CINXE.COM

Search results for: MEMS

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: MEMS</title> <meta name="description" content="Search results for: MEMS"> <meta name="keywords" content="MEMS"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="MEMS" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="MEMS"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 95</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: MEMS</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Design and Simulation of MEMS-Based Capacitive Pressure Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirankumar%20B.%20Balavalad">Kirankumar B. Balavalad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhagyashree%20Mudhol"> Bhagyashree Mudhol</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Sheeparamatti"> B. G. Sheeparamatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MEMS sensor have gained popularity in automotive, biomedical, and industrial applications. In this paper, the design and simulation of conventional, slotted, and perforated MEMS capacitive pressure sensor is proposed. Polysilicon material is used as diaphragm material that deflects due to applied pressure. Better sensitivity is the main advantage of conventional pressure sensor as compared with other two sensors and perforated pressure sensor achieves large operating pressure range. The proposed MEMS sensor demonstrated with diaphragm length 50um, gap depth 3um is being modelled. The simulation is carried out for different types of MEMS capacitive pressure sensor using COMSOL Multiphysics and Coventor ware. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20pressure%20sensor" title=" conventional pressure sensor"> conventional pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=slotted%20and%20perforated%20diaphragm" title=" slotted and perforated diaphragm"> slotted and perforated diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20multiphysics" title=" COMSOL multiphysics"> COMSOL multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=coventor%20ware" title=" coventor ware"> coventor ware</a> </p> <a href="https://publications.waset.org/abstracts/33090/design-and-simulation-of-mems-based-capacitive-pressure-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Ziyu">Liu Ziyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Yongfeng"> Gao Yongfeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Muhua"> Li Muhua</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Jiahao"> Zhao Jiahao</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Song"> Meng Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20shock%20test" title=" thermal shock test"> thermal shock test</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment" title=" space environment"> space environment</a> </p> <a href="https://publications.waset.org/abstracts/41898/the-research-of-reliability-of-mems-device-under-thermal-shock-test-in-space-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Aziz%20Ali%20Manjiyani">Zohra Aziz Ali Manjiyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Renju%20Thomas%20Jacob"> Renju Thomas Jacob</a>, <a href="https://publications.waset.org/abstracts/search?q=Keerthan%20Kumar"> Keerthan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project develops a hand movement monitoring system, which feeds the data into the computer and gives the 3D image rotation according to the direction of the tilt and hence monitoring the movement of the hand in context to its tilt. Advancement of MEMS Technology has enabled us to get very small and low-cost accelerometer ICs which is based on capacitive principle. Accelerometer based Tilt sensor ADXL335 is used in this paper, based on MEMS technology and the project emphasis on the development of the MEMS-based accelerometer to measure the tilt, interfacing the hardware with the LabVIEW and showing the 3D rotation to the user, which is in his understandable form and tilt data can be saved in the computer. It provides an experience of working on emerging technologies like MEMS and design software like LabVIEW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS%20accelerometer" title="MEMS accelerometer">MEMS accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20sensor%20ADXL335" title=" tilt sensor ADXL335"> tilt sensor ADXL335</a>, <a href="https://publications.waset.org/abstracts/search?q=LabVIEW%20simulation" title=" LabVIEW simulation"> LabVIEW simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20animation" title=" 3D animation"> 3D animation</a> </p> <a href="https://publications.waset.org/abstracts/5681/development-of-mems-based-3-axis-accelerometer-for-hand-movement-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20M.%20Karabanov">Sergey M. Karabanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20V.%20Suvorov"> Dmitry V. Suvorov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Yu.%20Tarabrin"> Dmitry Yu. Tarabrin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20electrode" title="flexible electrode">flexible electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20controlled%20MEMS" title=" magnetically controlled MEMS"> magnetically controlled MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20stress" title=" mechanical stress"> mechanical stress</a> </p> <a href="https://publications.waset.org/abstracts/99674/mathematical-modeling-of-switching-processes-in-magnetically-controlled-mems-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Valuation on MEMS Pressure Sensors and Device Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Amziah%20Md%20Yunus">Nurul Amziah Md Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Izhal%20Abdul%20Halin"> Izhal Abdul Halin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Sulaiman"> Nasri Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Faezah%20Ismail"> Noor Faezah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Kai%20Sheng"> Ong Kai Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title="pressure sensor">pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20application" title=" automotive application"> automotive application</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title=" biomedical application"> biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a> </p> <a href="https://publications.waset.org/abstracts/28395/valuation-on-mems-pressure-sensors-and-device-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Swarnalatha">V. Swarnalatha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Narasimha%20Rao"> A. V. Narasimha Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Pal"> P. Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH<sub>2</sub>OH) are used as main etchant and additive, respectively. The concentration of NH<sub>2</sub>OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KOH" title="KOH">KOH</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=micromachining" title=" micromachining"> micromachining</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=TMAH" title=" TMAH"> TMAH</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20anisotropic%20etching" title=" wet anisotropic etching"> wet anisotropic etching</a> </p> <a href="https://publications.waset.org/abstracts/65235/study-of-fast-etching-of-silicon-for-the-fabrication-of-bulk-micromachined-mems-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tijing%20Cai">Tijing Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qimeng%20Xu"> Qimeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daijin%20Zhou"> Daijin Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS-IMU%20%28Micro-Electro-Mechanical%20System%20Inertial%20Measurement%20Unit%29" title="MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)">MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)</a>, <a href="https://publications.waset.org/abstracts/search?q=BDS%20%28BeiDou%20Navigation%20Satellite%20System%29" title=" BDS (BeiDou Navigation Satellite System)"> BDS (BeiDou Navigation Satellite System)</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-antenna" title=" dual-antenna"> dual-antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20navigation" title=" integrated navigation"> integrated navigation</a> </p> <a href="https://publications.waset.org/abstracts/97626/a-short-baseline-dual-antenna-bdsmems-imu-integrated-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Zamani%20Kouhpanji">Mohammad Reza Zamani Kouhpanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere&rsquo;s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS%20devices" title="MEMS/NEMS devices">MEMS/NEMS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=paired%20wire%20actuators%20and%20sensors" title=" paired wire actuators and sensors"> paired wire actuators and sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20response" title=" dynamical response"> dynamical response</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20fracture%20characterization" title=" fatigue and fracture characterization"> fatigue and fracture characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Ampere%E2%80%99s%20force%20law" title=" Ampere’s force law"> Ampere’s force law</a> </p> <a href="https://publications.waset.org/abstracts/82093/studying-the-dynamical-response-of-nano-microelectromechanical-devices-for-nanomechanical-testing-of-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Review on Low Actuation Voltage RF Mems Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Saffari">Hassan Saffari</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Askari%20Moghadam"> Reza Askari Moghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern communication systems, it is highly demanded to achieve high performance with minimal power consumption. Low actuation voltage RF MEMS (Micro-Electro-Mechanical Systems) switches represent a significant advancement in this regard. These switches, with their ability to operate at lower voltages, offer promising solutions for enhancing connectivity while minimizing energy consumption. Microelectromechanical switches are good alternatives for electronic and mechanical switches due to their low insertion loss, high isolation, and fast switching speeds. They have attracted more attention in recent years. Most of the presented RF MEMS switches use electrostatic actuators due to their low power consumption. Low actuation voltage RF MEMS switches are among the important issues that have been investigated in research articles. The actuation voltage can be reduced by different methods. One usually implemented method is low spring constant structures. However, despite their numerous benefits, challenges remain in the widespread adoption of low-actuation voltage RF MEMS switches. Issues related to reliability, durability, and manufacturing scalability need to be addressed to realize their full potential in commercial applications. While overcoming certain challenges, their exceptional performance characteristics and compatibility with miniaturized electronic systems make them a promising choice for next-generation wireless communication and RF applications. In this paper, some previous works that proposed low-voltage actuation RF MEMS switches are investigated and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20MEMS%20switches" title="RF MEMS switches">RF MEMS switches</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20actuation%20voltage" title=" low actuation voltage"> low actuation voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20spring%20constant%20structures" title=" small spring constant structures"> small spring constant structures</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20actuation" title=" electrostatic actuation"> electrostatic actuation</a> </p> <a href="https://publications.waset.org/abstracts/184554/review-on-low-actuation-voltage-rf-mems-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an autonomous guidance service by combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NFC" title="NFC">NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20sysem" title=" guide sysem"> guide sysem</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a> </p> <a href="https://publications.waset.org/abstracts/2580/realization-of-autonomous-guidance-service-by-integrating-information-from-nfc-and-mems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Zamani%20Kouhpanji">Mohammad Reza Zamani Kouhpanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensors%20and%20actuators" title="sensors and actuators">sensors and actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS%20devices" title=" MEMS/NEMS devices"> MEMS/NEMS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20fracture%20nanomechanical%20testing%20device" title=" fatigue and fracture nanomechanical testing device"> fatigue and fracture nanomechanical testing device</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20cyclic%20nanomechanical%20testing%20device" title=" static and cyclic nanomechanical testing device"> static and cyclic nanomechanical testing device</a> </p> <a href="https://publications.waset.org/abstracts/78711/designing-and-analyzing-sensor-and-actuator-of-a-nanomicro-system-for-fatigue-and-fracture-characterization-of-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Design and Simulation of Step Structure RF MEMS Switch for K Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20S.