CINXE.COM
Search results for: bio-indicator
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bio-indicator</title> <meta name="description" content="Search results for: bio-indicator"> <meta name="keywords" content="bio-indicator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bio-indicator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bio-indicator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bio-indicator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Gambusia an Excellent Indicator of Metals Stress </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Khati">W. Khati</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Guasmi"> Y. Guasmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The activity of acetylcholinesterase (AChE) was studied in freshwater fish exposed to two heavy metals lead and cadmium. Measurements were made after short exposures (4 and 7 days) at concentrations of 1, 5, and 7μg/L cadmium and 1.25, 2.25, and 5 mg/L of lead. Cadmium induced no significant increases in activity of AChE in the gills for the lowest dose. Except significant inhibition on 7 days. In muscle of Gambusia, under stress of metallic lead, the activity increases compared to the control are noted at 4 days of treatment and inhibitions to 7 days of exposure. The analysis of variance (time, treatment) indicates only a very significant time effect (p<0.05), and as for cadmium, a significant body effect (p<0.01) is recorded. This small fish sedentary, colonizing particularly quiet environments, polluted, can only be the ideal bioindicator of contamination and bioaccumulation of metals. The presence of lead and cadmium in the bodies of fish is a risk factor not only for the lives of these aquatic species, but also for the man who is the top predator at the end of the food chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=bioindicator" title=" bioindicator"> bioindicator</a>, <a href="https://publications.waset.org/abstracts/search?q=environmenlal%20health" title=" environmenlal health"> environmenlal health</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a> </p> <a href="https://publications.waset.org/abstracts/18566/gambusia-an-excellent-indicator-of-metals-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Applied Free Living Nematode as Bioindicator to Assess Environmental Impact of Dam Construction in Ba Lai Estuary, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngo%20Xuan%20Quang">Ngo Xuan Quang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Thanh%20Thai"> Tran Thanh Thai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20Vanreusel"> Ann Vanreusel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ba Lai dam construction was created in 2000 in the Ba Lai estuarine river, Ben Tre province, Vietnam to prevent marine water infiltration, drainage and de-acidification, and to build a reservoir of freshwater for land reclamation in the Ba Lai tributary. However, this dam is considered as an environmental failure for the originally connected estuarine and river ecosystem, especially to bad effect to benthic fauna distribution. This research aims to study applying free living nematode communities’ distribution in disturbance of dam construction as bioindicator to detect environmental impact. Nematode samples were collected together measuring physical–chemical environmental parameters such as chlorophyll, CPE, coliform, nutrient, grain size, salinity, dissolved oxygen, turbidity, conductivity, temperature in three stations within three replicates. Results showed that free living nematode communities at the dam construction was significantly low densities, low diversity (Hurlbert’s index, Hill diversity indices) and very low maturity index in comparison with two remaining stations. Strong correlation of nematode feeding types and communities’ structure was found in relation with sediment grain size and nutrient enrichment such nitrite, nitrate, phosphate and pigment concentration. Moreover, greatly negative link between nematode maturity index with nutrient parameters can serve as warning organic pollution of the Ba Lai river due to dam construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ba%20Lai" title="Ba Lai">Ba Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20impact" title=" dam impact"> dam impact</a>, <a href="https://publications.waset.org/abstracts/search?q=nematode" title=" nematode"> nematode</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment "> environment </a> </p> <a href="https://publications.waset.org/abstracts/36991/applied-free-living-nematode-as-bioindicator-to-assess-environmental-impact-of-dam-construction-in-ba-lai-estuary-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Impact of Anthropogenic Activities on Soil Quality Using the Land Snail Cantareus apertus as Bioindicator of Heavy Metals Accumulation in The Bejaia Region (Northeastern Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benbelil-Tafoughalt%20Saida">Benbelil-Tafoughalt Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=Tababouchet%20Meriem"> Tababouchet Meriem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this