tbody></table> <p>For a given set of chemicals at a given temperature and pressure, <a href="/wiki/Gibbs_free_energy" title="Gibbs free energy">Gibbs free energy</a> <i>G</i> is used in the expression: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=H-TS=B-(T-T_{R})S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mi>H</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> <mo>=</mo> <mi>B</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=H-TS=B-(T-T_{R})S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3b7e196a358614a26f79f0c51d1a6c6bdc9e780" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.29ex; height:2.843ex;" alt="{\displaystyle G=H-TS=B-(T-T_{R})S}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_8" class="reference nourlexpansion" style="font-weight:bold;">8</span>)</b></td></tr></tbody></table> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is evaluated at the isothermal system temperature (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>), and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is defined with respect to the isothermal temperature of the system's environment (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7160eae5d90dbb2b5d8df9743c9274a5062d2924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.837ex; height:2.509ex;" alt="{\displaystyle T_{R}}"></span>). The exergy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is the energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> reduced by the product of the entropy times the environment temperature <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7160eae5d90dbb2b5d8df9743c9274a5062d2924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.837ex; height:2.509ex;" alt="{\displaystyle T_{R}}"></span>, which is the slope or partial derivative of the internal energy with respect to entropy in the environment.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> That is, higher entropy reduces the exergy or free energy available relative to the energy level <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>. </p><p>Work can be produced from this energy, such as in an isothermal process, but any entropy generation during the process will cause the destruction of exergy (<a href="/wiki/Irreversibility" class="mw-redirect" title="Irreversibility">irreversibility</a>) and the reduction of these thermodynamic potentials. Further, exergy losses can occur if mass and energy is transferred out of the system at non-ambient or elevated temperature, pressure or chemical potential. Exergy losses are potentially recoverable though because the exergy has not been destroyed, such as what occurs in waste heat recovery systems (although the energy quality or exergy content is typically low). As a special case, an isothermal process operating at ambient temperature will have no thermally related exergy losses. </p> <div class="mw-heading mw-heading3"><h3 id="Exergy_Analysis_involving_Radiative_Heat_Transfer">Exergy Analysis involving Radiative Heat Transfer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=9" title="Edit section: Exergy Analysis involving Radiative Heat Transfer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>All matter emits radiation continuously as a result of its non-zero (absolute) temperature. This emitted energy flow is proportional to the material’s temperature raised to the fourth power. As a result, any radiation conversion device that seeks to absorb and convert radiation (while reflecting a fraction of the incoming source radiation) inherently emits its own radiation. Also, given that reflected and emitted radiation can occupy the same direction or solid angle, the entropy flows, and as a result, the exergy flows, are generally not independent. The entropy and exergy balance equations for a control volume (CV), re-stated to correctly apply to situations involving radiative transfer,<sup id="cite_ref-dx.doi.org_1-1" class="reference"><a href="#cite_note-dx.doi.org-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ReferenceA_2-1" class="reference"><a href="#cite_note-ReferenceA-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wright_2001_1691–1706_9-0" class="reference"><a href="#cite_note-Wright_2001_1691–1706-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> are expressed as, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dS_{CV}}{dt}}=\int _{CVboundary}({\frac {q_{cc}}{T_{b}}}+J_{NetRad})dA+\sum _{i}^{m}({{\dot {m}}_{i}}s_{i})-\sum _{o}^{n}({{\dot {m}}_{o}}s_{o})+{\dot {S}}_{gen}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>V</mi> <mi>b</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>d</mi> <mi>a</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mi>e</mi> <mi>t</mi> <mi>R</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>d</mi> <mi>A</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> </mrow> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dS_{CV}}{dt}}=\int _{CVboundary}({\frac {q_{cc}}{T_{b}}}+J_{NetRad})dA+\sum _{i}^{m}({{\dot {m}}_{i}}s_{i})-\sum _{o}^{n}({{\dot {m}}_{o}}s_{o})+{\dot {S}}_{gen}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59fa8b8768723a478fe148b87b24bad810fbb99a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:71.648ex; height:6.843ex;" alt="{\displaystyle {\frac {dS_{CV}}{dt}}=\int _{CVboundary}({\frac {q_{cc}}{T_{b}}}+J_{NetRad})dA+\sum _{i}^{m}({{\dot {m}}_{i}}s_{i})-\sum _{o}^{n}({{\dot {m}}_{o}}s_{o})+{\dot {S}}_{gen}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {S}_{gen}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {S}_{gen}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/807d60b0637da233802706d83920ac2e71f2609c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.199ex; height:2.843ex;" alt="{\displaystyle {S}_{gen}}"></span> or <span class="texhtml"><i>Π</i></span> denotes entropy production within the control volume, and, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{dX}_{CV}}{dt}}=\int _{CVboundary}[{q_{cc}}(1-{\frac {T_{o}}{T_{b}}})+M_{NetRad}]dA-({{\dot {W}}_{CV}}-P_{o}({\frac {dV_{CV}}{dt}}))+\sum _{i}^{r}({{\dot {m}}_{i}}(h_{i}-{T_{o}}{s_{i}}))-{\dot {I}}_{CV}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>V</mi> </mrow> </msub> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>V</mi> <mi>b</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>d</mi> <mi>a</mi> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>c</mi> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mi>e</mi> <mi>t</mi> <mi>R</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mi>d</mi> <mi>A</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>W</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> <mo>−<!-- − --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>I</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{dX}_{CV}}{dt}}=\int _{CVboundary}[{q_{cc}}(1-{\frac {T_{o}}{T_{b}}})+M_{NetRad}]dA-({{\dot {W}}_{CV}}-P_{o}({\frac {dV_{CV}}{dt}}))+\sum _{i}^{r}({{\dot {m}}_{i}}(h_{i}-{T_{o}}{s_{i}}))-{\dot {I}}_{CV}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30290c04be982daa5c36f3387ff950c1b44b48ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:99.849ex; height:6.843ex;" alt="{\displaystyle {\frac {{dX}_{CV}}{dt}}=\int _{CVboundary}[{q_{cc}}(1-{\frac {T_{o}}{T_{b}}})+M_{NetRad}]dA-({{\dot {W}}_{CV}}-P_{o}({\frac {dV_{CV}}{dt}}))+\sum _{i}^{r}({{\dot {m}}_{i}}(h_{i}-{T_{o}}{s_{i}}))-{\dot {I}}_{CV}}"></span> </p><p>This rate equation for the exergy within an open system X (<span class="texhtml"><i>Ξ or B</i></span>) takes into account the exergy transfer rates across the system boundary by heat transfer (<span class="texhtml">q</span> for conduction & convection, and <span class="texhtml"><i>M</i></span> by radiative fluxes), by mechanical or electrical work transfer (<span class="texhtml"><i>W</i></span>), and by mass transfer (<span class="texhtml"><i>m</i></span>), as well as taking into account the exergy destruction (<span class="texhtml"><i>I</i></span>) that occurs within the system due to irreversibility’s or non-ideal processes. Note that chemical exergy, kinetic energy, and gravitational potential energy have been excluded for simplicity. </p><p>The exergy irradiance or flux M, and the exergy radiance N (where M = πN for isotropic radiation), depend on the spectral and directional distribution of the radiation (for example, see the next section on ‘Exergy Flux of Radiation with an Arbitrary Spectrum’). Sunlight can be crudely approximated as blackbody, or more accurately, as graybody radiation. Noting that, although a graybody spectrum looks similar to a blackbody spectrum, the entropy and exergy are very different. Petela<sup id="cite_ref-R._Petela_1964,_pp._187-192_11-0" class="reference"><a href="#cite_note-R._Petela_1964,_pp._187-192-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> determined that the exergy of isotropic blackbody radiation was given by the expression, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{BR}={\frac {cX}{4V}}=\sigma T^{4}(1-{\frac {4}{3}}x+{\frac {1}{3}}x^{4})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>X</mi> </mrow> <mrow> <mn>4</mn> <mi>V</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>σ<!-- σ --></mi> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{BR}={\frac {cX}{4V}}=\sigma T^{4}(1-{\frac {4}{3}}x+{\frac {1}{3}}x^{4})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8768cc8079f3a16ebcd3fda3206f655dc023b019" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:35.468ex; height:5.343ex;" alt="{\displaystyle M_{BR}={\frac {cX}{4V}}=\sigma T^{4}(1-{\frac {4}{3}}x+{\frac {1}{3}}x^{4})}"></span> </p><p>where the exergy within the enclosed system is X (<span class="texhtml"><i>Ξ or B</i></span>), c is the speed of light, V is the volume occupied by the enclosed radiation system or void, T is the material emission temperature, To is the environmental temperature, and x is the dimensionless temperature ratio To/T. </p><p>However, for decades this result was contested in terms of its relevance to the conversion of radiation fluxes, and in particular, solar radiation. For example, Bejan<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> stated that “Petela’s efficiency is no more than a convenient, albeit artificial way, of non-dimensionalizing the calculated work output” and that Petela’s efficiency “is not a ‘conversion efficiency.’ ” However, it has been shown that Petela’s result represents the exergy of blackbody radiation.<sup id="cite_ref-dx.doi.org_1-2" class="reference"><a href="#cite_note-dx.doi.org-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> This was done by resolving a number of issues, including that of inherent irreversibility, defining the environment in terms of radiation, the effect of inherent emission by the conversion device and the effect of concentrating source radiation. </p> <div class="mw-heading mw-heading4"><h4 id="Exergy_Flux_of_Radiation_with_an_Arbitrary_Spectrum_(including_Sunlight)"><span id="Exergy_Flux_of_Radiation_with_an_Arbitrary_Spectrum_.28including_Sunlight.29"></span>Exergy Flux of Radiation with an Arbitrary Spectrum (including Sunlight)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=10" title="Edit section: Exergy Flux of Radiation with an Arbitrary Spectrum (including Sunlight)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, terrestrial solar radiation has an arbitrary non-blackbody spectrum. Ground level spectrums can vary greatly due to reflection, scattering and absorption in the atmosphere. While the emission spectrums of thermal radiation in engineering systems can vary widely as well. </p><p>In determining the exergy of radiation with an arbitrary spectrum, it must be considered whether reversible or ideal conversion (zero entropy production) is possible. It has been shown that reversible conversion of blackbody radiation fluxes across an infinitesimal temperature difference is theoretically possible <sup id="cite_ref-dx.doi.org_1-3" class="reference"><a href="#cite_note-dx.doi.org-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ReferenceA_2-2" class="reference"><a href="#cite_note-ReferenceA-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>]. However, this reversible conversion can only be theoretically achieved because equilibrium can exist between blackbody radiation and matter.<sup id="cite_ref-ReferenceA_2-3" class="reference"><a href="#cite_note-ReferenceA-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> However, non-blackbody radiation cannot even exist in equilibrium with itself, nor with its own emitting material. </p><p>Unlike blackbody radiation, non-blackbody radiation cannot exist in equilibrium with matter, so it appears likely that the interaction of non-blackbody radiation with matter is always an inherently irreversible process. For example, an enclosed non-blackbody radiation system (such as a void inside a solid mass) is unstable and will spontaneously equilibriate to blackbody radiation unless the enclosure is perfectly reflecting (i.e., unless there is no thermal interaction of the radiation with its enclosure – which is not possible in actual, or real, non-ideal systems). Consequently, a cavity initially devoid of thermal radiation inside a non-blackbody material will spontaneously and rapidly (due to the high velocity of the radiation), through a series of absorption and emission interactions, become filled with blackbody radiation rather than non-blackbody radiation. </p><p>The approaches by Petela<sup id="cite_ref-R._Petela_1964,_pp._187-192_11-1" class="reference"><a href="#cite_note-R._Petela_1964,_pp._187-192-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> and Karlsson<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> both assume that reversible conversion of non-blackbody radiation is theoretically possible, that is, without addressing or considering the issue. Exergy is not a property of the system alone, it’s a property of both the system and its environment. Thus, it is of key importance non-blackbody radiation cannot exist in equilibrium with matter, indicating that the interaction of non-blackbody radiation with matter is an inherently irreversible process. </p><p>The flux (irradiance) of radiation with an arbitrary spectrum, based on the inherent irreversibility of non-blackbody radiation conversion, is given by the expression, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=H-T_{o}({\frac {4}{3}}\sigma ^{0.25}H^{0.75})+{\frac {\sigma }{3}}T_{o}^{4})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>H</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0.25</mn> </mrow> </msup> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0.75</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>σ<!-- σ --></mi> <mn>3</mn> </mfrac> </mrow> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=H-T_{o}({\frac {4}{3}}\sigma ^{0.25}H^{0.75})+{\frac {\sigma }{3}}T_{o}^{4})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcb2c151ca2fc095f1869b38cc32e4701dac13b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.07ex; height:5.176ex;" alt="{\displaystyle M=H-T_{o}({\frac {4}{3}}\sigma ^{0.25}H^{0.75})+{\frac {\sigma }{3}}T_{o}^{4})}"></span> </p><p>The exergy flux <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is expressed as a function of only the energy flux or irradiance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> and the environment temperature <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{o}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{o}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2991f18ef81fec2f94e3a532df91a079f3f6697d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.387ex; height:2.509ex;" alt="{\displaystyle T_{o}}"></span>. For graybody radiation, the exergy flux is given by the expression, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{GR}=\sigma T^{4}(\epsilon -{\frac {4}{3}}x\epsilon ^{0.75}+{\frac {1}{3}}x^{4})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mi>σ<!-- σ --></mi> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ϵ<!-- ϵ --></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mi>x</mi> <msup> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0.75</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{GR}=\sigma T^{4}(\epsilon -{\frac {4}{3}}x\epsilon ^{0.75}+{\frac {1}{3}}x^{4})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3240671484d2c2030f2f68bd29b21fdfc9b6de47" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.472ex; height:5.176ex;" alt="{\displaystyle M_{GR}=\sigma T^{4}(\epsilon -{\frac {4}{3}}x\epsilon ^{0.75}+{\frac {1}{3}}x^{4})}"></span> </p><p>As one would expect, the exergy flux of non-blackbody radiation reduces to the result for blackbody radiation when emissivity is equal to one. </p><p>Note that the exergy flux of graybody radiation can be a small fraction of the energy flux. For example, the ratio of exergy flux to energy flux <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M/H)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>H</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M/H)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/746ac75caf55c61bc04ba5db384fe45fee49ee84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.478ex; height:2.843ex;" alt="{\displaystyle (M/H)}"></span> for graybody radiation with emissivity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon =0.50}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>=</mo> <mn>0.50</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon =0.50}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e147e0e2f87a99eaee914f4355781e89536d113" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.177ex; height:2.176ex;" alt="{\displaystyle \epsilon =0.50}"></span> is equal to 40.0%, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=500^{o}C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msup> <mn>500</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msup> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=500^{o}C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e42cc4baa1c257b437f9435ba0a3097f08493d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.018ex; height:2.343ex;" alt="{\displaystyle T=500^{o}C}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{o}=27^{o}C(x=0.388)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>27</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msup> <mi>C</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>=</mo> <mn>0.388</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{o}=27^{o}C(x=0.388)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84c92319a5bd89546e94c87c31cc6293c8f6f0ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.141ex; height:2.843ex;" alt="{\displaystyle T_{o}=27^{o}C(x=0.388)}"></span>. That is, a maximum of only 40% of the graybody energy flux can be converted to work in this case (already only 50% of that of the blackbody energy flux with the same emission temperature). Graybody radiation has a spectrum that looks similar to the blackbody spectrum, but the entropy and exergy flux cannot be accurately approximated as that of blackbody radiation with the same emission temperature. However, it can be reasonably approximated by the entropy flux of blackbody radiation with the same energy flux (lower emission temperature). </p><p>Blackbody radiation has the highest entropy-to-energy ratio of all radiation with the same energy flux, but the lowest entropy-to-energy ratio, and the highest exergy content, of all radiation with the same emission temperature.