CINXE.COM

Alberto Barone | Università degli Studi di Palermo - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Alberto Barone | Università degli Studi di Palermo - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="wX9IuKfk0Vdad8Vpw1bevNpxIPDM/9g+BSs7HCoVHA2UEEUul4G2e1g+/E9SoPbufGaNrl56EAcsuMcAfBAOPQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="alberto barone" /> <meta name="description" content="Alberto Barone, Università degli Studi di Palermo: 1332 Followers, 62 Following, 26 Research papers. Research interests: Giurisprudenza, SCIENZE POLITICHE, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9a8e9ca111ca412c76c8fd2767868304f6fa3970'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277509253,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732768590000); window.Aedu.timeDifference = new Date().getTime() - 1732768590000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://unipa.academia.edu/AlbertoBarone" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone","photo":"https://0.academia-photos.com/26387366/7304130/8216325/s65_alberto.barone.jpg_oh_f12c1ff76f14afdc95ba5b7e3b4a263b_oe_55950f81___gda___1434956310_59bf473dd87e1df092f626c609d8a06b","has_photo":true,"department":{"id":231606,"name":"Giurisprudenza","url":"https://unipa.academia.edu/Departments/Giurisprudenza/Documents","university":{"id":1597,"name":"Università degli Studi di Palermo","url":"https://unipa.academia.edu/"}},"position":"Alumnus","position_id":8,"is_analytics_public":false,"interests":[{"id":108122,"name":"Giurisprudenza","url":"https://www.academia.edu/Documents/in/Giurisprudenza"},{"id":137157,"name":"SCIENZE POLITICHE","url":"https://www.academia.edu/Documents/in/SCIENZE_POLITICHE"},{"id":13057,"name":"War Crimes","url":"https://www.academia.edu/Documents/in/War_Crimes"},{"id":15021,"name":"International Court of Justice","url":"https://www.academia.edu/Documents/in/International_Court_of_Justice"},{"id":11033,"name":"Contract Theory","url":"https://www.academia.edu/Documents/in/Contract_Theory"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":9872186,"link":"https://www.facebook.com/alberto.barone.58","name":"Facebook","link_domain":"www.facebook.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.facebook.com"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://unipa.academia.edu/AlbertoBarone&quot;,&quot;location&quot;:&quot;/AlbertoBarone&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;unipa.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AlbertoBarone&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f5fa4617-b521-4267-ab79-1e3966507018"></div> <div id="ProfileCheckPaperUpdate-react-component-f5fa4617-b521-4267-ab79-1e3966507018"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Alberto Barone" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/26387366/7304130/8216325/s200_alberto.barone.jpg_oh_f12c1ff76f14afdc95ba5b7e3b4a263b_oe_55950f81___gda___1434956310_59bf473dd87e1df092f626c609d8a06b" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Alberto Barone</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://unipa.academia.edu/">Università degli Studi di Palermo</a>, <a class="u-tcGrayDarker" href="https://unipa.academia.edu/Departments/Giurisprudenza/Documents">Giurisprudenza</a>, <span class="u-tcGrayDarker">Alumnus</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Alberto" data-follow-user-id="26387366" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="26387366"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">1,332</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">62</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26387366" href="https://www.academia.edu/Documents/in/Giurisprudenza"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://unipa.academia.edu/AlbertoBarone&quot;,&quot;location&quot;:&quot;/AlbertoBarone&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;unipa.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AlbertoBarone&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Giurisprudenza&quot;]}" data-trace="false" data-dom-id="Pill-react-component-4abf5964-05a0-42da-afa0-c699bf21eb4b"></div> <div id="Pill-react-component-4abf5964-05a0-42da-afa0-c699bf21eb4b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26387366" href="https://www.academia.edu/Documents/in/SCIENZE_POLITICHE"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;SCIENZE POLITICHE&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c3224f5f-e6b7-4fd1-8088-16877288e1f1"></div> <div id="Pill-react-component-c3224f5f-e6b7-4fd1-8088-16877288e1f1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26387366" href="https://www.academia.edu/Documents/in/War_Crimes"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;War Crimes&quot;]}" data-trace="false" data-dom-id="Pill-react-component-024232a8-0660-4153-9a0b-cc0172b11257"></div> <div id="Pill-react-component-024232a8-0660-4153-9a0b-cc0172b11257"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26387366" href="https://www.academia.edu/Documents/in/International_Court_of_Justice"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;International Court of Justice&quot;]}" data-trace="false" data-dom-id="Pill-react-component-67672dfc-e764-46ab-bf5e-70138351952c"></div> <div id="Pill-react-component-67672dfc-e764-46ab-bf5e-70138351952c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26387366" href="https://www.academia.edu/Documents/in/Contract_Theory"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Contract Theory&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f5e8fb7d-c881-452c-8eb0-22384f35007c"></div> <div id="Pill-react-component-f5e8fb7d-c881-452c-8eb0-22384f35007c"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Alberto Barone</h3></div><div class="js-work-strip profile--work_container" data-work-id="10862747"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862747/_Verso_laser_cleaning_of_mechanically_thin_films"><img alt="Research paper thumbnail of “Verso” laser cleaning of mechanically thin films" class="work-thumbnail" src="https://attachments.academia-assets.com/47068586/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862747/_Verso_laser_cleaning_of_mechanically_thin_films">“Verso” laser cleaning of mechanically thin films</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c56c8060363a7372115edb41c9b4a6b3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068586,&quot;asset_id&quot;:10862747,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068586/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862747"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862747"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862747; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862747]").text(description); $(".js-view-count[data-work-id=10862747]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862747; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862747']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862747, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c56c8060363a7372115edb41c9b4a6b3" } } $('.js-work-strip[data-work-id=10862747]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862747,"title":"“Verso” laser cleaning of mechanically thin films","translated_title":"","metadata":{"grobid_abstract":"In usual dry laser cleaning of opaque samples, short laser pulses are projected onto the sample surface to be cleaned. Energy transferred from light ejects extraneous particles away from the surface. Laser beam fluence is limited by the damage reached by high temperature that the sample surface can produce. We have experimentally shown that for thin samples, the thermo-elastic wave propagates within the whole sample thickness, thus also the rear surface, while temperature effects are limited to the front surface. Therefore, the proposed ''verso'' laser cleaning technique (the pulsed laser beam impinges on rear sample surface) can be applied to any opaque ''mechanically thin'' film and is useful for samples having delicate treatments on the surface to be cleaned (e.g. written paper, painted tiles, magnetic films). We have applied our technique to paper sheets showing that it is possible to efficiently clean the surface without damaging ink marks on it. Using a probe beam deflection (PBD) technique in both direct and reverse configuration we have shown that the ''verso'' cleaning effect is due to the higher penetration depth of the thermo-elastic wave with respect to the temperature profile propagation. #","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Applied Surface Science","grobid_abstract_attachment_id":47068586},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862747/_Verso_laser_cleaning_of_mechanically_thin_films","translated_internal_url":"","created_at":"2015-02-17T03:16:00.722-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068586,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068586/thumbnails/1.jpg","file_name":"Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18.pdf","download_url":"https://www.academia.edu/attachments/47068586/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Verso_laser_cleaning_of_mechanically_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068586/Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DVerso_laser_cleaning_of_mechanically_th.pdf\u0026Expires=1732772190\u0026Signature=SjOCWrjGhaW4ybw-qZNZR2D9zP-0wKlnjHTse4M2TpvF6ZG-wK7SmbjTfoVOXN8xIBln2ON5wHAJbuEYh3g4-t4rHk0tIonmQNK8SvuC-V78tJov~JXpU5ZOhHrZNRHElL5fSi~m01jkmb2vzk-IMx10OnMfW8-zNUwuyspm3My1Sged3GsYwX3BnC0FmsBWqCHM6cmd-harcaDzxpSz6zz8JVEL46x4VNzCbn~9h2QXmfz3df-ayA0uyIq62nKJoVxis33JLkGnXtqmAGn-p~Y0OQ8wJ~4tH7qbyhQQegkFe2NF5IwnWoBiwzv94fAoZIpzBP0kO7Vn5h-LOEeu~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_Verso_laser_cleaning_of_mechanically_thin_films","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068586,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068586/thumbnails/1.jpg","file_name":"Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18.pdf","download_url":"https://www.academia.edu/attachments/47068586/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Verso_laser_cleaning_of_mechanically_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068586/Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DVerso_laser_cleaning_of_mechanically_th.pdf\u0026Expires=1732772190\u0026Signature=SjOCWrjGhaW4ybw-qZNZR2D9zP-0wKlnjHTse4M2TpvF6ZG-wK7SmbjTfoVOXN8xIBln2ON5wHAJbuEYh3g4-t4rHk0tIonmQNK8SvuC-V78tJov~JXpU5ZOhHrZNRHElL5fSi~m01jkmb2vzk-IMx10OnMfW8-zNUwuyspm3My1Sged3GsYwX3BnC0FmsBWqCHM6cmd-harcaDzxpSz6zz8JVEL46x4VNzCbn~9h2QXmfz3df-ayA0uyIq62nKJoVxis33JLkGnXtqmAGn-p~Y0OQ8wJ~4tH7qbyhQQegkFe2NF5IwnWoBiwzv94fAoZIpzBP0kO7Vn5h-LOEeu~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":48903,"name":"Elastic waves","url":"https://www.academia.edu/Documents/in/Elastic_waves"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":144061,"name":"Laser Cleaning","url":"https://www.academia.edu/Documents/in/Laser_Cleaning"},{"id":191117,"name":"High Temperature","url":"https://www.academia.edu/Documents/in/High_Temperature"},{"id":717129,"name":"Energy Transfer","url":"https://www.academia.edu/Documents/in/Energy_Transfer"},{"id":832539,"name":"Penetration Depth","url":"https://www.academia.edu/Documents/in/Penetration_Depth"},{"id":1294457,"name":"Temperature Effect","url":"https://www.academia.edu/Documents/in/Temperature_Effect"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862743"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862743/Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films"><img alt="Research paper thumbnail of Ultrafast pulsed laser deposition as a method for the synthesis of innovative magnetic films" class="work-thumbnail" src="https://attachments.academia-assets.com/47068594/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862743/Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films">Ultrafast pulsed laser deposition as a method for the synthesis of innovative magnetic films</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles were produced by ultrafast pulsed laser deposition, in vacuum. These films show a peculiar cauliflower-like structure, made of granular agglomerates of nanoparticles sticking to one another with a significant shape and orientation anisotropy. Both as-deposited Ni and Fe films present hysteresis loops with a high in-plane remanence ratio (0.61 and 0.81 at 250 K, respectively), relatively low values of the saturation and coercive fields and a steep slope near coercivity. At temperature of 10 K and 250 K, the magnetization curves confirm the strong influence of the production technique on the topologic structure of these films, and consequently on their magnetic properties. In perspective, the striking and intriguing properties of these nanogranular films appear very promising for potential application as permanent magnets and in data storage technology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7acf0c53b574343cead7ddfb9fab4cd7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068594,&quot;asset_id&quot;:10862743,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068594/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862743"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862743"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862743; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862743]").text(description); $(".js-view-count[data-work-id=10862743]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862743; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862743']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862743, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7acf0c53b574343cead7ddfb9fab4cd7" } } $('.js-work-strip[data-work-id=10862743]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862743,"title":"Ultrafast pulsed laser deposition as a method for the synthesis of innovative magnetic films","translated_title":"","metadata":{"abstract":"Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles were produced by ultrafast pulsed laser deposition, in vacuum. These films show a peculiar cauliflower-like structure, made of granular agglomerates of nanoparticles sticking to one another with a significant shape and orientation anisotropy. Both as-deposited Ni and Fe films present hysteresis loops with a high in-plane remanence ratio (0.61 and 0.81 at 250 K, respectively), relatively low values of the saturation and coercive fields and a steep slope near coercivity. At temperature of 10 K and 250 K, the magnetization curves confirm the strong influence of the production technique on the topologic structure of these films, and consequently on their magnetic properties. In perspective, the striking and intriguing properties of these nanogranular films appear very promising for potential application as permanent magnets and in data storage technology.