study was to investigate the impact of anthropogenic activities on soil quality using the land snail Cantareusapertus as a bioindicator of heavy metal accumulation. Concentrations of cadmium, copper, and zinc were measured in various body organs, viz: viscera and foot of the land snail Cantareusapertus. The snails were collected from two different sites in the Bejaia region (Northeastern Algeria), exposed to different sources of contamination by trace metals. The first sampling site is an urban areas, and the second is characterized by heavy industry, a potential source of soil pollution via heavy metal contamination. The concentrations of heavy metal in all viscera and foot samples were measured using an atomic absorption spectrophotometer. Bioconcentration of the trace metals Cu, Zn, and Cd varied between the viscera and the foot with the viscera having the highest concentration (µgg-1) of all metals than the foots; Cu, 2.03 – 5.8 (Viscera), 0.05 – 3.30 (Foot), Zn, 23.64 – 45.02 (Viscera), 1.87 – 15.15 (Foot) and Cd, 0.36 – 15.26 (Viscera), 0.18 – 13.73 (Foot), which suggest that ingestion may be the main uptake route of these essential metals. On the other hand, the levels of heavy metals varied significantly among the sampling area (P<0.001). in fact, in the foots as well as in the viscera, the concentrations of all studied metals is significantly higher in the snails sampled from sites closest to potential sources of pollution compared to those collected from urban areas characterized by moderate pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20activities" title="anthropogenic activities">anthropogenic activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Bioconcentration" title=" Bioconcentration"> Bioconcentration</a>, <a href="https://publications.waset.org/abstracts/search?q=Cantareus%20apertus" title=" Cantareus apertus"> Cantareus apertus</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a> </p> <a href="https://publications.waset.org/abstracts/142721/impact-of-anthropogenic-activities-on-soil-quality-using-the-land-snail-cantareus-apertus-as-bioindicator-of-heavy-metals-accumulation-in-the-bejaia-region-northeastern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Biofilm Is Facilitator for Microplastic Ingestion in Green Mussel Perna Viridis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yixuan%20Wang">Yixuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Y.%20Wong"> A. C. Y. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Y.%20Chiu"> J. M. Y. Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Cheung"> S. G. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After being released into the ocean, microplastics (MPs) are quickly colonized by microbes. The biofilm that forms on MPs alters their characteristics and perplexes users, including filter-feeders, some of whom choose to eat MPs that have biofilm. It has been proposed that filter feeders like mussels and other bivalves could serve as bioindicators of MP pollution. Mussels are considered selective feeders with particle sorting capability. Two sizes (27-32 µm and 90-106 µm), shapes (microspheres and microfibers), and types (polyethylene, polystyrene and polyester) of MPs were available for the green mussel, Perna viridis, at three concentrations (100 P/ml, 1000 P/ml and 10,000 P/ml). These MPs were incubated in the sea for 0, 3 or 14 days for biofilm development. The presence of the biofilm significantly affected the ingestion of MPs, and the mussels preferred MPs with biofilm, with a higher preference observed for biofilm with a longer incubation period. Additionally, the ingestion rate varied with the interaction between the concentration, size and form of MPs. The findings are discussed in relation to the possibility that mussels serve as MP bioindicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20miroplastics" title="marine miroplastics">marine miroplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=bioindicator" title=" bioindicator"> bioindicator</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20mussel%20perna%20viridis" title=" green mussel perna viridis"> green mussel perna viridis</a> </p> <a href="https://publications.waset.org/abstracts/183324/biofilm-is-facilitator-for-microplastic-ingestion-in-green-mussel-perna-viridis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Biomonitoring of Marine Environment by Using a Bioindicator Donax trunculus (Mollusca, Bivalvia) from the Gulf of Annaba (Algeria): Biomarkers Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Sifi">Karima Sifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Soltani"> Noureddine Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Annaba gulf is the most important touristic and economic area located on the east coast of Algeria. However, these fishery resources are threatened by the pollution due to the progress of economic activity. As part of a biomonitoring program on the quality of waters of the Gulf of Annaba, the specific activity of two biomarkers, acetylcholinesterase (AChE) and glutathion S-transferase (GST) has been