<sup id="cite_ref-Wright_2001_1691–1706_9-1" class="reference"><a href="#cite_note-Wright_2001_1691–1706-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ReferenceA_2-4" class="reference"><a href="#cite_note-ReferenceA-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> For example, the exergy content of graybody radiation is lower than that of blackbody radiation with the same emission temperature and decreases as emissivity decreases. For the example above with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0.388}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0.388</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0.388}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e90d9f0c184819e362c79e8d0f8e51b105a5b67c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.725ex; height:2.176ex;" alt="{\displaystyle x=0.388}"></span> the exergy flux of the blackbody radiation source flux is 52.5% of the energy flux compared to 40.0% for graybody radiation with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon =0.50}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>=</mo> <mn>0.50</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon =0.50}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e147e0e2f87a99eaee914f4355781e89536d113" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.177ex; height:2.176ex;" alt="{\displaystyle \epsilon =0.50}"></span>, or compared to 15.5% for graybody radiation with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon =0.10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>=</mo> <mn>0.10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon =0.10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2fd25bcaa1884e9a8d6e51a774ac10b88bc4f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.177ex; height:2.176ex;" alt="{\displaystyle \epsilon =0.10}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="The_Exergy_Flux_of_Sunlight">The Exergy Flux of Sunlight</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=11" title="Edit section: The Exergy Flux of Sunlight"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to the production of power directly from sunlight, solar radiation provides most of the exergy for processes on Earth, including processes that sustain living systems directly, as well as all fuels and energy sources that are used for transportation and electric power production (directly or indirectly). This is primarily with the exception of nuclear fission power plants and geothermal energy (due to natural fission decay). Solar energy is, for the most part, thermal radiation from the Sun with an emission temperature near 5762 Kelvin, but it also includes small amounts of higher energy radiation from the fusion reaction or higher thermal emission temperatures within the Sun. The source of most energy on Earth is nuclear in origin. </p><p>The figure below depicts typical solar radiation spectrums under clear sky conditions for AM0 (extraterrestrial solar radiation), AM1 (terrestrial solar radiation with solar zenith angle of 0 degrees) and AM4 (terrestrial solar radiation with solar zenith angle of 75.5 degrees). The solar spectrum at sea level (terrestrial solar spectrum) depends on a number of factors including the position of the Sun in the sky, atmospheric turbidity, the level of local atmospheric pollution, and the amount and type of cloud cover. These spectrums are for relatively clear air (α = 1.3, β = 0.04) assuming a U.S. standard atmosphere with 20 mm of precipitable water vapor and 3.4 mm of ozone. The Figure shows the spectral energy irradiance (W/m2μm) which does not provide information regarding the directional distribution of the solar radiation. The exergy content of the solar radiation, assuming that it is subtended by the solid angle of the ball of the Sun (no circumsolar), is 93.1%, 92.3% and 90.8%, respectively, for the AM0, AM1 and the AM4 spectrums.<sup id="cite_ref-ReferenceB_3-1" class="reference"><a href="#cite_note-ReferenceB-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spectrums_AM0_AM1_AM4.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spectrums_AM0_AM1_AM4.jpg/220px-Spectrums_AM0_AM1_AM4.jpg" decoding="async" width="220" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spectrums_AM0_AM1_AM4.jpg/330px-Spectrums_AM0_AM1_AM4.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spectrums_AM0_AM1_AM4.jpg/440px-Spectrums_AM0_AM1_AM4.jpg 2x" data-file-width="1305" data-file-height="760" /></a><figcaption>Typical clear sky solar spectrums for AM0, AM1 and AM4</figcaption></figure> <p>The exergy content of terrestrial solar radiation<sup id="cite_ref-ReferenceB_3-2" class="reference"><a href="#cite_note-ReferenceB-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> is also reduced because of the diffuse component caused by the complex interaction of solar radiation, originally in a very small solid angle beam, with material in the Earth’s atmosphere. The characteristics and magnitude of diffuse terrestrial solar radiation depends on a number of factors, as mentioned, including the position of the Sun in the sky, atmospheric turbidity, the level of local atmospheric pollution, and the amount and type of cloud cover. Solar radiation under clear sky conditions exhibits a maximum intensity towards the Sun (circumsolar radiation) but also exhibits an increase in intensity towards the horizon (horizon brightening). In contrast for opaque overcast skies the solar radiation can be completely diffuse with a maximum intensity in the direction of the zenith and monotonically decreasing towards the horizon. The magnitude of the diffuse component generally varies with frequency, being highest in the ultraviolet region. </p><p>The dependence of the exergy content on directional distribution can be illustrated by considering, for example, the AM1 and AM4 terrestrial spectrums depicted in the figure, with the following simplified cases of directional distribution: </p><p>• For AM1: 80% of the solar radiation is contained in the solid angle subtended by the Sun, 10% is contained and isotropic in a solid angle 0.008 sr (this field of view includes circumsolar radiation), while the remaining 10% of the solar radiation is diffuse and isotropic in the solid angle 2π sr. </p><p>• For AM4: 65% of the solar radiation is contained in the solid angle subtended by the Sun, 20% of the solar radiation is contained and isotropic in a solid angle 0.008 sr, while the remaining 15% of the solar radiation is diffuse and isotropic in the solid angle 2π sr. Note that when the Sun is low in the sky the diffuse component can be the dominant part of the incident solar radiation. </p><p>For these cases of directional distribution, the exergy content of the terrestrial solar radiation for the AM1 and AM4 spectrum<sup id="cite_ref-ReferenceB_3-3" class="reference"><a href="#cite_note-ReferenceB-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> depicted are 80.8% and 74.0%, respectively. From these sample calculations it is evideνnt that the exergy content of terrestrial solar radiation is strongly dependent on the directional distribution of the radiation. This result is interesting because one might expect that the performance of a conversion device would depend on the incoming rate of photons and their spectral distribution but not on the directional distribution of the incoming photons. However, for a given incoming flux of photons with a certain spectral distribution, the entropy (level of disorder) is higher the more diffuse the directional distribution. From the second law of thermodynamics, the incoming entropy of the solar radiation cannot be destroyed and consequently reduces the maximum work output that can be obtained by a conversion device. </p> <div class="mw-heading mw-heading3"><h3 id="Chemical_exergy">Chemical exergy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=12" title="Edit section: Chemical exergy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Similar to thermomechanical exergy, chemical exergy depends on the temperature and pressure of a system as well as on the composition. The key difference in evaluating chemical exergy versus thermomechanical exergy is that thermomechanical exergy does not take into account the difference in a system and the environment's chemical composition. If the temperature, pressure or composition of a system differs from the environment's state, then the overall system will have exergy.<sup id="cite_ref-moran_14-0" class="reference"><a href="#cite_note-moran-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>The definition of chemical exergy resembles the standard definition of thermomechanical exergy, but with a few differences. Chemical exergy is defined as the maximum work that can be obtained when the considered system is brought into reaction with reference substances present in the environment.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Defining the exergy reference environment is one of the most vital parts of analyzing chemical exergy. In general, the environment is defined as the composition of air at 25 °C and 1 atm of pressure. At these properties air consists of N<sub>2</sub>=75.67%, O<sub>2</sub>=20.35%, H<sub>2</sub>O(g)=3.12%, CO<sub>2</sub>=0.03% and other gases=0.83%.<sup id="cite_ref-moran_14-1" class="reference"><a href="#cite_note-moran-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> These molar fractions will become of use when applying Equation 8 below. </p><p>C<sub>a</sub>H<sub>b</sub>O<sub>c</sub> is the substance that is entering a system that one wants to find the maximum theoretical work of. By using the following equations, one can calculate the chemical exergy of the substance in a given system. Below, Equation 9 uses the Gibbs function of the applicable element or compound to calculate the chemical exergy. Equation 10 is similar but uses standard molar chemical exergy, which scientists have determined based on several criteria, including the ambient temperature and pressure that a system is being analyzed and the concentration of the most common components.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> These values can be found in thermodynamic books or in online tables.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Important_equations">Important equations</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=13" title="Edit section: Important equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {e}}^{ch}=\left[{\bar {g}}_{\mathrm {F} }+\left(a+{\frac {b}{4}}-{\frac {c}{2}}\right){\bar {g}}_{\mathrm {O_{2}} }-a{\bar {g}}_{\mathrm {CO_{2}} }-\,{\frac {b}{2}}{\bar {g}}_{\mathrm {H_{2}O} (g)}\right]\,\left(T_{0,}p_{0}\right)+{\bar {R}}T_{0}\,ln\left[{\frac {{{(y}_{\mathrm {O_{2}} }^{e})}^{a+{\frac {b}{4}}-\,{\frac {c}{2}}}}{\left(y_{\mathrm {CO_{2}} }^{e}\right)^{a}\left(y_{\mathrm {H_{2}O} }^{e}\right)^{\frac {b}{2}}}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>h</mi> </mrow> </msup> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> </mrow> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>4</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> </msub> <mo>−<!-- − --></mo> <mi>a</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> </msub> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>2</mn> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>l</mi> <mi>n</mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>4</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi mathvariant="normal">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {e}}^{ch}=\left[{\bar {g}}_{\mathrm {F} }+\left(a+{\frac {b}{4}}-{\frac {c}{2}}\right){\bar {g}}_{\mathrm {O_{2}} }-a{\bar {g}}_{\mathrm {CO_{2}} }-\,{\frac {b}{2}}{\bar {g}}_{\mathrm {H_{2}O} (g)}\right]\,\left(T_{0,}p_{0}\right)+{\bar {R}}T_{0}\,ln\left[{\frac {{{(y}_{\mathrm {O_{2}} }^{e})}^{a+{\frac {b}{4}}-\,{\frac {c}{2}}}}{\left(y_{\mathrm {CO_{2}} }^{e}\right)^{a}\left(y_{\mathrm {H_{2}O} }^{e}\right)^{\frac {b}{2}}}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/117ccd1aab783e241fc923c96f9b8e8b4f05632b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:92.598ex; height:12.509ex;" alt="{\displaystyle {\bar {e}}^{ch}=\left[{\bar {g}}_{\mathrm {F} }+\left(a+{\frac {b}{4}}-{\frac {c}{2}}\right){\bar {g}}_{\mathrm {O_{2}} }-a{\bar {g}}_{\mathrm {CO_{2}} }-\,{\frac {b}{2}}{\bar {g}}_{\mathrm {H_{2}O} (g)}\right]\,\left(T_{0,}p_{0}\right)+{\bar {R}}T_{0}\,ln\left[{\frac {{{(y}_{\mathrm {O_{2}} }^{e})}^{a+{\frac {b}{4}}-\,{\frac {c}{2}}}}{\left(y_{\mathrm {CO_{2}} }^{e}\right)^{a}\left(y_{\mathrm {H_{2}O} }^{e}\right)^{\frac {b}{2}}}}\right]}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_9" class="reference nourlexpansion" style="font-weight:bold;">9</span>)</b></td></tr></tbody></table> <p>where: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {g}}_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {g}}_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4819cb9f9d7673624973197d374edfe712f1ae9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.404ex; height:2.509ex;" alt="{\displaystyle {\bar {g}}_{x}}"></span> is the Gibbs function of the specific substance in the system at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(T_{0},p_{0}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(T_{0},p_{0}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a8b2faa0c434c9b4ae45a5aaff166272b9baa9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.479ex; height:2.843ex;" alt="{\displaystyle \left(T_{0},p_{0}\right)}"></span>. (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {g}}_{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {g}}_{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b11e31666d3f25e2d5e4b95e2f895eaa4f30523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.695ex; height:2.509ex;" alt="{\displaystyle {\bar {g}}_{F}}"></span> refers to the substance that is entering the system)</li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/771ade41bcd0ef92e246bb14daeb44dc41a447b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.509ex;" alt="{\displaystyle {\bar {R}}}"></span> is the Universal gas constant (8.314462 J/mol•K)<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55b9e7d7b96196b5a6a26f4349caa3ac82fd67e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.412ex; height:2.509ex;" alt="{\displaystyle T_{0}}"></span> is the temperature that the system is being evaluated at in absolute temperature</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{x}^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{x}^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9db1490cf06e5d9f8d47fb66efb666add2479b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.312ex; height:2.509ex;" alt="{\displaystyle y_{x}^{e}}"></span> is the molar fraction of the given substance in the environment, i.e. air</li></ul> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {e}}^{ch}=\left[{\bar {g}}_{\mathrm {F} }+\left(a+{\frac {b}{4}}-{\frac {c}{2}}\right){\bar {g}}_{\mathrm {O_{2}} }-a{\bar {g}}_{\mathrm {CO_{2}} }-\,{\frac {b}{2}}{\bar {g}}_{\mathrm {H_{2}O} (g)}\right]\,\left(T_{0,}p_{0}\right)+a{\bar {e}}_{\mathrm {CO_{2}} }^{ch}+\,\left({\frac {b}{2}}\right){\bar {e}}_{\mathrm {H_{2}O} (l)}^{ch}-\,\left(a+\,{\frac {b}{4}}\right){\bar {e}}_{\mathrm {O_{2}} }^{ch}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>h</mi> </mrow> </msup> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> </mrow> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>4</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> </msub> <mo>−<!