CINXE.COM
Search results for: dimensionality reduction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dimensionality reduction</title> <meta name="description" content="Search results for: dimensionality reduction"> <meta name="keywords" content="dimensionality reduction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dimensionality reduction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dimensionality reduction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4938</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dimensionality reduction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4938</span> A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samina%20Khalid">Samina Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamila%20Nasreen"> Shamila Nasreen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20related%20macular%20degeneration" title="age related macular degeneration">age related macular degeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection%20feature%20subset%20selection%20feature%20extraction%2Ftransformation" title=" feature selection feature subset selection feature extraction/transformation"> feature selection feature subset selection feature extraction/transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=FSA%E2%80%99s" title=" FSA’s"> FSA’s</a>, <a href="https://publications.waset.org/abstracts/search?q=relief" title=" relief"> relief</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20based%20method" title=" correlation based method"> correlation based method</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=ICA" title=" ICA"> ICA</a> </p> <a href="https://publications.waset.org/abstracts/6168/a-survey-of-feature-selection-and-feature-extraction-techniques-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4937</span> An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akrem%20Sellami">Akrem Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=Imed%20Riadh%20Farah"> Imed Riadh Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Basel%20Solaiman"> Basel Solaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20selection" title="band selection">band selection</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20imagery" title=" hyperspectral imagery"> hyperspectral imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20interpretation" title=" semantic interpretation"> semantic interpretation</a> </p> <a href="https://publications.waset.org/abstracts/55370/an-adaptive-dimensionality-reduction-approach-for-hyperspectral-imagery-semantic-interpretation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4936</span> A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akrem%20Sellami">Akrem Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=Imed%20Riadh%20Farah"> Imed Riadh Farah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title="dimensionality reduction">dimensionality reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image" title=" hyperspectral image"> hyperspectral image</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20interpretation" title=" semantic interpretation"> semantic interpretation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20hypergraph" title=" spatial hypergraph"> spatial hypergraph</a> </p> <a href="https://publications.waset.org/abstracts/53019/a-spatial-hypergraph-based-semi-supervised-band-selection-method-for-hyperspectral-imagery-semantic-interpretation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4935</span> Microarray Gene Expression Data Dimensionality Reduction Using PCA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20M.%20Alkoot">Fuad M. Alkoot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCA" title="PCA">PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=autism" title=" autism"> autism</a> </p> <a href="https://publications.waset.org/abstracts/25818/microarray-gene-expression-data-dimensionality-reduction-using-pca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4934</span> The Effect of Feature Selection on Pattern Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Fong%20Tsai">Chih-Fong Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Han%20Hu"> Ya-Han Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20classification" title=" pattern classification"> pattern classification</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a> </p> <a href="https://publications.waset.org/abstracts/5047/the-effect-of-feature-selection-on-pattern-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">669</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4933</span> Hierarchical Piecewise Linear Representation of Time Series Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineetha%20Bettaiah">Vineetha Bettaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Heggere%20S.%20Ranganath"> Heggere S. Ranganath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20linear%20representation" title=" piecewise linear representation"> piecewise linear representation</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20representation" title=" time series representation"> time series representation</a> </p> <a href="https://publications.waset.org/abstracts/2680/hierarchical-piecewise-linear-representation-of-time-series-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4932</span> Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Jr.%20Mashiyane">James Jr. Mashiyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Risuna%20Nkolele"> Risuna Nkolele</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20J.%20M%C3%BCller"> Stephanie J. Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Gciniwe%20S.%20Dlamini"> Gciniwe S. Dlamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebone%20L.%20Meraba"> Rebone L. Meraba</a>, <a href="https://publications.waset.org/abstracts/search?q=Darlington%20S.