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles were produced by ultrafast pulsed laser deposition, in vacuum. These films show a peculiar cauliflower-like structure, made of granular agglomerates of nanoparticles sticking to one another with a significant shape and orientation anisotropy. Both as-deposited Ni and Fe films present hysteresis loops with a high in-plane remanence ratio (0.61 and 0.81 at 250 K, respectively), relatively low values of the saturation and coercive fields and a steep slope near coercivity. At temperature of 10 K and 250 K, the magnetization curves confirm the strong influence of the production technique on the topologic structure of these films, and consequently on their magnetic properties. In perspective, the striking and intriguing properties of these nanogranular films appear very promising for potential application as permanent magnets and in data storage technology.","internal_url":"https://www.academia.edu/10862743/Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films","translated_internal_url":"","created_at":"2015-02-17T03:15:52.698-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068594/thumbnails/1.jpg","file_name":"j.apsusc.2008.10.08820160706-17159-rt9b7e.pdf","download_url":"https://www.academia.edu/attachments/47068594/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_pulsed_laser_deposition_as_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068594/j.apsusc.2008.10.08820160706-17159-rt9b7e-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_pulsed_laser_deposition_as_a_m.pdf\u0026Expires=1732772190\u0026Signature=Aa4-~lKwNiii628vILhd4SflReC5Sn8gMohcc1erzm-wRALMZdA9OmQGQ-w6IH24COhGKzODDSDnpCZMe8D~24xOqyLvAMnRmAX8WaVlpZzf0MS4bqhHgOU9wYo~WhZc5-Puu2mAc9k-poQF0o82ExBWVobvZRRFimB6u5pXDVUeQaKXB6zrMYKlSTYrQ8VFRhH21vfgzQAIroAkkRTwUO7QWKt-7gMf-yI~tsT61j4SuHl4R2s7Q-VbKNa-3Zkf7UkzdXGvY2yt4g-9rkJx85TDINNM2R1TIZunqQds~APcD0aIbzLOIrTY6OHF19Io0VOxEYH-BAHf8Q2IA4F8hA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068594/thumbnails/1.jpg","file_name":"j.apsusc.2008.10.08820160706-17159-rt9b7e.pdf","download_url":"https://www.academia.edu/attachments/47068594/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_pulsed_laser_deposition_as_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068594/j.apsusc.2008.10.08820160706-17159-rt9b7e-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_pulsed_laser_deposition_as_a_m.pdf\u0026Expires=1732772190\u0026Signature=Aa4-~lKwNiii628vILhd4SflReC5Sn8gMohcc1erzm-wRALMZdA9OmQGQ-w6IH24COhGKzODDSDnpCZMe8D~24xOqyLvAMnRmAX8WaVlpZzf0MS4bqhHgOU9wYo~WhZc5-Puu2mAc9k-poQF0o82ExBWVobvZRRFimB6u5pXDVUeQaKXB6zrMYKlSTYrQ8VFRhH21vfgzQAIroAkkRTwUO7QWKt-7gMf-yI~tsT61j4SuHl4R2s7Q-VbKNa-3Zkf7UkzdXGvY2yt4g-9rkJx85TDINNM2R1TIZunqQds~APcD0aIbzLOIrTY6OHF19Io0VOxEYH-BAHf8Q2IA4F8hA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":133975,"name":"Magnetic Properties","url":"https://www.academia.edu/Documents/in/Magnetic_Properties"},{"id":138807,"name":"Data storage","url":"https://www.academia.edu/Documents/in/Data_storage"},{"id":343510,"name":"Exchange coupling","url":"https://www.academia.edu/Documents/in/Exchange_coupling"},{"id":2474072,"name":"Hysteresis Loop","url":"https://www.academia.edu/Documents/in/Hysteresis_Loop"}],"urls":[{"id":4370358,"url":"http://www.sciencedirect.com/science/article/pii/S0169433208022071"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862741"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862741/Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition"><img alt="Research paper thumbnail of Evidence of giant magnetoresistance effect in heterogeneous nanogranular films produced by ultrashort pulsed laser deposition" class="work-thumbnail" src="https://attachments.academia-assets.com/47068589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862741/Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition">Evidence of giant magnetoresistance effect in heterogeneous nanogranular films produced by ultrashort pulsed laser deposition</a></div><div class="wp-workCard_item"><span>Journal of Materials Processing Technology</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with non-magnetic metallic nanoparticles produced by ultrashort pulsed laser deposition (uPLD). The uPLD, which uses femtosecond laser pulses, has been recently reported as a powerful technique for obtaining nanoparticles and nanogranular films. As-deposited Co–Cu and Fe–Ag films in a moderate volume fraction range of magnetic component (15–25%) present detectable values of this magnetoresistive effect, although the average size of the particles is higher than in typical nanogranular materials for magnetoresistive applications. The determined longitudinal, transverse and perpendicular magnetoresistance behaviours, at the temperatures of 10 and 250 K, confirm the strong influence of the production technique on the complex microstructure of these films and consequently on their peculiar magneto-transport properties. In perspective, by optimizing the production parameters, these nanogranular films appear very promising for potential application in magnetic recording and data storage technology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="826303cc9a746ebe64ff5ed899ab1b07" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068589,&quot;asset_id&quot;:10862741,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068589/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862741"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862741"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862741; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862741]").text(description); $(".js-view-count[data-work-id=10862741]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862741; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862741']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862741, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "826303cc9a746ebe64ff5ed899ab1b07" } } $('.js-work-strip[data-work-id=10862741]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862741,"title":"Evidence of giant magnetoresistance effect in heterogeneous nanogranular films produced by ultrashort pulsed laser deposition","translated_title":"","metadata":{"abstract":"Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with non-magnetic metallic nanoparticles produced by ultrashort pulsed laser deposition (uPLD). The uPLD, which uses femtosecond laser pulses, has been recently reported as a powerful technique for obtaining nanoparticles and nanogranular films. As-deposited Co–Cu and Fe–Ag films in a moderate volume fraction range of magnetic component (15–25%) present detectable values of this magnetoresistive effect, although the average size of the particles is higher than in typical nanogranular materials for magnetoresistive applications. The determined longitudinal, transverse and perpendicular magnetoresistance behaviours, at the temperatures of 10 and 250 K, confirm the strong influence of the production technique on the complex microstructure of these films and consequently on their peculiar magneto-transport properties. In perspective, by optimizing the production parameters, these nanogranular films appear very promising for potential application in magnetic recording and data storage technology.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of Materials Processing Technology"},"translated_abstract":"Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with non-magnetic metallic nanoparticles produced by ultrashort pulsed laser deposition (uPLD). The uPLD, which uses femtosecond laser pulses, has been recently reported as a powerful technique for obtaining nanoparticles and nanogranular films. As-deposited Co–Cu and Fe–Ag films in a moderate volume fraction range of magnetic component (15–25%) present detectable values of this magnetoresistive effect, although the average size of the particles is higher than in typical nanogranular materials for magnetoresistive applications. The determined longitudinal, transverse and perpendicular magnetoresistance behaviours, at the temperatures of 10 and 250 K, confirm the strong influence of the production technique on the complex microstructure of these films and consequently on their peculiar magneto-transport properties. In perspective, by optimizing the production parameters, these nanogranular films appear very promising for potential application in magnetic recording and data storage technology.","internal_url":"https://www.academia.edu/10862741/Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_internal_url":"","created_at":"2015-02-17T03:15:52.489-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068589/thumbnails/1.jpg","file_name":"j.jmatprotec.2008.01.00520160706-19298-1fvjr5b.pdf","download_url":"https://www.academia.edu/attachments/47068589/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evidence_of_giant_magnetoresistance_effe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068589/j.jmatprotec.2008.01.00520160706-19298-1fvjr5b-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_of_giant_magnetoresistance_effe.pdf\u0026Expires=1732772190\u0026Signature=hDB1rWCRFdtyED-h7VAt7cf8Bd3Rrzze0O0kljVXVc2foHcJjUJx08diF5enh9ztIIbthWrW17GYVkoGCfzLKP3FTkgTu1SHXcKXN-GR~dnxT5U98PPQxf9e7QZOc-X0ooKmQdd0YW01qIpbkvVOfE0jZ-~WLi8nuuEr6myRXn15BUr2q0QFEM6ANN9dFcl8gmgzF40paPPi61aSQ1CJ7xLddn01lZ7~sUHS4L8PBf8wSiRiB-ipTz0B8Suf-8SM6PLlxCroD3UgxCfO0zcKKX6DCLl-azejDzK0klEaYvinUmYb8ctdSqCGQB4JpWEWpX79ZRATk2N6PH1f4JMGKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068589/thumbnails/1.jpg","file_name":"j.jmatprotec.2008.01.00520160706-19298-1fvjr5b.pdf","download_url":"https://www.academia.edu/attachments/47068589/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evidence_of_giant_magnetoresistance_effe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068589/j.jmatprotec.2008.01.00520160706-19298-1fvjr5b-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_of_giant_magnetoresistance_effe.pdf\u0026Expires=1732772190\u0026Signature=hDB1rWCRFdtyED-h7VAt7cf8Bd3Rrzze0O0kljVXVc2foHcJjUJx08diF5enh9ztIIbthWrW17GYVkoGCfzLKP3FTkgTu1SHXcKXN-GR~dnxT5U98PPQxf9e7QZOc-X0ooKmQdd0YW01qIpbkvVOfE0jZ-~WLi8nuuEr6myRXn15BUr2q0QFEM6ANN9dFcl8gmgzF40paPPi61aSQ1CJ7xLddn01lZ7~sUHS4L8PBf8wSiRiB-ipTz0B8Suf-8SM6PLlxCroD3UgxCfO0zcKKX6DCLl-azejDzK0klEaYvinUmYb8ctdSqCGQB4JpWEWpX79ZRATk2N6PH1f4JMGKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":1574,"name":"Magnetic Recording","url":"https://www.academia.edu/Documents/in/Magnetic_Recording"},{"id":7712,"name":"Giant Magnetoresistance","url":"https://www.academia.edu/Documents/in/Giant_Magnetoresistance"},{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser"},{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":60653,"name":"Transport Properties","url":"https://www.academia.edu/Documents/in/Transport_Properties"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":138807,"name":"Data storage","url":"https://www.academia.edu/Documents/in/Data_storage"},{"id":414303,"name":"Magnetoresistance","url":"https://www.academia.edu/Documents/in/Magnetoresistance"},{"id":473797,"name":"Microstructures","url":"https://www.academia.edu/Documents/in/Microstructures"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":4370357,"url":"http://www.sciencedirect.com/science/article/pii/S0924013608000605"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862740/Mechanical_vibration_sensor_based_on_elastomagnetic_composite"><img alt="Research paper thumbnail of Mechanical vibration sensor based on elastomagnetic composite" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862740/Mechanical_vibration_sensor_based_on_elastomagnetic_composite">Mechanical vibration sensor based on elastomagnetic composite</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A-physical</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic micropar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic microparticles uniformly dispersed in an elastic non-magnetic matrix is presented. A theoretical model predicting a linear behaviour of the sensor response with the vibration frequency and amplitude is reported. The obtained experimental results are in agreement with the model predictions for magnetic particle volume content lower than 15%. The ability of this kind of sensor to work at low frequencies, where other devices present a lack of reliability, is a very interesting characteristic of this elastomagnetic sensor.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862740]").text(description); $(".js-view-count[data-work-id=10862740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862740,"title":"Mechanical vibration sensor based on elastomagnetic composite","translated_title":"","metadata":{"abstract":"A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic microparticles uniformly dispersed in an elastic non-magnetic matrix is presented. A theoretical model predicting a linear behaviour of the sensor response with the vibration frequency and amplitude is reported. The obtained experimental results are in agreement with the model predictions for magnetic particle volume content lower than 15%. The ability of this kind of sensor to work at low frequencies, where other devices present a lack of reliability, is a very interesting characteristic of this elastomagnetic sensor.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Sensors and Actuators A-physical"},"translated_abstract":"A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic microparticles uniformly dispersed in an elastic non-magnetic matrix is presented. A theoretical model predicting a linear behaviour of the sensor response with the vibration frequency and amplitude is reported. The obtained experimental results are in agreement with the model predictions for magnetic particle volume content lower than 15%. The ability of this kind of sensor to work at low frequencies, where other devices present a lack of reliability, is a very interesting characteristic of this elastomagnetic sensor.","internal_url":"https://www.academia.edu/10862740/Mechanical_vibration_sensor_based_on_elastomagnetic_composite","translated_internal_url":"","created_at":"2015-02-17T03:15:52.121-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mechanical_vibration_sensor_based_on_elastomagnetic_composite","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":7715,"name":"Magnetic Materials","url":"https://www.academia.edu/Documents/in/Magnetic_Materials"},{"id":30372,"name":"Low Frequency","url":"https://www.academia.edu/Documents/in/Low_Frequency"},{"id":1154248,"name":"Theoretical Model","url":"https://www.academia.edu/Documents/in/Theoretical_Model"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":4370356,"url":"http://www.sciencedirect.com/science/article/pii/S0924424705006485"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862739/Dry_laser_cleaning_of_mechanically_thin_films"><img alt="Research paper thumbnail of Dry laser cleaning of mechanically thin films" class="work-thumbnail" src="https://attachments.academia-assets.com/47068584/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862739/Dry_laser_cleaning_of_mechanically_thin_films">Dry laser cleaning of mechanically thin films</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Laser-assisted particle removal has acquired a growing importance in last few years, finding appl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Laser-assisted particle removal has acquired a growing importance in last few years, finding applications in several fields ranging from microelectronics to conservation and restoration of materials having cultural or historical interest. Recently new ‘indirect’ laser cleaning techniques such as ‘shock’ and ‘verso’ laser cleaning have been developed. Here we present a simple laser cleaning mechanical model in order to associate cleaning efficiency to surface deformation characteristics during cleaning pulse and apply it to examine the behaviour of ‘verso’ laser cleaning which has experimentally shown promising results on cellulosic (paper and cotton) materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e728f1ae2d04dca0194675abca4ca10f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068584,&quot;asset_id&quot;:10862739,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068584/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862739]").text(description); $(".js-view-count[data-work-id=10862739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862739, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e728f1ae2d04dca0194675abca4ca10f" } } $('.js-work-strip[data-work-id=10862739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862739,"title":"Dry laser cleaning of mechanically thin films","translated_title":"","metadata":{"abstract":"Laser-assisted particle removal has acquired a growing importance in last few years, finding applications in several fields ranging from microelectronics to conservation and restoration of materials having cultural or historical interest. Recently new ‘indirect’ laser cleaning techniques such as ‘shock’ and ‘verso’ laser cleaning have been developed. Here we present a simple laser cleaning mechanical model in order to associate cleaning efficiency to surface deformation characteristics during cleaning pulse and apply it to examine the behaviour of ‘verso’ laser cleaning which has experimentally shown promising results on cellulosic (paper and cotton) materials.