CINXE.COM

subset (changes) in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> subset (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> subset (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/9019/#Item_5" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #16 to #17: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <h1 id='subsets'>Subsets</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definitions'>Definitions</a><ul><li><a href='#in_material_set_theory'>In material set theory</a></li><li><a href='#in_structural_set_theory'>In structural set theory</a></li><li><a href='#internal_subsets'>Internal subsets</a></li></ul></li><li><a href='#remarks'>Remarks</a></li><li><a href='#related_concepts'>Related concepts</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>A subset of a given <a class='existingWikiWord' href='/nlab/show/diff/set'>set</a> <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is a set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> that may be viewed as contained within <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p> <h2 id='definitions'>Definitions</h2> <h3 id='in_material_set_theory'>In material set theory</h3> <p>In <a class='existingWikiWord' href='/nlab/show/diff/material+set+theory'>material set theory</a>, a <strong>subset</strong> of a <a class='existingWikiWord' href='/nlab/show/diff/set'>set</a> <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is a set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> with the <em>property</em> that</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>B</mi><mspace width='thickmathspace' /><mo>⇒</mo><mspace width='thickmathspace' /><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'> x \in B \;\Rightarrow\; x \in A </annotation></semantics></math></div> <p>for any object <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> whatsoever. One writes <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>B \subseteq A</annotation></semantics></math> or <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi><mo>⊂</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>B \subset A</annotation></semantics></math> (depending on the author) if <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> has this property. Set theory&#39;s <a class='existingWikiWord' href='/nlab/show/diff/axiom+of+extensionality'>axiom of extensionality</a> says that <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding='application/x-tex'>A = B</annotation></semantics></math> if (and only if) <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding='application/x-tex'>A \subseteq B</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>B \subseteq A</annotation></semantics></math> (although this is only strong enough for <span class='newWikiWord'><span><ins class='diffins'> </ins> well-founded<del class='diffmod'> set</del><ins class='diffmod'> sets</ins></span><a href='/nlab/new/well-founded+set'>?</a></span><span><del class='diffmod'> s).</del><ins class='diffmod'> ).</ins></span></p> <h3 id='in_structural_set_theory'>In structural set theory</h3> <p>In <a class='existingWikiWord' href='/nlab/show/diff/structural+set+theory'>structural set theory</a>, this definition doesn&#39;t make sense, because there is no global membership predicate <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∈</mo></mrow><annotation encoding='application/x-tex'>\in</annotation></semantics></math> (and there may not be a global <a class='existingWikiWord' href='/nlab/show/diff/equality'>equality predicate</a> either). Accordingly, we define a <strong>subset</strong> of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> to be a set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> with the <em>structure</em> of an <a class='existingWikiWord' href='/nlab/show/diff/injection'>injection</a></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi><mo lspace='verythinmathspace'>:</mo><mi>B</mi><mo>↪</mo><mi>A</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'> i\colon B \hookrightarrow A .</annotation></semantics></math></div> <p>We can still define a <em>local</em> membership predicate <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mo>∈</mo> <mi>A</mi></msub></mrow><annotation encoding='application/x-tex'>\in_A</annotation></semantics></math> as follows: Given an element <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> and a subset <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> (technically, <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>B</mi><mo>,</mo><mi>i</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(B,i)</annotation></semantics></math>) of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>,</p> <div class='maruku-equation' id='eq:indef'><span class='maruku-eq-number'>(1)</span><math class='maruku-mathml' display='block' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><msub><mo>∈</mo> <mi>A</mi></msub><mi>B</mi><mspace width='thickmathspace' /><mo>⇔</mo><mspace width='thickmathspace' /><mo>∃</mo><mo stretchy='false'>(</mo><mi>y</mi><mo lspace='verythinmathspace'>:</mo><mi>B</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thickmathspace' /><mi>x</mi><mo>=</mo><mi>i</mi><mo stretchy='false'>(</mo><mi>y</mi><mo stretchy='false'>)</mo><mo>.</mo></mrow><annotation encoding='application/x-tex'> x \in_A B \;\Leftrightarrow\; \exists(y\colon B),\; x = i(y) .</annotation></semantics></math></div> <p>Similarly, we can define a local containment predicate <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mo>⊆</mo> <mi>A</mi></msub></mrow><annotation encoding='application/x-tex'>\subseteq_A</annotation></semantics></math> as follows: Given subsets <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>,</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi><msub><mo>⊆</mo> <mi>A</mi></msub><mi>C</mi><mspace width='thickmathspace' /><mo>⇔</mo><mspace width='thickmathspace' /><mo>∀</mo><mo stretchy='false'>(</mo><mi>x</mi><mo lspace='verythinmathspace'>:</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thickmathspace' /><mi>x</mi><mo>∈</mo><mi>B</mi><mspace width='thickmathspace' /><mo>⇒</mo><mspace width='thickmathspace' /><mi>x</mi><mo>∈</mo><mi>C</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'> B \subseteq_A C \;\Leftrightarrow\; \forall(x\colon A),\; x \in B \;\Rightarrow\; x \in C .</annotation></semantics></math></div> <p>We can also define a local equality predicate <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mo>=</mo> <mi>A</mi></msub></mrow><annotation encoding='application/x-tex'>=_A</annotation></semantics></math> on subsets of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>:</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi><msub><mo>=</mo> <mi>A</mi></msub><mi>C</mi><mspace width='thickmathspace' /><mo>⇔</mo><mspace width='thickmathspace' /><mi>B</mi><mo>⊆</mo><mi>C</mi><mspace width='thickmathspace' /><mo>∧</mo><mspace width='thickmathspace' /><mi>C</mi><mo>⊆</mo><mi>B</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'> B =_A C \;\Leftrightarrow\; B \subseteq C \;\wedge\; C \subseteq B .