measured in edible bivalve Donax trunculus. The samples have been collected during the year 2013 in two sites: El Battah, distant from polluted sources, and Sidi Salem, located near the harbor and different industrial waste. The results showed a significant inhibition of AChE activity and a significant increase in the activity of the GST in samples collected from Sidi Salem as compared to El Battah. The inhibition of the AChE and the increase of the GST in Sidi Salem are in relation with the level of exposition of this site to the pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donax%20trunculus" title="Donax trunculus">Donax trunculus</a>, <a href="https://publications.waset.org/abstracts/search?q=annaba%20gulf" title=" annaba gulf"> annaba gulf</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title=" acetylcholinesterase"> acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathion%20s-transferase" title=" glutathion s-transferase"> glutathion s-transferase</a>, <a href="https://publications.waset.org/abstracts/search?q=biomonitoring" title=" biomonitoring"> biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/31216/biomonitoring-of-marine-environment-by-using-a-bioindicator-donax-trunculus-mollusca-bivalvia-from-the-gulf-of-annaba-algeria-biomarkers-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Behavioral Changes and Gill Histopathological Alterations of Red Hybrid Tilapia (Oreochromis sp.) Exposed to Glyphosate Herbicide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Muhammad%20Umar">Abubakar Muhammad Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Adeela%20Yasid"> Nur Adeela Yasid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mohd%20Daud"> Hassan Mohd Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yunus%20Abd%20Shukor"> Mohd Yunus Abd Shukor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glyphosate [N-(phosphonomethyl) glycine] is among the most broadly and generally recognised broad-spectrum herbicides used in agriculture due to its low cost and effectiveness in weed management. The pollution of glyphosate in the aquatic environment can be via water run-off from agricultural lands, or by spray drift, aerial spraying or due to industrial discharge, which may be seen as a threat to aquatic biota. Fish is one of the best organisms to study the toxicological aspects of glyphosate. A 49 days experiment was conducted under laboratory conditions to ascertain the effects of technical grade glyphosate on behaviour and histopathological conditions in the gills of red hybrid tilapia using a light inverted microscope. Air gasping, erratic swimming, fin movement, mucus secretion, hemorrhages, and loss of scales were observed as behavioural changes in the exposed fish. There was no histopathological complication observed in the gill of the control fish, but various levels of alterations were seen in the gills of the fish exposed to glyphosate herbicide. These include lifting of primary lamella, congestion of secondary lamella, as well as hyperplasia in both primary and secondary gill lamella, and hypertrophy of secondary gill lamella. Based on the findings of this study, glyphosate herbicide exerts behavioural and histopathological changes in the gill of red hybrid tilapia, and therefore, the fish is considered a good bioindicator in aquatic environment monitoring. Excessive usage of glyphosate herbicide near aquatic habitats should be discouraged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavioural" title="behavioural">behavioural</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathological" title=" histopathological"> histopathological</a>, <a href="https://publications.waset.org/abstracts/search?q=Oreochromis%20niloticus" title=" Oreochromis niloticus"> Oreochromis niloticus</a>, <a href="https://publications.waset.org/abstracts/search?q=glyphosate" title=" glyphosate"> glyphosate</a> </p> <a href="https://publications.waset.org/abstracts/187898/behavioral-changes-and-gill-histopathological-alterations-of-red-hybrid-tilapia-oreochromis-sp-exposed-to-glyphosate-herbicide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Cytotoxicity thiamethoxam Study on the Hepatopancreas and Its Reversibility under the Effect of Ginger in Helix aspersa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Bensoltane">Samira Bensoltane</a>, <a href="https://publications.waset.org/abstracts/search?q=Smina%20Ait%20Hamlet"> Smina Ait Hamlet</a>, <a href="https://publications.waset.org/abstracts/search?q=Samti%20Meriem"> Samti Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Semmasel%20Asma"> Semmasel Asma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Living organisms in the soil are subject to regular fluctuations of abiotic parameters, as well as a chemical contamination of the environment due to human activities. They are subject to multiple stressors they face. The aim of our work was to study the effects of insecticide: thiamethoxam (neonicotinoid), and the potential reversibility of the effects by an antioxidant: ginger on a bioindicator species in ecotoxicology, the land snail Helix aspersa. The