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Laser-assisted particle removal has acquired a growing importance in last few years, finding applications in several fields ranging from microelectronics to conservation and restoration of materials having cultural or historical interest. Recently new ‘indirect’ laser cleaning techniques such as ‘shock’ and ‘verso’ laser cleaning have been developed. Here we present a simple laser cleaning mechanical model in order to associate cleaning efficiency to surface deformation characteristics during cleaning pulse and apply it to examine the behaviour of ‘verso’ laser cleaning which has experimentally shown promising results on cellulosic (paper and cotton) materials.","internal_url":"https://www.academia.edu/10862739/Dry_laser_cleaning_of_mechanically_thin_films","translated_internal_url":"","created_at":"2015-02-17T03:15:51.838-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068584,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068584/thumbnails/1.jpg","file_name":"j.apsusc.2004.05.21620160706-13674-udi3sm.pdf","download_url":"https://www.academia.edu/attachments/47068584/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dry_laser_cleaning_of_mechanically_thin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068584/j.apsusc.2004.05.21620160706-13674-udi3sm-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDry_laser_cleaning_of_mechanically_thin.pdf\u0026Expires=1732772190\u0026Signature=KnPje9p5EzWWgQIavELQKlzxByGuMupBqECaZ13jufkUs0h0ITR1pjvgLMFuVAEpDnDb5MAn3dkNXC1bRZ23h82LqGUfJRMcGz0~6khIa3l~m9p-FotPWDMHr01AQcAqv2nQoN4GdqyT2eVzWpQEc--xbEOcKRmgGcp2OTQp74GtdFNjFkSNStjIN9i1lPzqXFyK11KYmvUt9Hxzt8n3xudg-y5NLRVVj2yoZ6kMJ~KhICYV-62V0Fb2iVoKwH~~AYx2~teAnzEeuWpht71RHrLrqIrAdhutrMkFTlFJ3QY9q8tfu5ESxddFfL4dXVu09A9Vz9khO3Mg20o~WkPbvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dry_laser_cleaning_of_mechanically_thin_films","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068584,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068584/thumbnails/1.jpg","file_name":"j.apsusc.2004.05.21620160706-13674-udi3sm.pdf","download_url":"https://www.academia.edu/attachments/47068584/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dry_laser_cleaning_of_mechanically_thin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068584/j.apsusc.2004.05.21620160706-13674-udi3sm-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDry_laser_cleaning_of_mechanically_thin.pdf\u0026Expires=1732772190\u0026Signature=KnPje9p5EzWWgQIavELQKlzxByGuMupBqECaZ13jufkUs0h0ITR1pjvgLMFuVAEpDnDb5MAn3dkNXC1bRZ23h82LqGUfJRMcGz0~6khIa3l~m9p-FotPWDMHr01AQcAqv2nQoN4GdqyT2eVzWpQEc--xbEOcKRmgGcp2OTQp74GtdFNjFkSNStjIN9i1lPzqXFyK11KYmvUt9Hxzt8n3xudg-y5NLRVVj2yoZ6kMJ~KhICYV-62V0Fb2iVoKwH~~AYx2~teAnzEeuWpht71RHrLrqIrAdhutrMkFTlFJ3QY9q8tfu5ESxddFfL4dXVu09A9Vz9khO3Mg20o~WkPbvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":144061,"name":"Laser Cleaning","url":"https://www.academia.edu/Documents/in/Laser_Cleaning"}],"urls":[{"id":4370355,"url":"http://www.sciencedirect.com/science/article/pii/S0169433204008359"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862738/Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum"><img alt="Research paper thumbnail of Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum" class="work-thumbnail" src="https://attachments.academia-assets.com/47068583/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862738/Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum">Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in hi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in high vacuum, and subsequently analyzed. The proof-of-principle experiments aim to modify the size characteristics of the produced nanoparticles. For nickel it is found that: (i) ultraviolet laser pulses lead to a remarkable change in the nanoparticles size distribution with respect to visible laser pulses; (ii) irradiation of the femtosecond pulses induced ablation plume with a second, delayed ultraviolet laser pulse can change the size characteristics of the produced nanoparticles.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c140f84a265a6bd796669174db8750c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068583,&quot;asset_id&quot;:10862738,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068583/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862738]").text(description); $(".js-view-count[data-work-id=10862738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c140f84a265a6bd796669174db8750c2" } } $('.js-work-strip[data-work-id=10862738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862738,"title":"Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum","translated_title":"","metadata":{"abstract":"Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in high vacuum, and subsequently analyzed. The proof-of-principle experiments aim to modify the size characteristics of the produced nanoparticles. For nickel it is found that: (i) ultraviolet laser pulses lead to a remarkable change in the nanoparticles size distribution with respect to visible laser pulses; (ii) irradiation of the femtosecond pulses induced ablation plume with a second, delayed ultraviolet laser pulse can change the size characteristics of the produced nanoparticles.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in high vacuum, and subsequently analyzed. The proof-of-principle experiments aim to modify the size characteristics of the produced nanoparticles. For nickel it is found that: (i) ultraviolet laser pulses lead to a remarkable change in the nanoparticles size distribution with respect to visible laser pulses; (ii) irradiation of the femtosecond pulses induced ablation plume with a second, delayed ultraviolet laser pulse can change the size characteristics of the produced nanoparticles.","internal_url":"https://www.academia.edu/10862738/Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum","translated_internal_url":"","created_at":"2015-02-17T03:15:51.642-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068583/thumbnails/1.jpg","file_name":"Nanoparticles_size_modifications_during_20160706-19293-1xinvnh.pdf","download_url":"https://www.academia.edu/attachments/47068583/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nanoparticles_size_modifications_during.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068583/Nanoparticles_size_modifications_during_20160706-19293-1xinvnh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DNanoparticles_size_modifications_during.pdf\u0026Expires=1732772190\u0026Signature=Tz7VgbgKu2ClJP9lNqU9rDWQG9psp0QZxcF~Y4yV-V~LZDHtFNcWEppr9JdjrJPCb6NNEEeAdvE9q1BnKdNEDcpB~V-e35VpTZELZ05azYVHfw~~eTS95VsivDnhbFaV36u2pAsD5DPEyIASUGxYwC9pzurbpAQygC-VoZFNbloJFQniCGs6EIlagYrneaxMERN3Xf5~LNS156E7HXZ-wM5FATd3cUno3lObUbCCwbTMac~O0I7-ivFhGRu3uiGhFYojor-3oHEi~LMpfAtc7uyeAc~eBGoDp1cChY~BXP9QfY9K5ZXYzh5A~~u-66lhaZpbP6Dt2MCOA7t3X-tQ0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068583/thumbnails/1.jpg","file_name":"Nanoparticles_size_modifications_during_20160706-19293-1xinvnh.pdf","download_url":"https://www.academia.edu/attachments/47068583/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nanoparticles_size_modifications_during.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068583/Nanoparticles_size_modifications_during_20160706-19293-1xinvnh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DNanoparticles_size_modifications_during.pdf\u0026Expires=1732772190\u0026Signature=Tz7VgbgKu2ClJP9lNqU9rDWQG9psp0QZxcF~Y4yV-V~LZDHtFNcWEppr9JdjrJPCb6NNEEeAdvE9q1BnKdNEDcpB~V-e35VpTZELZ05azYVHfw~~eTS95VsivDnhbFaV36u2pAsD5DPEyIASUGxYwC9pzurbpAQygC-VoZFNbloJFQniCGs6EIlagYrneaxMERN3Xf5~LNS156E7HXZ-wM5FATd3cUno3lObUbCCwbTMac~O0I7-ivFhGRu3uiGhFYojor-3oHEi~LMpfAtc7uyeAc~eBGoDp1cChY~BXP9QfY9K5ZXYzh5A~~u-66lhaZpbP6Dt2MCOA7t3X-tQ0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":87546,"name":"Ultraviolet","url":"https://www.academia.edu/Documents/in/Ultraviolet"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":391216,"name":"Size Distribution","url":"https://www.academia.edu/Documents/in/Size_Distribution"}],"urls":[{"id":4370354,"url":"http://www.sciencedirect.com/science/article/pii/S0169433207008525"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862737"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862737/Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions"><img alt="Research paper thumbnail of Measurement of nanoparticles of organic carbon in non-sooting flame conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/47068580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862737/Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions">Measurement of nanoparticles of organic carbon in non-sooting flame conditions</a></div><div class="wp-workCard_item"><span>Proceedings of The Combustion Institute</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work we compare the results of several nanoparticle measurement techniques with the aim o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work we compare the results of several nanoparticle measurement techniques with the aim of investigating the formation of nanoparticles in non-sooting to slightly sooting flames. In slightly sooting conditions there is quite good agreement between Differential Mobility Analyser (DMA), Atomic Force Microscopy (AFM), and optical measurements on particle size and concentration. However, in rich flames below the onset of soot, DMA measures a strong drop-off in the total particle volume fraction at low fuel to air mixtures, which is not observed in optical or AFM measurements that detect a more gradual decrease in particle concentration with decreasing C/O and almost constant spectroscopic properties. The disagreement is significantly larger than experimental error and is only observed when the particle size distribution includes solely particles smaller than about 3 nm.Particle losses in the DMA sampling system does not seem to be the only possible reason for justifying the discrepancy with the other techniques. Further investigations are necessary in order to characterize chemically and physically this class of nanoparticles which constitute the earliest stage in the formation of particulate carbon.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b4209addf89300ca0d52ae79678a51e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068580,&quot;asset_id&quot;:10862737,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068580/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862737"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862737"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862737; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862737]").text(description); $(".js-view-count[data-work-id=10862737]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862737; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862737']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862737, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b4209addf89300ca0d52ae79678a51e4" } } $('.js-work-strip[data-work-id=10862737]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862737,"title":"Measurement of nanoparticles of organic carbon in non-sooting flame conditions","translated_title":"","metadata":{"abstract":"In this work we compare the results of several nanoparticle measurement techniques with the aim of investigating the formation of nanoparticles in non-sooting to slightly sooting flames. In slightly sooting conditions there is quite good agreement between Differential Mobility Analyser (DMA), Atomic Force Microscopy (AFM), and optical measurements on particle size and concentration. However, in rich flames below the onset of soot, DMA measures a strong drop-off in the total particle volume fraction at low fuel to air mixtures, which is not observed in optical or AFM measurements that detect a more gradual decrease in particle concentration with decreasing C/O and almost constant spectroscopic properties. The disagreement is significantly larger than experimental error and is only observed when the particle size distribution includes solely particles smaller than about 3 nm.Particle losses in the DMA sampling system does not seem to be the only possible reason for justifying the discrepancy with the other techniques. Further investigations are necessary in order to characterize chemically and physically this class of nanoparticles which constitute the earliest stage in the formation of particulate carbon.