CINXE.COM

Search results for: hazardous materials

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hazardous materials</title> <meta name="description" content="Search results for: hazardous materials"> <meta name="keywords" content="hazardous materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hazardous materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hazardous materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7204</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hazardous materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7204</span> Reducing Hazardous Materials Releases from Railroad Freights through Dynamic Trip Plan Policy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Abuobidalla">Omar A. Abuobidalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingyuan%20Chen"> Mingyuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyaveer%20S.%20Chauhan"> Satyaveer S. Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railroad transportation of hazardous materials freights is important to the North America economics that supports the national’s supply chain. This paper introduces various extensions of the dynamic hazardous materials trip plan problems. The problem captures most of the operational features of a real-world railroad transportations systems that dynamically initiates a set of blocks and assigns each shipment to a single block path or multiple block paths. The dynamic hazardous materials trip plan policies have distinguishing features that are integrating the blocking plan, and the block activation decisions. We also present a non-linear mixed integer programming formulation for each variant and present managerial insights based on a hypothetical railroad network. The computation results reveal that the dynamic car scheduling policies are not only able to take advantage of the capacity of the network but also capable of diminishing the population, and environment risks by rerouting the active blocks along the least risky train services without sacrificing the cost advantage of the railroad. The empirical results of this research illustrate that the issue of integrating the blocking plan, and the train makeup of the hazardous materials freights must receive closer attentions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20car%20scheduling" title="dynamic car scheduling">dynamic car scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20and%20scheduling%20hazardous%20materials%20freights" title=" planning and scheduling hazardous materials freights"> planning and scheduling hazardous materials freights</a>, <a href="https://publications.waset.org/abstracts/search?q=airborne%20hazardous%20materials" title=" airborne hazardous materials"> airborne hazardous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20plume%20model" title=" gaussian plume model"> gaussian plume model</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20blocking%20and%20routing%20plans" title=" integrated blocking and routing plans"> integrated blocking and routing plans</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20model" title=" box model"> box model</a> </p> <a href="https://publications.waset.org/abstracts/71326/reducing-hazardous-materials-releases-from-railroad-freights-through-dynamic-trip-plan-policy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7203</span> Sampling and Characterization of Fines Created during the Shredding of Non Hazardous Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soukaina%20Oujana">Soukaina Oujana</a>, <a href="https://publications.waset.org/abstracts/search?q=Peggy%20Zwolinski"> Peggy Zwolinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fines are heterogeneous residues created during the shredding of non-hazardous waste. They are one of the most challenging issues faced by recyclers, because they are at the present time considered as non-sortable and non-reusable mixtures destined to landfill. However, fines contain a large amount of recoverable materials that could be recycled or reused for the production of solid recovered fuel. This research is conducted in relation to a project named ValoRABES. The aim is to characterize fines and establish a suitable sorting process in order to extract the materials contained in the mixture and define their suitable recovery paths. This paper will highlight the importance of a good sampling and will propose a sampling methodology for fines characterization. First results about the characterization will be also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fines" title="fines">fines</a>, <a href="https://publications.waset.org/abstracts/search?q=non-hazardous%20waste" title=" non-hazardous waste"> non-hazardous waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=shredding%20residues" title=" shredding residues"> shredding residues</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20characterization" title=" waste characterization"> waste characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20sampling" title=" waste sampling"> waste sampling</a> </p> <a href="https://publications.waset.org/abstracts/77680/sampling-and-characterization-of-fines-created-during-the-shredding-of-non-hazardous-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7202</span> Proposal of Solidification/Stabilisation Process of Chosen Hazardous Waste by Cementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bozena%20Dohnalkova">Bozena Dohnalkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a part of the project solving which is dedicated to the identification of the hazardous waste with the most critical production within the Czech Republic with the aim to study and find the optimal composition of the cement matrix that will ensure maximum content disposal of chosen hazardous waste. In the first stage of project solving – which represents this paper – a specific hazardous waste was chosen, its properties were identified and suitable solidification agents were chosen. Consequently solidification formulas and testing methodology was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementation" title="cementation">cementation</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=binder" title=" binder "> binder </a> </p> <a href="https://publications.waset.org/abstracts/30145/proposal-of-solidificationstabilisation-process-of-chosen-hazardous-waste-by-cementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7201</span> Concentration of Some Hazardous Metals (Cd, Pb and Ni) in Egg Samples Analysed from Poultry Farms Located near Automechanics Workshops, Industrial Areas and Roadsides in Kano and Kaduna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Mohammed">M. I. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Sani"> A. M. Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Bayero"> A. S. Bayero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to study the effect of farm site location by determining the levels of hazardous metals in poultry eggs samples collected near auto mechanics, industrial areas and roadsides in Kaduna and Kano States of Nigeria. Atomic absorption spectrophotometer was used for the analysis of the metals. The mean concentration ranges of the metals analysed in egg white and egg yolk were Pb: 0.05-0.10mgkg⁻¹, Ni: 0.10-0.30mgkg⁻¹ and Cd: not detected -0.03mgkg⁻¹. It was concluded that farm site locations has very low significant effect on the concentration of hazardous metals level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=albumen" title="albumen">albumen</a>, <a href="https://publications.waset.org/abstracts/search?q=Egg" title=" Egg"> Egg</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20metals" title=" hazardous metals"> hazardous metals</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20farms" title=" poultry farms"> poultry farms</a> </p> <a href="https://publications.waset.org/abstracts/60030/concentration-of-some-hazardous-metals-cd-pb-and-ni-in-egg-samples-analysed-from-poultry-farms-located-near-automechanics-workshops-industrial-areas-and-roadsides-in-kano-and-kaduna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7200</span> Polymer in Electronic Waste: An Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20A.%20Ansari">Anis A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Aftab%20A.%20Ansari"> Aftab A. Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic waste is inundating the traditional solid-waste-disposal facilities, which are inadequately designed to handle and manage such type of new wastes. Since electronic waste contains mostly hazardous and even toxic materials, the seriousness of its effects on human health and the environment cannot be ignored in present scenario. Waste from the electronic industry is increasing exponentially day by day. From the last 20 years, we are continuously generating huge quantities of e-waste such as obsolete computers and other discarded electronic components, mainly due to evolution of newer technologies as a result of constant efforts in research and development in this sector. Polymers, one of the major constituents in almost every electronic waste, such as computers, printers, electronic equipment, entertainment devices, mobile phones, television sets etc., are if properly recycled can create a new business opportunity. This would not only create potential market for polymers to improve economy but also the priceless land used as dumping sites of electronic waste, can be utilized for other productive purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20recycling" title="polymer recycling">polymer recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20waste" title=" electronic waste"> electronic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20materials" title=" hazardous materials"> hazardous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20components" title=" electronic components"> electronic components</a> </p> <a href="https://publications.waset.org/abstracts/19469/polymer-in-electronic-waste-an-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7199</span> The Influence of Gender and Harmful Alcohol Consumption on Academic Performance in Spanish University Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Rodr%C3%ADguez">M. S. Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Cadaveira"> F. Cadaveira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20P%C3%A1ramo"> M. F. Páramo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> First year university students comprise one of the groups most likely to indulge in hazardous alcohol consumption. The transition from secondary school to university presents a range of academic, social and developmental challenges requiring new responses that will meet the demands of this highly competitive environment. The main purpose of this research was to analyze the influence of gender and hazardous alcohol consumption on academic performance of 300 university students in Spain in a three-year follow-up study. Alcohol consumption was measured using the Alcohol Use Identification Test (AUDIT), and the average university grades were provided by the Academic Management Services of the University. Analysis of variance showed that the level of alcohol consumption significantly affected academic performance. Students undertaking hazardous alcohol consumption obtained the lowest grades during the first three years at university. These effects were particularly marked in the sample of women with a hazardous pattern of alcohol consumption, although the interaction between gender and this type of consumption was not significant. The study highlights the impact of hazardous alcohol consumption on the academic trajectory of university students. The findings confirm that alcohol consumption predicts poor academic performance in first year students and that the low level of performance is maintained throughout the university career. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20performance" title="academic performance">academic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20consumption" title=" alcohol consumption"> alcohol consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20students" title=" university students"> university students</a> </p> <a href="https://publications.waset.org/abstracts/49985/the-influence-of-gender-and-harmful-alcohol-consumption-on-academic-performance-in-spanish-university-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7198</span> Detoxification of Hazardous Organic/Inorganic Contaminants in Automobile Shredder Residue by Multi-Functioned Nano-Size Metallic Calcium Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati">Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Ho%20Lee"> Byoung Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Mitoma"> Yoshiharu Mitoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Simion%20Cristian"> Simion Cristian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, environmental nanotechnology has risen to the forefront and the new properties and enhanced reactivates offered by nanomaterial may offer a new, low-cost paradigm to solving complex environmental pollution problems. This study assessed the synthesis and application of multi-functioned nano-size metallic calcium (nMC) composite for detoxification of hazardous inorganic (heavy metals (HMs)/organic chlorinated/brominated compound (CBCs) contaminants in automobile shredder residue (ASR). ASR residues ball milled with nMC composite can achieve about 90-100% of HMs immobilization and CBCs decomposition. The results highlight the low quantity of HMs leached from ASR residues after treatment with nMC, which was found to be lower than the standard regulatory limit for hazardous waste landfills. The use of nMC composite in a mechanochemical process to treat hazardous ASR (dry conditions) is a simple and innovative approach to remediate hazardous inorganic/organic cross-contaminates in ASR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-sized%20metallic%20calcium" title="nano-sized metallic calcium">nano-sized metallic calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=automobile%20shredder%20residue" title=" automobile shredder residue"> automobile shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%2Finorganic%20contaminants" title=" organic/inorganic contaminants"> organic/inorganic contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification" title=" detoxification"> detoxification</a> </p> <a href="https://publications.waset.org/abstracts/72507/detoxification-of-hazardous-organicinorganic-contaminants-in-automobile-shredder-residue-by-multi-functioned-nano-size-metallic-calcium-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7197</span> Status of Hazardous Waste Generation and Its Impacts on Environment and Human Health: A Study in West Bengal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sk%20Ajim%20Ali">Sk Ajim Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is an attempt to overview on the major environmental and health impacts due to hazardous waste generation and poor management. In present scenario, not only hazardous waste, but as a common term ‘Waste’ is one of the acceptable and thinkable environmental issues. With excessive increasing population, industrialization and standardization of human’s life style heap in extra waste generation which is directly or indirectly related with hazardous waste generation. Urbanization and population growth are solely responsible for establishing industrial sector and generating various Hazardous Waste (HW) and concomitantly poor management practice arising adverse effect on environment and human health. As compare to other Indian state, West Bengal is not too much former in HW generation. West Bengal makes a rank of 7th in HW generation followed by Maharashtra, Gujarat, Tamil Nadu, U.P, Punjab and Andhra Pradesh. During the last 30 years, the industrial sectors in W.B have quadrupled in size, during 1995 there were only 440 HW generating Units in West Bengal which produced 129826 MTA hazardous waste but in 2011, it rose up into 609 units and it produced about 259777 MTA hazardous waste. So, the notable thing is that during a 15 year interval there increased 169 waste generating units but it produced about 129951 MTA of hazardous waste. Major chemical industries are the main sources of HW and causes of adverse effect on the environment and human health. HW from industrial sectors contains heavy metals, cyanides, pesticides, complex aromatic compounds (i.e. PCB) and other chemical which are toxic, flammable, reactive, and corrosive and have explosive properties which highly affect the surrounding environment and human health in and around he disposal sites. The main objective of present study is to highlight on the sources and components of hazardous waste in West Bengal and impacts of improper HW management on health and environment. This study is carried out based on a secondary source of data and qualitative method of research. The secondary data has been collected annual report of WBPCB, WHO’s report, research paper, article, books and so on. It has been found that excessive HW generation from various sources and communities has serious health hazards that lead to the spreading of infectious disease and environmental change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title="environmental impacts">environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=existing%20HW%20generation%20and%20management%20practice" title=" existing HW generation and management practice"> existing HW generation and management practice</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20waste%20%28HW%29" title=" hazardous waste (HW)"> hazardous waste (HW)</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20impacts" title=" health impacts"> health impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=recommendation%20and%20planning" title=" recommendation and planning"> recommendation and planning</a> </p> <a href="https://publications.waset.org/abstracts/60152/status-of-hazardous-waste-generation-and-its-impacts-on-environment-and-human-health-a-study-in-west-bengal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7196</span> Hazardous Waste Management at Chemistry Section in Dubai Police Forensic Lab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Lanjawi">Adnan Lanjawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is carried out to investigate the management of hazardous waste in the chemistry section which belongs to Dubai Police forensic laboratory. The chemicals are the main contributor toward the accumulation of hazardous waste in the section. This is due to the requirement to use it in analysis, such as of explosives, drugs, inorganic and fire debris cases. This leads to negative effects on the environment and to the employees’ health and safety. The research investigates the quantity of chemicals there, the labels, the storage room and equipment used. The target is to reduce the need for disposal by looking at alternative options, such as elimination, substitution and recycling. The data was collected by interviewing the top managers there who have been working in the lab more than 20 years. Also, data was collected by observing employees and how they carry out experiments. Therefore, a survey was made to assess their knowledge about the hazardous waste. The management of hazardous chemicals in the chemistry section needs to be improved. The main findings illustrate that about 110 bottles of reference substances were going to be disposed of in 2014. These bottles were bought for about 100,000 UAE Dirhams (£17,600). This means that the management of substances purchase is not organised. There is no categorisation programme in place, which makes the waste control very difficult. In addition, the findings show that chemical are segregated according to alphabetical order, whereas the efficient way is to separate them according to their nature and property. In addition, the research suggested technology and experiments to follow to reduce the need for using solvents and chemicals in the sample preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratories" title=" laboratories"> laboratories</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/34566/hazardous-waste-management-at-chemistry-section-in-dubai-police-forensic-lab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7195</span> CAGE Questionnaire as a Screening Tool for Hazardous Drinking in an Acute Admissions Ward: Frequency of Application and Comparison with AUDIT-C Questionnaire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ayad%20Issa%20Al-Rifaie">Ammar Ayad Issa Al-Rifaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuhreya%20Muazu"> Zuhreya Muazu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maysam%20Ali%20Abdulwahid"> Maysam Ali Abdulwahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Dermot%20Gleeson"> Dermot Gleeson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this audit was to examine the efficiency of alcohol history documentation and screening for hazardous drinkers at the Medical Admission Unit (MAU) of Northern General Hospital (NGH), Sheffield, to identify any potential for enhancing clinical practice. Data were collected from medical clerking sheets, ICE system and directly from 82 patients by three junior medical doctors using both CAGE questionnaire and AUDIT-C tool for newly admitted patients to MAU in NGH, in the period between January and March 2015. Alcohol consumption was documented in around two-third