%20Prakash">G. K. S. Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20K.%20Srinivasa"> Rao K. Srinivasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20MEMS" title="RF MEMS">RF MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=actuation%20voltage" title=" actuation voltage"> actuation voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20loss" title=" isolation loss"> isolation loss</a>, <a href="https://publications.waset.org/abstracts/search?q=switches" title=" switches"> switches</a> </p> <a href="https://publications.waset.org/abstracts/70729/design-and-simulation-of-step-structure-rf-mems-switch-for-k-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Sheeparamatti">B. G. Sheeparamatti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Kadadevarmath"> J. S. Kadadevarmath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators, and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between the mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics, etc. This paper indicates the need of developing the electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of the microcantilever, the equivalent electrical circuit is drawn and using a force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to a powerful set of intellectual tools that have been developed for understanding electrical circuits. Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantilevers are in agreement with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20equivalent%20circuit%20analogy" title="electrical equivalent circuit analogy">electrical equivalent circuit analogy</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20cantilevers" title=" micro cantilevers"> micro cantilevers</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20sensors" title=" micro sensors"> micro sensors</a> </p> <a href="https://publications.waset.org/abstracts/32960/electrical-equivalent-analysis-of-micro-cantilever-beams-for-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Srinivasan">S. Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Cretu"> E. Cretu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=across-through%20variables" title="across-through variables">across-through variables</a>, <a href="https://publications.waset.org/abstracts/search?q=electromechanical%20coupling" title=" electromechanical coupling"> electromechanical coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20flow" title=" energy flow"> energy flow</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20flow" title=" information flow"> information flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab%2FSimulink" title=" Matlab/Simulink"> Matlab/Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-in%20instability" title=" pull-in instability"> pull-in instability</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20order%20macro%20models" title=" reduced order macro models"> reduced order macro models</a>, <a href="https://publications.waset.org/abstracts/search?q=Simscape" title=" Simscape"> Simscape</a> </p> <a href="https://publications.waset.org/abstracts/109211/simscape-library-for-large-signal-physical-network-modeling-of-inertial-microelectromechanical-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Design and Simulation High Sensitive MEMS Capacitive Pressure Sensor with Small Size for Glaucoma Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yadollah%20Hezarjaribi">Yadollah Hezarjaribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdie%20Yari%20Esboi"> Mahdie Yari Esboi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel MEMS capacitive pressure sensor with small size and high sensitivity is presented. This sensor has the separated clamped square diaphragm and the movable plate. The diaphragm material is polysilicon. The movable and fixed plates and mechanical coupling are gold. The substrate and diaphragm are pyrex glass and polysilicon, respectively. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes with pressure for this reason with this design is improved the capacitance and sensitivity with small size. This sensor is designed for low pressure between 0-60 mmHg that is used for medical application such as treatment of an incurable disease called glaucoma. The size of this sensor is 350×350 µm2 and the thickness of the diaphragm is 2µm with 1μ air gap. This structure is designed by intellisuite software. In this MEMS capacitive pressure sensor the sensor sensitivity, diaphragm mechanical sensitivity for polysilicon diaphragm are 0.0469Pf/mmHg, 0.011 μm/mmHg, respectively. According to the simulating results for low pressure, the structure with polysilicon diaphragm has more change of the displacement and capacitance, this leads to high sensitivity than other diaphragms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title="glaucoma">glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20capacitive%20pressure%20sensor" title=" MEMS capacitive pressure sensor"> MEMS capacitive pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20clamped%20diaphragm" title=" square clamped diaphragm"> square clamped diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=polysilicon" title=" polysilicon"> polysilicon</a> </p> <a href="https://publications.waset.org/abstracts/46427/design-and-simulation-high-sensitive-mems-capacitive-pressure-sensor-with-small-size-for-glaucoma-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> MEMS based Vibration Energy Harvesting: An overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Prabhudesai">Gaurav Prabhudesai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaurya%20Kaushal"> Shaurya Kaushal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulkit%20Dubey"> Pulkit Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20D.