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Proceedings of The Combustion Institute"},"translated_abstract":"In this work we compare the results of several nanoparticle measurement techniques with the aim of investigating the formation of nanoparticles in non-sooting to slightly sooting flames. In slightly sooting conditions there is quite good agreement between Differential Mobility Analyser (DMA), Atomic Force Microscopy (AFM), and optical measurements on particle size and concentration. However, in rich flames below the onset of soot, DMA measures a strong drop-off in the total particle volume fraction at low fuel to air mixtures, which is not observed in optical or AFM measurements that detect a more gradual decrease in particle concentration with decreasing C/O and almost constant spectroscopic properties. The disagreement is significantly larger than experimental error and is only observed when the particle size distribution includes solely particles smaller than about 3 nm.Particle losses in the DMA sampling system does not seem to be the only possible reason for justifying the discrepancy with the other techniques. Further investigations are necessary in order to characterize chemically and physically this class of nanoparticles which constitute the earliest stage in the formation of particulate carbon.","internal_url":"https://www.academia.edu/10862737/Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions","translated_internal_url":"","created_at":"2015-02-17T03:15:51.385-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068580/thumbnails/1.jpg","file_name":"j.proci.2008.06.21620160706-17159-3efba.pdf","download_url":"https://www.academia.edu/attachments/47068580/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_nanoparticles_of_organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068580/j.proci.2008.06.21620160706-17159-3efba-libre.pdf?1467858719=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_nanoparticles_of_organic.pdf\u0026Expires=1732772190\u0026Signature=XOYFckNL6WgxYVJaCVcy1028yjipIYxF1bkaxkVeYFW2k5YV6myKEJuMrTlmNs8AM6ct-l0XBj2n94w-SzW0OV5ZE76H4jX2QFiDPLfDSIyh0UPeJjwIvwFGR2WFqhHr6VmC5YCH4FzDQ9nL1spz9ftrcN01EE3EDeWXz8PJjlgfQbJ6EXFdE6ASgIN-hBc70bstDcXOlOBpNEWKRza-PEoC7HV7Pj81EQOhsCIGeq8APx2TPJpChwqyw4TrBFiuTYsyca3iAhdAlnXBMLDqE5o9Kn8zwcBbSG0Kf4F3jVDK3ci~gg99JyxbQVTMgPJ6QNoCB8e40wLzsarVLB6Qlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068580/thumbnails/1.jpg","file_name":"j.proci.2008.06.21620160706-17159-3efba.pdf","download_url":"https://www.academia.edu/attachments/47068580/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_nanoparticles_of_organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068580/j.proci.2008.06.21620160706-17159-3efba-libre.pdf?1467858719=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_nanoparticles_of_organic.pdf\u0026Expires=1732772190\u0026Signature=XOYFckNL6WgxYVJaCVcy1028yjipIYxF1bkaxkVeYFW2k5YV6myKEJuMrTlmNs8AM6ct-l0XBj2n94w-SzW0OV5ZE76H4jX2QFiDPLfDSIyh0UPeJjwIvwFGR2WFqhHr6VmC5YCH4FzDQ9nL1spz9ftrcN01EE3EDeWXz8PJjlgfQbJ6EXFdE6ASgIN-hBc70bstDcXOlOBpNEWKRza-PEoC7HV7Pj81EQOhsCIGeq8APx2TPJpChwqyw4TrBFiuTYsyca3iAhdAlnXBMLDqE5o9Kn8zwcBbSG0Kf4F3jVDK3ci~gg99JyxbQVTMgPJ6QNoCB8e40wLzsarVLB6Qlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":47297,"name":"Automotive Engineering","url":"https://www.academia.edu/Documents/in/Automotive_Engineering"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":1136005,"name":"Particle Size Distribution","url":"https://www.academia.edu/Documents/in/Particle_Size_Distribution"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":4370353,"url":"http://www.sciencedirect.com/science/article/pii/S1540748908002289"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862736/Magnetoelastic_sensor_application_in_civil_buildings_monitoring"><img alt="Research paper thumbnail of Magnetoelastic sensor application in civil buildings monitoring" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862736/Magnetoelastic_sensor_application_in_civil_buildings_monitoring">Magnetoelastic sensor application in civil buildings monitoring</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A-physical</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of the resonant mechanical waves inside a Fe62.5Co6Ni7.5Zr6Cu1Nb2B15 ribbon, for strain and/or stress real-time monitoring in civil buildings is reported. This novel sensor exhibits better sensitivity than resistive and vibrating wire strain gauges, good reliability and stability.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862736]").text(description); $(".js-view-count[data-work-id=10862736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862736, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862736,"title":"Magnetoelastic sensor application in civil buildings monitoring","translated_title":"","metadata":{"abstract":"The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of the resonant mechanical waves inside a Fe62.5Co6Ni7.5Zr6Cu1Nb2B15 ribbon, for strain and/or stress real-time monitoring in civil buildings is reported. This novel sensor exhibits better sensitivity than resistive and vibrating wire strain gauges, good reliability and stability.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Sensors and Actuators A-physical"},"translated_abstract":"The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of the resonant mechanical waves inside a Fe62.5Co6Ni7.5Zr6Cu1Nb2B15 ribbon, for strain and/or stress real-time monitoring in civil buildings is reported. This novel sensor exhibits better sensitivity than resistive and vibrating wire strain gauges, good reliability and stability.","internal_url":"https://www.academia.edu/10862736/Magnetoelastic_sensor_application_in_civil_buildings_monitoring","translated_internal_url":"","created_at":"2015-02-17T03:15:51.146-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Magnetoelastic_sensor_application_in_civil_buildings_monitoring","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":571336,"name":"Real Time Monitoring","url":"https://www.academia.edu/Documents/in/Real_Time_Monitoring"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1349407,"name":"Strain Gauge","url":"https://www.academia.edu/Documents/in/Strain_Gauge"}],"urls":[{"id":4370352,"url":"http://www.sciencedirect.com/science/article/pii/S0924424705001652"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862735/Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition"><img alt="Research paper thumbnail of Morphology, structure and magnetic properties of (Tb0.3Dy0.7Fe2)100-xFex nanogranular films produced by ultrashort pulsed laser deposition" class="work-thumbnail" src="https://attachments.academia-assets.com/47068600/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862735/Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition">Morphology, structure and magnetic properties of (Tb0.3Dy0.7Fe2)100-xFex nanogranular films produced by ultrashort pulsed laser deposition</a></div><div class="wp-workCard_item"><span>Nanotechnology</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d6a1a01acd76ee95e40d8331ba9da88" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068600,&quot;asset_id&quot;:10862735,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068600/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862735]").text(description); $(".js-view-count[data-work-id=10862735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d6a1a01acd76ee95e40d8331ba9da88" } } $('.js-work-strip[data-work-id=10862735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862735,"title":"Morphology, structure and magnetic properties of (Tb0.3Dy0.7Fe2)100-xFex nanogranular films produced by ultrashort pulsed laser deposition","translated_title":"","metadata":{"grobid_abstract":"This paper focuses on the development and optimization of electroplated cobalt-nickel (CoNi) alloys for use in biomedical microdevices. CoNi films were electrodeposited from glycine-containing electrolyte solutions at acidic pH. The influence of pH (2.5-5), temperature (55 and 80 • C), current density (from −5 to −40 mA cm −2 ), glycine concentration (0.5 and 1 mol dm −3 ) and the nature of the metal salts (chlorides or sulphates) on the composition and the magnetic properties of the films were systematically analyzed. The cobalt content varied between 50 and 83 wt% depending on the applied conditions. As a result, deposits showed variable morphologies, different structures (either hexagonal close-packed (hcp) or mixed hcp and face-centered cubic phases) and tunable magnetic properties, ranging from semi-hard (18.51 kA m −1 , i.e. 233 Oe) to very soft (1.43 kA m −1 , i.e. 18 Oe). To understand the role of glycine in this system, a comparison of the electrochemical processes, and the structural and magnetic properties is made for samples produced in glycine-containing and glycine-free baths.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Nanotechnology","grobid_abstract_attachment_id":47068600},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862735/Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_internal_url":"","created_at":"2015-02-17T03:15:50.894-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068600,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068600/thumbnails/1.jpg","file_name":"Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh.pdf","download_url":"https://www.academia.edu/attachments/47068600/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphology_structure_and_magnetic_proper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068600/Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMorphology_structure_and_magnetic_proper.pdf\u0026Expires=1732772190\u0026Signature=B~LnZ2Um3Im7ONxts49Xo9KzPSHfmqPQZoC5NGWYIxnAwtaIvBXo6TLPrZO1cl~fhXLjhjistatRhBKYySoRTkU-cR1bu60ws5ExEjZVYUYXNvvBjTz4RNBTC3Y0Bo0BA9muPqUgmGAoZQuVhqb0TUafWVnsl4IyyYKr-38CqtgjUsq167Gn4W3mZUIJuOtIgCbGVFA9J7yMDdpc56YKMQu8bRa3E0gVFG3ci1WqcjSTx2rtlGrjcwkZ2Jy7RdXwlfqfSujKkJ181ALYeYiclovS28XvM69J7yPuK6fp6pOa8WwuXP~q7iMIpshE~mUE4buynNge09iolq3yq3-Vjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068600,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068600/thumbnails/1.jpg","file_name":"Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh.pdf","download_url":"https://www.academia.edu/attachments/47068600/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphology_structure_and_magnetic_proper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068600/Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMorphology_structure_and_magnetic_proper.pdf\u0026Expires=1732772190\u0026Signature=B~LnZ2Um3Im7ONxts49Xo9KzPSHfmqPQZoC5NGWYIxnAwtaIvBXo6TLPrZO1cl~fhXLjhjistatRhBKYySoRTkU-cR1bu60ws5ExEjZVYUYXNvvBjTz4RNBTC3Y0Bo0BA9muPqUgmGAoZQuVhqb0TUafWVnsl4IyyYKr-38CqtgjUsq167Gn4W3mZUIJuOtIgCbGVFA9J7yMDdpc56YKMQu8bRa3E0gVFG3ci1WqcjSTx2rtlGrjcwkZ2Jy7RdXwlfqfSujKkJ181ALYeYiclovS28XvM69J7yPuK6fp6pOa8WwuXP~q7iMIpshE~mUE4buynNge09iolq3yq3-Vjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4120,"name":"Crystal Growth","url":"https://www.academia.edu/Documents/in/Crystal_Growth"},{"id":10866,"name":"Morphology","url":"https://www.academia.edu/Documents/in/Morphology"},{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":49427,"name":"Thin Films","url":"https://www.academia.edu/Documents/in/Thin_Films"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":133975,"name":"Magnetic Properties","url":"https://www.academia.edu/Documents/in/Magnetic_Properties"},{"id":151662,"name":"Additives","url":"https://www.academia.edu/Documents/in/Additives"},{"id":158597,"name":"Iron","url":"https://www.academia.edu/Documents/in/Iron"},{"id":173959,"name":"Current Density","url":"https://www.academia.edu/Documents/in/Current_Density"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":1826493,"name":"Clinical Allergy and Immunology","url":"https://www.academia.edu/Documents/in/Clinical_Allergy_and_Immunology"},{"id":1993786,"name":"Cumulant","url":"https://www.academia.edu/Documents/in/Cumulant"}],"urls":[{"id":4370351,"url":"http://stacks.iop.org/0957-4484/17/i=2/a=033?key=crossref.7b18a4dd4cf2eb6cc2fa4899e331f6d9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862734/Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix"><img alt="Research paper thumbnail of Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862734/Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix">Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A-physical</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly dispersed into a silicone-insulating matrix has been studied as a function of the filler content. A proper experimental apparatus was realized to investigate the direct dependence of resistivity on an uniaxial strain. In particular, when the volume fraction of the conductive charge approaches the conduction percolation threshold, at a proper value of the volume strain a little increment (2%) of the relative deformation can induce a transition from the insulating to conducting state accompanied by a giant resistivity change (about nine orders of magnitude). Some evidence that elastomer matrix properties contribute to determine both the peculiar development of the elasto-resistive coupling and its reversibility has been also found. The obtained results indicate the opportunity to optimize the investigated composite materials for the application as core of novel sensor devices governed by a threshold strain.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862734]").text(description); $(".js-view-count[data-work-id=10862734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862734,"title":"Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix","translated_title":"","metadata":{"abstract":"The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly dispersed into a silicone-insulating matrix has been studied as a function of the filler content. A proper experimental apparatus was realized to investigate the direct dependence of resistivity on an uniaxial strain. In particular, when the volume fraction of the conductive charge approaches the conduction percolation threshold, at a proper value of the volume strain a little increment (2%) of the relative deformation can induce a transition from the insulating to conducting state accompanied by a giant resistivity change (about nine orders of magnitude). Some evidence that elastomer matrix properties contribute to determine both the peculiar development of the elasto-resistive coupling and its reversibility has been also found. The obtained results indicate the opportunity to optimize the investigated composite materials for the application as core of novel sensor devices governed by a threshold strain.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Sensors and Actuators A-physical"},"translated_abstract":"The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly dispersed into a silicone-insulating matrix has been studied as a function of the filler content. A proper experimental apparatus was realized to investigate the direct dependence of resistivity on an uniaxial strain. In particular, when the volume fraction of the conductive charge approaches the conduction percolation threshold, at a proper value of the volume strain a little increment (2%) of the relative deformation can induce a transition from the insulating to conducting state accompanied by a giant resistivity change (about nine orders of magnitude). Some evidence that elastomer matrix properties contribute to determine both the peculiar development of the elasto-resistive coupling and its reversibility has been also found. The obtained results indicate the opportunity to optimize the investigated composite materials for the application as core of novel sensor devices governed by a threshold strain.","internal_url":"https://www.academia.edu/10862734/Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix","translated_internal_url":"","created_at":"2015-02-17T03:15:50.649-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":385916,"name":"Percolation threshold","url":"https://www.academia.edu/Documents/in/Percolation_threshold"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":4370350,"url":"http://www.sciencedirect.com/science/article/pii/S0924424705007120"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862733/Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy"><img alt="Research paper thumbnail of Morphological characterization of the early process of soot formation by atomic force microscopy" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862733/Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy">Morphological characterization of the early process of soot formation by atomic force microscopy</a></div><div class="wp-workCard_item"><span>Combustion and Flame</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles prod...