%20Mapiye"> Darlington S. Mapiye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=word%20embeddings" title="word embeddings">word embeddings</a>, <a href="https://publications.waset.org/abstracts/search?q=k-mer%20embedding" title=" k-mer embedding"> k-mer embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%0D%0Areduction" title=" dimensionality reduction"> dimensionality reduction</a> </p> <a href="https://publications.waset.org/abstracts/151370/genomic-sequence-representation-learning-an-analysis-of-k-mer-vector-embedding-dimensionality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4931</span> Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Kolangarakandy">Rajkumar Kolangarakandy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCA" title="PCA">PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transformation" title=" wavelet transformation"> wavelet transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=lazy%20classifiers" title=" lazy classifiers"> lazy classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=Kstar" title=" Kstar"> Kstar</a>, <a href="https://publications.waset.org/abstracts/search?q=IBL" title=" IBL"> IBL</a>, <a href="https://publications.waset.org/abstracts/search?q=LWL" title=" LWL"> LWL</a> </p> <a href="https://publications.waset.org/abstracts/36911/detection-and-classification-of-mammogram-images-using-principle-component-analysis-and-lazy-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4930</span> Quantum Computing with Qudits on a Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksey%20Fedorov">Aleksey Fedorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=qudits" title=" qudits"> qudits</a>, <a href="https://publications.waset.org/abstracts/search?q=Toffoli%20gates" title=" Toffoli gates"> Toffoli gates</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20decomposition" title=" gate decomposition"> gate decomposition</a> </p> <a href="https://publications.waset.org/abstracts/126171/quantum-computing-with-qudits-on-a-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4929</span> Using Confirmatory Factor Analysis to Test the Dimensional Structure of Tourism Service Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20Elshaer">Ibrahim A. Elshaer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20M.%20Shaker"> Alaa M. Shaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several previous empirical studies have operationalized service quality as either a multidimensional or unidimensional construct. While few earlier studies investigated some practices of the assumed dimensional structure of service quality, no study has been found to have tested the construct’s dimensionality using confirmatory factor analysis (CFA). To gain a better insight into the dimensional structure of service quality construct, this paper tests its dimensionality using three CFA models (higher order factor model, oblique factor model, and one factor model) on a set of data collected from 390 British tourists visited Egypt. The results of the three tests models indicate that service quality construct is multidimensional. This result helps resolving the problems that might arise from the lack of clarity concerning the dimensional structure of service quality, as without testing the dimensional structure of a measure, researchers cannot assume that the significant correlation is a result of factors measuring the same construct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20quality" title="service quality">service quality</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality" title=" dimensionality"> dimensionality</a>, <a href="https://publications.waset.org/abstracts/search?q=confirmatory%20factor%20analysis" title=" confirmatory factor analysis"> confirmatory factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a> </p> <a href="https://publications.waset.org/abstracts/27672/using-confirmatory-factor-analysis-to-test-the-dimensional-structure-of-tourism-service-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4928</span> A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Z.%20Zambom">Adriano Z. Zambom</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Ravikumar"> Preethi Ravikumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20model" title="additive model">additive model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20regression" title=" nonparametric regression"> nonparametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title=" variable selection"> variable selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Akaike%20Information%20Criteria" title=" Akaike Information Criteria"> Akaike Information Criteria</a> </p> <a href="https://publications.waset.org/abstracts/56158/a-comparative-study-of-additive-and-nonparametric-regression-estimators-and-variable-selection-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4927</span> Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Paez%20Moncaleano">Sergio Paez Moncaleano</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Mauricio%20Montenegro"> Alvaro Mauricio Montenegro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=item%20response%20theory" title="item response theory">item response theory</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality" title=" dimensionality"> dimensionality</a>, <a href="https://publications.waset.org/abstracts/search?q=submodel%20theory" title=" submodel theory"> submodel theory</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20analysis" title=" factorial analysis"> factorial analysis</a> </p> <a href="https://publications.waset.org/abstracts/42131/solving-dimensionality-problem-and-finding-statistical-constructs-on-latent-regression-models-a-novel-methodology-with-real-data-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4926</span> Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alenezi">Mohammad Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/50686/hydrothermally-fabricated-3-d-nanostructure-metal-oxide-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4925</span> Feature Evaluation Based on Random Subspace and Multiple-K Ensemble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehong%20Yu">Jaehong Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoung%20Bum%20Kim"> Seoung Bum Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering%20analysis" title="clustering analysis">clustering analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-k%20ensemble" title=" multiple-k ensemble"> multiple-k ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20subspace-based%20feature%20evaluation" title=" random subspace-based feature evaluation"> random subspace-based feature evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20feature%20ranking" title=" unsupervised feature ranking"> unsupervised feature ranking</a> </p> <a href="https://publications.waset.org/abstracts/52081/feature-evaluation-based-on-random-subspace-and-multiple-k-ensemble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4924</span> The