effects were studied by a targeted cell approach of evaluating the effect of these molecules on tissue and cellular aspect of hepatopancreas through histological study. Treatment with thiamethoxam concentrations 10, 20, and 40 mg/l shows signs of inflammation even at low concentrations and from the 5th day of treatment. Histological examination of the hepatopancreas of snails treated with thiamethoxam showed significant changes from the lowest concentrations tested , note intertubular connective tissue enlargement, necrosis deferent types of cells (cells with calcium , digestive, excretory) , also damage acini, alteration of the apical membrane and lysis of the basement membrane in a dose- dependent manner. After 10 days of treatment and with 40 mg/l, the same changes were observed with a very advanced degeneration of the wall of the member that could be confused with the cell debris. For cons, the histological study of the hepatopancreas in Helix aspersa treated with ginger for a period of 15 days after stopping treatment with thiamethoxam has shown a partial regeneration of hepatopancreatic tissue snails treated with all concentrations of thiamethoxam and especially in the intertubular connective tissue of the wall and hepatopancreatic digestive tubules. Finally, we can conclude that monitoring the effect of the insecticide thiamethoxam showed significant alterations, however, treatment with ginger shows regeneration of damaged cells themselves much sharper at low concentration (10 mg/L). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helix%20aspersa" title="Helix aspersa">Helix aspersa</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticides" title=" insecticides"> insecticides</a>, <a href="https://publications.waset.org/abstracts/search?q=thiamethoxam" title=" thiamethoxam"> thiamethoxam</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatopancreas" title=" hepatopancreas"> hepatopancreas</a> </p> <a href="https://publications.waset.org/abstracts/13125/cytotoxicity-thiamethoxam-study-on-the-hepatopancreas-and-its-reversibility-under-the-effect-of-ginger-in-helix-aspersa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Satellite Images to Determine Levels of Fire Severity in a Native Chilean Forest: Assessing the Responses of Soil Mesofauna Diversity to a Fire Event</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Morales">Carolina Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Castro-Huerta"> Ricardo Castro-Huerta</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20A.%20Mundaca"> Enrique A. Mundaca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edaphic fauna is the main factor involved in the transformation of nutrients and soil decomposition processes. Edaphic organisms are highly sensitive to soil disturbances, which normally causes changes in the composition and abundance of such organisms. Fire is known to be a disturbing factor since it affects the physical, chemical and biological properties of the soil and the whole ecosystem. During the summer (December-March) of 2017, Chile suffered the major fire events recorded in its modern history, which affected a vast area and a number of ecosystem types. The objective of this study was first to use remote sensing satellite images and GIS (Geographic Information Systems) to assess and identify levels of fire severity in disturbed areas and to compare the responses of the soil mesofauna diversity among such areas. We identified four areas (treatments) with an ascending level of severity, namely: mild, medium, high severity, and free of fire. A non-affected patch of forest was established as a control. Three samples from each treatment were collected in the form of a soil cube (10x10x10 cm). Edaphic mesofauna was obtained from each sample through the Berlese-Tullgren funnel method. Collected specimens were quantified and identified, using the RTU (Recognisable Taxonomic Unit) criterion. Diversity was analysed using inferential statistics to compare Simpson and Shannon-Wiener indexes across treatments. As predicted, the unburned forest patch (control) exhibited higher diversity values than the treatments. Significantly higher diversity values were recorded in those treatments subjected to lower fire severity. We conclude that remote sensing zoning is an adequate tool to identify different levels of fire severity and that an edaphic mesofauna is a group of organisms that qualify as good bioindicators for monitoring soil recovery after fire events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioindicator" title="bioindicator">bioindicator</a>, <a href="https://publications.waset.org/abstracts/search?q=Chile" title=" Chile"> Chile</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20severity%20level" title=" fire severity level"> fire severity level</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/92135/satellite-images-to-determine-levels-of-fire-severity-in-a-native-chilean-forest-assessing-the-responses-of-soil-mesofauna-diversity-to-a-fire-event" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Monitoring the Pollution Status of the Goan