of the patient sample and this was documented fairly accurately by health care professionals. Some used subjective words such as 'social drinking' in the alcohol units’ section of the history. CAGE questionnaire was applied to only four patients and none of the patients had documented advice, education or referral to an alcohol liaison team. AUDIT-C tool had identified 30.4%, while CAGE 10.9%, of patients admitted to the NGH MAU as hazardous drinkers. The amount of alcohol the patient consumes positively correlated with the score of AUDIT-C (Pearson correlation 0.83). Re-audit is planned to be carried out after integrating AUDIT-C tool as labels in the notes and presenting a brief teaching session to junior doctors. Alcohol misuse screening is not adequately undertaken and no appropriate action is being offered to hazardous drinkers. CAGE questionnaire is poorly applied to patients and when satisfactory and adequately used has low sensitivity to detect hazardous drinkers in comparison with AUDIT-C tool. Re-audit of alcohol screening practice after introducing AUDIT-C tool in clerking sheets (as labels) is required to compare the findings and conclude the audit cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcohol%20screening" title="alcohol screening">alcohol screening</a>, <a href="https://publications.waset.org/abstracts/search?q=AUDIT-C" title=" AUDIT-C"> AUDIT-C</a>, <a href="https://publications.waset.org/abstracts/search?q=CAGE" title=" CAGE"> CAGE</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20drinking" title=" hazardous drinking"> hazardous drinking</a> </p> <a href="https://publications.waset.org/abstracts/37335/cage-questionnaire-as-a-screening-tool-for-hazardous-drinking-in-an-acute-admissions-ward-frequency-of-application-and-comparison-with-audit-c-questionnaire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7194</span> Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Agarwal">Ashish Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Singh"> Vaibhav Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulphur%20recovery%20unit" title="sulphur recovery unit">sulphur recovery unit</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent%20treatment%20plant" title=" effluent treatment plant"> effluent treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20waste" title=" hazardous waste"> hazardous waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sour%20gas" title=" sour gas"> sour gas</a> </p> <a href="https://publications.waset.org/abstracts/49802/environment-management-practices-at-oil-and-natural-gas-corporation-hazira-gas-processing-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7193</span> An Integrated Approach for Risk Management of Transportation of HAZMAT: Use of Quality Function Deployment and Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guldana%20Zhigerbayeva">Guldana Zhigerbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yang"> Ming Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation of hazardous materials (HAZMAT) is inevitable in the process industries. The statistics show a significant number of accidents has occurred during the transportation of HAZMAT. This makes risk management of HAZMAT transportation an important topic. The tree-based methods including fault-trees, event-trees and cause-consequence analysis, and Bayesian network, have been applied to risk management of HAZMAT transportation. However, there is limited work on the development of a systematic approach. The existing approaches fail to build up the linkages between the regulatory requirements and the safety measures development. The analysis of historical data from the past accidents’ report databases would limit our focus on the specific incidents and their specific causes. Thus, we may overlook some essential elements in risk management, including regulatory compliance, field expert opinions, and suggestions. A systematic approach is needed to translate the regulatory requirements of HAZMAT transportation into specified safety measures (both technical and administrative) to support the risk management process. This study aims to first adapt the House of Quality (HoQ) to House of Safety (HoS) and proposes a new approach- Safety Function Deployment (SFD). The results of SFD will be used in a multi-criteria decision-support system to develop find an optimal route for HazMats transportation. The proposed approach will be demonstrated through a hypothetical transportation case in Kazakhstan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazardous%20materials" title="hazardous materials">hazardous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20function%20deployment" title=" quality function deployment"> quality function deployment</a> </p> <a href="https://publications.waset.org/abstracts/122594/an-integrated-approach-for-risk-management-of-transportation-of-hazmat-use-of-quality-function-deployment-and-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7192</span> Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati">Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Thanh%20Truc"> Nguyen Thi Thanh Truc</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20shredder%20residue" title="automotive shredder residue">automotive shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorinated%20plastics" title=" chlorinated plastics"> chlorinated plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20waste" title=" hazardous waste"> hazardous waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/32517/separation-of-chlorinated-plastics-and-immobilization-of-heavy-metals-in-hazardous-automotive-shredder-residue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7191</span> Healthcare Waste Management Practices in Bangladesh: A Case Study in Dhaka City, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Nuralam">H. M. Nuralam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Xiao-lan"> Z. Xiao-lan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Dubey"> B. K. Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Wen-Chuan"> D. Wen-Chuan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthcare waste (HCW) is one of the major concerns in environmental issues due to its infectious and hazardous nature that is requires specific treatment and systematic management prior to final disposal. This study aimed to assess HCW management system in Dhaka City (DC), Bangladesh, by investigating the present practices implemented by the city. In this study, five different healthcare establishments were selected in DC. Field visits and interviews with health personnel and staff who are concerned with the waste management were conducted. The information was gathered through questionnaire focus on the different aspect of HCW management like, waste segregation and collection, storage and transport, awareness as well. The results showed that a total of 7,215 kg/day (7.2 ton/day) of waste were generated, of which 79.36% (5.6 ton/day) was non-hazardous waste and 20.6% (1.5 ton/day) was hazardous waste. The rate of waste generation in these healthcare establishments (HCEs) was 2.6 kg/bed/day. There was no appropriate and systematic management of HCWs