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles produced in rich flames. Very small particles (about 2 nm) have been found in pre-inception region of soot forming premixed flames, whereas both small nanoparticles as well as large soot particles have been found in the soot region of the flames. The smaller particles are very flat in shape if compared with the bigger ones, and this probably depends upon the different nature of the collected particles.Particle size distribution functions are reported for different sampling conditions. The results of AFM measurements are in good agreement with previous measurements performed with ultraviolet (UV) light scattering/extinction technique on the same flames.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862733]").text(description); $(".js-view-count[data-work-id=10862733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862733,"title":"Morphological characterization of the early process of soot formation by atomic force microscopy","translated_title":"","metadata":{"abstract":"Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles produced in rich flames. Very small particles (about 2 nm) have been found in pre-inception region of soot forming premixed flames, whereas both small nanoparticles as well as large soot particles have been found in the soot region of the flames. The smaller particles are very flat in shape if compared with the bigger ones, and this probably depends upon the different nature of the collected particles.Particle size distribution functions are reported for different sampling conditions. The results of AFM measurements are in good agreement with previous measurements performed with ultraviolet (UV) light scattering/extinction technique on the same flames.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Combustion and Flame"},"translated_abstract":"Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles produced in rich flames. Very small particles (about 2 nm) have been found in pre-inception region of soot forming premixed flames, whereas both small nanoparticles as well as large soot particles have been found in the soot region of the flames. The smaller particles are very flat in shape if compared with the bigger ones, and this probably depends upon the different nature of the collected particles.Particle size distribution functions are reported for different sampling conditions. The results of AFM measurements are in good agreement with previous measurements performed with ultraviolet (UV) light scattering/extinction technique on the same flames.","internal_url":"https://www.academia.edu/10862733/Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy","translated_internal_url":"","created_at":"2015-02-17T03:15:50.402-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":47297,"name":"Automotive Engineering","url":"https://www.academia.edu/Documents/in/Automotive_Engineering"},{"id":87546,"name":"Ultraviolet","url":"https://www.academia.edu/Documents/in/Ultraviolet"},{"id":391216,"name":"Size Distribution","url":"https://www.academia.edu/Documents/in/Size_Distribution"},{"id":477100,"name":"UV light","url":"https://www.academia.edu/Documents/in/UV_light"},{"id":1136005,"name":"Particle Size Distribution","url":"https://www.academia.edu/Documents/in/Particle_Size_Distribution"}],"urls":[{"id":4370349,"url":"http://www.sciencedirect.com/science/article/pii/S0010218002004340"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862732/Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm"><img alt="Research paper thumbnail of Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862732/Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm">Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm</a></div><div class="wp-workCard_item"><span>Proceedings of The Combustion Institute</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862732]").text(description); $(".js-view-count[data-work-id=10862732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862732,"title":"Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm","translated_title":"","metadata":{"abstract":"The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Proceedings of The Combustion Institute"},"translated_abstract":"The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.","internal_url":"https://www.academia.edu/10862732/Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm","translated_internal_url":"","created_at":"2015-02-17T03:15:50.197-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":4512,"name":"Light Scattering","url":"https://www.academia.edu/Documents/in/Light_Scattering"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":47297,"name":"Automotive Engineering","url":"https://www.academia.edu/Documents/in/Automotive_Engineering"},{"id":59051,"name":"Kinetic Theory","url":"https://www.academia.edu/Documents/in/Kinetic_Theory"},{"id":107730,"name":"van der Waals interaction","url":"https://www.academia.edu/Documents/in/van_der_Waals_interaction"},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion"},{"id":391216,"name":"Size Distribution","url":"https://www.academia.edu/Documents/in/Size_Distribution"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":1499498,"name":"High energy","url":"https://www.academia.edu/Documents/in/High_energy"}],"urls":[{"id":4370348,"url":"http://www.sciencedirect.com/science/article/pii/S0082078404003212"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862731/Detection_of_combustion_formed_nanoparticles"><img alt="Research paper thumbnail of Detection of combustion formed nanoparticles" class="work-thumbnail" src="https://attachments.academia-assets.com/47068607/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862731/Detection_of_combustion_formed_nanoparticles">Detection of combustion formed nanoparticles</a></div><div class="wp-workCard_item"><span>Chemosphere</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microsc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microscopy (AFM) and differential mobility analysis (DMA) are used to follow the evolution of the particles formed in flames. These particle sizing techniques were chosen because of their sensitivity to detect inception particles, which have diameters, d&lt;5 nm, too small to be observed with typical particle measurement instrumentation. The size of the particles determined by AFM and DMA compares well with the size determined by in situ optical measurements, indicating that the interpretation of the UV–visible optical signal is quite good, and strongly showing the presence of d=2–4 nm particles. UV–visible extinction measurements are also used to determine the concentration of d=2–4 nm particles at the exhausts of practical combustion systems. A numerical model, able to reproduce the experimentally observed low coagulation rate of nanoparticles with respect to soot particles, is used to investigate the operating conditions in the combustion chamber and exhaust system for which 2–4 nm particles survive the exhaust or grow to larger sizes. Combustion generated nanoparticles are suspected to affect human and environmental health because of their affinity for water, small size, low rate of coagulation, and large surface area/weight ratio. The ability to isolate nanoparticles from soot particles in hydrosols collected from combustion may be useful for future analysis by a variety of techniques and toxicological assays.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="86246cb00db1146dc6420c8247d855e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068607,&quot;asset_id&quot;:10862731,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068607/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862731]").text(description); $(".js-view-count[data-work-id=10862731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "86246cb00db1146dc6420c8247d855e9" } } $('.js-work-strip[data-work-id=10862731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862731,"title":"Detection of combustion formed nanoparticles","translated_title":"","metadata":{"abstract":"UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microscopy (AFM) and differential mobility analysis (DMA) are used to follow the evolution of the particles formed in flames. These particle sizing techniques were chosen because of their sensitivity to detect inception particles, which have diameters, d\u003c5 nm, too small to be observed with typical particle measurement instrumentation. The size of the particles determined by AFM and DMA compares well with the size determined by in situ optical measurements, indicating that the interpretation of the UV–visible optical signal is quite good, and strongly showing the presence of d=2–4 nm particles. UV–visible extinction measurements are also used to determine the concentration of d=2–4 nm particles at the exhausts of practical combustion systems. A numerical model, able to reproduce the experimentally observed low coagulation rate of nanoparticles with respect to soot particles, is used to investigate the operating conditions in the combustion chamber and exhaust system for which 2–4 nm particles survive the exhaust or grow to larger sizes. Combustion generated nanoparticles are suspected to affect human and environmental health because of their affinity for water, small size, low rate of coagulation, and large surface area/weight ratio. The ability to isolate nanoparticles from soot particles in hydrosols collected from combustion may be useful for future analysis by a variety of techniques and toxicological assays.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Chemosphere"},"translated_abstract":"UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microscopy (AFM) and differential mobility analysis (DMA) are used to follow the evolution of the particles formed in flames. These particle sizing techniques were chosen because of their sensitivity to detect inception particles, which have diameters, d\u003c5 nm, too small to be observed with typical particle measurement instrumentation. The size of the particles determined by AFM and DMA compares well with the size determined by in situ optical measurements, indicating that the interpretation of the UV–visible optical signal is quite good, and strongly showing the presence of d=2–4 nm particles. UV–visible extinction measurements are also used to determine the concentration of d=2–4 nm particles at the exhausts of practical combustion systems. A numerical model, able to reproduce the experimentally observed low coagulation rate of nanoparticles with respect to soot particles, is used to investigate the operating conditions in the combustion chamber and exhaust system for which 2–4 nm particles survive the exhaust or grow to larger sizes. Combustion generated nanoparticles are suspected to affect human and environmental health because of their affinity for water, small size, low rate of coagulation, and large surface area/weight ratio. The ability to isolate nanoparticles from soot particles in hydrosols collected from combustion may be useful for future analysis by a variety of techniques and toxicological assays.","internal_url":"https://www.academia.edu/10862731/Detection_of_combustion_formed_nanoparticles","translated_internal_url":"","created_at":"2015-02-17T03:15:49.968-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068607,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068607/thumbnails/1.jpg","file_name":"Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2.pdf","download_url":"https://www.academia.edu/attachments/47068607/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_combustion_formed_nanoparti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068607/Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_combustion_formed_nanoparti.pdf\u0026Expires=1732772190\u0026Signature=Op0slTXLSrhxP-679D1wEHAPZi38lg6GdxylguDmZzvl-GcCMlYNxCwDw7xI9by8pl5eS9Wgr0KLVq5ClmDnI1cXJpiHGx0Trms6HasohlrUNhwdHeSR2gucBREMIibKzJy-hAx9Q-ImfBoZtZqodmfi991eyflfY6TKW5UxAyfhqPnAatZQpuGRXpG7StunhUMP8ieKYjUkg5S5FlUOO8lN2TUVF5Vz9nufc1UL8wA84PpX4wDrXXQu0U0QaWP1Q3vJ9XWq2JUQ7HNFh9PTvmHerufOsscQNF~vYRx6fwy1IZGE9cy~lvcZQ9RISwhQjKEvZ3aPtnAS0HMJ3Dflzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detection_of_combustion_formed_nanoparticles","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068607,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068607/thumbnails/1.jpg","file_name":"Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2.pdf","download_url":"https://www.academia.edu/attachments/47068607/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_combustion_formed_nanoparti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068607/Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_combustion_formed_nanoparti.pdf\u0026Expires=1732772190\u0026Signature=Op0slTXLSrhxP-679D1wEHAPZi38lg6GdxylguDmZzvl-GcCMlYNxCwDw7xI9by8pl5eS9Wgr0KLVq5ClmDnI1cXJpiHGx0Trms6HasohlrUNhwdHeSR2gucBREMIibKzJy-hAx9Q-ImfBoZtZqodmfi991eyflfY6TKW5UxAyfhqPnAatZQpuGRXpG7StunhUMP8ieKYjUkg5S5FlUOO8lN2TUVF5Vz9nufc1UL8wA84PpX4wDrXXQu0U0QaWP1Q3vJ9XWq2JUQ7HNFh9PTvmHerufOsscQNF~vYRx6fwy1IZGE9cy~lvcZQ9RISwhQjKEvZ3aPtnAS0HMJ3Dflzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7403,"name":"Environmental Health","url":"https://www.academia.edu/Documents/in/Environmental_Health"},{"id":11801,"name":"Environmental Monitoring","url":"https://www.academia.edu/Documents/in/Environmental_Monitoring"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":67662,"name":"Incineration","url":"https://www.academia.edu/Documents/in/Incineration"},{"id":343667,"name":"Theoretical Models","url":"https://www.academia.edu/Documents/in/Theoretical_Models"},{"id":386356,"name":"Surface Area","url":"https://www.academia.edu/Documents/in/Surface_Area"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"},{"id":477865,"name":"Operant Conditioning","url":"https://www.academia.edu/Documents/in/Operant_Conditioning"},{"id":497452,"name":"Numerical Model","url":"https://www.academia.edu/Documents/in/Numerical_Model"},{"id":605600,"name":"Refuse disposal","url":"https://www.academia.edu/Documents/in/Refuse_disposal"},{"id":678683,"name":"Sampling Technique","url":"https://www.academia.edu/Documents/in/Sampling_Technique"},{"id":1656539,"name":"Air Pollutants","url":"https://www.academia.edu/Documents/in/Air_Pollutants"}],"urls":[{"id":4370347,"url":"http://www.sciencedirect.com/science/article/pii/S004565350200718X"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862730/Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions"><img alt="Research paper thumbnail of Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862730/Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions">Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions</a></div><div class="wp-workCard_item"><span>Environmental Engineering Science</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.108...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.1089/ees.2007.0189 ... Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions ... Gianluca Lanzuolo,1,* Lee Anne Sgro,1 Andrea De Filippo,1 ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862730]").text(description); $(".js-view-count[data-work-id=10862730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862730,"title":"Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions","translated_title":"","metadata":{"abstract":"ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.1089/ees.2007.0189 ... Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions ... Gianluca Lanzuolo,1,* Lee Anne Sgro,1 Andrea De Filippo,1 ...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Environmental Engineering Science"},"translated_abstract":"ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.1089/ees.2007.0189 ... Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions ... Gianluca Lanzuolo,1,* Lee Anne Sgro,1 Andrea De Filippo,1 ...","internal_url":"https://www.academia.edu/10862730/Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions","translated_internal_url":"","created_at":"2015-02-17T03:15:49.690-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":55,"name":"Environmental Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Engineering"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":1133132,"name":"Environmental","url":"https://www.academia.edu/Documents/in/Environmental"},{"id":1137273,"name":"Environmental Science and Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Science_and_Engineering-1"},{"id":1957240,"name":"ENVIRONMENTAL SCIENCE AND MANAGEMENT","url":"https://www.academia.edu/Documents/in/ENVIRONMENTAL_SCIENCE_AND_MANAGEMENT"}],"urls":[{"id":4370346,"url":"http://www.liebertonline.com/doi/abs/10.1089/ees.2007.0189"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862729/Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers"><img alt="Research paper thumbnail of Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers" class="work-thumbnail" src="https://attachments.academia-assets.com/47068585/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862729/Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers">Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9fbef2414bdf9aad7d77668a36201d6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068585,&quot;asset_id&quot;:10862729,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068585/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862729]").text(description); $(".js-view-count[data-work-id=10862729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9fbef2414bdf9aad7d77668a36201d6d" } } $('.js-work-strip[data-work-id=10862729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862729,"title":"Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers","translated_title":"","metadata":{"grobid_abstract":"We present femtosecond optical time-resolved pump-probe investigations of superconducting hybrids structures consisting of Nb/NiCu bilayers with various thickness. Measurements performed on pure Nb and NiCu films are also given. The photoresponse experiments provide the quasiparticle relaxation times in bilayers of different thickness ratios. The study of the photoresponse as a function of the temperature reveals the spatial evolution of the superconductor order parameter across the bilayers. #","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Applied Surface Science","grobid_abstract_attachment_id":47068585},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862729/Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers","translated_internal_url":"","created_at":"2015-02-17T03:15:49.453-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068585,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068585/thumbnails/1.jpg","file_name":"j.apsusc.2005.03.07920160706-19293-17tw39y.pdf","download_url":"https://www.academia.edu/attachments/47068585/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_photoresponse_of_nanometer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068585/j.apsusc.2005.03.07920160706-19293-17tw39y-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_photoresponse_of_nanometer.pdf\u0026Expires=1732772190\u0026Signature=Yhg5k0dRx2itGax4O6DwVe6F1Sa374rN323bqH2fN09BQ6f4YcrZwtE~BsEYOQLLv1f2yvYaN-0h0M3qjinsWf3JsEhPPRFAy-uK58cnkFc1RuZ32qXSMyH08ZF-4oVXoK6WFQrtS5nSjowbwBoIUvEdFFG41N2QVqPLk0vZHqkNVQmP3c0x1nHA8LVydMqLXkUG9lETSK73CuvrtAmop2On7aczFGycCrKyaPLPIrXbKf1PpI5ymtOaJiRVlSrLrD92PYUkb9um2sb8~Nd0eoP9QndYwcBS3ACcilDbvo-V~rUOcB7Q77VfpXL8kM~CIvrRnHL0Y7RszQr5g-2hsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068585,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068585/thumbnails/1.jpg","file_name":"j.apsusc.2005.03.07920160706-19293-17tw39y.pdf","download_url":"https://www.academia.edu/attachments/47068585/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_photoresponse_of_nanometer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068585/j.apsusc.2005.03.07920160706-19293-17tw39y-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_photoresponse_of_nanometer.pdf\u0026Expires=1732772190\u0026Signature=Yhg5k0dRx2itGax4O6DwVe6F1Sa374rN323bqH2fN09BQ6f4YcrZwtE~BsEYOQLLv1f2yvYaN-0h0M3qjinsWf3JsEhPPRFAy-uK58cnkFc1RuZ32qXSMyH08ZF-4oVXoK6WFQrtS5nSjowbwBoIUvEdFFG41N2QVqPLk0vZHqkNVQmP3c0x1nHA8LVydMqLXkUG9lETSK73CuvrtAmop2On7aczFGycCrKyaPLPIrXbKf1PpI5ymtOaJiRVlSrLrD92PYUkb9um2sb8~Nd0eoP9QndYwcBS3ACcilDbvo-V~rUOcB7Q77VfpXL8kM~CIvrRnHL0Y7RszQr5g-2hsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":125513,"name":"Superconductors","url":"https://www.academia.edu/Documents/in/Superconductors"},{"id":158186,"name":"Time Resolved","url":"https://www.academia.edu/Documents/in/Time_Resolved"},{"id":960474,"name":"Order Parameter","url":"https://www.academia.edu/Documents/in/Order_Parameter"}],"urls":[{"id":4370345,"url":"http://www.sciencedirect.com/science/article/pii/S0169433205003922"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862728/Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm"><img alt="Research paper thumbnail of Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm" class="work-thumbnail" src="https://attachments.academia-assets.com/47068575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862728/Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm">Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A: Physical</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ecb34a523c34416eebd2cb8bf0d08d3a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068575,&quot;asset_id&quot;:10862728,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068575/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862728]").text(description); $(".js-view-count[data-work-id=10862728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ecb34a523c34416eebd2cb8bf0d08d3a" } } $('.js-work-strip[data-work-id=10862728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862728,"title":"Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm","translated_title":"","metadata":{"grobid_abstract":"The development of a versatile magnetoelastic sensor prototype for on-line elastic deformation monitoring and fracture alarm in civil engineering is reported. The sensor is based on the variation of resonant longitudinal magnetoelastic waves amplitude due to elastic status change in the amorphous Fe 62.5 Co 6 Ni 7.5 Zr 6 Cu 1 Nb 2 B 15 active core. Tests on a tufa wall under mass loading were conducted. The obtained results show a good reliability and sensitivity (1 mV/10 m) of the sensor response in the m-cm deformation range. The sensor is able to predict the approaching to the fracture regime, monitoring a preceding characteristic behavior.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Sensors and Actuators A: Physical","grobid_abstract_attachment_id":47068575},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862728/Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm","translated_internal_url":"","created_at":"2015-02-17T03:15:49.314-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068575/thumbnails/1.jpg","file_name":"j.sna.2005.05.01920160706-2141-1gci67p.pdf","download_url":"https://www.academia.edu/attachments/47068575/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnetoelastic_sensor_for_real_time_moni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068575/j.sna.2005.05.01920160706-2141-1gci67p-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMagnetoelastic_sensor_for_real_time_moni.pdf\u0026Expires=1732772190\u0026Signature=Y8LnXnkna~S4MlG5iafvT7~rwdupzTg7xH5cBccEPWPUiSTSWcjVp-SvKNa6qVS7grY2cL~YPcQmbFThpsHH70DHtbkSgcYclDDsQonk5X5rtfGWFmZdL4fl9EHcqjadWlv7pF7J53KX2GQDVuYmPGEq5vrMScTh3QV~MRpJoUg4kub3uWPKVAjsO~jD38q27YUw5xMTZLqp-4NKX8Nl5apihhfxsW-ynqkn~WsFOuytZ-7oitCdaw7mgnxHDNDPThVMJJ2f4CjtbY1KxJ15-pq5codanv7DnDO009mPu5ZdQU7HHs-KCkqKPKIadIssO4Vz1DgzvJsle6c5~Ydf6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068575/thumbnails/1.jpg","file_name":"j.sna.2005.05.01920160706-2141-1gci67p.pdf","download_url":"https://www.academia.edu/attachments/47068575/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnetoelastic_sensor_for_real_time_moni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068575/j.sna.2005.05.01920160706-2141-1gci67p-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMagnetoelastic_sensor_for_real_time_moni.pdf\u0026Expires=1732772190\u0026Signature=Y8LnXnkna~S4MlG5iafvT7~rwdupzTg7xH5cBccEPWPUiSTSWcjVp-SvKNa6qVS7grY2cL~YPcQmbFThpsHH70DHtbkSgcYclDDsQonk5X5rtfGWFmZdL4fl9EHcqjadWlv7pF7J53KX2GQDVuYmPGEq5vrMScTh3QV~MRpJoUg4kub3uWPKVAjsO~jD38q27YUw5xMTZLqp-4NKX8Nl5apihhfxsW-ynqkn~WsFOuytZ-7oitCdaw7mgnxHDNDPThVMJJ2f4CjtbY1KxJ15-pq5codanv7DnDO009mPu5ZdQU7HHs-KCkqKPKIadIssO4Vz1DgzvJsle6c5~Ydf6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":14081,"name":"Structural Health Monitoring","url":"https://www.academia.edu/Documents/in/Structural_Health_Monitoring"},{"id":571336,"name":"Real Time Monitoring","url":"https://www.academia.edu/Documents/in/Real_Time_Monitoring"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862727"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862727/Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses"><img alt="Research paper thumbnail of Production of nanoparticles of different materials by means of ultrashort laser pulses" class="work-thumbnail" src="https://attachments.academia-assets.com/47068569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862727/Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses">Production of nanoparticles of different materials by means of ultrashort laser pulses</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investigate the possibility of producing nanoparticles with controlled size and shape. A systematic morphology characterization of deposited products was performed for nickel and silicon as a function of laser pulse intensity and wavelength, at a fixed pulse repetition rate. The nanoparticles were investigated by atomic force microscopy, and clear trends for their size and shape anisotropy were evidenced. The best conditions to obtain nanosized particles of oblate ellipsoidal shape, with the minor axis below 10 nm, were determined in the case of nickel targets. Our results show that ultrashort pulse laser deposition can be considered as an interesting technique for the tailoring of nanogranular films with the desired particles dimension and shape, according to the peculiar properties required in specific applications. Moreover, the preliminary features are very promising from the point of view of the production of magnetoresistive films with specific anisotropy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f36cbec895611e792c454c4fb877ad1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068569,&quot;asset_id&quot;:10862727,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068569/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862727"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862727"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862727; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862727]").text(description); $(".js-view-count[data-work-id=10862727]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862727; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862727']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862727, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f36cbec895611e792c454c4fb877ad1" } } $('.js-work-strip[data-work-id=10862727]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862727,"title":"Production of nanoparticles of different materials by means of ultrashort laser pulses","translated_title":"","metadata":{"abstract":"Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investigate the possibility of producing nanoparticles with controlled size and shape. A systematic morphology characterization of deposited products was performed for nickel and silicon as a function of laser pulse intensity and wavelength, at a fixed pulse repetition rate. The nanoparticles were investigated by atomic force microscopy, and clear trends for their size and shape anisotropy were evidenced. The best conditions to obtain nanosized particles of oblate ellipsoidal shape, with the minor axis below 10 nm, were determined in the case of nickel targets. Our results show that ultrashort pulse laser deposition can be considered as an interesting technique for the tailoring of nanogranular films with the desired particles dimension and shape, according to the peculiar properties required in specific applications. Moreover, the preliminary features are very promising from the point of view of the production of magnetoresistive films with specific anisotropy.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investigate the possibility of producing nanoparticles with controlled size and shape. A systematic morphology characterization of deposited products was performed for nickel and silicon as a function of laser pulse intensity and wavelength, at a fixed pulse repetition rate. The nanoparticles were investigated by atomic force microscopy, and clear trends for their size and shape anisotropy were evidenced. The best conditions to obtain nanosized particles of oblate ellipsoidal shape, with the minor axis below 10 nm, were determined in the case of nickel targets. Our results show that ultrashort pulse laser deposition can be considered as an interesting technique for the tailoring of nanogranular films with the desired particles dimension and shape, according to the peculiar properties required in specific applications. Moreover, the preliminary features are very promising from the point of view of the production of magnetoresistive films with specific anisotropy.","internal_url":"https://www.academia.edu/10862727/Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses","translated_internal_url":"","created_at":"2015-02-17T03:15:49.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068569/thumbnails/1.jpg","file_name":"j.apsusc.2005.07.08920160706-1934-yz4kv4.pdf","download_url":"https://www.academia.edu/attachments/47068569/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Production_of_nanoparticles_of_different.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068569/j.apsusc.2005.07.08920160706-1934-yz4kv4-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DProduction_of_nanoparticles_of_different.pdf\u0026Expires=1732772190\u0026Signature=OyUjrQkwDTnvXpIISbf0sh98RNcMjESB~O-p0Vn9upl3gakMlAs-OARaTci~~aal5MDMEYdSfUhRRr1ad~rU6plsgT5~RiM69sXVJpwTcDe2bYLY~-1iz-VfYvgJEYZdKqND8Mc5tXCrqBBkkowNtF2ygtSOjvVYp~M7YPXh-WjufE1pLzyWhTxDLp1EPlfGQn-YCHuNKT0tz6OP~ivC9bvduo6g0LTkKW0do5oT4nrnAksvftwThHX-VCVhylAHgPa-mGiwVpcEu76Fo7vgIOyejrjkkRwfbUyNsrZxkSYqPMsxPpQsKSY~ZMipUwpv-Fe3NaysBrtLmHNck07R9g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068569/thumbnails/1.jpg","file_name":"j.apsusc.2005.07.08920160706-1934-yz4kv4.pdf","download_url":"https://www.academia.edu/attachments/47068569/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Production_of_nanoparticles_of_different.