Coast Using Genotoxicity Biomarkers in the Bivalve, Meretrix ovum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avelyno%20D%27Costa">Avelyno D'Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Shyama"> S. K. Shyama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar"> M. K. Praveen Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coast of Goa, India receives constant anthropogenic stress through its major rivers which carry mining rejects of iron and manganese ores from upstream mining sites and petroleum hydrocarbons from shipping and harbor-related activities which put the aquatic fauna such as bivalves at risk. The present study reports the pollution status of the Goan coast by the above xenobiotics employing genotoxicity studies. This is further supplemented by the quantification of total petroleum hydrocarbons (TPHs) and various trace metals (iron, manganese, copper, cadmium, and lead) in gills of the estuarine clam, Meretrix ovum as well as from the surrounding water and sediment, over a two-year sampling period, from January 2013 to December 2014. Bivalves were collected from a probable unpolluted site at Palolem and a probable polluted site at Vasco, based upon the anthropogenic activities at these sites. Genotoxicity was assessed in the gill cells using the comet assay and micronucleus test. The quantity of TPHs and trace metals present in gill tissue, water and sediments were analyzed using spectrofluorometry and atomic absorption spectrophotometry (AAS), respectively. The statistical significance of data was analyzed employing Student’s t-test. The relationship between DNA damage and pollutant concentrations was evaluated using multiple regression analysis. Significant DNA damage was observed in the bivalves collected from Vasco which is a region of high industrial activity. Concentrations of TPHs and trace metals (iron, manganese, and cadmium) were also found to be significantly high in gills of the bivalves collected from Vasco compared to those collected from Palolem. Further, the concentrations of these pollutants were also found to be significantly high in the water and sediments at Vasco compared to that of Palolem. This may be due to the lack of industrial activity at Palolem. A high positive correlation was observed between the pollutant levels and DNA damage in the bivalves collected from Vasco suggesting the genotoxic nature of these pollutants. Further, M. ovum can be used as a bioindicator species for monitoring the level of pollution of the estuarine/coastal regions by TPHs and trace metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comet%20assay" title="comet assay">comet assay</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=micronucleus%20test" title=" micronucleus test"> micronucleus test</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20Hydrocarbons" title=" total petroleum Hydrocarbons"> total petroleum Hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/77794/monitoring-the-pollution-status-of-the-goan-coast-using-genotoxicity-biomarkers-in-the-bivalve-meretrix-ovum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Comparison of Bird’s Population between Naturally Regenerated Acacia Forest with Adjacent Secondary Indigenous Forest in Universiti Malaysia Sabah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jephte%20Sompud">Jephte Sompud</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20A.%20Gilbert"> Emily A. Gilbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Russel%20Mojiol"> Andy Russel Mojiol</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20B.%20Sompud"> Cynthia B. Sompud</a>, <a href="https://publications.waset.org/abstracts/search?q=Alim%20Biun"> Alim Biun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naturally regenerated acacia forest and secondary indigenous forest forms some of the urban forests in Sabah. Naturally regenerated acacia trees are usually seen along the road that exists as forest islands. Acacia tree is not an indigenous tree species in Sabah that was introduced in the 1960’s as fire breakers that eventually became one of the preferred trees for forest plantation for paper and pulp production. Due to its adaptability to survive even in impoverished soils and poor-irrigated land, this species has rapidly spread throughout Sabah through natural regeneration. Currently, there is a lack of study to investigate the bird population in the naturally regenerated acacia forest. This study is important because it shed some light on the role of naturally regenerated acacia forest on bird’s population, as bird is known to be a good bioindicator forest health. The aim of this study was to document the bird’s population in naturally regenerated acacia forest with that adjacent secondary indigenous forest. The study site for this study was at Universiti Malaysia Sabah (UMS) Campus. Two forest types in the campus were chosen as a study site, of which were naturally regenerated Acacia Forest and adjacent secondary indigenous forest, located at the UMS Hill. A total of 21 sampling days were conducted in each of the forest types. The method used