except at few private HCEs that segregate their hazardous waste. All the surveyed HCEs dumped their HCW together with the municipal waste, and some staff members were also found to be engaged in improper handling of the generated waste. Furthermore, the used sharp instruments, saline bags, blood bags and test tubes were collected for resale or reuse. Nevertheless, the lack of awareness, appropriate policy, regulation and willingness to act, were responsible for the improper management of HCW in DC. There was lack of practical training of concerned healthcare to handle the waste properly, while the nurses and staff were found to be aware of the health impacts of HCW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=disposal" title=" disposal"> disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhaka%20city" title=" Dhaka city"> Dhaka city</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20waste%20management" title=" healthcare waste management"> healthcare waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20generation" title=" waste generation"> waste generation</a> </p> <a href="https://publications.waset.org/abstracts/61293/healthcare-waste-management-practices-in-bangladesh-a-case-study-in-dhaka-city-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7190</span> Biomedical Waste Management an Unsung Hero</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Madan">Preeti Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shalini%20Malhotra"> Shalini Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmaljit%20Kaur"> Nirmaljit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Charoo%20Hans"> Charoo Hans</a>, <a href="https://publications.waset.org/abstracts/search?q=VK%20Sabarwal"> VK Sabarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hospital is one of the most diverse and complex institutions frequented by people from every walk of life without any distinction between age, sex, gender, religion or intellect. This is over and above the normal inhabitant of hospital i.e. doctors, patients, and paramedical staff. The hospital waste generated 85% is non hazardous, 10% infectious and around 5% are non-infectious but hazardous waste. The management of biomedical waste is still in its infancy. There is a lot of confusion with the problems among the generators, operators, decision makers, and general community about the safe management of biomedical waste prompt action initiated to seek new scientific, safe, and cost-effective management of waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20waste" title="biomedical waste">biomedical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=nosocomial%20infection" title=" nosocomial infection"> nosocomial infection</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitals" title=" hospitals"> hospitals</a> </p> <a href="https://publications.waset.org/abstracts/22522/biomedical-waste-management-an-unsung-hero" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7189</span> Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaksei%20Patsekha">Aliaksei Patsekha</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Hohenberger"> Michael Hohenberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Raupenstrauch"> Harald Raupenstrauch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20values" title="boundary values">boundary values</a>, <a href="https://publications.waset.org/abstracts/search?q=CBRNE%20threats" title=" CBRNE threats"> CBRNE threats</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making%20process" title=" decision making process"> decision making process</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20effects" title=" hazardous effects"> hazardous effects</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20analysis" title=" vulnerability analysis"> vulnerability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20zones" title=" risk zones"> risk zones</a> </p> <a href="https://publications.waset.org/abstracts/129557/vulnerability-analysis-for-risk-zones-boundary-definition-to-support-a-decision-making-process-at-cbrne-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7188</span> Effects of Harmful Alcohol Consumption and Gender on Academic and Personal-Emotional Adjustment in First Year University Students in Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20P%C3%A1ramo">M. F. Páramo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Cadaveira"> F. Cadaveira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Rodr%C3%ADguez"> M. S. Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first year at university is a critical period for personal-emotional and academic adjustment in emerging adults. Moreover, some studies show that alcohol consumption increases in young adults on transition to university. The main purpose of this study was to analyze the impact of hazardous alcohol consumption and gender on adjustment to university, understood as a multidimensional construct involving an array of demands. A sample of 300 first year students in Spain completed the Student Adaptation to College Questionnaire (SACQ) and the Alcohol Use Disorders Identification Test (AUDIT). Examination of the data by analysis of variance revealed that adjustment to university was lower in the students undertaking hazardous alcohol consumption than in the other students. Surprisingly, the personal-emotional adjustment of students with hazardous alcohol consumption was not lower than in the other students. Analysis of the gender effect revealed that levels of personal-emotional adjustment were higher in males than in females. This is our first study examining the influence of alcohol consumption on university adjustment. Future research should examine this relationship more closely, with the aim of designing public health strategies focused on limiting abusive consumption of alcohol in university students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcohol%20consumption" title="alcohol consumption">alcohol consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20year%20university%20students" title=" first year university students"> first year university students</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=SACQ" title=" SACQ"> SACQ</a> </p> <a href="https://publications.waset.org/abstracts/49983/effects-of-harmful-alcohol-consumption-and-gender-on-academic-and-personal-emotional-adjustment-in-first-year-university-students-in-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7187</span> Advanced Separation Process of Hazardous Plastics and Metals from End-Of-Life Vehicles Shredder Residue by Nanoparticle Froth Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati">Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Hee%20Park"> Min Hee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Mim%20Cho"> Soo Mim Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyeon%20Yoon"> Sung Hyeon Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the issues of End of Life Vehicles (ELVs) recycling promotion is technology for the appropriate treatment of automotive shredder residue (ASR). Owing to its high heterogeneity and variable composition (plastic (23–41%), rubber/elastomers (9–21%), metals (6–13%), glass (10–20%) and dust (soil/sand) etc.), ASR can be classified as ‘hazardous waste’, on the basis of the presence of heavy metals (HMs), PCBs, BFRs, mineral oils, etc. Considering their relevant concentrations, these metals and plastics should be properly recovered for recycling purposes before ASR residues are disposed of. Brominated flame retardant additives in ABS/HIPS and PVC may generate dioxins and furans at elevated temperatures. Moreover, these BFRs additives present in plastic materials may leach into the environment during landfilling operations. ASR thermal process removes some of the organic material but concentrates, the heavy metals and POPs present in the ASR residues. In the present study, Fe/Ca/CaO nanoparticle assisted ozone treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing its wettability and thereby promoting its separation from ASR plastics by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR respectively. Under froth flotation conditions at 50 rpm, about 99.5% and 99.5% of HIPS in ASR samples sank, resulting in a purity of 98% and 99%. Furthermore, at 150 rpm a 100% PVC separation in the settled fraction, with 98% of purity in ASR, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. This process improved the quality of recycled ASR plastics by removing surface contaminants or impurities. Further, a hybrid ball-milling and with Fe/Ca/CaO nanoparticle froth flotation process was established for the recovery of HMs from ASR. After ball-milling with Fe/Ca/CaO nanoparticle additives, the flotation efficiency increased to about 55 wt% and the HMs recovery were also increased about 90% for the 0.25 mm size fractions of ASR. Coating with Fe/Ca/CaO nanoparticles associated with subsequent microbubble froth flotation allowed the air bubbles to attach firmly on the HMs. SEM–EDS maps showed that the amounts of HMs were significant on the surface of the floating ASR fraction. This result, along with the low HM concentration in the settled fraction, was confirmed by elemental spectra and semi-quantitative SEM–EDS analysis. Developed hybrid preferential hazardous plastics and metals separation process from ASR is a simple, highly efficient, and sustainable procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20of%20life%20vehicles%20shredder%20residue" title="end of life vehicles shredder residue">end of life vehicles shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20plastics" title=" hazardous plastics"> hazardous plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20froth%20flotation" title=" nanoparticle froth flotation"> nanoparticle froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20process" title=" separation process"> separation process</a> </p> <a href="https://publications.waset.org/abstracts/64596/advanced-separation-process-of-hazardous-plastics-and-metals-from-end-of-life-vehicles-shredder-residue-by-nanoparticle-froth-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7186</span> Geotechnical-Environmental Risk Assessment in Iranian Healthcare Centers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Siyami">Maryam Siyami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, one of the major environmental challenges is hospital waste, which, due to the presence of hazardous, toxic, and infectious agents, is of particular concern. The expansion of cities and population growth has significantly accelerated the establishment of various healthcare institutions. In this paper, the geotechnical-environmental risks in healthcare centers have been examined. The Iranian Leopold Matrix method was used to analyze the data. According to the study results, the greatest impact was related to socio-economic, environmental factors, particularly waste and wastewater management. Additionally, the most significant geotechnical-environmental risks at hospital were hospital hazardous waste, chemicals, and waste disposal. In conclusion, the most beneficial geotechnical-environmental measures were determined to be wastewater collection, waste collection, and recycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk" title="risk">risk</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnics" title=" geotechnics"> geotechnics</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopold%20Matrix" title=" Leopold Matrix"> Leopold Matrix</a> </p> <a href="https://publications.waset.org/abstracts/191793/geotechnical-environmental-risk-assessment-in-iranian-healthcare-centers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7185</span> Assessment of Treatment Methods to Remove Hazardous Dyes from Synthetic Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhiram%20Siva%20Prasad%20Pamula">Abhiram Siva Prasad Pamula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to clean drinking water becomes scarce due to the increase in extreme weather events because of the rise in the average global temperatures and climate change. By 2030, approximately 47% of the world’s population will face water shortages due to uncertainty in seasonal rainfall. Over 10000 varieties of synthetic dyes are commercially available in the market and used by textile and paper industries, negatively impacting human health when ingested. Besides humans, textile dyes have a negative impact on aquatic ecosystems by increasing biological oxygen demand and chemical oxygen demand. This study assesses different treatment methods that remove dyes from textile wastewater while focusing on energy, economic, and engineering aspects of the treatment processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=textile%20wastewater" title="textile wastewater">textile wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20methods" title=" treatment methods"> treatment methods</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20pollutants" title=" hazardous pollutants"> hazardous pollutants</a> </p> <a href="https://publications.waset.org/abstracts/162825/assessment-of-treatment-methods-to-remove-hazardous-dyes-from-synthetic-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7184</span> An Analysis of Packaging Materials for an Energy-Efficient Wrapping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Sweeney">John Sweeney</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Leeming"> Martin Leeming</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Thaker"> Raj Thaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20L.%20Tuinea-Bobe"> Cristina L. Tuinea-Bobe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title="constitutive model">constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20testing" title=" mechanical testing"> mechanical testing</a>, <a href="https://publications.waset.org/abstracts/search?q=wrapping%20system" title=" wrapping system"> wrapping system</a> </p> <a href="https://publications.waset.org/abstracts/82971/an-analysis-of-packaging-materials-for-an-energy-efficient-wrapping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7183</span> Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebila%20Lichiheb">Nebila Lichiheb</a>, <a href="https://publications.waset.org/abstracts/search?q=LaToya%20Myles"> LaToya Myles</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Pendergrass"> William Pendergrass</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Hicks"> Bruce Hicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawson%20Cagle"> Dawson Cagle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteorological%20data" title="meteorological data">meteorological data</a>, <a href="https://publications.waset.org/abstracts/search?q=Washington%20D.C." title=" Washington D.C."