-- − --></mo> <mi>a</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> </msub> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>2</mn> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>a</mi> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>h</mi> </mrow> </msubsup> <mo>+</mo> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>l</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>h</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>h</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {e}}^{ch}=\left[{\bar {g}}_{\mathrm {F} }+\left(a+{\frac {b}{4}}-{\frac {c}{2}}\right){\bar {g}}_{\mathrm {O_{2}} }-a{\bar {g}}_{\mathrm {CO_{2}} }-\,{\frac {b}{2}}{\bar {g}}_{\mathrm {H_{2}O} (g)}\right]\,\left(T_{0,}p_{0}\right)+a{\bar {e}}_{\mathrm {CO_{2}} }^{ch}+\,\left({\frac {b}{2}}\right){\bar {e}}_{\mathrm {H_{2}O} (l)}^{ch}-\,\left(a+\,{\frac {b}{4}}\right){\bar {e}}_{\mathrm {O_{2}} }^{ch}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/699a39c86d979a1caa86b27a846d978120af6451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:102.699ex; height:6.176ex;" alt="{\displaystyle {\bar {e}}^{ch}=\left[{\bar {g}}_{\mathrm {F} }+\left(a+{\frac {b}{4}}-{\frac {c}{2}}\right){\bar {g}}_{\mathrm {O_{2}} }-a{\bar {g}}_{\mathrm {CO_{2}} }-\,{\frac {b}{2}}{\bar {g}}_{\mathrm {H_{2}O} (g)}\right]\,\left(T_{0,}p_{0}\right)+a{\bar {e}}_{\mathrm {CO_{2}} }^{ch}+\,\left({\frac {b}{2}}\right){\bar {e}}_{\mathrm {H_{2}O} (l)}^{ch}-\,\left(a+\,{\frac {b}{4}}\right){\bar {e}}_{\mathrm {O_{2}} }^{ch}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_10" class="reference nourlexpansion" style="font-weight:bold;">10</span>)</b></td></tr></tbody></table> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {e}}_{x}^{ch}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>h</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {e}}_{x}^{ch}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4509991f815f69c7f8c10110454b02086c8b50ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.183ex; height:3.009ex;" alt="{\displaystyle {\bar {e}}_{x}^{ch}}"></span> is the standard molar chemical exergy taken from a table for the specific conditions that the system is being evaluated. </p><p>Equation 10 is more commonly used due to the simplicity of only having to look up the standard chemical exergy for given substances. Using a standard table works well for most cases, even if the environmental conditions vary slightly, the difference is most likely negligible. </p> <div class="mw-heading mw-heading4"><h4 id="Total_exergy">Total exergy</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=14" title="Edit section: Total exergy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>After finding the chemical exergy in a given system, one can find the total exergy by adding it to the thermomechanical exergy. Depending on the situation, the amount of chemical exergy added can be very small. If the system being evaluated involves combustion, the amount of chemical exergy is very large and necessary to find the total exergy of the system. </p> <div class="mw-heading mw-heading3"><h3 id="Irreversibility">Irreversibility</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=15" title="Edit section: Irreversibility"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Irreversibility accounts for the amount of exergy destroyed in a closed system, or in other words, the wasted work potential. This is also called dissipated energy. For highly efficient systems, the value of <span class="texhtml"><i>I</i></span>, is low, and vice versa. The equation to calculate the irreversibility of a closed system, as it relates to the exergy of that system, is as follows:<sup id="cite_ref-ohio_19-0" class="reference"><a href="#cite_note-ohio-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=T_{0}S_{\text{gen}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>gen</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=T_{0}S_{\text{gen}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a0c7ec124b557e64e930019b6a214543a399ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.805ex; height:2.843ex;" alt="{\displaystyle I=T_{0}S_{\text{gen}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_11" class="reference nourlexpansion" style="font-weight:bold;">11</span>)</b></td></tr></tbody></table> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{\text{gen}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>gen</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{\text{gen}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce9da1615c0e7493e8f3a678eb65a5444690e171" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.123ex; height:2.843ex;" alt="{\displaystyle S_{\text{gen}}}"></span>, also denoted by <span class="texhtml"><i>Π</i></span>, is the entropy generated by processes within the system. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669404ff0ccd51b3c2ad7e789512f97b855e06ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.433ex; height:2.176ex;" alt="{\displaystyle I>0}"></span> then there are irreversibilities present in the system. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d922b0d8eaff720e31ab0a21b8c0c004f1df4e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.433ex; height:2.176ex;" alt="{\displaystyle I=0}"></span> then there are no irreversibilities present in the system. The value of <span class="texhtml"><i>I</i></span>, the irreversibility, can not be negative, as this implies entropy destruction, a direct violation of the second law of thermodynamics. </p><p>Exergy analysis also relates the actual work of a work producing device to the maximal work, that could be obtained in the reversible or ideal process: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{\text{act}}=W_{\text{max}}-I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>act</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>max</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{\text{act}}=W_{\text{max}}-I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f695675baff78642f24262dbc2f825c0ac5c047f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.213ex; height:2.509ex;" alt="{\displaystyle W_{\text{act}}=W_{\text{max}}-I}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_12" class="reference nourlexpansion" style="font-weight:bold;">12</span>)</b></td></tr></tbody></table> <p>That is, the irreversibility is the ideal maximum work output minus the actual work production. Whereas, for a work consuming device such as refrigeration or heat pump, irreversibility is the actual work input minus the ideal minimum work input. </p><p>The first term at the right part is related to the difference in exergy at inlet and outlet of the system:<sup id="cite_ref-ohio_19-1" class="reference"><a href="#cite_note-ohio-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{\text{max}}=\Delta B=B_{\text{in}}-B_{\text{out}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>max</mtext> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>B</mi> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>in</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>out</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{\text{max}}=\Delta B=B_{\text{in}}-B_{\text{out}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa9e85be20938e5f6e58b934e3dd117556c6b202" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.961ex; height:2.509ex;" alt="{\displaystyle W_{\text{max}}=\Delta B=B_{\text{in}}-B_{\text{out}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_13" class="reference nourlexpansion" style="font-weight:bold;">13</span>)</b></td></tr></tbody></table> <p>where <span class="texhtml"><i>B</i></span> is also denoted by <span class="texhtml"><i>Ξ or X</i></span>. </p><p>For an isolated system there are no heat or work interactions or transfers of exergy between the system and its surroundings. The exergy of an isolated system can therefore only decrease, by a magnitude equal to the irreversibility of that system or process, </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta B=-I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>B</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta B=-I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b6c69fc99a56988c19263f941a8304c37d6c8be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.778ex; height:2.343ex;" alt="{\displaystyle \Delta B=-I}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_14" class="reference nourlexpansion" style="font-weight:bold;">14</span>)</b></td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=16" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Applying equation (<b><a href="#math_1">1</a></b>) to a subsystem yields: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mbox{If}}~{\frac {\mathrm {d} B}{\mathrm {d} t}}{\begin{cases}>0,&{\frac {\mathrm {d} B}{\mathrm {d} t}}={\mbox{ maximum power generated}}\\<0,&{\frac {\mathrm {d} B}{\mathrm {d} t}}={\mbox{ minimum power required}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>If</mtext> </mstyle> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>B</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>></mo> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>B</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> maximum power generated</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mo><</mo> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>B</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> minimum power required</mtext> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mbox{If}}~{\frac {\mathrm {d} B}{\mathrm {d} t}}{\begin{cases}>0,&{\frac {\mathrm {d} B}{\mathrm {d} t}}={\mbox{ maximum power generated}}\\<0,&{\frac {\mathrm {d} B}{\mathrm {d} t}}={\mbox{ minimum power required}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/917ef49acd3587c80d04a939f4f123be6e63e4c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:49.11ex; height:7.509ex;" alt="{\displaystyle {\mbox{If}}~{\frac {\mathrm {d} B}{\mathrm {d} t}}{\begin{cases}>0,&{\frac {\mathrm {d} B}{\mathrm {d} t}}={\mbox{ maximum power generated}}\\<0,&{\frac {\mathrm {d} B}{\mathrm {d} t}}={\mbox{ minimum power required}}\end{cases}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_14" class="reference nourlexpansion" style="font-weight:bold;">14</span>)</b></td></tr></tbody></table> <p>This expression applies equally well for theoretical ideals in a wide variety of applications: <a href="/wiki/Electrolysis" title="Electrolysis">electrolysis</a> (decrease in <i>G</i>), <a href="/wiki/Galvanic_cell" title="Galvanic cell">galvanic cells</a> and <a href="/wiki/Fuel_cell" title="Fuel cell">fuel cells</a> (increase in <i>G</i>), <a href="/wiki/Explosives" class="mw-redirect" title="Explosives">explosives</a> (increase in <i>A</i>), <a href="/wiki/HVAC" class="mw-redirect" title="HVAC">heating and refrigeration</a> (exchange of <i>H</i>), <a href="/wiki/Heat_engine" title="Heat engine">motors</a> (decrease in <i>U</i>) and <a href="/wiki/Electrical_generator" class="mw-redirect" title="Electrical generator">generators</a> (increase in <i>U</i>). </p><p>Utilization of the exergy concept often requires careful consideration of the choice of reference environment because, as Carnot knew, unlimited reservoirs do not exist in the real world. A system may be maintained at a constant temperature to simulate an unlimited reservoir in the lab or in a factory, but those systems cannot then be isolated from a larger surrounding environment. However, with a proper choice of system boundaries, a reasonable constant reservoir can be imagined. A process sometimes must be compared to "the most realistic impossibility," and this invariably involves a certain amount of guesswork.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2020)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Engineering_applications">Engineering applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=17" title="Edit section: Engineering applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Exergy" title="Special:EditPage/Exergy">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a> in this section. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Exergy%22">"Exergy"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Exergy%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Exergy%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Exergy%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Exergy%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Exergy%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">March 2023</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>One goal of energy and exergy methods in engineering is to compute what comes into and out of several possible designs before a design is built. Energy input and output will always balance according to the <a href="/wiki/First_Law_of_Thermodynamics" class="mw-redirect" title="First Law of Thermodynamics">First Law of Thermodynamics</a> or the energy conservation principle. Exergy output will not equal the exergy input for real processes since a part of the exergy input is always destroyed according to the <a href="/wiki/Second_Law_of_Thermodynamics" class="mw-redirect" title="Second Law of Thermodynamics">Second Law of Thermodynamics</a> for real processes. After the input and output are calculated, an engineer will often want to select the most efficient process. An <a href="/wiki/Energy_conversion_efficiency" title="Energy conversion efficiency">energy efficiency</a> or <i>first law efficiency</i> will determine the most efficient process based on wasting as little energy as possible relative to energy inputs. An <a href="/wiki/Exergy_efficiency" title="Exergy efficiency">exergy efficiency</a> or <i>second-law efficiency</i> will determine the most efficient process based on wasting <i>and destroying</i> as little available work as possible from a given input of available work, per unit of whatever the desired output is. </p><p>Exergy has been applied in a number of design applications in order to optimize systems or identify components or subsystems with the greatest potential for improvement. For instance, an exergy analysis of <a href="/wiki/Environmental_control_system" title="Environmental control system">environmental control systems</a> on the <a href="/wiki/International_Space_Station" title="International Space Station">international space station</a> revealed the oxygen generation assembly as the subsystem which destroyed the most exergy.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>Exergy is particularly useful for broad engineering analyses with many systems of varied nature, since it can account for mechanical, electrical, nuclear, chemical, or thermal systems. For this reason, Exergy analysis has also been used to optimize the performance of rocket vehicles.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> Exergy analysis affords additional insight, relative to energy analysis alone, because it incorporates the second law, and considers both the system and its relationship with its environment. For example, exergy analysis has been used to compare possible power generation and storage systems on the moon, since exergy analysis is conducted in reference to the unique environmental operating conditions of a specific application, such as on the surface of the moon.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>Application of exergy to <a href="/wiki/Unit_operation" title="Unit operation">unit operations</a> in <a href="/wiki/Chemical_plant" title="Chemical plant">chemical plants</a> was partially responsible for the huge growth of the <a href="/wiki/Chemical_industry" title="Chemical industry">chemical industry</a> during the 20th century.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2015)">citation needed</span></a></i>]</sup> </p><p>As a simple example of exergy, air at atmospheric conditions of temperature, pressure, <i>and composition</i> contains energy but no exergy when it is chosen as the thermodynamic reference state known as <a href="/wiki/Standard_temperature_and_pressure" title="Standard temperature and pressure">ambient</a>. Individual processes on Earth such as combustion in a power plant often eventually result in products that are incorporated into the atmosphere, so defining this reference state for exergy is useful even though the atmosphere itself is not at equilibrium and is full of long and short term variations. </p><p>If standard ambient conditions are used for calculations during chemical plant operation when the actual weather is very cold or hot, then certain parts of a chemical plant might seem to have an exergy efficiency of greater than 100%. Without taking into account the non-standard atmospheric temperature variation, these calculations can give an impression of being a perpetual motion machine. Using actual conditions will give actual values, but standard ambient conditions are useful for initial design calculations. </p> <div class="mw-heading mw-heading3"><h3 id="Applications_in_natural_resource_utilization">Applications in natural resource utilization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=18" title="Edit section: Applications in natural resource utilization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In recent decades, utilization of exergy has spread outside of physics and engineering to the fields of <a href="/wiki/Industrial_ecology" title="Industrial ecology">industrial ecology</a>, <a href="/wiki/Ecological_economics" title="Ecological economics">ecological economics</a>, <a href="/wiki/Systems_ecology" title="Systems ecology">systems ecology</a>, and <a href="/wiki/Energy_flow_(ecology)" title="Energy flow (ecology)">energetics</a>. Defining where one field ends and the next begins is a matter of semantics, but applications of exergy can be placed into rigid categories. After the milestone work of <a href="/w/index.php?title=Jan_Szargut&action=edit&redlink=1" class="new" title="Jan Szargut (page does not exist)">Jan Szargut</a> who emphasized the relation between exergy and availability,<sup id="cite_ref-Exergy_Method:_Technical_and_Ecological_Applications_23-0" class="reference"><a href="#cite_note-Exergy_Method:_Technical_and_Ecological_Applications-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> it is necessary to remember "Exergy Ecology and Democracy".<sup id="cite_ref-Exergy_Ecology_and_Democracy_24-0" class="reference"><a href="#cite_note-Exergy_Ecology_and_Democracy-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> by <a href="/w/index.php?title=Goran_Wall&action=edit&redlink=1" class="new" title="Goran Wall (page does not exist)">Goran Wall</a>, a short essay, which evidences the strict relation that relates exergy disruption with environmental and social disruption. From this activity it has derived a fundamental research activity in ecological economics and <a href="/wiki/Environmental_accounting" title="Environmental accounting">environmental accounting</a> perform exergy-cost analyses in order to evaluate the impact of human activity on the current and future <a href="/wiki/Natural_environment" title="Natural environment">natural environment</a>. As with ambient air, this often requires the unrealistic substitution of properties from a natural environment in place of the <a href="/wiki/Heat_reservoir" class="mw-redirect" title="Heat reservoir">reference state</a> <a href="/wiki/Surroundings_(thermodynamics)" class="mw-redirect" title="Surroundings (thermodynamics)">environment</a> of Carnot. For example, ecologists and others have developed reference conditions for the <a href="/wiki/Ocean" title="Ocean">ocean</a> and for the <a href="/wiki/Earth%27s_crust" title="Earth's crust">Earth's crust</a>. Exergy values for human activity using this information can be useful for comparing policy alternatives based on the efficiency of utilizing <a href="/wiki/Natural_resources" class="mw-redirect" title="Natural resources">natural resources</a> to perform work. Typical questions that may be answered are: </p> <dl><dd>Does the human production of one unit of an <a href="/wiki/Economic_good" class="mw-redirect" title="Economic good">economic good</a> by method <i>A</i> utilize more of a resource's exergy than by method <i>B</i>?