during this study was solely mist nets with three pockets. Whenever a bird is caught, it is extracted from the net to be identified and measurements were recorded in a standard data sheet. Mist netting was conducted from 6 morning until 5 evening. This study was conducted between February to August 2014. Birds that were caught were ring banded to initiate a long-term study on the understory bird’s population in the Campus The data was analyzed using descriptive analysis, diversity indices, and t-test. The bird population diversity at naturally regenerated Acacia forest with those at the secondary indigenous forest was calculated using two common indices, of which were Shannon-Wiener and Simpson diversity index. There were 18 families with 33 species that were recorded from both sites. The number of species recorded at the naturally regenerated acacia forest was 26 species while at the secondary indigenous forest were 19 species. The Shannon diversity index for Naturally Regenerated Acacia Forest and secondary indigenous forests were 2.87 and 2.46. The results show that there was very significantly higher species diversity at the Naturally Regenerated Acacia Forest as opposed to the secondary indigenous forest (p<0.001). This suggests that Naturally Regenerated Acacia forest plays an important role in urban bird conservation. It is recommended that Naturally Regenerated Acacia Forests should be considered as an established urban forest conservation area as they do play a role in biodiversity conservation. More future studies in Naturally Regenerated Acacia Forest should be encouraged to determine the status and value of biodiversity conservation of this ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=naturally%20regenerated%20acacia%20forest" title="naturally regenerated acacia forest">naturally regenerated acacia forest</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20population%20diversity" title=" bird population diversity"> bird population diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Universiti%20Malaysia%20Sabah" title=" Universiti Malaysia Sabah"> Universiti Malaysia Sabah</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20conservation" title=" biodiversity conservation"> biodiversity conservation</a> </p> <a href="https://publications.waset.org/abstracts/33182/the-comparison-of-birds-population-between-naturally-regenerated-acacia-forest-with-adjacent-secondary-indigenous-forest-in-universiti-malaysia-sabah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> A Comparative Approach for Modeling the Toxicity of Metal Mixtures in Two Ecologically Related Three-Spined (Gasterosteus aculeatus L.) And Nine-Spined (Pungitius pungitius L.) Sticklebacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Makaras">Tomas Makaras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and become well-established role as model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. Moreover, although many authors in their studies emphasised the similarity between three-spined and nine-spined stickleback in morphological, neuroanatomical and behavioural adaptations to environmental changes, several comparative studies have revealed considerable differences between these species in and their susceptibility and resistance to variousstressors in laboratory experiments. The hypothesis of this study was that three-spined and nine-spined stickleback species will demonstrate apparent differences in response patterns and sensitivity to metal-based chemicals stimuli. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteusaculeatus) and nine-spined sticklebacks (Pungitiuspungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). Based on acute toxicity results, G. aculeatus found to be slightly (1.4-fold) more tolerant of MIX impact than those of P. pungitius specimens. The performed behavioural analysis showed the main effect on the interaction between time, species and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species’ responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitiuscompared to G. aculeatus. While many studies highlight the usefulness and suitability of nine-spined sticklebacks for evolutionary and ecological research, attested by their increasing popularity in these fields, great caution must be exercised when using them as model species in ecotoxicological research to probe metal contamination. Meanwhile, G. aculeatus showed to be a promising bioindicator species in the environmental ecotoxicology field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20behaviour" title=" comparative behaviour"> comparative behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20mixture" title=" metal mixture"> metal mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20activity" title=" swimming activity"> swimming activity</a> </p> <a href="https://publications.waset.org/abstracts/142068/a-comparative-approach-for-modeling-the-toxicity-of-metal-mixtures-in-two-ecologically-related-three-spined-gasterosteus-aculeatus-l-and-nine-spined-pungitius-pungitius-l-sticklebacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>