> Washington D.C.</a>, <a href="https://publications.waset.org/abstracts/search?q=DCNet%20data" title=" DCNet data"> DCNet data</a>, <a href="https://publications.waset.org/abstracts/search?q=NAM%20model" title=" NAM model"> NAM model</a> </p> <a href="https://publications.waset.org/abstracts/140950/evaluation-of-turbulence-prediction-over-washington-dc-comparison-of-dcnet-observations-and-north-american-mesoscale-model-outputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7182</span> Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Raghuwanshi">Sanjeev Kumar Raghuwanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadvendra%20%20Singh"> Yadvendra Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title="surface plasmon resonance">surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20Bragg%20grating" title=" fibre Bragg grating"> fibre Bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20gases" title=" toxic gases"> toxic gases</a>, <a href="https://publications.waset.org/abstracts/search?q=MATRIX%20method" title=" MATRIX method"> MATRIX method</a> </p> <a href="https://publications.waset.org/abstracts/90374/grating-assisted-surface-plasmon-resonance-sensor-for-monitoring-of-hazardous-toxic-chemicals-and-gases-in-an-underground-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7181</span> Poor Medical Waste Management (MWM) Practices and Its Risks to Human Health and the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babanyara%20Y.%20Y.">Babanyara Y. Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20D.%20B."> Ibrahim D. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Garba%20T."> Garba T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogoro%20A.%20G."> Bogoro A. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Abubakar"> Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y."> M. Y.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical care is vital for our life, health, and well-being. However, the waste generated from medical activities can be hazardous, toxic, and even lethal because of their high potential for diseases transmission. The hazardous and toxic parts of waste from healthcare establishments comprising infectious, medical, and radioactive material as well as sharps constitute a grave risks to mankind and the environment, if these are not properly treated/disposed or are allowed to be mixed with other municipal waste. In Nigeria, practical information on this aspect is inadequate and research on the public health implications of poor management of medical wastes is few and limited in scope. Findings drawn from Literature particularly in the third world countries highlights financial problems, lack of awareness of risks involved in MWM, lack of appropriate legislation and lack of specialized MWM staff. The paper recommends how MWM practices can be improved in medical facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious" title=" infectious"> infectious</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20waste" title=" medical waste"> medical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a> </p> <a href="https://publications.waset.org/abstracts/2780/poor-medical-waste-management-mwm-practices-and-its-risks-to-human-health-and-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7180</span> Promoting Incubation Support to Youth Led Enterprises: A Case Study from Bangladesh to Eradicate Hazardous Child Labour through Microfinance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Maruf%20Hossain%20Koli">Md Maruf Hossain Koli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The issue of child labor is enormous and cannot be ignored in Bangladesh. The problem of child exploitation is a socio-economic reality of Bangladesh. This paper will indicate the causes, consequences, and possibilities of using microfinance as remedies of hazardous child labor in Bangladesh. Poverty is one of the main reasons for children to become child laborers. It is an indication of economic vulnerability, inadequate law, and enforcement system and cultural and social inequities along with the inaccessible and low-quality educational system. An attempt will be made in this paper to explore and analyze child labor scenario in Bangladesh and will explain holistic intervention of BRAC, the largest nongovernmental organization in the world to address child labor through promoting incubation support to youth-led enterprises. A combination of research methods were used to write this paper. These include non-reactive observation in the form of literature review, desk studies as well as reactive observation like site visits and, semi-structured interviews. Hazardous Child labor is a multi-dimensional and complex issue. This paper was guided by the answer following research questions to better understand the current context of hazardous child labor in Bangladesh, especially in Dhaka city. The author attempted to figure out why child labor should be considered as a development issue? Further, it also encountered why child labor in Bangladesh is not being reduced at an expected pace? And finally what could be a sustainable solution to eradicate this situation. One of the most challenging characteristics of child labor is that it interrupts a child’s education and cognitive development hence limiting the building of human capital and fostering intergenerational reproduction of poverty and social exclusion. Children who are working full-time and do not attend school, cannot develop the necessary skills. This leads them and their future generation to remain in poor socio-economic condition as they do not get a better paying job. The vicious cycle of poverty will be reproduced and will slow down sustainable development. The outcome of the research suggests that most of the parents send their children to work to help them to increase family income. In addition, most of the youth engaged in hazardous work want to get training, mentoring and easy access to finance to start their own business. The intervention of BRAC that includes classroom and on the job training, tailored mentoring, health support, access to microfinance and insurance help them to establish startup. This intervention is working in developing business and management capacity through public-private partnerships and technical consulting. Supporting entrepreneurs, improving working conditions with micro, small and medium enterprises and strengthening value chains focusing on youth and children engaged with hazardous child labor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=child%20labour" title="child labour">child labour</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20development" title=" enterprise development"> enterprise development</a>, <a