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068569/j.apsusc.2005.07.08920160706-1934-yz4kv4-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DProduction_of_nanoparticles_of_different.pdf\u0026Expires=1732772190\u0026Signature=OyUjrQkwDTnvXpIISbf0sh98RNcMjESB~O-p0Vn9upl3gakMlAs-OARaTci~~aal5MDMEYdSfUhRRr1ad~rU6plsgT5~RiM69sXVJpwTcDe2bYLY~-1iz-VfYvgJEYZdKqND8Mc5tXCrqBBkkowNtF2ygtSOjvVYp~M7YPXh-WjufE1pLzyWhTxDLp1EPlfGQn-YCHuNKT0tz6OP~ivC9bvduo6g0LTkKW0do5oT4nrnAksvftwThHX-VCVhylAHgPa-mGiwVpcEu76Fo7vgIOyejrjkkRwfbUyNsrZxkSYqPMsxPpQsKSY~ZMipUwpv-Fe3NaysBrtLmHNck07R9g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":892890,"name":"Point of View","url":"https://www.academia.edu/Documents/in/Point_of_View"}],"urls":[{"id":4370344,"url":"http://www.sciencedirect.com/science/article/pii/S0169433205013747"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862726"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862726/UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth"><img alt="Research paper thumbnail of UV–vis spectroscopy for on-line monitoring of Au nanoparticles size during growth" class="work-thumbnail" src="https://attachments.academia-assets.com/47068579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862726/UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth">UV–vis spectroscopy for on-line monitoring of Au nanoparticles size during growth</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a pol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a polymeric stabilizer (poly(N-vinyl pyrrolidone), PVP). On-line UV–vis spectroscopic characterization and transmission electron microscopy (TEM) analysis are presented. Optical spectroscopy data show that the temporal evolution of absorption spectra and the absorbance peak properties are correlated to the off-line size measurements obtained at chemical reaction end by TEM micrographs. The Au cluster size behaves linearly with time above a threshold temperature (70 °C), according to a deposition-controlled growth mechanism.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="777cc26c81b5277643c093d6522d408a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068579,&quot;asset_id&quot;:10862726,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068579/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862726"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862726"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862726; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862726]").text(description); $(".js-view-count[data-work-id=10862726]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862726; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862726']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862726, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "777cc26c81b5277643c093d6522d408a" } } $('.js-work-strip[data-work-id=10862726]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862726,"title":"UV–vis spectroscopy for on-line monitoring of Au nanoparticles size during growth","translated_title":"","metadata":{"abstract":"Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a polymeric stabilizer (poly(N-vinyl pyrrolidone), PVP). On-line UV–vis spectroscopic characterization and transmission electron microscopy (TEM) analysis are presented. Optical spectroscopy data show that the temporal evolution of absorption spectra and the absorbance peak properties are correlated to the off-line size measurements obtained at chemical reaction end by TEM micrographs. The Au cluster size behaves linearly with time above a threshold temperature (70 °C), according to a deposition-controlled growth mechanism.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a polymeric stabilizer (poly(N-vinyl pyrrolidone), PVP). On-line UV–vis spectroscopic characterization and transmission electron microscopy (TEM) analysis are presented. Optical spectroscopy data show that the temporal evolution of absorption spectra and the absorbance peak properties are correlated to the off-line size measurements obtained at chemical reaction end by TEM micrographs. The Au cluster size behaves linearly with time above a threshold temperature (70 °C), according to a deposition-controlled growth mechanism.","internal_url":"https://www.academia.edu/10862726/UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth","translated_internal_url":"","created_at":"2015-02-17T03:15:48.893-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068579/thumbnails/1.jpg","file_name":"UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah.pdf","download_url":"https://www.academia.edu/attachments/47068579/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"UV_vis_spectroscopy_for_on_line_monitori.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068579/UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DUV_vis_spectroscopy_for_on_line_monitori.pdf\u0026Expires=1732772190\u0026Signature=hNF7uuTHeF1ZiAwXPgPF1Qvxq-jfID-hntdIoCPGs5L6lXHWFh~IZUb9707enOc~OGxAeJ3FvCZ-YQoknhCVm9lYTSyCQJKiNuKj4nB5~1OPQwNUCYAF9noV4bUX3NzqqJ~ITUxkbd9CwkPojz7gmzh0l1vggXyjwuPgNfb~vj09RdIlUJ~29wfekfxXCc7bbY2paXH2tajk5Ny9ASRnCIaLbzUK6LbFj0~Qx1PkVbNPyhAe88YatpRAu0nf7KoU6801csUhwkw~itfTqlukie~V~3GNR89EcB7TKfuWXSIYTidMod--Yr~tUPyhmf309PBOxzUYX0CwkLXD6BOQvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068579/thumbnails/1.jpg","file_name":"UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah.pdf","download_url":"https://www.academia.edu/attachments/47068579/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"UV_vis_spectroscopy_for_on_line_monitori.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068579/UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DUV_vis_spectroscopy_for_on_line_monitori.pdf\u0026Expires=1732772190\u0026Signature=hNF7uuTHeF1ZiAwXPgPF1Qvxq-jfID-hntdIoCPGs5L6lXHWFh~IZUb9707enOc~OGxAeJ3FvCZ-YQoknhCVm9lYTSyCQJKiNuKj4nB5~1OPQwNUCYAF9noV4bUX3NzqqJ~ITUxkbd9CwkPojz7gmzh0l1vggXyjwuPgNfb~vj09RdIlUJ~29wfekfxXCc7bbY2paXH2tajk5Ny9ASRnCIaLbzUK6LbFj0~Qx1PkVbNPyhAe88YatpRAu0nf7KoU6801csUhwkw~itfTqlukie~V~3GNR89EcB7TKfuWXSIYTidMod--Yr~tUPyhmf309PBOxzUYX0CwkLXD6BOQvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13033,"name":"Optical Spectroscopy","url":"https://www.academia.edu/Documents/in/Optical_Spectroscopy"},{"id":14076,"name":"Transmission Electron Microscopy","url":"https://www.academia.edu/Documents/in/Transmission_Electron_Microscopy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":65698,"name":"Gold nanoparticle","url":"https://www.academia.edu/Documents/in/Gold_nanoparticle"},{"id":168481,"name":"UV/Vis spectroscopy","url":"https://www.academia.edu/Documents/in/UV_Vis_spectroscopy"},{"id":539878,"name":"Chemical Reaction","url":"https://www.academia.edu/Documents/in/Chemical_Reaction"},{"id":1019577,"name":"Absorption Spectra","url":"https://www.academia.edu/Documents/in/Absorption_Spectra"},{"id":1251963,"name":"Surface Plasmon","url":"https://www.academia.edu/Documents/in/Surface_Plasmon"}],"urls":[{"id":4370343,"url":"http://www.sciencedirect.com/science/article/pii/S0169433205003685"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862725/Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate"><img alt="Research paper thumbnail of Metal oxide nanoparticles formed from solution droplets under high heating rate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862725/Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate">Metal oxide nanoparticles formed from solution droplets under high heating rate</a></div><div class="wp-workCard_item"><span>Experimental Thermal and Fluid Science</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored in a stoichiometric laminar premixed flame doped with droplets of cadmium, nickel(II) and lead(II) nitrate aqueous solutions. Generated particles were thermophoretically collected and analyzed by Atomic Force Microscopy (AFM). The results showed that most of the particles have sizes lower than 10 nm. The size distribution function shapes and time evolutions depend on the metal salt solubility and thermal decomposition characteristics. By comparing the thermophoretically collected matter and the amount of injected metal precursors, a size dependent adhesion efficiency of the particles on probe mica plates has been found. The results showed that nanoparticles have a low capability to adhere on a surface, regardless of the used metal. The adhesion efficiency quickly decreases for particles smaller than 10 nm. As a consequence, the smallest particles are present in the flame with a relative high number concentration. This feature is of great interest when developing filtering systems able to remove nanoparticles with size lower than 10 nm at the exhaust of combustion systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862725]").text(description); $(".js-view-count[data-work-id=10862725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862725, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862725,"title":"Metal oxide nanoparticles formed from solution droplets under high heating rate","translated_title":"","metadata":{"abstract":"ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored in a stoichiometric laminar premixed flame doped with droplets of cadmium, nickel(II) and lead(II) nitrate aqueous solutions. Generated particles were thermophoretically collected and analyzed by Atomic Force Microscopy (AFM). The results showed that most of the particles have sizes lower than 10 nm. The size distribution function shapes and time evolutions depend on the metal salt solubility and thermal decomposition characteristics. By comparing the thermophoretically collected matter and the amount of injected metal precursors, a size dependent adhesion efficiency of the particles on probe mica plates has been found. The results showed that nanoparticles have a low capability to adhere on a surface, regardless of the used metal. The adhesion efficiency quickly decreases for particles smaller than 10 nm. As a consequence, the smallest particles are present in the flame with a relative high number concentration. This feature is of great interest when developing filtering systems able to remove nanoparticles with size lower than 10 nm at the exhaust of combustion systems.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Experimental Thermal and Fluid Science"},"translated_abstract":"ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored in a stoichiometric laminar premixed flame doped with droplets of cadmium, nickel(II) and lead(II) nitrate aqueous solutions. Generated particles were thermophoretically collected and analyzed by Atomic Force Microscopy (AFM). The results showed that most of the particles have sizes lower than 10 nm. The size distribution function shapes and time evolutions depend on the metal salt solubility and thermal decomposition characteristics. By comparing the thermophoretically collected matter and the amount of injected metal precursors, a size dependent adhesion efficiency of the particles on probe mica plates has been found. The results showed that nanoparticles have a low capability to adhere on a surface, regardless of the used metal. The adhesion efficiency quickly decreases for particles smaller than 10 nm. As a consequence, the smallest particles are present in the flame with a relative high number concentration. This feature is of great interest when developing filtering systems able to remove nanoparticles with size lower than 10 nm at the exhaust of combustion systems.","internal_url":"https://www.academia.edu/10862725/Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate","translated_internal_url":"","created_at":"2015-02-17T03:15:48.756-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862724"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862724/Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts"><img alt="Research paper thumbnail of Measurements of Nanoparticles of Organic Carbon and Soot in Flames and Vehicle Exhausts" class="work-thumbnail" src="https://attachments.academia-assets.com/47068588/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862724/Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts">Measurements of Nanoparticles of Organic Carbon and Soot in Flames and Vehicle Exhausts</a></div><div class="wp-workCard_item"><span>Environmental Science &amp; Technology</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40d0324a039eac5940337e29321c97eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068588,&quot;asset_id&quot;:10862724,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068588/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862724"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862724"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862724; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862724]").text(description); $(".js-view-count[data-work-id=10862724]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862724; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862724']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862724, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40d0324a039eac5940337e29321c97eb" } } $('.js-work-strip[data-work-id=10862724]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862724,"title":"Measurements of Nanoparticles of Organic Carbon and Soot in Flames and Vehicle Exhausts","translated_title":"","metadata":{"grobid_abstract":"We measured the size distribution and UV extinction spectra of carbonaceous nanoparticles present in the size range of 1-100 nm in the exhausts of 2004 model gasoline and diesel powered vehicles and compared the results with those obtained in premixed flames. In addition to soot particles, nanoparticles of organic carbon (NOC) were measured in the emissions of these test vehicles in significant number and mass concentrations. The number and mass concentration of NOC was higher than soot in gasoline vehicle emissions. In diesel emissions, NOC had a higher number concentration than soot in terms of number concentration, but in terms of mass concentration, soot was higher than NOC. The size (1-3 nm) and extinction spectra in the UV-visible (strong in the UV and transparent in the visible) of macromolecules/nanoparticles collected in water samples from the vehicles are similar to those measured in laboratory hydrocarbon-air flames, suggesting that these nanoparticles are formed in hydrocarbon combustion reactions. We advance the hypothesis that NOC in vehicle emissions are produced by high-temperature combustion processes and not by low-temperature condensation processes.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Environmental Science \u0026 Technology","grobid_abstract_attachment_id":47068588},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862724/Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts","translated_internal_url":"","created_at":"2015-02-17T03:15:48.