</dd></dl> <dl><dd>Does the human production of economic good <i>A</i> utilize more of a resource's exergy than the production of good <i>B</i>?</dd></dl> <dl><dd>Does the human production of economic good <i>A</i> utilize a resource's exergy more efficiently than the production of good <i>B</i>?</dd></dl> <p>There has been some progress in standardizing and applying these methods. </p><p>Measuring exergy requires the evaluation of a system's reference state environment.<sup id="cite_ref-exergoecology_25-0" class="reference"><a href="#cite_note-exergoecology-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> With respect to the applications of exergy on natural resource utilization, the process of quantifying a system requires the assignment of value (both utilized and potential) to resources that are not always easily dissected into typical cost-benefit terms. However, to fully realize the potential of a system to do work, it is becoming increasingly imperative to understand exergetic potential of natural resources,<sup id="cite_ref-gcep.stanford_26-0" class="reference"><a href="#cite_note-gcep.stanford-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and how human interference alters this potential. </p><p>Referencing the inherent qualities of a system in place of a reference state environment<sup id="cite_ref-exergoecology_25-1" class="reference"><a href="#cite_note-exergoecology-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> is the most direct way that ecologists determine the exergy of a natural resource. Specifically, it is easiest to examine the <a href="/wiki/Thermodynamic" class="mw-redirect" title="Thermodynamic">thermodynamic</a> properties of a system, and the reference substances<sup id="cite_ref-books.google_27-0" class="reference"><a href="#cite_note-books.google-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> that are acceptable within the reference environment.<sup id="cite_ref-books.google_27-1" class="reference"><a href="#cite_note-books.google-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> This determination allows for the assumption of qualities in a natural state: deviation from these levels may indicate a change in the environment caused by outside sources. There are three kinds of reference substances that are acceptable, due to their proliferation on the planet: gases within the <a href="/wiki/Atmosphere" title="Atmosphere">atmosphere</a>, solids within the Earth's crust, and <a href="/wiki/Molecules" class="mw-redirect" title="Molecules">molecules</a> or <a href="/wiki/Ions" class="mw-redirect" title="Ions">ions</a> in seawater.<sup id="cite_ref-exergoecology_25-2" class="reference"><a href="#cite_note-exergoecology-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> By understanding these basic models, it's possible to determine the exergy of multiple earth systems interacting, like the effects of <a href="/wiki/Solar_radiation" class="mw-redirect" title="Solar radiation">solar radiation</a> on plant life.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> These basic categories are utilized as the main components of a reference environment when examining how exergy can be defined through natural resources. </p><p>Other qualities within a reference state environment include temperature, pressure, and any number of combinations of substances within a defined area.<sup id="cite_ref-exergoecology_25-3" class="reference"><a href="#cite_note-exergoecology-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> Again, the exergy of a system is determined by the potential of that system to do work, so it is necessary to determine the baseline qualities of a system before it is possible to understand the potential of that system. The thermodynamic value of a resource can be found by multiplying the exergy of the resource by the cost of obtaining the resource and processing it.<sup id="cite_ref-exergoecology_25-4" class="reference"><a href="#cite_note-exergoecology-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>Today, it is becoming increasingly popular to analyze the environmental impacts of natural resource utilization, especially for energy usage.<sup id="cite_ref-books.google_a_29-0" class="reference"><a href="#cite_note-books.google_a-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> To understand the ramifications of these practices, exergy is utilized as a tool for determining the impact potential of <a href="/wiki/Exhaust_gas" title="Exhaust gas">emissions</a>, <a href="/wiki/Fuels" class="mw-redirect" title="Fuels">fuels</a>, and other sources of energy.<sup id="cite_ref-books.google_a_29-1" class="reference"><a href="#cite_note-books.google_a-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Combustion" title="Combustion">Combustion</a> of fossil fuels, for example, is examined with respect to assessing the environmental impacts of burning <a href="/wiki/Coal" title="Coal">coal</a>, <a href="/wiki/Oil" title="Oil">oil</a>, and <a href="/wiki/Natural_gas" title="Natural gas">natural gas</a>. The current methods for analyzing the <a href="/wiki/Exhaust_gas" title="Exhaust gas">emissions</a> from these three products can be compared to the process of determining the exergy of the systems affected; specifically, it is useful to examine these with regard to the reference state environment of gases within the <a href="/wiki/Atmosphere" title="Atmosphere">atmosphere</a>.<sup id="cite_ref-gcep.stanford_26-1" class="reference"><a href="#cite_note-gcep.stanford-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> In this way, it is easier to determine how human action is affecting the natural environment. </p> <div class="mw-heading mw-heading3"><h3 id="Applications_in_sustainability">Applications in sustainability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=19" title="Edit section: Applications in sustainability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Exergy" title="Special:EditPage/Exergy">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">December 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Systems_ecology" title="Systems ecology">systems ecology</a>, researchers sometimes consider the exergy of the current formation of natural resources from a small number of exergy inputs (usually <a href="/wiki/Solar_radiation" class="mw-redirect" title="Solar radiation">solar radiation</a>, <a href="/wiki/Tidal_force" title="Tidal force">tidal forces</a>, and <a href="/wiki/Geothermal_energy" title="Geothermal energy">geothermal heat</a>). This application not only requires assumptions about reference states, but it also requires assumptions about the real environments of the past that might have been close to those reference states. Can we decide which is the most "realistic impossibility" over such a long period of time when we are only speculating about the reality? </p><p>For instance, comparing oil exergy to coal exergy using a common reference state would require geothermal exergy inputs to describe the transition from biological material to fossil fuels during millions of years in the Earth's crust, and solar radiation exergy inputs to describe the material's history before then when it was part of the biosphere. This would need to be carried out mathematically backwards through time, to a presumed era when the oil and coal could be assumed to be receiving the same exergy inputs from these sources. A speculation about a past environment is different from assigning a reference state with respect to known environments today. Reasonable guesses about real ancient environments may be made, but they are untestable guesses, and so some regard this application as <a href="/wiki/Pseudoscience" title="Pseudoscience">pseudoscience</a> or pseudo-engineering. </p><p>The field describes this accumulated exergy in a natural resource over time as <a href="/wiki/Embodied_energy" title="Embodied energy">embodied energy</a> with units of the "embodied joule" or "emjoule". </p><p>The important application of this research is to address <a href="/wiki/Sustainability" title="Sustainability">sustainability</a> issues in a quantitative fashion through a <a href="/wiki/Sustainability_measurement" title="Sustainability measurement">sustainability measurement</a>: </p> <dl><dd>Does the human production of an economic good deplete the exergy of Earth's <a href="/wiki/Natural_resources" class="mw-redirect" title="Natural resources">natural resources</a> more quickly than those resources are able to receive exergy?</dd></dl> <dl><dd>If so, how does this compare to the depletion caused by producing the same good (or a different one) using a different set of natural resources?</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Exergy_and_environmental_policy">Exergy and environmental policy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=20" title="Edit section: Exergy and environmental policy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Today environmental policies does not consider exergy as an instrument for a more equitable and effective environmental policy. Recently, exergy analysis allowed to obtain an important fault in today governmental <a href="/wiki/Greenhouse_gas" title="Greenhouse gas">GHGs</a> emission balances, which often do not consider international transport related emissions, therefore the impacts of import/export are not accounted,<sup id="cite_ref-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_1:_Generalities_30-0" class="reference"><a href="#cite_note-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_1:_Generalities-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p>Therefore, some preliminary cases of the impacts of import export transportation and of technology had provided evidencing the opportunity of introducing an effective exergy based taxation which can reduce the fiscal impact on citizens. In addition Exergy can be a precious instrument for an effective estimation of the path toward UN sustainable development goals (<a href="/wiki/SDG" class="mw-redirect" title="SDG">SDG</a>).<sup id="cite_ref-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_2:_Exergy_and_UN_sustainable_development_goals_31-0" class="reference"><a href="#cite_note-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_2:_Exergy_and_UN_sustainable_development_goals-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Assigning_one_thermodynamically_obtained_value_to_an_economic_good">Assigning one thermodynamically obtained value to an economic good</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=21" title="Edit section: Assigning one thermodynamically obtained value to an economic good"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Exergy" title="Special:EditPage/Exergy">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">December 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>A technique proposed by systems ecologists is to consolidate the three exergy inputs described in the last section into the single exergy input of solar radiation, and to express the total input of exergy into an economic good as a <i>solar embodied joule</i> or <i>sej</i>. (<i>See <a href="/wiki/Emergy" title="Emergy">Emergy</a></i>) Exergy inputs from solar, tidal, and geothermal forces all at one time had their origins at the beginning of the solar system under conditions which could be chosen as an initial reference state, and other speculative reference states could in theory be traced back to that time. With this tool we would be able to answer: </p> <dl><dd>What fraction of the total human depletion of the Earth's exergy is caused by the production of a particular economic good?</dd></dl> <dl><dd>What fraction of the total human and non-human depletion of the Earth's exergy is caused by the production of a particular economic good?</dd></dl> <p>No additional thermodynamic laws are required for this idea, and the principles of <a href="/wiki/Thermodynamics" title="Thermodynamics">energetics</a> may confuse many issues for those outside the field. The combination of untestable hypotheses, unfamiliar jargon that contradicts accepted jargon, intense advocacy among its supporters, and some degree of isolation from other disciplines have contributed to this <a href="/wiki/Protoscience" title="Protoscience">protoscience</a> being regarded by many as a <a href="/wiki/Pseudoscience" title="Pseudoscience">pseudoscience</a>. However, its basic tenets are only a further utilization of the exergy concept. </p> <div class="mw-heading mw-heading3"><h3 id="Implications_in_the_development_of_complex_physical_systems">Implications in the development of complex physical systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=22" title="Edit section: Implications in the development of complex physical systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Exergy" title="Special:EditPage/Exergy">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">December 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>A common hypothesis in systems ecology is that the design engineer's observation that a greater capital investment is needed to create a process with increased exergy efficiency is actually the economic result of a fundamental law of nature. By this view, exergy is the analogue of economic currency in the natural world. The analogy to capital investment is the accumulation of exergy into a system over long periods of time resulting in <a href="/wiki/Embodied_energy" title="Embodied energy">embodied energy</a>. The analogy of capital investment resulting in a factory with high exergy efficiency is an increase in natural organizational structures with high exergy efficiency. (<i>See <a href="/wiki/Maximum_power_theorem" class="mw-redirect" title="Maximum power theorem">Maximum power</a></i>). Researchers in these fields describe biological <a href="/wiki/Evolution" title="Evolution">evolution</a> in terms of increases in organism complexity due to the requirement for increased exergy efficiency because of competition for limited sources of exergy. </p><p>Some biologists have a similar hypothesis. A biological system (or a chemical plant) with a number of intermediate compartments and intermediate reactions is more efficient because the process is divided up into many small substeps, and this is closer to the <a href="/wiki/Reversible_process_(thermodynamics)" title="Reversible process (thermodynamics)">reversible ideal</a> of an infinite number of <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> substeps. Of course, an excessively large number of intermediate compartments comes at a capital cost that may be too high. </p><p>Testing this idea in living organisms or ecosystems is impossible for all practical purposes because of the large time scales and small exergy inputs involved for changes to take place. However, if this idea is correct, it would not be a new fundamental law of nature. It would simply be living systems and ecosystems maximizing their exergy efficiency by utilizing laws of thermodynamics developed in the 19th century. </p> <div class="mw-heading mw-heading3"><h3 id="Philosophical_and_cosmological_implications">Philosophical and cosmological implications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=23" title="Edit section: Philosophical and cosmological implications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Exergy" title="Special:EditPage/Exergy">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">December 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Some proponents of utilizing exergy concepts describe them as a <a href="/wiki/Biocentrism_(ethics)" title="Biocentrism (ethics)">biocentric</a> or <a href="/wiki/Ecocentric" class="mw-redirect" title="Ecocentric">ecocentric</a> alternative for terms like quality and <a href="/wiki/Value_theory" title="Value theory">value</a>. The "<a href="/wiki/Deep_ecology" title="Deep ecology">deep ecology</a>" movement views <a href="/wiki/Economic" class="mw-redirect" title="Economic">economic</a> usage of these terms as an <a href="/wiki/Anthropocentric" class="mw-redirect" title="Anthropocentric">anthropocentric</a> <a href="/wiki/Philosophy" title="Philosophy">philosophy</a> which should be discarded. A possible universal thermodynamic concept of value or utility appeals to those with an interest in <a href="/wiki/Monism" title="Monism">monism</a>. </p><p>For some, the result of this line of thinking about tracking exergy into the deep past is a restatement of the <a href="/wiki/Cosmological_argument" title="Cosmological argument">cosmological argument</a> that the universe was once at <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">equilibrium</a> and an input of exergy from some <a href="/wiki/First_Cause" class="mw-redirect" title="First Cause">First Cause</a> created a universe full of available work. Current science is unable to describe the first 10<sup>−43</sup> seconds of the universe (<i>See <a href="/wiki/Timeline_of_the_Big_Bang" class="mw-redirect" title="Timeline of the Big Bang">Timeline of the Big Bang</a></i>). An external reference state is not able to be defined for such an event, and (regardless of its merits), such an argument may be better expressed in terms of <a href="/wiki/Entropy" title="Entropy">entropy</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Quality_of_energy_types">Quality of energy types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=24" title="Edit section: Quality of energy types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The ratio of exergy to energy in a substance can be considered a measure of <a href="/wiki/Energy_quality" title="Energy quality">energy quality</a>. Forms of energy such as macroscopic kinetic