href="https://publications.waset.org/abstracts/search?q=microfinance" title=" microfinance"> microfinance</a>, <a href="https://publications.waset.org/abstracts/search?q=youth%20entrepreneurship" title=" youth entrepreneurship"> youth entrepreneurship</a> </p> <a href="https://publications.waset.org/abstracts/102059/promoting-incubation-support-to-youth-led-enterprises-a-case-study-from-bangladesh-to-eradicate-hazardous-child-labour-through-microfinance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7179</span> Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safa%20Ladhari">Safa Ladhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Saidi"> Alireza Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phuong%20Nguyen-Tri"> Phuong Nguyen-Tri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protective%20equipment" title="protective equipment">protective equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20textile%20materials" title=" antibacterial textile materials"> antibacterial textile materials</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymer" title=" biodegradable polymer"> biodegradable polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20antibacterial%20nanoparticles" title=" hybrid antibacterial nanoparticles"> hybrid antibacterial nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/162884/evaluation-of-the-biological-activity-of-new-antimicrobial-and-biodegradable-textile-materials-for-protective-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7178</span> Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hajiali">Amir Hajiali</a>, <a href="https://publications.waset.org/abstracts/search?q=Gevorg%20P.%20Pirumyan"> Gevorg P. Pirumyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-organic%20solids" title="non-organic solids">non-organic solids</a>, <a href="https://publications.waset.org/abstracts/search?q=ozonation" title=" ozonation"> ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/84580/comparison-of-non-organic-suspended-and-solved-solids-removal-with-and-without-sediments-in-treatment-of-an-industrial-wastewater-with-and-without-ozonation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7177</span> Canned Sealless Pumps for Hazardous Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuja%20Alharbi">Shuja Alharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil and Gas industry has many applications considered as toxic or hazardous, where process fluid leakage is not permitted and leads to health, safety, and environmental impacts. Caustic/Acidic applications, High Benzene Concentrations, Hydrogen sulfide rich oil/gas as well as liquids operating above their auto-ignition temperatures are examples of such liquids that pose as a risk to the industry operation, and for those, special arrangements are in place to allow for the safe operation environment. Pumps in the industry requires special attention, specifically in the interface between the fluid and the environment, where the potential of leakages are foreseen. Mechanical Seals are used to contain the fluid within the equipment, but the prices are ever increasing for such seals, along with maintenance, design, and operating requirements. Several alternatives to seals are being employed nowadays, such as Sealless systems, which is hermitically sealed from the atmosphere and does not require sealing. This technology is considered relatively new and requires more studies to understand the limitations and factors associated from an owner and design perspective. Things like financial factors, maintenance factors, and design limitation should be studies further in order to have a mature and reliable technical solution available to end users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pump" title="pump">pump</a>, <a href="https://publications.waset.org/abstracts/search?q=sealless" title=" sealless"> sealless</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a> </p> <a href="https://publications.waset.org/abstracts/155431/canned-sealless-pumps-for-hazardous-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7176</span> A New Binder Mineral for Cement Stabilized Road Pavements Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayd%C4%B1n%20Kavak">Aydın Kavak</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zkan%20Coruk"> Özkan Coruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Ayd%C4%B1ner"> Adnan Aydıner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=binder" title=" binder"> binder</a>, <a href="https://publications.waset.org/abstracts/search?q=Novocrete" title=" Novocrete"> Novocrete</a>, <a href="https://publications.waset.org/abstracts/search?q=additive" title=" additive"> additive</a> </p> <a href="https://publications.waset.org/abstracts/61037/a-new-binder-mineral-for-cement-stabilized-road-pavements-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7175</span> Managing Construction Wastes in Nigeria for Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezekiel%20Ejiofor%20Nnadi">Ezekiel Ejiofor Nnadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria construction industry is known for its active construction activities. This has earmarked the industry to be the key to economic growth of the nation. It has largest employer of labour and gives sustenance to other industries like manufacturing industry. While this is a sign of growth and prosperity; the waste generated by the industry has always been a problem and a serious concern. It results in wastage of economic gain and has resultant health effect on the populace apart from injury being sustained on sites. This work provides a platform to learn more about construction waste, its management strategy and how to reduce waste production in Nigeria construction industry. Construction sites, waste management authority and public health institutions in Lagos as the centre of most construction activities in Nigeria were selected, and a set of questionnaire was administered to using the systematic sampling technique. Descriptive statistics and relative importance index (RII) technique were employed for the analysis of the data gathered. The findings of the analysis show that excessive wastes reduce contractors’ profit margin and also that some construction wastes contain hazardous and toxic elements such as lead, asbestos or radioactive materials which required proper handling and effective disposal. The conclusion was drawn that the check on waste on construction sites starts with the designers to the contractors who execute on site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20cost" title="construction cost">construction cost</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title=" construction industry"> construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20wastes" title=" materials wastes"> materials wastes</a> </p> <a href="https://publications.waset.org/abstracts/85649/managing-construction-wastes-in-nigeria-for-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=240">240</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=241">241</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hazardous%20materials&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10