Spectral Power Amplification on the Regular Lattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotbi%20Lakhdar">Kotbi Lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hachi%20Mostefa"> Hachi Mostefa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ising%20model" title="ising model">ising model</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transitions" title=" phase transitions"> phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20temperature" title=" critical temperature"> critical temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20exponent" title=" critical exponent"> critical exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20power%20amplification" title=" spectral power amplification"> spectral power amplification</a> </p> <a href="https://publications.waset.org/abstracts/64570/the-spectral-power-amplification-on-the-regular-lattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4923</span> Microkinetic Modelling of NO Reduction on Pt Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20S.%20Prasad">Vishnu S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam"> Preeti Aghalayam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N<sub>2</sub>O is detected in some ranges of operating conditions, whereas the effect of inlet O<sub>2</sub>% causes a number of changes in the feasible regimes of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microkinetic%20modelling" title="microkinetic modelling">microkinetic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20on%20alumina%20catalysts" title=" platinum on alumina catalysts"> platinum on alumina catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a> </p> <a href="https://publications.waset.org/abstracts/53965/microkinetic-modelling-of-no-reduction-on-pt-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4922</span> Bipolar Reduction and Lithic Miniaturization: Experimental Results and Archaeological Implications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin%20Pargeter">Justin Pargeter</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Eren"> Metin Eren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithic miniaturization, the systematic production and use of small tools from small cores, was a consequential development in Pleistocene lithic technology. The bipolar reduction is an important, but often overlooked and misidentified, strategy for lithic miniaturization. This experiment addresses the role of axial bipolar reduction in processes of lithic miniaturization. The experiments answer two questions: what benefits does axial bipolar reduction provide, and can we distinguish axial bipolar reduction from freehand reduction? Our experiments demonstrate the numerous advantages of bipolar reduction in contexts of lithic miniaturization. Bipolar reduction produces more cutting edge per gram and is more economical than freehand reduction. Our cutting edge to mass values exceeds even those obtained with pressure blade production on high-quality obsidian. The experimental results show that bipolar reduction produces cutting edge quicker and is more efficient than freehand reduction. We show that bipolar reduction can be distinguished from freehand reduction with a high degree of confidence using the quantitative criteria in these experiments. These observations overturn long-held perceptions about bipolar reduction. We conclude by discussing the role of bipolar reduction in lithic miniaturization and Stone Age economics more broadly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithic%20miniaturization" title="lithic miniaturization">lithic miniaturization</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20reduction" title=" bipolar reduction"> bipolar reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20Pleistocene" title=" late Pleistocene"> late Pleistocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Southern%20Africa" title=" Southern Africa"> Southern Africa</a> </p> <a href="https://publications.waset.org/abstracts/61442/bipolar-reduction-and-lithic-miniaturization-experimental-results-and-archaeological-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">719</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4921</span> Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Ghassembaglou">Nasser Ghassembaglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Rahmatfam"> Armin Rahmatfam</a>, <a href="https://publications.waset.org/abstracts/search?q=Faramarz%20Ranjbar"> Faramarz Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20EGR" title="cold EGR">cold EGR</a>, <a href="https://publications.waset.org/abstracts/search?q=NOX" title=" NOX"> NOX</a>, <a href="https://publications.waset.org/abstracts/search?q=cooler" title=" cooler"> cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20oil" title=" gas oil "> gas oil </a> </p> <a href="https://publications.waset.org/abstracts/17939/optimum-design-of-heat-exchanger-in-diesel-engine-cold-egr-for-pollutants-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4920</span> Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Meghraoui">Djamila Meghraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Boudraa"> Bachir Boudraa</a>, <a href="https://publications.waset.org/abstracts/search?q=Thouraya%20Meksen"> Thouraya Meksen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Boudraa"> M.Boudraa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parkinson%E2%80%99s%20disease%20recognition" title="Parkinson’s disease recognition">Parkinson’s disease recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=MDVP" title=" MDVP"> MDVP</a>, <a href="https://publications.waset.org/abstracts/search?q=multinomial%20Naive%20Bayes" title=" multinomial Naive Bayes"> multinomial Naive Bayes</a> </p> <a href="https://publications.waset.org/abstracts/59181/features-dimensionality-reduction-and-multi-dimensional-voice-processing-program-to-parkinson-disease-discrimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4919</span> Dimensionality Reduction in Modal Analysis for Structural Health Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elia%20Favarelli">Elia Favarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Testi"> Enrico Testi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Giorgetti"> Andrea Giorgetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title="anomaly