energy, electrical energy, and chemical <a href="/wiki/Gibbs_free_energy" title="Gibbs free energy">Gibbs free energy</a> are 100% recoverable as work, and therefore have exergy equal to their energy. However, forms of energy such as radiation and thermal energy can not be converted completely to work, and have exergy content less than their energy content. The exact proportion of exergy in a substance depends on the amount of entropy relative to the surrounding environment as determined by the <a href="/wiki/Thermodynamics" title="Thermodynamics">Second Law of Thermodynamics</a>. </p><p>Exergy is useful when measuring the efficiency of an energy conversion process. The exergetic, or 2nd Law, efficiency is a ratio of the exergy output divided by the exergy input. This formulation takes into account the quality of the energy, often offering a more accurate and useful analysis than efficiency estimates only using the <a href="/wiki/Thermodynamics" title="Thermodynamics">First Law of Thermodynamics</a>. </p><p>Work can be extracted also from bodies colder than the surroundings. When the flow of energy is coming into the body, work is performed by this energy obtained from the large reservoir, the surrounding. A quantitative treatment of the notion of energy quality rests on the definition of energy. According to the standard definition, <a href="/wiki/Energy" title="Energy">Energy</a> is a measure of the ability to do work. Work can involve the movement of a mass by a force that results from a transformation of energy. If there is an energy transformation, the <a href="/wiki/Entropy" title="Entropy">second principle of energy flow transformations</a> says that this process must involve the dissipation of some energy as heat. Measuring the amount of heat released is one way of quantifying the energy, or ability to do work and apply a force over a distance. </p> <div class="mw-heading mw-heading3"><h3 id="Exergy_of_heat_available_at_a_temperature">Exergy of heat available at a temperature</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=25" title="Edit section: Exergy of heat available at a temperature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Maximal possible conversion of heat to work, or exergy content of heat, depends on the <a href="/wiki/Temperature" title="Temperature">temperature</a> at which heat is available and the temperature level at which the reject heat can be disposed, that is the temperature of the surrounding. The upper limit for conversion is known as <a href="/wiki/Carnot_efficiency" class="mw-redirect" title="Carnot efficiency">Carnot efficiency</a> and was discovered by <a href="/wiki/Nicolas_L%C3%A9onard_Sadi_Carnot" title="Nicolas Léonard Sadi Carnot">Nicolas Léonard Sadi Carnot</a> in 1824. See also <a href="/wiki/Carnot_heat_engine" title="Carnot heat engine">Carnot heat engine</a>. </p><p>Carnot efficiency is </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta =1-{\frac {T_{C}}{T_{H}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta =1-{\frac {T_{C}}{T_{H}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a2ac6a158d8e86512c3d7015d7b3f8daa4c607a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.156ex; height:5.676ex;" alt="{\displaystyle \eta =1-{\frac {T_{C}}{T_{H}}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_15" class="reference nourlexpansion" style="font-weight:bold;">15</span>)</b></td></tr></tbody></table> <p>where <i>T</i><sub><i>H</i></sub> is the higher temperature and <i>T</i><sub><i>C</i></sub> is the lower temperature, both as <a href="/wiki/Absolute_temperature" class="mw-redirect" title="Absolute temperature">absolute temperature</a>. From Equation 15 it is clear that in order to maximize efficiency one should maximize <i>T</i><sub><i>H</i></sub> and minimize <i>T</i><sub><i>C</i></sub>. </p><p>Exergy exchanged is then: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=Q\left(1-{\frac {T_{o}}{T_{\text{source}}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>source</mtext> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=Q\left(1-{\frac {T_{o}}{T_{\text{source}}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07342704693a9ad4a9a10d00a4454c3ec8e5d72d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.426ex; height:6.176ex;" alt="{\displaystyle B=Q\left(1-{\frac {T_{o}}{T_{\text{source}}}}\right)}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_16" class="reference nourlexpansion" style="font-weight:bold;">16</span>)</b></td></tr></tbody></table> <p>where <i>T</i><sub><i>source</i></sub> is the temperature of the heat source, and <i>T</i><sub><i>o</i></sub> is the temperature of the surrounding. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Cost_and_exergy_for_heating_energy_in_Finland.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Cost_and_exergy_for_heating_energy_in_Finland.jpg/350px-Cost_and_exergy_for_heating_energy_in_Finland.jpg" decoding="async" width="350" height="222" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Cost_and_exergy_for_heating_energy_in_Finland.jpg/525px-Cost_and_exergy_for_heating_energy_in_Finland.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Cost_and_exergy_for_heating_energy_in_Finland.jpg/700px-Cost_and_exergy_for_heating_energy_in_Finland.jpg 2x" data-file-width="750" data-file-height="475" /></a><figcaption>Higher exergy content tend to mean higher energy prices. Here the costs of heating (vertical axis) are compared with the exergy content of different energy carriers (horizontal axis) in Finland. Energy carriers included are district heating (D), ground-source <a href="/wiki/Heat_pump" title="Heat pump">heat pump</a> (G), exhaust air heat pump (A), bioenergy meaning firewood (B), heating oil (O) and direct electric heating (E). Red dots and trend line indicates energy prices for consumers, blue dots and trend line indicates the total price for consumers including capital expenditure for the heating system.<sup id="cite_ref-Muller_32-0" class="reference"><a href="#cite_note-Muller-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Connection_with_economic_value">Connection with economic value</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=26" title="Edit section: Connection with economic value"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Exergy in a sense can be understood as a measure of the value of energy. Since high-exergy energy carriers can be used for more versatile purposes, due to their ability to do more work, they can be postulated to hold more economic value. This can be seen in the prices of energy carriers, i.e. high-exergy energy carriers such as electricity tend to be more valuable than low-exergy ones such as various fuels or heat. This has led to the substitution of more valuable high-exergy energy carriers with low-exergy energy carriers, when possible. An example is heating systems, where higher investment to heating systems allows using low-exergy energy sources. Thus high-exergy content is being substituted with capital investments.<sup id="cite_ref-Muller_32-1" class="reference"><a href="#cite_note-Muller-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Exergy_based_Life_Cycle_Assessment_(LCA)"><span id="Exergy_based_Life_Cycle_Assessment_.28LCA.29"></span>Exergy based Life Cycle Assessment (LCA)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=27" title="Edit section: Exergy based Life Cycle Assessment (LCA)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Exergy of a system is the maximum useful work possible during a process that brings the system into equilibrium with a heat reservoir.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> Wall<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> clearly states the relation between exergy analysis and resource accounting.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> This intuition confirmed by Dewulf<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> Sciubba<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> lead to exergo-economic accounting<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> and to methods specifically dedicated to LCA such as exergetic material input per unit of service (EMIPS).<sup id="cite_ref-researchgate.net_40-0" class="reference"><a href="#cite_note-researchgate.net-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> The concept of material input per unit of service (MIPS) is quantified in terms of the second law of thermodynamics, allowing the calculation of both resource input and service output in exergy terms. This exergetic material input per unit of service (EMIPS) has been elaborated for transport technology. The service not only takes into account the total mass to be transported and the total distance, but also the mass per single transport and the delivery time. The applicability of the EMIPS methodology relates specifically to the transport system and allows an effective coupling with <a href="/wiki/Life_cycle_assessment" class="mw-redirect" title="Life cycle assessment">life cycle assessment</a>.<sup id="cite_ref-researchgate.net_40-1" class="reference"><a href="#cite_note-researchgate.net-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> The exergy analysis according to EMIPS allowed the definition of a precise strategy for reducing <a href="/wiki/Environmental_impacts_of_transport" class="mw-redirect" title="Environmental impacts of transport">environmental impacts of transport</a> toward more <a href="/wiki/Sustainable_transport" title="Sustainable transport">sustainable transport</a>.<sup id="cite_ref-link.springer.com_41-0" class="reference"><a href="#cite_note-link.springer.com-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Such a strategy requires the reduction of the weight of vehicles, sustainable styles of driving, reducing the friction of tires, encouraging electric and hybrid vehicles,<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> improving the walking and <a href="/wiki/Cycling_infrastructure" title="Cycling infrastructure">cycling environment</a> in cities, and by enhancing the role of public transport, especially <a href="/wiki/Railway_electrification_system" class="mw-redirect" title="Railway electrification system">electric rail</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=28" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Carnot">Carnot</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=29" title="Edit section: Carnot"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1824, <a href="/wiki/Nicolas_L%C3%A9onard_Sadi_Carnot" title="Nicolas Léonard Sadi Carnot">Sadi Carnot</a> studied the improvements developed for <a href="/wiki/Steam_engines" class="mw-redirect" title="Steam engines">steam engines</a> by <a href="/wiki/James_Watt_(inventor)" class="mw-redirect" title="James Watt (inventor)">James Watt</a> and others. Carnot utilized a purely theoretical perspective for these engines and developed new ideas. He wrote: </p> <blockquote><p>The question has often been raised whether the motive power of heat is unbounded, whether the possible improvements in steam engines have an assignable limit—a limit by which the nature of things will not allow to be passed by any means whatever... In order to consider in the most general way the principle of the production of motion by heat, it must be considered independently of any mechanism or any particular agent. It is necessary to establish principles applicable not only to steam-engines but to all imaginable heat-engines... The production of motion in steam-engines is always accompanied by a circumstance on which we should fix our attention. This circumstance is the re-establishing of equilibrium... Imagine two bodies A and B, kept each at a constant temperature, that of A being higher than that of B. These two bodies, to which we can give or from which we can remove the heat without causing their temperatures to vary, exercise the functions of two unlimited reservoirs...<sup class="plainlinks nourlexpansion citation" id="ref_carnot1824"><a class="external autonumber" href="https://en.wikipedia.org/wiki/Exergy#endnote_carnot1824">[4]</a></sup></p></blockquote> <p>Carnot next described what is now called the <a href="/wiki/Carnot_heat_engine" title="Carnot heat engine">Carnot engine</a>, and proved by a <a href="/wiki/Thought_experiment" title="Thought experiment">thought experiment</a> that any heat engine performing better than this engine would be a <a href="/wiki/Perpetual_motion" title="Perpetual motion">perpetual motion</a> machine. Even in the 1820s, there was a long history of science forbidding such devices. According to Carnot, "Such a creation is entirely contrary to ideas now accepted, to the <a href="/wiki/Classical_mechanics" title="Classical mechanics">laws of mechanics</a> and of sound <a href="/wiki/Physics" title="Physics">physics</a>. It is inadmissible."<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><sup class="citation nobold" id="ref_carnot1824a"><a href="#endnote_carnot1824a">[4]</a></sup> </p><p>This description of an upper bound to the work that may be done by an engine was the earliest modern formulation of the <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a>. Because it involves no mathematics, it still often serves as the entry point for a modern understanding of both the second law and <a href="/wiki/Entropy" title="Entropy">entropy</a>. Carnot's focus on <a href="/wiki/Heat_engine" title="Heat engine">heat engines</a>, <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">equilibrium</a>, and <a href="/wiki/Heat_reservoir" class="mw-redirect" title="Heat reservoir">heat reservoirs</a> is also the best entry point for understanding the closely related concept of exergy. </p><p>Carnot believed in the incorrect <a href="/wiki/Caloric_theory" title="Caloric theory">caloric theory</a> of heat that was popular during his time, but his thought experiment nevertheless described a fundamental limit of nature. As <a href="/wiki/Kinetic_theory_of_gases" title="Kinetic theory of gases">kinetic theory</a> replaced caloric theory through the early and mid-19th century (<i>see <a href="/wiki/Timeline_of_thermodynamics" title="Timeline of thermodynamics">Timeline of thermodynamics</a></i>), several scientists added mathematical precision to the first and second <a href="/wiki/Laws_of_thermodynamics" title="Laws of thermodynamics">laws of thermodynamics</a> and developed the concept of <a href="/wiki/Entropy" title="Entropy">entropy</a>. Carnot's focus on processes at the human scale (above the <a href="/wiki/Thermodynamic_limit" title="Thermodynamic limit">thermodynamic limit</a>) led to the most universally applicable concepts in <a href="/wiki/Physics" title="Physics">physics</a>. Entropy and the second-law are applied today in fields ranging from <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> to <a href="/wiki/Physical_cosmology" title="Physical cosmology">physical cosmology</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Gibbs">Gibbs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=30" title="Edit section: Gibbs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the 1870s, <a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Josiah Willard Gibbs</a> unified a large quantity of 19th century <a href="/wiki/Thermochemistry" title="Thermochemistry">thermochemistry</a> into one compact theory. Gibbs's theory incorporated the new concept of a <a href="/wiki/Chemical_potential" title="Chemical potential">chemical potential</a> to cause change when distant from a <a href="/wiki/Chemical_equilibrium" title="Chemical equilibrium">chemical equilibrium</a> into the older work begun by Carnot in describing thermal and <a href="/wiki/Mechanical_equilibrium" title="Mechanical equilibrium">mechanical equilibrium</a> and their potentials for change. Gibbs's unifying theory resulted in the <a href="/wiki/Thermodynamic_potential" title="Thermodynamic potential">thermodynamic potential</a> <a href="/wiki/State_function" title="State function">state functions</a> describing differences from <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">thermodynamic equilibrium</a>. </p><p>In 1873, Gibbs derived the mathematics of "available energy of the body and medium" into the form it has today.<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><sup class="citation nobold" id="ref_gibbs1873a"><a href="#endnote_gibbs1873a">[3]</a></sup> (See the equations <a href="#Important_equations">above</a>). The physics describing exergy has changed little since that time. </p> <div class="mw-heading mw-heading3"><h3 id="Helmholtz">Helmholtz</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=31" title="Edit section: Helmholtz"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the 1880s, German scientist <a href="/wiki/Hermann_von_Helmholtz" title="Hermann von Helmholtz">Hermann von Helmholtz</a> derived the equation for the maximum work which can be reversibly obtained from a closed system.<sup id="cite_ref-:0_44-0" class="reference"><a href="#cite_note-:0-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Rant">Rant</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=32" title="Edit section: Rant"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1956, Yugoslav scholar <a href="/wiki/Zoran_Rant" title="Zoran Rant">Zoran Rant</a> proposed the concept of Exergy, extending Gibbs and Helmholtz' work. Since then, continuous development in exergy analysis has seen many applications in thermodynamics, and exergy has been accepted as the maximum theoretical useful work which can be obtained from a system with respect to its environment.<sup id="cite_ref-:0_44-1" class="reference"><a href="#cite_note-:0-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=33" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal_energy.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/29px-Crystal_energy.svg.png" decoding="async" width="29" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/44px-Crystal_energy.