%20Pant"> B. D. Pant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectrics" title=" piezoelectrics"> piezoelectrics</a> </p> <a href="https://publications.waset.org/abstracts/22297/mems-based-vibration-energy-harvesting-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/63077/earphone-style-wearable-device-for-automatic-guidance-service-with-position-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Microswitches with Sputtered Au, Aupd, Au-on-Aupt, and Auptcu Alloy - Electric Contacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Konukhov">Nikolay Konukhov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1–2 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alloys" title="alloys">alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20contacts" title=" electric contacts"> electric contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectromechanical%20systems%20%28MEMS%29" title=" microelectromechanical systems (MEMS)"> microelectromechanical systems (MEMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=microswitch" title=" microswitch"> microswitch</a> </p> <a href="https://publications.waset.org/abstracts/139320/microswitches-with-sputtered-au-aupd-au-on-aupt-and-auptcu-alloy-electric-contacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Derayatifar">M. Derayatifar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Packirisamy"> M. Packirisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.B.%20Bhat"> R.B. Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20piezoelectric%20material" title=" functionally graded piezoelectric material"> functionally graded piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20force" title=" magnetic force"> magnetic force</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20%28micro-electro-mechanical%20systems%29%20piezoelectric" title=" MEMS (micro-electro-mechanical systems) piezoelectric"> MEMS (micro-electro-mechanical systems) piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20method" title=" perturbation method"> perturbation method</a> </p> <a href="https://publications.waset.org/abstracts/83297/functionally-graded-mems-piezoelectric-energy-harvester-with-magnetic-tip-mass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keerthana%20E.">Keerthana E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lohithya%20S."> Lohithya S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshavardhini%20K.%20S."> Harshavardhini K. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranya%20G."> Saranya G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Suganthi%20S."> Suganthi S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand%20gestures" title="hand gestures">hand gestures</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20cables" title=" multiple cables"> multiple cables</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20communication" title=" serial communication"> serial communication</a>, <a href="https://publications.waset.org/abstracts/search?q=sms%20%20notification" title=" sms notification"> sms notification</a> </p> <a href="https://publications.waset.org/abstracts/184620/hand-gesture-interface-for-pc-control-and-sms-notification-using-mems-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Developement of a New Wearable Device for Automatic Guidance Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20sysem" title=" guide sysem"> guide sysem</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/21436/developement-of-a-new-wearable-device-for-automatic-guidance-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdunnaser%20Tresh"> Abdunnaser Tresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/3660/simplified-insgps-integration-algorithm-in-land-vehicle-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Genetic Algorithm Optimization of Microcantilever Based Resonator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjula%20Sutagundar">Manjula Sutagundar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Sheeparamatti"> B. G. Sheeparamatti</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Jangamshetti"> D. S. Jangamshetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS%20resonator" title="MEMS resonator">MEMS resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20simulation" title=" modelling and simulation"> modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/2591/genetic-algorithm-optimization-of-microcantilever-based-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qijiao%20He">Qijiao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuum%20and%20rarefied%20gas%20flows" title="continuum and rarefied gas flows">continuum and rarefied gas flows</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20Galerkin%20method" title=" discontinuous Galerkin method"> discontinuous Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations" title=" generalized hydrodynamic equations"> generalized hydrodynamic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/96484/micro-channel-flows-simulation-based-on-nonlinear-coupled-constitutive-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Ruthenium Based Nanoscale Contact Coatings for Magnetically Controlled MEMS Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20M.%20Karabanov">Sergey M. Karabanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20V.%20Suvorov"> Dmitry V. Suvorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetically controlled microelectromechanical system (MCMEMS) switches is one of the directions in the field of micropower switching technology. MCMEMS switches are a promising alternative to Hall sensors and reed switches. The most important parameter for MCMEMS is the contact resistance, which should have a minimum value and is to be stable for the entire duration of service life. The value and stability of the contact resistance is mainly determined by the contact coating material. This paper presents the research results of a contact coating based on nanoscale ruthenium films obtained by electrolytic deposition. As a result of the performed investigations, the deposition modes of ruthenium films are chosen, the regularities of the contact resistance change depending on the number of contact switching, and the coating roughness are established. It is shown that changing the coating roughness makes it possible to minimize the contact resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20resistance" title="contact resistance">contact resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20coating" title=" electrode coating"> electrode coating</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytic%20deposition" title=" electrolytic deposition"> electrolytic deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20controlled%20MEMS" title=" magnetically controlled MEMS"> magnetically controlled MEMS</a> </p> <a href="https://publications.waset.org/abstracts/99675/ruthenium-based-nanoscale-contact-coatings-for-magnetically-controlled-mems-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Development of Quasi Real-Time Comprehensive System for Earthquake Disaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Liu">Zhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Jiang"> Hui Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Li"> Jin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunhao%20Chen"> Kunhao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Langfang%20Zhang"> Langfang Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast acquisition of the seismic information and accurate assessment of the earthquake disaster is the key problem for emergency rescue after a destructive earthquake. In order to meet the requirements of the earthquake emergency response and rescue for the cities and counties, a quasi real-time comprehensive evaluation system for earthquake disaster is developed. Based on monitoring data of Micro-Electro-Mechanical Systems (MEMS) strong motion network, structure database of a county area and the real-time disaster information by the mobile terminal after an earthquake, fragility analysis method and dynamic correction algorithm are synthetically obtained in the developed system. Real-time evaluation of the seismic disaster in the county region is finally realized to provide scientific basis for seismic emergency command, rescue and assistant decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quasi%20real-time" title="quasi real-time">quasi real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster%20data%20collection" title=" earthquake disaster data collection"> earthquake disaster data collection</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20accelerometer" title=" MEMS accelerometer"> MEMS accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20correction" title=" dynamic correction"> dynamic correction</a>, <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20evaluation" title=" comprehensive evaluation"> comprehensive evaluation</a> </p> <a href="https://publications.waset.org/abstracts/84492/development-of-quasi-real-time-comprehensive-system-for-earthquake-disaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaushik%20Sathupadi">Kaushik Sathupadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandesh%20Achar"> Sandesh Achar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20analysis" title=" gait analysis"> gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern%20%28LBP%29" title=" local binary pattern (LBP)"> local binary pattern (LBP)</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20features" title=" statistical features"> statistical features</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electro-mechanical%20systems%20%28MEMS%29" title=" micro-electro-mechanical systems (MEMS)"> micro-electro-mechanical systems (MEMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20relevance%20and%20minimum%20re-dundancy%20%28MRMR%29" title=" maximum relevance and minimum re-dundancy (MRMR)"> maximum relevance and minimum re-dundancy (MRMR)</a> </p> <a href="https://publications.waset.org/abstracts/190027/personalizing-human-physical-life-routines-recognition-over-cloud-based-sensor-data-via-ai-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Design and Fabrication of an Electrostatically Actuated Parallel-Plate Mirror by 3D-Printer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Mizuno">J. Mizuno</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Takahashi"> S. Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design and fabrication of an actuated parallel-plate mirror based on a 3D-printer is described. The mirror and electrode layers are fabricated separately and assembled thereafter. The alignment is performed by dowel pin-hole pairs fabricated on the respective layers. The electrodes are formed on the surface of the electrode layer by Au ion sputtering using a suitable mask, which is also fabricated by a 3D-printer.For grounding the mirror layer, except the contact area with the electrode paths, all the surface is Au ion sputtered. 3D-printers are widely used for creating 3D models or mock-ups. The authors have recently proposed that these models can perform electromechanical functions such as actuators by suitably masking them followed by metallization process. Since the smallest possible fabrication size is in the order of sub-millimeters, these electromechanical devices are named by the authors as SMEMS (Sub-Milli Electro-Mechanical Systems) devices. The proposed mirror described in this paper which consists of parallel-plate electrostatic actuators is also one type of SMEMS devices. In addition, SMEMS is totally environment-clean compared to MEMS (Micro Electro-Mechanical Systems) fabrication processes because any hazardous chemicals or gases are utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel-plate%20mirror" title=" parallel-plate mirror"> parallel-plate mirror</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEMS" title=" SMEMS"> SMEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-printer" title=" 3D-printer"> 3D-printer</a> </p> <a href="https://publications.waset.org/abstracts/5014/design-and-fabrication-of-an-electrostatically-actuated-parallel-plate-mirror-by-3d-printer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ding%20Liangxiao">Ding Liangxiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20sensors" title=" flexible sensors"> flexible sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20Multiphysics" title=" COMSOL Multiphysics"> COMSOL Multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=AgNWs%2FTPU" title=" AgNWs/TPU"> AgNWs/TPU</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20modeling" title=" 3D modeling"> 3D modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20durability" title=" sensor durability"> sensor durability</a> </p> <a href="https://publications.waset.org/abstracts/186074/simulation-and-analysis-of-mems-based-flexible-capacitive-pressure-sensors-with-comsol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassen%20M.%20Ouakad">Hassen M. Ouakad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=fringing-fields" title=" fringing-fields"> fringing-fields</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-plane%20stretching" title=" mid-plane stretching"> mid-plane stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin" title=" Galerkin"> Galerkin</a> </p> <a href="https://publications.waset.org/abstracts/40199/nonlinear-structural-behavior-of-micro-and-nano-actuators-using-the-galerkin-discretization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEMS&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEMS&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEMS&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEMS&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10