detection">anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=frequencies%20selection" title=" frequencies selection"> frequencies selection</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20network" title=" sensor network"> sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20measurement" title=" vibration measurement"> vibration measurement</a> </p> <a href="https://publications.waset.org/abstracts/131060/dimensionality-reduction-in-modal-analysis-for-structural-health-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4918</span> Weighted G2 Multi-Degree Reduction of Bezier Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salisu%20ibrahim">Salisu ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Rababah"> Abdalla Rababah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we use Weighted G2-Multi-degree reduction of Bezier curve of degree n to a Bezier curve of degree m, m < n. The degree reduction of Bezier curves is used to represent a given Bezier curve of n by a Bezier curve of degree m, m < n. Exact degree reduction is not possible, and degree reduction is approximate process in nature. We derive a weighted degree reducing method that is geometrically continuous at the end points. Different norms will be considered, several error minimizations will be given. The proposed methods produce error function that are less than the errors of existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curves" title="Bezier curves">Bezier curves</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20degree%20reduction" title=" multiple degree reduction"> multiple degree reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20continuity" title=" geometric continuity"> geometric continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20function" title=" error function"> error function</a> </p> <a href="https://publications.waset.org/abstracts/18669/weighted-g2-multi-degree-reduction-of-bezier-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4917</span> Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kherchaoui">S. Kherchaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Houacine"> A. Houacine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20expression%20identification" title="facial expression identification">facial expression identification</a>, <a href="https://publications.waset.org/abstracts/search?q=curvelet%20coefficient" title=" curvelet coefficient"> curvelet coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine%20%28SVM%29" title=" support vector machine (SVM)"> support vector machine (SVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20system" title=" recognition system"> recognition system</a> </p> <a href="https://publications.waset.org/abstracts/10311/curvelet-features-with-mouth-and-face-edge-ratios-for-facial-expression-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4916</span> A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Feilong">Wei Feilong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Integrated%20Circuit%20Visual%20Positioning" title="Integrated Circuit Visual Positioning">Integrated Circuit Visual Positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalized%20Hough%20Transform" title=" Generalized Hough Transform"> Generalized Hough Transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Local%20invariant%20Generalized%20Hough%20Transform" title=" Local invariant Generalized Hough Transform"> Local invariant Generalized Hough Transform</a>, <a href="https://publications.waset.org/abstracts/search?q=ICpacking%20equipment" title=" ICpacking equipment"> ICpacking equipment</a> </p> <a href="https://publications.waset.org/abstracts/3976/a-local-invariant-generalized-hough-transform-method-for-integrated-circuit-visual-positioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4915</span> A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Rahimipour%20Anaraki">Javad Rahimipour Anaraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Samet"> Saeed Samet</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Eftekhari"> Mahdi Eftekhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Wook%20Ahn"> Chang Wook Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20shuffled%20frog%20leaping%20algorithm" title="binary shuffled frog leaping algorithm">binary shuffled frog leaping algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy-rough%20set" title=" fuzzy-rough set"> fuzzy-rough set</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20reduct" title=" minimal reduct"> minimal reduct</a> </p> <a href="https://publications.waset.org/abstracts/98820/a-fuzzy-rough-feature-selection-based-on-binary-shuffled-frog-leaping-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4914</span> Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Fernanda%20Ordo%C3%B1ez%20Martinez">Maria Fernanda Ordoñez Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Mauricio%20Montenegro"> Alvaro Mauricio Montenegro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title="semantic analysis">semantic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20analysis" title=" factorial analysis"> factorial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dimension%20reduction" title=" dimension reduction"> dimension reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=penalized%20logistic%20regression" title=" penalized logistic regression"> penalized logistic regression</a> </p> <a href="https://publications.waset.org/abstracts/42128/multidimensional-item-response-theory-models-for-practical-application-in-large-tests-designed-to-measure-multiple-constructs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4913</span> Novel Recommender Systems Using Hybrid CF and Social Network Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Jae%20Kim">Kyoung-Jae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recommender%20systems" title="recommender systems">recommender systems</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20filtering" title=" collaborative filtering"> collaborative filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20information" title=" social network information"> social network information</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decomposition" title=" singular value decomposition"> singular value decomposition</a> </p> <a