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/59px-Crystal_energy.svg.png 2x" data-file-width="130" data-file-height="124" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Energy" title="Portal:Energy">energy portal</a></span></li></ul> <ul><li><a href="/wiki/Thermodynamic_free_energy" title="Thermodynamic free energy">Thermodynamic free energy</a></li> <li><a href="/wiki/Entropy_production" title="Entropy production">Entropy production</a></li> <li><a href="/wiki/Energy:_world_resources_and_consumption" class="mw-redirect" title="Energy: world resources and consumption">Energy: world resources and consumption</a></li> <li><a href="/wiki/Emergy" title="Emergy">Emergy</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=34" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-dx.doi.org-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-dx.doi.org_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-dx.doi.org_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-dx.doi.org_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-dx.doi.org_1-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWrightRosenScottHaddow2002" class="citation journal cs1">Wright, S. E.; Rosen, M. A.; Scott, D. S.; Haddow, J. B. (January 2002). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/s1164-0235(01)00040-1">"The exergy flux of radiative heat transfer for the special case of blackbody radiation"</a>. <i>Exergy</i>. <b>2</b> (1): 24–33. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs1164-0235%2801%2900040-1">10.1016/s1164-0235(01)00040-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1164-0235">1164-0235</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Exergy&rft.atitle=The+exergy+flux+of+radiative+heat+transfer+for+the+special+case+of+blackbody+radiation&rft.volume=2&rft.issue=1&rft.pages=24-33&rft.date=2002-01&rft_id=info%3Adoi%2F10.1016%2Fs1164-0235%2801%2900040-1&rft.issn=1164-0235&rft.aulast=Wright&rft.aufirst=S.+E.&rft.au=Rosen%2C+M.+A.&rft.au=Scott%2C+D.+S.&rft.au=Haddow%2C+J.+B.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fs1164-0235%2801%2900040-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceA-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ReferenceA_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-ReferenceA_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-ReferenceA_2-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWrightRosenScottHaddow2002" class="citation journal cs1">Wright, S. E.; Rosen, M. A.; Scott, D. S.; Haddow, J. B. (January 2002). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/s1164-0235(01)00041-3">"The exergy flux of radiative heat transfer with an arbitrary spectrum"</a>. <i>Exergy</i>. <b>2</b> (2): 69–77. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs1164-0235%2801%2900041-3">10.1016/s1164-0235(01)00041-3</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1164-0235">1164-0235</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Exergy&rft.atitle=The+exergy+flux+of+radiative+heat+transfer+with+an+arbitrary+spectrum&rft.volume=2&rft.issue=2&rft.pages=69-77&rft.date=2002-01&rft_id=info%3Adoi%2F10.1016%2Fs1164-0235%2801%2900041-3&rft.issn=1164-0235&rft.aulast=Wright&rft.aufirst=S.+E.&rft.au=Rosen%2C+M.+A.&rft.au=Scott%2C+D.+S.&rft.au=Haddow%2C+J.+B.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fs1164-0235%2801%2900041-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceB-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceB_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceB_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ReferenceB_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-ReferenceB_3-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWrightRosen2004" class="citation journal cs1">Wright, Sean E.; Rosen, Marc A. (2004-02-01). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1115/1.1636796">"Exergetic Efficiencies and the Exergy Content of Terrestrial Solar Radiation"</a>. <i>Journal of Solar Energy Engineering</i>. <b>126</b> (1): 673–676. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1115%2F1.1636796">10.1115/1.1636796</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0199-6231">0199-6231</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Solar+Energy+Engineering&rft.atitle=Exergetic+Efficiencies+and+the+Exergy+Content+of+Terrestrial+Solar+Radiation&rft.volume=126&rft.issue=1&rft.pages=673-676&rft.date=2004-02-01&rft_id=info%3Adoi%2F10.1115%2F1.1636796&rft.issn=0199-6231&rft.aulast=Wright&rft.aufirst=Sean+E.&rft.au=Rosen%2C+Marc+A.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1115%2F1.1636796&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Çengel, Yunus A. Thermodynamics : an Engineering Approach. Boston: McGraw-Hill Higher Education, 2008.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRant1956" class="citation journal cs1">Rant, Zoran (1956). "Exergie, Ein neues Wort für "technische Arbeitsfähigkeit"<span class="cs1-kern-right"></span>". <i>Forschung Auf dem Gebiete des Ingenieurwesens</i>. <b>22</b>: 36–37.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forschung+Auf+dem+Gebiete+des+Ingenieurwesens&rft.atitle=Exergie%2C+Ein+neues+Wort+f%C3%BCr+%22technische+Arbeitsf%C3%A4higkeit%22&rft.volume=22&rft.pages=36-37&rft.date=1956&rft.aulast=Rant&rft.aufirst=Zoran&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÇengelBoles2008" class="citation book cs1">Çengel, Y. A.; Boles, M. A. (2008). <i>Thermodynamics an Engineering Approach</i> (6th ed.). McGraw-Hill. p. 445. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-125771-8" title="Special:BookSources/978-0-07-125771-8"><bdi>978-0-07-125771-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thermodynamics+an+Engineering+Approach&rft.pages=445&rft.edition=6th&rft.pub=McGraw-Hill&rft.date=2008&rft.isbn=978-0-07-125771-8&rft.aulast=%C3%87engel&rft.aufirst=Y.+A.&rft.au=Boles%2C+M.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrubbström1985" class="citation book cs1">Grubbström, Robert W. (1985). "Towards a Generalized Exergy Concept". In van Gool, W.; Bruggink, J. J. C. (eds.). <i>Energy and time in the economic and physical sciences</i>. North-Holland. pp. 41–56. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0444877482" title="Special:BookSources/978-0444877482"><bdi>978-0444877482</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Towards+a+Generalized+Exergy+Concept&rft.btitle=Energy+and+time+in+the+economic+and+physical+sciences&rft.pages=41-56&rft.pub=North-Holland&rft.date=1985&rft.isbn=978-0444877482&rft.aulast=Grubbstr%C3%B6m&rft.aufirst=Robert+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">S.E. Wright, Comparison of the theoretical performance potential of fuel cells and heat engines, Renewable Energy 29 (2004) 179–195</span> </li> <li id="cite_note-Wright_2001_1691–1706-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wright_2001_1691–1706_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wright_2001_1691–1706_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWright2001" class="citation journal cs1">Wright (2001). "On the entropy of radiative heat transfer in engineering thermodynamics". <i>Int. J. Eng. Sci</i>. <b>39</b> (15): 1691–1706. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0020-7225%2801%2900024-6">10.1016/S0020-7225(01)00024-6</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Int.+J.+Eng.+Sci.&rft.atitle=On+the+entropy+of+radiative+heat+transfer+in+engineering+thermodynamics&rft.volume=39&rft.issue=15&rft.pages=1691-1706&rft.date=2001&rft_id=info%3Adoi%2F10.1016%2FS0020-7225%2801%2900024-6&rft.au=Wright&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWright2007" class="citation journal cs1">Wright, S.E. (December 2007). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.ijengsci.2007.08.005">"The Clausius inequality corrected for heat transfer involving radiation"</a>. <i>International Journal of Engineering Science</i>. <b>45</b> (12): 1007–1016. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijengsci.2007.08.005">10.1016/j.ijengsci.2007.08.005</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0020-7225">0020-7225</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Engineering+Science&rft.atitle=The+Clausius+inequality+corrected+for+heat+transfer+involving+radiation&rft.volume=45&rft.issue=12&rft.pages=1007-1016&rft.date=2007-12&rft_id=info%3Adoi%2F10.1016%2Fj.ijengsci.2007.08.005&rft.issn=0020-7225&rft.aulast=Wright&rft.aufirst=S.E.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.ijengsci.2007.08.005&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-R._Petela_1964,_pp._187-192-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-R._Petela_1964,_pp._187-192_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-R._Petela_1964,_pp._187-192_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">R. Petela, 1964, “Exergy of Heat Radiation”, ASME Journal of Heat Transfer, Vol. 86, pp. 187-192</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">A. Bejan, 1997, Advanced Engineering Thermodynamics, 2nd edition, John Wiley and Sons, New York</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">S. Karlsson, 1982, “Exergy of Incoherent Electromagnetic Radiation,” Physica Scripta, Vol. 26, pp. 329-332</span> </li> <li id="cite_note-moran-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-moran_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-moran_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoran2010" class="citation book cs1">Moran, Michael (2010). <i>Fundamentals of Engineering Thermodynamics</i> (7th ed.). Hoboken, N.J.: John Wiley & Sons Canada, Limited. pp. 816–817. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-49590-2" title="Special:BookSources/978-0-470-49590-2"><bdi>978-0-470-49590-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Engineering+Thermodynamics.&rft.place=Hoboken%2C+N.J.&rft.pages=816-817&rft.edition=7th&rft.pub=John+Wiley+%26+Sons+Canada%2C+Limited&rft.date=2010&rft.isbn=978-0-470-49590-2&rft.aulast=Moran&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSzargut" class="citation web cs1">Szargut, Jan. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111125032943/http://www.exergoecology.com/papers/towards_int_re.pdf">"Towards an International Reference Environment of Chemical Exergy"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.exergoecology.com/papers/towards_int_re.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 25 November 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">15 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Towards+an+International+Reference+Environment+of+Chemical+Exergy&rft.aulast=Szargut&rft.aufirst=Jan&rft_id=http%3A%2F%2Fwww.exergoecology.com%2Fpapers%2Ftowards_int_re.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiveroGarfias,_M.2006" class="citation journal cs1">Rivero, R.; Garfias, M. (1 December 2006). "Standard chemical exergy of elements updated". <i>Energy</i>. <b>31</b> (15): 3310–3326. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.energy.2006.03.020">10.1016/j.energy.2006.03.020</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy&rft.atitle=Standard+chemical+exergy+of+elements+updated&rft.volume=31&rft.issue=15&rft.pages=3310-3326&rft.date=2006-12-01&rft_id=info%3Adoi%2F10.1016%2Fj.energy.2006.03.020&rft.aulast=Rivero&rft.aufirst=R.&rft.au=Garfias%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZanchiniTerlizzese,_Tiziano2009" class="citation journal cs1">Zanchini, Enzo; Terlizzese, Tiziano (1 September 2009). "Molar exergy and flow exergy of pure chemical fuels". <i>Energy</i>. <b>34</b> (9): 1246–1259. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.energy.2009.05.007">10.1016/j.energy.2009.05.007</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy&rft.atitle=Molar+exergy+and+flow+exergy+of+pure+chemical+fuels&rft.volume=34&rft.issue=9&rft.pages=1246-1259&rft.date=2009-09-01&rft_id=info%3Adoi%2F10.1016%2Fj.energy.2009.05.007&rft.aulast=Zanchini&rft.aufirst=Enzo&rft.au=Terlizzese%2C+Tiziano&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html">"The Individual and Universal Gas Constant"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">15 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Individual+and+Universal+Gas+Constant&rft_id=http%3A%2F%2Fwww.engineeringtoolbox.com%2Findividual-universal-gas-constant-d_588.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-ohio-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-ohio_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ohio_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.ohio.edu/mechanical/thermo/Applied/Chapt.7_11/Chapter7a.html">"Exergy (Availability) – Part a (updated 3/24/12)"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">1 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Exergy+%28Availability%29+%E2%80%93+Part+a+%28updated+3%2F24%2F12%29&rft_id=http%3A%2F%2Fwww.ohio.edu%2Fmechanical%2Fthermo%2FApplied%2FChapt.7_11%2FChapter7a.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChow2018" class="citation thesis cs1">Chow, Raymond (2018). <a rel="nofollow" class="external text" href="https://louis.uah.edu/uah-theses/261/"><i>Exergy Analysis of the Environmental Control and Life Support System</i></a> (MS thesis). University of Alabama in Huntsville. p. 75. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ProQuest" title="ProQuest">ProQuest</a> <a rel="nofollow" class="external text" href="https://search.proquest.com/docview/2190203603">2190203603</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.title=Exergy+Analysis+of+the+Environmental+Control+and+Life+Support+System&rft.inst=University+of+Alabama+in+Huntsville&rft.date=2018&rft.aulast=Chow&rft.aufirst=Raymond&rft_id=https%3A%2F%2Flouis.uah.edu%2Fuah-theses%2F261%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGilbertMesmerWatson2016" class="citation journal cs1">Gilbert, Andrew; Mesmer, Brian; Watson, Michael (2016). <a rel="nofollow" class="external text" href="https://www.nasa.gov/sites/default/files/atoms/files/40_gilbert_uses_of_exergy_in_systems_engineering.pdf">"Uses of Exergy in Systems Engineering"</a> <span class="cs1-format">(PDF)</span>. <i>2016 Conference on Systems Engineering Research</i>: 5 – via NASA.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=2016+Conference+on+Systems+Engineering+Research&rft.atitle=Uses+of+Exergy+in+Systems+Engineering&rft.pages=5&rft.date=2016&rft.aulast=Gilbert&rft.aufirst=Andrew&rft.au=Mesmer%2C+Brian&rft.au=Watson%2C+Michael&rft_id=https%3A%2F%2Fwww.nasa.gov%2Fsites%2Fdefault%2Ffiles%2Fatoms%2Ffiles%2F40_gilbert_uses_of_exergy_in_systems_engineering.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDyer2022" class="citation thesis cs1">Dyer, Phillip (2022). <a rel="nofollow" class="external text" href="https://louis.uah.edu/uah-theses/392/"><i>Exergy Analysis of Photovoltaics Coupled with Electrochemical Energy Storage for Lunar Power Applications</i></a> (MS thesis). University of Alabama in Huntsville. pp. 6–8. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ProQuest" title="ProQuest">ProQuest</a> <a rel="nofollow" class="external text" href="https://search.proquest.com/docview/2747549074">2747549074</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.title=Exergy+Analysis+of+Photovoltaics+Coupled+with+Electrochemical+Energy+Storage+for+Lunar+Power+Applications&rft.inst=University+of+Alabama+in+Huntsville&rft.date=2022&rft.aulast=Dyer&rft.aufirst=Phillip&rft_id=https%3A%2F%2Flouis.uah.edu%2Fuah-theses%2F392%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-Exergy_Method:_Technical_and_Ecological_Applications-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-Exergy_Method:_Technical_and_Ecological_Applications_23-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJan_Szargut2005" class="citation web cs1">Jan Szargut (2005). <a rel="nofollow" class="external text" href="https://www.witpress.com/books/978-1-85312-753-3">"Exergy Method: Technical and Ecological Applications"</a>. WIT Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Exergy+Method%3A+Technical+and+Ecological+Applications&rft.pub=WIT+Press&rft.date=2005&rft.au=Jan+Szargut&rft_id=https%3A%2F%2Fwww.witpress.com%2Fbooks%2F978-1-85312-753-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-Exergy_Ecology_and_Democracy-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Exergy_Ecology_and_Democracy_24-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/239839936">"Goran Wall"</a>. <i>“Exergy, ecology and democracy - concepts of a vital society or a proposal for an exergy tax”</i>. International Conference on Energy Systems and Ecology. 1993.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=%E2%80%9CExergy%2C+ecology+and+democracy+-+concepts+of+a+vital+society+or+a+proposal+for+an+exergy+tax%E2%80%9D&rft.atitle=Goran+Wall&rft.date=1993&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F239839936&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-exergoecology-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-exergoecology_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-exergoecology_25-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-exergoecology_25-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-exergoecology_25-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-exergoecology_25-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090213191407/http://www.exergoecology.com/exergo/">"The Reference Environment"</a>. <i>Exergoecology Portal</i>. CIRCE. 2008. Archived from <a rel="nofollow" class="external text" href="http://www.exergoecology.com/exergo/">the original</a> on 2009-02-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-12-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Exergoecology+Portal&rft.atitle=The+Reference+Environment&rft.date=2008&rft_id=http%3A%2F%2Fwww.exergoecology.com%2Fexergo%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-gcep.stanford-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-gcep.stanford_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-gcep.stanford_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdwards2007" class="citation journal cs1">Edwards, C.; et al. (2007). <a rel="nofollow" class="external text" href="http://gcep.stanford.edu/pdfs/ryhz9TjH9TbEp9qJ290tWQ/2.6.3_edwards_2008_hq.pdf">"Development of Low-Exergy-Lost, High-Efficiency Chemical Engines"</a> <span class="cs1-format">(PDF)</span>. <i>GCEP Technology Report</i>: 1–2.