</annotation></semantics></math></div> <p>In foundations that already have a global equality predicate on sets (and functions between equal sets), this local equality predicate must be interpreted as an <a class='existingWikiWord' href='/nlab/show/diff/equivalence+relation'>equivalence relation</a>; then a <strong>subset</strong> of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is technically an <a class='existingWikiWord' href='/nlab/show/diff/equivalence+class'>equivalence class</a> of injections to <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> rather than simply an injection to <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p> <p>In any case, if <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is a subset of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math>, then <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> is a <strong>superset</strong> of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p> <h3 id='internal_subsets'>Internal subsets</h3> <p>One could define the subset relation as a <a class='existingWikiWord' href='/nlab/show/diff/set'>set</a> using the <a class='existingWikiWord' href='/nlab/show/diff/internal+logic'>internal logic</a> of a <a class='existingWikiWord' href='/nlab/show/diff/set+theory'>set theory</a>. The inclusion <a class='existingWikiWord' href='/nlab/show/diff/relation'>relation</a> between two sets <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> is defined as the <a class='existingWikiWord' href='/nlab/show/diff/support+of+a+set'>support</a> of the <a class='existingWikiWord' href='/nlab/show/diff/injection+set'>injection set</a> between <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math>:</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi><mo>≔</mo><mrow><mo>[</mo><mi mathvariant='normal'>Inj</mi><mo stretchy='false'>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo stretchy='false'>)</mo><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>A \subseteq B \coloneqq \left[\mathrm{Inj}(A, B)\right]</annotation></semantics></math></div> <p>A <strong>internal subset</strong> of a <a class='existingWikiWord' href='/nlab/show/diff/set'>set</a> <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> is a set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> with an element <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>p</mi><mo>∈</mo><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding='application/x-tex'>p \in A \subseteq B</annotation></semantics></math>. A <strong>internal superset</strong> of a <a class='existingWikiWord' href='/nlab/show/diff/set'>set</a> <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is a set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> with an element <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>p</mi><mo>∈</mo><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding='application/x-tex'>p \in A \subseteq B</annotation></semantics></math>.</p> <h2 id='remarks'>Remarks</h2> <p>As you can see from the right-hand sides of the above sequence of definitions, one usually suppresses the subscript <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> from the notation. Even the right-hand side of <a class='maruku-eqref' href='#eq:indef'>(1)</a> may use a local equality relation on elements of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>. It may be necessary to distinguish <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo lspace='verythinmathspace'>:</mo><mi>E</mi></mrow><annotation encoding='application/x-tex'>x\colon E</annotation></semantics></math> (the <em><a class='existingWikiWord' href='/nlab/show/diff/type'>typing declaration</a></em> introducing a variable <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> for an element of a given set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math>) from <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><msub><mo>∈</mo> <mi>A</mi></msub><mi>E</mi></mrow><annotation encoding='application/x-tex'>x \in_A E</annotation></semantics></math> (the <em><a class='existingWikiWord' href='/nlab/show/diff/proposition'>proposition</a></em> that a given element <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> of a given set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is a member of a given subset <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>). Some authors may use <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>x \in A</annotation></semantics></math> for either or both of these, trusting on context (particularly whether <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> has been introduced before) to distinguish them. Another notational convenience is to suppress the injection <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi></mrow><annotation encoding='application/x-tex'>i</annotation></semantics></math>, writing <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> instead of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi><mo stretchy='false'>(</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>i(y)</annotation></semantics></math>.</p> <p>The concept of subset as it appears here generalises to <a class='existingWikiWord' href='/nlab/show/diff/subobject'>subobject</a> in category theory. To be precise, a subset of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is exactly a subobject of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> when <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is thought of as an object of the category <a class='existingWikiWord' href='/nlab/show/diff/Set'>Set</a>. The concept of superset then generalises to a notion of <a class='existingWikiWord' href='/nlab/show/diff/extension'>extension</a> analogous to that of <a class='existingWikiWord' href='/nlab/show/diff/field+extension'>field extension</a>.</p> <p>When the abstract set <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is fixed, a subset <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_611b694eea030f0c42d064c5352ea79aca9956ae_71' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> may be thought of as a <strong><a class='existingWikiWord' href='/nlab/show/diff/concrete+structure'>concrete</a> set</strong>.</p> <h2 id='related_concepts'>Related concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/subtype'>subtype</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cofinite+subset'>cofinite subset</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/saturated+subset'>saturated subset</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/subspace'>subspace</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/causally+closed+subset'>causally closed subset</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/space+of+finite+subsets'>space of finite subsets</a></p> </li> </ul> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> </div> <div class="revisedby"> <p> Last revised on November 15, 2023 at 04:23:43. See the <a href="/nlab/history/subset" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/subset" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/9019/#Item_5">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/subset/16" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/subset" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/subset" accesskey="S" class="navlink" id="history" rel="nofollow">History (16 revisions)</a> <a href="/nlab/show/subset/cite" style="color: black">Cite</a> <a href="/nlab/print/subset" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/subset" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10