href="https://publications.waset.org/abstracts/36626/novel-recommender-systems-using-hybrid-cf-and-social-network-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4912</span> An Analytical Study on the Vibration Reduction Method of Railway Station Using TPU</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinho%20Hur">Jinho Hur</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjung%20Shin"> Minjung Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Heekyu%20Kim"> Heekyu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many places, new railway constructions in the city are being used to build a viaduct station to take advantage of the space below the line, for difficulty of securing railway site and disconnections of areas. The space under the viaduct has limited to use by noise and vibration. In order to use it for various purposes, reducing noise and vibration is required. The vibration reduction method for new structures is recently developed enough to use as accommodation, but the reduction method for existing structures is still far-off. In this study, it suggests vibration reduction method by filling vibration reduction material to column members which is path of structure-bone-noise from trains run. Because most of railroad stations are reinforced concrete structures. It compares vibration reduction of station applied the method and original station by FEM analysis. As a result, reduction of vibration acceleration level in bandwidth 15~30Hz can be reduced. Therefore, using this method for viaduct railroad station, vibration of station is expected to be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure%20borne%20noise" title="structure borne noise">structure borne noise</a>, <a href="https://publications.waset.org/abstracts/search?q=TPU" title=" TPU"> TPU</a>, <a href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station" title=" viaduct rail station"> viaduct rail station</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20reduction%20method" title=" vibration reduction method"> vibration reduction method</a> </p> <a href="https://publications.waset.org/abstracts/24122/an-analytical-study-on-the-vibration-reduction-method-of-railway-station-using-tpu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4911</span> 2.5D Face Recognition Using Gabor Discrete Cosine Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Cheraghian">Ali Cheraghian</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Hajati"> Farshid Hajati</a>, <a href="https://publications.waset.org/abstracts/search?q=Soheila%20Gheisari"> Soheila Gheisari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsheng%20Gao"> Yongsheng Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabor%20filter" title="Gabor filter">Gabor filter</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20cosine%20transform" title=" discrete cosine transform"> discrete cosine transform</a>, <a href="https://publications.waset.org/abstracts/search?q=2.5d%20face%20recognition" title=" 2.5d face recognition"> 2.5d face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=pose" title=" pose"> pose</a> </p> <a href="https://publications.waset.org/abstracts/37341/25d-face-recognition-using-gabor-discrete-cosine-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4910</span> Size Reduction of Images Using Constraint Optimization Approach for Machine Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chee%20Sun%20Won">Chee Sun Won</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20matching" title=" image matching"> image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=key-point%20detection%20and%20description" title=" key-point detection and description"> key-point detection and description</a>, <a href="https://publications.waset.org/abstracts/search?q=machine-to-machine%20communication" title=" machine-to-machine communication"> machine-to-machine communication</a> </p> <a href="https://publications.waset.org/abstracts/67605/size-reduction-of-images-using-constraint-optimization-approach-for-machine-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4909</span> Study of Thermal and Mechanical Properties of Ethylene/1-Octene Copolymer Based Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Pradhan">Sharmila Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Lach"> Ralf Lach</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20%20Michler"> George Michler</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Mark%20Saiter"> Jean Mark Saiter</a>, <a href="https://publications.waset.org/abstracts/search?q=Rameshwar%20%20Adhikari"> Rameshwar Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene/1-octene copolymer was modified incorporating three types of nanofillers differed in their dimensionality in order to investigate the effect of filler dimensionality on mechanical properties, for instance, tensile strength, microhardness etc. The samples were prepared by melt mixing followed by compression moldings. The microstructure of the novel material was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) method and Transmission electron microscopy (TEM). Other important properties such as melting, crystallizing and thermal stability were also investigated via differential scanning calorimetry (DSC) and Thermogravimetry analysis (TGA). The FTIR and XRD results showed that the composites were formed by physical mixing. The TEM result supported the homogeneous dispersion of nanofillers in the matrix. The mechanical characterization performed by tensile testing showed that the composites with 1D nanofiller effectively reinforced the polymer. TGA results revealed that the thermal stability of pure EOC is marginally improved by the addition of nanofillers. Likewise, melting and crystallizing properties of the composites are not much different from that of pure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copolymer" title="copolymer">copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title=" differential scanning calorimetry"> differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiller" title=" nanofiller"> nanofiller</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/77712/study-of-thermal-and-mechanical-properties-of-ethylene1-octene-copolymer-based-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=164">164</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=165">165</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>