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=GCEP+Technology+Report&rft.atitle=Development+of+Low-Exergy-Lost%2C+High-Efficiency+Chemical+Engines&rft.pages=1-2&rft.date=2007&rft.aulast=Edwards&rft.aufirst=C.&rft_id=http%3A%2F%2Fgcep.stanford.edu%2Fpdfs%2Fryhz9TjH9TbEp9qJ290tWQ%2F2.6.3_edwards_2008_hq.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-books.google-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-books.google_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-books.google_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoswami2004" class="citation book cs1">Goswami, D. Y.; et al. (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ahbJMOhxHNAC&q=exergy+reference+substances&pg=PT231"><i>The CRC Handbook of Mechanical Engineering</i></a> (2nd ed.). CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8493-0866-6" title="Special:BookSources/978-0-8493-0866-6"><bdi>978-0-8493-0866-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+CRC+Handbook+of+Mechanical+Engineering&rft.edition=2nd&rft.pub=CRC+Press&rft.date=2004&rft.isbn=978-0-8493-0866-6&rft.aulast=Goswami&rft.aufirst=D.+Y.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DahbJMOhxHNAC%26q%3Dexergy%2Breference%2Bsubstances%26pg%3DPT231&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSvirezhev2001" class="citation journal cs1">Svirezhev, Y (2001). "Exergy of solar radiation: Information approach". <i>Ecological Modelling</i>. <b>145</b> (2–3): 101–110. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0304-3800%2801%2900409-4">10.1016/S0304-3800(01)00409-4</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ecological+Modelling&rft.atitle=Exergy+of+solar+radiation%3A+Information+approach&rft.volume=145&rft.issue=2%E2%80%933&rft.pages=101-110&rft.date=2001&rft_id=info%3Adoi%2F10.1016%2FS0304-3800%2801%2900409-4&rft.aulast=Svirezhev&rft.aufirst=Y&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-books.google_a-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-books.google_a_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-books.google_a_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDincerRosen2007" class="citation book cs1">Dincer, I.; Rosen, M. A. (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ruR7U3IjrR0C&q=exergy+and+energy+potential&pg=PA13"><i>Exergy: Energy, Environment, and Sustainable Development</i></a>. Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-08-044529-8" title="Special:BookSources/978-0-08-044529-8"><bdi>978-0-08-044529-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Exergy%3A+Energy%2C+Environment%2C+and+Sustainable+Development&rft.pub=Elsevier&rft.date=2007&rft.isbn=978-0-08-044529-8&rft.aulast=Dincer&rft.aufirst=I.&rft.au=Rosen%2C+M.+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DruR7U3IjrR0C%26q%3Dexergy%2Band%2Benergy%2Bpotential%26pg%3DPA13&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_1:_Generalities-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_1:_Generalities_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrancossiPascoaCatellani2023" class="citation journal cs1">Trancossi, M.; Pascoa, J.; Catellani, T. (2023). <a rel="nofollow" class="external text" href="https://doiserbia.nb.rs/Article.aspx?id=0354-98362300019T">"Exergy, ecology and democracy - concepts of a vital society or a proposal for an exergy tax 30 years after - Part 1: Generalities"</a>. <i>Thermal Science</i>. <b>27</b> (2 Part B): 1337–1353. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2298%2FTSCI220907019T">10.2298/TSCI220907019T</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:256672399">256672399</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230723214733/https://doiserbia.nb.rs/img/doi/0354-9836/2023/0354-98362300019T.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on Jul 23, 2023 – via DOISerbia.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Thermal+Science&rft.atitle=Exergy%2C+ecology+and+democracy+-+concepts+of+a+vital+society+or+a+proposal+for+an+exergy+tax+30+years+after+-+Part+1%3A+Generalities&rft.volume=27&rft.issue=2+Part+B&rft.pages=1337-1353&rft.date=2023&rft_id=info%3Adoi%2F10.2298%2FTSCI220907019T&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A256672399%23id-name%3DS2CID&rft.aulast=Trancossi&rft.aufirst=M.&rft.au=Pascoa%2C+J.&rft.au=Catellani%2C+T.&rft_id=https%3A%2F%2Fdoiserbia.nb.rs%2FArticle.aspx%3Fid%3D0354-98362300019T&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_2:_Exergy_and_UN_sustainable_development_goals-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Exergy,_ecology_and_democracy_-_concepts_of_a_vital_society_or_a_proposal_for_an_exergy_tax_30_years_after_-_Part_2:_Exergy_and_UN_sustainable_development_goals_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrancossiPascoaCatellani2023" class="citation journal cs1">Trancossi, M.; Pascoa, J.; Catellani, T. (2023). <a rel="nofollow" class="external text" href="https://doiserbia.nb.rs/Article.aspx?id=0354-98362300020T">"Exergy, ecology and democracy - concepts of a vital society or a proposal for an exergy tax 30 years after - Part 2: Exergy and UN sustainable development goals"</a>. <i>Thermal Science</i>. <b>27</b> (3 Part B): 2359–2375. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2298%2FTSCI220907020T">10.2298/TSCI220907020T</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:256687017">256687017</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231007222553/https://doiserbia.nb.rs/img/doi/0354-9836/2023/0354-98362300020T.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on Oct 7, 2023 – via DOISerbia.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Thermal+Science&rft.atitle=Exergy%2C+ecology+and+democracy+-+concepts+of+a+vital+society+or+a+proposal+for+an+exergy+tax+30+years+after+-+Part+2%3A+Exergy+and+UN+sustainable+development+goals&rft.volume=27&rft.issue=3+Part+B&rft.pages=2359-2375&rft.date=2023&rft_id=info%3Adoi%2F10.2298%2FTSCI220907020T&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A256687017%23id-name%3DS2CID&rft.aulast=Trancossi&rft.aufirst=M.&rft.au=Pascoa%2C+J.&rft.au=Catellani%2C+T.&rft_id=https%3A%2F%2Fdoiserbia.nb.rs%2FArticle.aspx%3Fid%3D0354-98362300020T&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-Muller-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Muller_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Muller_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüllerKranzlTuominenBoelman2011" class="citation journal cs1">Müller, A.; Kranzl, L.; Tuominen, P.; Boelman, E.; Molinari, M.; Entrop, A.G. (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240329152338/https://ris.utwente.nl/ws/files/6530603/estimating.pdf">"Estimating exergy prices for energy carriers in heating systems: Country analyses of exergy substitution with capital expenditures"</a> <span class="cs1-format">(PDF)</span>. <i>Energy and Buildings</i>. <b>43</b> (12): 3609–3617. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enbuild.2011.09.034">10.1016/j.enbuild.2011.09.034</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:154294592">154294592</a></span>. Archived from <a rel="nofollow" class="external text" href="https://ris.utwente.nl/ws/files/6530603/estimating.pdf">the original</a> <span class="cs1-format">(PDF)</span> on Mar 29, 2024 – via University of Twente.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+and+Buildings&rft.atitle=Estimating+exergy+prices+for+energy+carriers+in+heating+systems%3A+Country+analyses+of+exergy+substitution+with+capital+expenditures&rft.volume=43&rft.issue=12&rft.pages=3609-3617&rft.date=2011&rft_id=info%3Adoi%2F10.1016%2Fj.enbuild.2011.09.034&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A154294592%23id-name%3DS2CID&rft.aulast=M%C3%BCller&rft.aufirst=A.&rft.au=Kranzl%2C+L.&rft.au=Tuominen%2C+P.&rft.au=Boelman%2C+E.&rft.au=Molinari%2C+M.&rft.au=Entrop%2C+A.G.&rft_id=https%3A%2F%2Fris.utwente.nl%2Fws%2Ffiles%2F6530603%2Festimating.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Rosen, M. A., & Dincer, I. (2001). Exergy as the confluence of energy, environment and sustainable development. Exergy, 1(1), 3–13. <a rel="nofollow" class="external autonumber" href="https://www.academia.edu/download/6421325/kcx1421.pdf">[1]</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged July 2022">dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Wall, G., & Gong, M. (2001). On exergy and sustainable development—Part 1: Conditions and concepts. Exergy, 1(3), 128–145. <a rel="nofollow" class="external free" href="https://www.researchgate.net/profile/Goeran_Wall/publication/222700889_On_exergy_and_sustainable_development__Part_I_Conditions_and_concepts/links/53fdc0470cf2364ccc08fafa.pdf">https://www.researchgate.net/profile/Goeran_Wall/publication/222700889_On_exergy_and_sustainable_development__Part_I_Conditions_and_concepts/links/53fdc0470cf2364ccc08fafa.pdf</a></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Wall, G. (1977). Exergy-a useful concept within resource accounting. <a rel="nofollow" class="external free" href="http://www.diva-portal.org/smash/get/diva2:318565/FULLTEXT01.pdf">http://www.diva-portal.org/smash/get/diva2:318565/FULLTEXT01.pdf</a></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Wall, G. (2010). On exergy and sustainable development in environmental engineering. The Open Environmental Engineering Journal, 3, 21–32. <a rel="nofollow" class="external free" href="http://www.diva-portal.org/smash/get/diva2:318551/FULLTEXT01.pdf">http://www.diva-portal.org/smash/get/diva2:318551/FULLTEXT01.pdf</a></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">Dewulf, J., Van Langenhove, H., <a href="/wiki/Bart_Muys" title="Bart Muys">Muys, B.</a>, Bruers, S., Bakshi, B. R., Grubb, G. F., ... & Sciubba, E. (2008). Exergy: its potential and limitations in environmental science and technology. Environmental Science & Technology, 42(7), 2221–2232. <a rel="nofollow" class="external free" href="https://www.researchgate.net/profile/Jo_Dewulf/publication/51393531_Exergy_Its_Potential_and_Limitations_in_Environmental_Science_and_Technology/links/5447ddcc0cf2d62c305220e6.pdf">https://www.researchgate.net/profile/Jo_Dewulf/publication/51393531_Exergy_Its_Potential_and_Limitations_in_Environmental_Science_and_Technology/links/5447ddcc0cf2d62c305220e6.pdf</a></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">Sciubba, E. (2004). From Engineering Economics to Extended Exergy Accounting: A Possible Path from Monetary to Resource‐Based Costing. Journal of Industrial Ecology, 8(4), 19–40. <a rel="nofollow" class="external free" href="https://www.researchgate.net/profile/Sciubba_Enrico/publication/229896297_From_Engineering_Economics_to_Extended_Exergy_Accounting_A_Possible_Path_from_Monetary_to_ResourceBased_Costing/links/5469e6cd0cf2397f782e75e5.pdf">https://www.researchgate.net/profile/Sciubba_Enrico/publication/229896297_From_Engineering_Economics_to_Extended_Exergy_Accounting_A_Possible_Path_from_Monetary_to_ResourceBased_Costing/links/5469e6cd0cf2397f782e75e5.pdf</a></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">Rocco, M. V., Colombo, E., & Sciubba, E. (2014). Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method. Applied Energy, 113, 1405–1420. <a rel="nofollow" class="external free" href="https://www.researchgate.net/profile/Matteo_Rocco/publication/257311375_Advances_in_exergy_analysis_A_novel_assessment_of_the_Extended_Exergy_Accounting_method/links/0f3175314ce7cc6fc5000000.pdf">https://www.researchgate.net/profile/Matteo_Rocco/publication/257311375_Advances_in_exergy_analysis_A_novel_assessment_of_the_Extended_Exergy_Accounting_method/links/0f3175314ce7cc6fc5000000.pdf</a></span> </li> <li id="cite_note-researchgate.net-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-researchgate.net_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-researchgate.net_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Dewulf, J., & Van Langenhove, H. (2003). Exergetic material input per unit of service (EMIPS) for the assessment of resource productivity of transport commodities. Resources, Conservation and Recycling, 38(2), 161–174. <a rel="nofollow" class="external free" href="https://www.researchgate.net/profile/Herman_VAN_LANGENHOVE/publication/228422347_Exergetic_material_input_per_unit_of_service_(EMIPS)_for_the_assessment_of_resource_productivity_of_transport_commodities/links/0c960519a4f6c42d97000000.pdf">https://www.researchgate.net/profile/Herman_VAN_LANGENHOVE/publication/228422347_Exergetic_material_input_per_unit_of_service_(EMIPS)_for_the_assessment_of_resource_productivity_of_transport_commodities/links/0c960519a4f6c42d97000000.pdf</a></span> </li> <li id="cite_note-link.springer.com-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-link.springer.com_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrancossi2014" class="citation journal cs1">Trancossi, M. (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs40095-015-0160-6">"What price of speed? A critical revision through constructal optimization of transport modes"</a>. <i>International Journal of Energy and Environmental Engineering</i>. <b>7</b> (4): 425–448. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs40095-015-0160-6">10.1007/s40095-015-0160-6</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Energy+and+Environmental+Engineering&rft.atitle=What+price+of+speed%3F+A+critical+revision+through+constructal+optimization+of+transport+modes&rft.volume=7&rft.issue=4&rft.pages=425-448&rft.date=2014&rft_id=info%3Adoi%2F10.1007%2Fs40095-015-0160-6&rft.aulast=Trancossi&rft.aufirst=M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs40095-015-0160-6&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">Trancossi, M., Pascoa, J., & Xisto, C. (2016). Design of an innovative off-road hybrid vehicle by energy efficiency criteria. International Journal of Heat and Technology, 34(2), S387-S395 <a rel="nofollow" class="external free" href="http://www.iieta.org/journals/ijht/paper/10.18280/ijht.34S228">http://www.iieta.org/journals/ijht/paper/10.18280/ijht.34S228</a></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">VV. AA., “Transport Energy Efficiency,” IEA, International Energy Agency, 2010.</span> </li> <li id="cite_note-:0-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_44-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDong,_Li,_Wang,_Sun2018" class="citation journal cs1">Dong, Li, Wang, Sun, Zeyu, Dapeng, Zhenguo, Mingbo (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1016/j.actaastro.2018.09.003">"A review on exergy analysis of aerospace power systems"</a>. <i>Acta Astronautica</i>. <b>152</b>: 486–495. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018AcAau.152..486D">2018AcAau.152..486D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.actaastro.2018.09.003">10.1016/j.actaastro.2018.09.003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:116421747">116421747</a> – via Elsevier Science Direct.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Astronautica&rft.atitle=A+review+on+exergy+analysis+of+aerospace+power+systems&rft.volume=152&rft.pages=486-495&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A116421747%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.actaastro.2018.09.003&rft_id=info%3Abibcode%2F2018AcAau.152..486D&rft.aulast=Dong%2C+Li%2C+Wang%2C+Sun&rft.aufirst=Zeyu%2C+Dapeng%2C+Zhenguo%2C+Mingbo&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.actaastro.2018.09.003&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=35" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ol><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_perrot"><b><a href="#ref_perrot">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerrot,_Pierre1998" class="citation book cs1">Perrot, Pierre (1998). <i>A to Z of Thermodynamics</i>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-856552-9" title="Special:BookSources/978-0-19-856552-9"><bdi>978-0-19-856552-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+to+Z+of+Thermodynamics&rft.pub=Oxford+University+Press&rft.date=1998&rft.isbn=978-0-19-856552-9&rft.au=Perrot%2C+Pierre&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_lowex"><b><a href="#ref_lowex">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.lowex.net">"lowexnet"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=lowexnet&rft_id=http%3A%2F%2Fwww.lowex.net&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_rant56"><b><a href="#ref_rant56">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_rant56a"><a href="#ref_rant56a"><b><sup>a</sup></b></a></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZ._Rant1956" class="citation journal cs1">Z. Rant (1956). "Exergie, ein neues Wort für "Technische Arbeitsfahigkeit" (Exergy, a new word for "technical available work")". <i>Forschung Auf dem Gebiete des Ingenieurwesens</i>. <b>22</b>: 36–37.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forschung+Auf+dem+Gebiete+des+Ingenieurwesens&rft.atitle=Exergie%2C+ein+neues+Wort+f%C3%BCr+%22Technische+Arbeitsfahigkeit%22+%28Exergy%2C+a+new+word+for+%22technical+available+work%22%29&rft.volume=22&rft.pages=36-37&rft.date=1956&rft.au=Z.+Rant&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_gibbs1873"><b><a href="#ref_gibbs1873">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_gibbs1873a"><a href="#ref_gibbs1873a"><b><sup>a</sup></b></a></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.W._Gibbs1873" class="citation journal cs1">J.W. Gibbs (1873). "A method of geometrical representation of thermodynamic properties of substances by means of surfaces: repreinted in Gibbs, Collected Works, ed. W. R. Longley and R. G. Van Name (New York: Longmans, Green, 1931)". <i>Transactions of the Connecticut Academy of Arts and Sciences</i>. <b>2</b>: 382–404.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions+of+the+Connecticut+Academy+of+Arts+and+Sciences&rft.atitle=A+method+of+geometrical+representation+of+thermodynamic+properties+of+substances+by+means+of+surfaces%3A+repreinted+in+Gibbs%2C+Collected+Works%2C+ed.+W.+R.+Longley+and+R.+G.+Van+Name+%28New+York%3A+Longmans%2C+Green%2C+1931%29&rft.volume=2&rft.pages=382-404&rft.date=1873&rft.au=J.W.+Gibbs&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_carnot1824"><b><a href="#ref_carnot1824">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_carnot1824a"><a href="#ref_carnot1824a"><b><sup>a</sup></b></a></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFS._Carnot1824" class="citation book cs1">S. Carnot (1824). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120204034518/http://www.history.rochester.edu/steam/carnot/1943/Section2.htm"><i>Réflexions sur la puissance motrice du feu sur les machines propres a developper cette puissance. (Reflections on the Motive Power of Fire and on Machines Fitted to Develop That Power. Translated and edited by R.H. Thurston 1890)</i></a>. Paris: Bachelier. Archived from <a rel="nofollow" class="external text" href="http://www.history.rochester.edu/steam/carnot/1943/Section2.htm">the original</a> on 2012-02-04.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=R%C3%A9flexions+sur+la+puissance+motrice+du+feu+sur+les+machines+propres+a+developper+cette+puissance.+%28Reflections+on+the+Motive+Power+of+Fire+and+on+Machines+Fitted+to+Develop+That+Power.+Translated+and+edited+by+R.H.+Thurston+1890%29&rft.place=Paris&rft.pub=Bachelier&rft.date=1824&rft.au=S.+Carnot&rft_id=http%3A%2F%2Fwww.history.rochester.edu%2Fsteam%2Fcarnot%2F1943%2FSection2.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_alberty01"><b><a href="#ref_alberty01">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlberty,_R._A.2001" class="citation journal cs1">Alberty, R. A. (2001). <a rel="nofollow" class="external text" href="http://www.iupac.org/publications/pac/2001/pdf/7308x1349.pdf">"Use of Legendre transforms in chemical thermodynamics"</a> <span class="cs1-format">(PDF)</span>. <i>Pure Appl. Chem</i>. <b>73</b> (8): 1349–1380. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fpac200173081349">10.1351/pac200173081349</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98264934">98264934</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Pure+Appl.+Chem.&rft.atitle=Use+of+Legendre+transforms+in+chemical+thermodynamics&rft.volume=73&rft.issue=8&rft.pages=1349-1380&rft.date=2001&rft_id=info%3Adoi%2F10.1351%2Fpac200173081349&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98264934%23id-name%3DS2CID&rft.au=Alberty%2C+R.+A.&rft_id=http%3A%2F%2Fwww.iupac.org%2Fpublications%2Fpac%2F2001%2Fpdf%2F7308x1349.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_kelvin1848"><b><a href="#ref_kelvin1848">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLord_Kelvin_(William_Thomson)1848" class="citation journal cs1">Lord Kelvin (William Thomson) (1848). <a rel="nofollow" class="external text" href="http://zapatopi.net/kelvin/papers/on_an_absolute_thermometric_scale.html">"On an Absolute Thermometric Scale founded on Carnot's Theory of the Motive Power of Heat, and calculated from Regnault's Observations"</a>. <i>Philosophical Magazine</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Magazine&rft.atitle=On+an+Absolute+Thermometric+Scale+founded+on+Carnot%27s+Theory+of+the+Motive+Power+of+Heat%2C+and+calculated+from+Regnault%27s+Observations&rft.date=1848&rft.au=Lord+Kelvin+%28William+Thomson%29&rft_id=http%3A%2F%2Fzapatopi.net%2Fkelvin%2Fpapers%2Fon_an_absolute_thermometric_scale.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_dincer01"><b><a href="#ref_dincer01">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_dincer01a"><a href="#ref_dincer01a"><b><sup>a</sup></b></a></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFI._DincerY.A._Cengel2001" class="citation journal cs1">I. Dincer; Y.A. Cengel (2001). <a rel="nofollow" class="external text" href="http://www.mdpi.org/entropy/papers/e3030116.pdf">"Energy, entropy, and exergy concepts and their roles in thermal engineering"</a> <span class="cs1-format">(PDF)</span>. <i>Entropy</i>. <b>3</b> (3): 116–149. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Entrp...3..116D">2001Entrp...3..116D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fe3030116">10.3390/e3030116</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Entropy&rft.atitle=Energy%2C+entropy%2C+and+exergy+concepts+and+their+roles+in+thermal+engineering&rft.volume=3&rft.issue=3&rft.pages=116-149&rft.date=2001&rft_id=info%3Adoi%2F10.3390%2Fe3030116&rft_id=info%3Abibcode%2F2001Entrp...3..116D&rft.au=I.+Dincer&rft.au=Y.A.+Cengel&rft_id=http%3A%2F%2Fwww.mdpi.org%2Fentropy%2Fpapers%2Fe3030116.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation wikicite" id="endnote_solar1"><b><a href="#ref_solar1">^</a></b></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSan,_J._Y.,_Lavan,_Z.,_Worek,_W._M.,_Jean-Baptiste_Monnier,_Franta,_G._E.,_Haggard,_K.,_Glenn,_B._H.,_Kolar,_W._A.,_Howell,_J._R.1982" class="citation journal cs1">San, J. Y., Lavan, Z., Worek, W. M., Jean-Baptiste Monnier, Franta, G. E., Haggard, K., Glenn, B. H., Kolar, W. A., Howell, J. R. (1982). "Exergy analysis of solar powered desiccant cooling system". <i>Proc. of the American Section of the Intern. Solar Energy Society</i>: 567–572.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc.+of+the+American+Section+of+the+Intern.+Solar+Energy+Society&rft.atitle=Exergy+analysis+of+solar+powered+desiccant+cooling+system&rft.pages=567-572&rft.date=1982&rft.au=San%2C+J.+Y.%2C+Lavan%2C+Z.%2C+Worek%2C+W.+M.%2C+Jean-Baptiste+Monnier%2C+Franta%2C+G.+E.%2C+Haggard%2C+K.%2C+Glenn%2C+B.+H.%2C+Kolar%2C+W.+A.%2C+Howell%2C+J.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></li></ol> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=36" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBastianoniFacchiniSusaniTiezzi2007" class="citation journal cs1">Bastianoni, E.; Facchini, A.; Susani, L.; Tiezzi (2007). "Emergy as a function of exergy". <i>Energy</i>. <b>32</b> (7): 1158–1162. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.energy.2006.08.009">10.1016/j.energy.2006.08.009</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy&rft.atitle=Emergy+as+a+function+of+exergy&rft.volume=32&rft.issue=7&rft.pages=1158-1162&rft.date=2007&rft_id=info%3Adoi%2F10.1016%2Fj.energy.2006.08.009&rft.aulast=Bastianoni&rft.aufirst=E.&rft.au=Facchini%2C+A.&rft.au=Susani%2C+L.&rft.au=Tiezzi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExergy" class="Z3988"></span></li> <li>Stephen Jay Kline (1999). <i>The Low-Down on Entropy and Interpretive Thermodynamics</i>, La Cañada, CA: DCW Industries. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1928729010" title="Special:BookSources/1928729010">1928729010</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Exergy&action=edit&section=37" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5710&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=1f87f1e1820a1470d40891d79b39b3f6">Energy, Incorporating Exergy, An International Journal</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20050210183514/http://www.fes.uwaterloo.ca/u/jjkay/pubs/exergy/biblio.html">An Annotated Bibliography of Exergy/Availability</a></li> <li><a rel="nofollow" class="external text" href="http://exergy.se/goran/thesis/"><i>Exergy – a useful concept</i> by Göran Wall</a></li> <li><a rel="nofollow" class="external text" href="http://exergy.se/ftp/exergetics.pdf"><i>Exergetics</i> textbook for self-study by Göran Wall</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20050323082126/http://imartinez.etsin.upm.es/bk3/c03/Exergy.htm"><i>Exergy</i> by Isidoro Martinez</a></li> <li><a rel="nofollow" class="external text" href="http://www.exergoecology.com/excalc"><i>Exergy calculator</i> by The Exergoecology Portal</a></li> <li><a rel="nofollow" class="external text" href="https://gcep.stanford.edu/research/exergy/resourcechart.html"><i>Global Exergy Resource Chart</i></a></li> <li><a rel="nofollow" class="external text" href="http://www.lowex.net/english/inside/frames/text/material_in.html"><i>Guidebook to IEA ECBCS Annex 37, Low Exergy Systems for Heating and Cooling of Buildings</i></a></li> <li><a rel="nofollow" class="external text" href="http://www.lowex.net/english/inside/frames/text/material_in.html"><i>Introduction to the Concept of Exergy</i></a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Industrial_ecology" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="background:#7FBF7F;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Industrial_ecology" title="Template:Industrial ecology"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Industrial_ecology" title="Template talk:Industrial ecology"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Industrial_ecology" title="Special:EditPage/Template:Industrial ecology"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Industrial_ecology" style="font-size:114%;margin:0 4em"><a href="/wiki/Industrial_ecology" title="Industrial ecology">Industrial ecology</a></div></th></tr><tr><th scope="row" class="navbox-group" style="background:#7FBF7F;;width:1%">Tools</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Agent-based_model" title="Agent-based model">Agent-based model</a></li> <li><a href="/wiki/Cost%E2%80%93benefit_analysis" title="Cost–benefit analysis">Cost–benefit analysis</a></li> <li><a href="/wiki/DPSIR" title="DPSIR">DPSIR</a></li> <li><a href="/wiki/Ecolabel" title="Ecolabel">Ecolabel</a></li> <li><a href="/wiki/Ecological_footprint" title="Ecological footprint">Ecological footprint</a></li> <li><a href="/wiki/Environmental_full-cost_accounting" title="Environmental full-cost accounting">Environmental full-cost accounting</a></li> <li><a href="/wiki/Environmental_impact_assessment" title="Environmental impact assessment">Environmental impact assessment</a></li> <li><a href="/wiki/Environmental_management_system" title="Environmental management system">Environmental management system</a></li> <li><a href="/wiki/EIO-LCA" title="EIO-LCA">EIO-LCA</a></li> <li><a href="/wiki/Input%E2%80%93output_model" title="Input–output model">Input–output model</a></li> <li><a href="/wiki/Integrated_chain_management" title="Integrated chain management">Integrated chain management</a></li> <li><a href="/wiki/ISO_14000" class="mw-redirect" title="ISO 14000">ISO 14000</a></li> <li><a href="/wiki/Life-cycle_assessment" title="Life-cycle assessment">Life-cycle assessment</a></li> <li><a href="/wiki/Life-cycle_cost_analysis" title="Life-cycle cost analysis">Life-cycle cost analysis</a></li> <li><a href="/wiki/Material_flow_analysis" title="Material flow analysis">Material flow analysis</a></li> <li><a href="/wiki/MET_Matrix" title="MET Matrix">MET Matrix</a></li> <li><a href="/wiki/Stakeholder_analysis" title="Stakeholder analysis">Stakeholder analysis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#7FBF7F;;width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_economy" title="Circular economy">Circular economy</a></li> <li><a href="/wiki/Cradle-to-cradle_design" title="Cradle-to-cradle design">Cradle-to-cradle design</a></li> <li><a href="/wiki/Dematerialization_(products)" title="Dematerialization (products)">Dematerialization</a></li> <li><a href="/wiki/Eco-efficiency" title="Eco-efficiency">Eco-efficiency</a></li> <li><a href="/wiki/Eco-industrial_development" title="Eco-industrial development">Eco-industrial development</a></li> <li><a href="/wiki/Eco-industrial_park" title="Eco-industrial park">Eco-industrial park</a></li> <li><a href="/wiki/Ecological_modernization" title="Ecological modernization">Ecological modernization</a></li> <li><a href="/wiki/Efficient_energy_use" title="Efficient energy use">Efficient energy use</a></li> <li><a class="mw-selflink selflink">Exergy</a></li> <li><a href="/wiki/Extended_producer_responsibility" title="Extended producer responsibility">Extended producer responsibility</a></li> <li><a href="/wiki/Industrial_metabolism" title="Industrial metabolism">Industrial metabolism</a></li> <li><a href="/wiki/Industrial_symbiosis" title="Industrial symbiosis">Industrial symbiosis</a></li> <li><a href="/wiki/Polluter_pays_principle" title="Polluter pays principle">Polluter pays principle</a></li> <li><a href="/wiki/Precautionary_principle" title="Precautionary principle">Precautionary principle</a></li> <li><a href="/wiki/Rebound_effect_(conservation)" title="Rebound effect (conservation)">Rebound effect</a></li> <li><a href="/wiki/Waste_hierarchy" title="Waste hierarchy">Waste hierarchy</a></li> <li><a href="/wiki/Waste_minimisation" title="Waste minimisation">Waste minimisation</a></li> <li><a href="/wiki/Waste_valorization" title="Waste valorization">Waste valorization</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#7FBF7F;;width:1%">Related fields</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cleaner_production" title="Cleaner production">Cleaner production</a></li> <li><a href="/wiki/Design_for_the_Environment" class="mw-redirect" title="Design for the Environment">Design for environment</a></li> <li><a href="/wiki/Earth_systems_engineering_and_management" title="Earth systems engineering and management">Earth systems engineering and management</a></li> <li><a href="/wiki/Ecological_economics" title="Ecological economics">Ecological economics</a></li> <li><a href="/wiki/Ecological_modernization" title="Ecological modernization">Ecological modernization</a></li> <li><a href="/wiki/Environmental_economics" title="Environmental economics">Environmental economics</a></li> <li><a href="/wiki/Green_chemistry" title="Green chemistry">Green chemistry</a></li> <li><a href="/wiki/Sustainable_development" title="Sustainable development">Sustainable development</a></li> <li><a href="/wiki/Urban_ecology" title="Urban ecology">Urban ecology</a></li> <li><a href="/wiki/Urban_metabolism" title="Urban metabolism">Urban metabolism</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q663290#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4015955-3">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Exergy"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2002010497">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Exergie"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb16132710h">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Exergie"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb16132710h">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="exergie"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph503037&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007566465005171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐9vzgv Cached time: 20241122142931 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.834 seconds Real time usage: 1.095 seconds Preprocessor visited node count: 7054/1000000 Post‐expand include size: 156263/2097152 bytes Template argument size: 8970/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 181738/5000000 bytes Lua time usage: 0.446/10.000 seconds Lua memory usage: 7209194/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 823.168 1 -total 32.94% 271.165 1 Template:Reflist 23.59% 194.180 23 Template:Cite_journal 12.95% 106.641 1 Template:Short_description 9.63% 79.243 1 Template:Industrial_ecology 9.33% 76.808 1 Template:Navbox 7.17% 59.021 3 Template:Citation_needed 7.07% 58.227 4 Template:Fix 6.60% 54.331 2 Template:Pagetype 5.50% 45.293 5 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:1075005-0!canonical and timestamp 20241122142931 and revision id 1250205873. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Exergy&oldid=1250205873">https://en.wikipedia.org/w/index.php?title=Exergy&oldid=1250205873</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Thermodynamic_free_energy" title="Category:Thermodynamic free energy">Thermodynamic free energy</a></li><li><a href="/wiki/Category:State_functions" title="Category:State functions">State functions</a></li><li><a href="/wiki/Category:Ecological_economics" title="Category:Ecological economics">Ecological economics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_July_2022" title="Category:Articles with dead external links from July 2022">Articles with dead external links from July 2022</a></li><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2009" title="Category:Articles with unsourced statements from February 2009">Articles with unsourced statements from February 2009</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2020" title="Category:Articles with unsourced statements from December 2020">Articles with unsourced statements from December 2020</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_March_2023" title="Category:Articles needing additional references from March 2023">Articles needing additional references from March 2023</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2015" title="Category:Articles with unsourced statements from March 2015">Articles with unsourced statements from March 2015</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_December_2020" title="Category:Articles needing additional references from December 2020">Articles needing additional references from December 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 October 2024, at 02:23<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Exergy&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-mcbjw","wgBackendResponseTime":169,"wgPageParseReport":{"limitreport":{"cputime":"0.834","walltime":"1.095","ppvisitednodes":{"value":7054,"limit":1000000},"postexpandincludesize":{"value":156263,"limit":2097152},"templateargumentsize":{"value":8970,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":181738,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 823.168 1 -total"," 32.94% 271.165 1 Template:Reflist"," 23.59% 194.180 23 Template:Cite_journal"," 12.95% 106.641 1 Template:Short_description"," 9.63% 79.243 1 Template:Industrial_ecology"," 9.33% 76.808 1 Template:Navbox"," 7.17% 59.021 3 Template:Citation_needed"," 7.07% 58.227 4 Template:Fix"," 6.60% 54.331 2 Template:Pagetype"," 5.50% 45.293 5 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.446","limit":"10.000"},"limitreport-memusage":{"value":7209194,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-9vzgv","timestamp":"20241122142931","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Exergy","url":"https:\/\/en.wikipedia.org\/wiki\/Exergy","sameAs":"http:\/\/www.wikidata.org\/entity\/Q663290","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q663290","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-10-17T00:43:18Z","dateModified":"2024-10-09T02:23:38Z","headline":"maximum energy available for use"}</script> </body> </html>