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068588/thumbnails/1.jpg","file_name":"Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp.pdf","download_url":"https://www.academia.edu/attachments/47068588/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurements_of_Nanoparticles_of_Organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068588/Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMeasurements_of_Nanoparticles_of_Organic.pdf\u0026Expires=1732772190\u0026Signature=HuAgdZLDt6s2gq6gruQBejaBOhzrq1pgEEGqmjNfG39h30qrETFHkfyKs0yVWND7BsWvaz5EfnP4fSqipq76Czlb4fxNiZ356jbERyWHcprj0wX5gStJHnoJx4e~zlOQnbaPXGcK1HDYQG5osP7BXhGQ6stugrYBiQHF8DRMk5iRLB9UPY9FC4q4mAaT77i4oJzTs-9mFTZDIn-ikTIskz3DRgsa0PFXjPAvHpSqeAGLu6j3ycXvFjKj37xBsIdxyoCvWGckY-caiakRy9AXW0IQfh4jKE4oDuPsTK5V3OgL3ymwdu9uWmZD0l6O4d94268A158pmMhxL2VpvtbUlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068588/thumbnails/1.jpg","file_name":"Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp.pdf","download_url":"https://www.academia.edu/attachments/47068588/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurements_of_Nanoparticles_of_Organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068588/Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMeasurements_of_Nanoparticles_of_Organic.pdf\u0026Expires=1732772190\u0026Signature=HuAgdZLDt6s2gq6gruQBejaBOhzrq1pgEEGqmjNfG39h30qrETFHkfyKs0yVWND7BsWvaz5EfnP4fSqipq76Czlb4fxNiZ356jbERyWHcprj0wX5gStJHnoJx4e~zlOQnbaPXGcK1HDYQG5osP7BXhGQ6stugrYBiQHF8DRMk5iRLB9UPY9FC4q4mAaT77i4oJzTs-9mFTZDIn-ikTIskz3DRgsa0PFXjPAvHpSqeAGLu6j3ycXvFjKj37xBsIdxyoCvWGckY-caiakRy9AXW0IQfh4jKE4oDuPsTK5V3OgL3ymwdu9uWmZD0l6O4d94268A158pmMhxL2VpvtbUlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2215,"name":"Water","url":"https://www.academia.edu/Documents/in/Water"},{"id":5303,"name":"Carbon","url":"https://www.academia.edu/Documents/in/Carbon"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":34633,"name":"Environmental science and technology","url":"https://www.academia.edu/Documents/in/Environmental_science_and_technology"},{"id":94701,"name":"Vehicle Emissions","url":"https://www.academia.edu/Documents/in/Vehicle_Emissions"},{"id":235690,"name":"Fires","url":"https://www.academia.edu/Documents/in/Fires"},{"id":283313,"name":"Soot","url":"https://www.academia.edu/Documents/in/Soot"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":743616,"name":"Gasoline","url":"https://www.academia.edu/Documents/in/Gasoline"},{"id":1133132,"name":"Environmental","url":"https://www.academia.edu/Documents/in/Environmental"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2584586" id="papers"><div class="js-work-strip profile--work_container" data-work-id="10862747"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862747/_Verso_laser_cleaning_of_mechanically_thin_films"><img alt="Research paper thumbnail of “Verso” laser cleaning of mechanically thin films" class="work-thumbnail" src="https://attachments.academia-assets.com/47068586/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862747/_Verso_laser_cleaning_of_mechanically_thin_films">“Verso” laser cleaning of mechanically thin films</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c56c8060363a7372115edb41c9b4a6b3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068586,&quot;asset_id&quot;:10862747,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068586/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862747"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862747"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862747; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862747]").text(description); $(".js-view-count[data-work-id=10862747]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862747; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862747']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862747, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c56c8060363a7372115edb41c9b4a6b3" } } $('.js-work-strip[data-work-id=10862747]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862747,"title":"“Verso” laser cleaning of mechanically thin films","translated_title":"","metadata":{"grobid_abstract":"In usual dry laser cleaning of opaque samples, short laser pulses are projected onto the sample surface to be cleaned. Energy transferred from light ejects extraneous particles away from the surface. Laser beam fluence is limited by the damage reached by high temperature that the sample surface can produce. We have experimentally shown that for thin samples, the thermo-elastic wave propagates within the whole sample thickness, thus also the rear surface, while temperature effects are limited to the front surface. Therefore, the proposed ''verso'' laser cleaning technique (the pulsed laser beam impinges on rear sample surface) can be applied to any opaque ''mechanically thin'' film and is useful for samples having delicate treatments on the surface to be cleaned (e.g. written paper, painted tiles, magnetic films). We have applied our technique to paper sheets showing that it is possible to efficiently clean the surface without damaging ink marks on it. Using a probe beam deflection (PBD) technique in both direct and reverse configuration we have shown that the ''verso'' cleaning effect is due to the higher penetration depth of the thermo-elastic wave with respect to the temperature profile propagation. #","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Applied Surface Science","grobid_abstract_attachment_id":47068586},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862747/_Verso_laser_cleaning_of_mechanically_thin_films","translated_internal_url":"","created_at":"2015-02-17T03:16:00.722-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068586,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068586/thumbnails/1.jpg","file_name":"Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18.pdf","download_url":"https://www.academia.edu/attachments/47068586/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Verso_laser_cleaning_of_mechanically_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068586/Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DVerso_laser_cleaning_of_mechanically_th.pdf\u0026Expires=1732772190\u0026Signature=SjOCWrjGhaW4ybw-qZNZR2D9zP-0wKlnjHTse4M2TpvF6ZG-wK7SmbjTfoVOXN8xIBln2ON5wHAJbuEYh3g4-t4rHk0tIonmQNK8SvuC-V78tJov~JXpU5ZOhHrZNRHElL5fSi~m01jkmb2vzk-IMx10OnMfW8-zNUwuyspm3My1Sged3GsYwX3BnC0FmsBWqCHM6cmd-harcaDzxpSz6zz8JVEL46x4VNzCbn~9h2QXmfz3df-ayA0uyIq62nKJoVxis33JLkGnXtqmAGn-p~Y0OQ8wJ~4tH7qbyhQQegkFe2NF5IwnWoBiwzv94fAoZIpzBP0kO7Vn5h-LOEeu~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_Verso_laser_cleaning_of_mechanically_thin_films","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068586,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068586/thumbnails/1.jpg","file_name":"Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18.pdf","download_url":"https://www.academia.edu/attachments/47068586/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Verso_laser_cleaning_of_mechanically_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068586/Verso_laser_cleaning_of_mechanically_thi20160706-19298-9exy18-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DVerso_laser_cleaning_of_mechanically_th.pdf\u0026Expires=1732772190\u0026Signature=SjOCWrjGhaW4ybw-qZNZR2D9zP-0wKlnjHTse4M2TpvF6ZG-wK7SmbjTfoVOXN8xIBln2ON5wHAJbuEYh3g4-t4rHk0tIonmQNK8SvuC-V78tJov~JXpU5ZOhHrZNRHElL5fSi~m01jkmb2vzk-IMx10OnMfW8-zNUwuyspm3My1Sged3GsYwX3BnC0FmsBWqCHM6cmd-harcaDzxpSz6zz8JVEL46x4VNzCbn~9h2QXmfz3df-ayA0uyIq62nKJoVxis33JLkGnXtqmAGn-p~Y0OQ8wJ~4tH7qbyhQQegkFe2NF5IwnWoBiwzv94fAoZIpzBP0kO7Vn5h-LOEeu~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":48903,"name":"Elastic waves","url":"https://www.academia.edu/Documents/in/Elastic_waves"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":144061,"name":"Laser Cleaning","url":"https://www.academia.edu/Documents/in/Laser_Cleaning"},{"id":191117,"name":"High Temperature","url":"https://www.academia.edu/Documents/in/High_Temperature"},{"id":717129,"name":"Energy Transfer","url":"https://www.academia.edu/Documents/in/Energy_Transfer"},{"id":832539,"name":"Penetration Depth","url":"https://www.academia.edu/Documents/in/Penetration_Depth"},{"id":1294457,"name":"Temperature Effect","url":"https://www.academia.edu/Documents/in/Temperature_Effect"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862743"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862743/Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films"><img alt="Research paper thumbnail of Ultrafast pulsed laser deposition as a method for the synthesis of innovative magnetic films" class="work-thumbnail" src="https://attachments.academia-assets.com/47068594/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862743/Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films">Ultrafast pulsed laser deposition as a method for the synthesis of innovative magnetic films</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles were produced by ultrafast pulsed laser deposition, in vacuum. These films show a peculiar cauliflower-like structure, made of granular agglomerates of nanoparticles sticking to one another with a significant shape and orientation anisotropy. Both as-deposited Ni and Fe films present hysteresis loops with a high in-plane remanence ratio (0.61 and 0.81 at 250 K, respectively), relatively low values of the saturation and coercive fields and a steep slope near coercivity. At temperature of 10 K and 250 K, the magnetization curves confirm the strong influence of the production technique on the topologic structure of these films, and consequently on their magnetic properties. In perspective, the striking and intriguing properties of these nanogranular films appear very promising for potential application as permanent magnets and in data storage technology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7acf0c53b574343cead7ddfb9fab4cd7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068594,&quot;asset_id&quot;:10862743,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068594/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862743"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862743"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862743; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862743]").text(description); $(".js-view-count[data-work-id=10862743]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862743; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862743']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862743, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7acf0c53b574343cead7ddfb9fab4cd7" } } $('.js-work-strip[data-work-id=10862743]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862743,"title":"Ultrafast pulsed laser deposition as a method for the synthesis of innovative magnetic films","translated_title":"","metadata":{"abstract":"Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles were produced by ultrafast pulsed laser deposition, in vacuum. These films show a peculiar cauliflower-like structure, made of granular agglomerates of nanoparticles sticking to one another with a significant shape and orientation anisotropy. Both as-deposited Ni and Fe films present hysteresis loops with a high in-plane remanence ratio (0.61 and 0.81 at 250 K, respectively), relatively low values of the saturation and coercive fields and a steep slope near coercivity. At temperature of 10 K and 250 K, the magnetization curves confirm the strong influence of the production technique on the topologic structure of these films, and consequently on their magnetic properties. In perspective, the striking and intriguing properties of these nanogranular films appear very promising for potential application as permanent magnets and in data storage technology.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Exchange-coupled monocomponent magnetic films constituted of disk-shaped Ni and Fe nanoparticles were produced by ultrafast pulsed laser deposition, in vacuum. These films show a peculiar cauliflower-like structure, made of granular agglomerates of nanoparticles sticking to one another with a significant shape and orientation anisotropy. Both as-deposited Ni and Fe films present hysteresis loops with a high in-plane remanence ratio (0.61 and 0.81 at 250 K, respectively), relatively low values of the saturation and coercive fields and a steep slope near coercivity. At temperature of 10 K and 250 K, the magnetization curves confirm the strong influence of the production technique on the topologic structure of these films, and consequently on their magnetic properties. In perspective, the striking and intriguing properties of these nanogranular films appear very promising for potential application as permanent magnets and in data storage technology.","internal_url":"https://www.academia.edu/10862743/Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films","translated_internal_url":"","created_at":"2015-02-17T03:15:52.698-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068594/thumbnails/1.jpg","file_name":"j.apsusc.2008.10.08820160706-17159-rt9b7e.pdf","download_url":"https://www.academia.edu/attachments/47068594/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_pulsed_laser_deposition_as_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068594/j.apsusc.2008.10.08820160706-17159-rt9b7e-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_pulsed_laser_deposition_as_a_m.pdf\u0026Expires=1732772190\u0026Signature=Aa4-~lKwNiii628vILhd4SflReC5Sn8gMohcc1erzm-wRALMZdA9OmQGQ-w6IH24COhGKzODDSDnpCZMe8D~24xOqyLvAMnRmAX8WaVlpZzf0MS4bqhHgOU9wYo~WhZc5-Puu2mAc9k-poQF0o82ExBWVobvZRRFimB6u5pXDVUeQaKXB6zrMYKlSTYrQ8VFRhH21vfgzQAIroAkkRTwUO7QWKt-7gMf-yI~tsT61j4SuHl4R2s7Q-VbKNa-3Zkf7UkzdXGvY2yt4g-9rkJx85TDINNM2R1TIZunqQds~APcD0aIbzLOIrTY6OHF19Io0VOxEYH-BAHf8Q2IA4F8hA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultrafast_pulsed_laser_deposition_as_a_method_for_the_synthesis_of_innovative_magnetic_films","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068594/thumbnails/1.jpg","file_name":"j.apsusc.2008.10.08820160706-17159-rt9b7e.pdf","download_url":"https://www.academia.edu/attachments/47068594/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrafast_pulsed_laser_deposition_as_a_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068594/j.apsusc.2008.10.08820160706-17159-rt9b7e-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DUltrafast_pulsed_laser_deposition_as_a_m.pdf\u0026Expires=1732772190\u0026Signature=Aa4-~lKwNiii628vILhd4SflReC5Sn8gMohcc1erzm-wRALMZdA9OmQGQ-w6IH24COhGKzODDSDnpCZMe8D~24xOqyLvAMnRmAX8WaVlpZzf0MS4bqhHgOU9wYo~WhZc5-Puu2mAc9k-poQF0o82ExBWVobvZRRFimB6u5pXDVUeQaKXB6zrMYKlSTYrQ8VFRhH21vfgzQAIroAkkRTwUO7QWKt-7gMf-yI~tsT61j4SuHl4R2s7Q-VbKNa-3Zkf7UkzdXGvY2yt4g-9rkJx85TDINNM2R1TIZunqQds~APcD0aIbzLOIrTY6OHF19Io0VOxEYH-BAHf8Q2IA4F8hA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":133975,"name":"Magnetic Properties","url":"https://www.academia.edu/Documents/in/Magnetic_Properties"},{"id":138807,"name":"Data storage","url":"https://www.academia.edu/Documents/in/Data_storage"},{"id":343510,"name":"Exchange coupling","url":"https://www.academia.edu/Documents/in/Exchange_coupling"},{"id":2474072,"name":"Hysteresis Loop","url":"https://www.academia.edu/Documents/in/Hysteresis_Loop"}],"urls":[{"id":4370358,"url":"http://www.sciencedirect.com/science/article/pii/S0169433208022071"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862741"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862741/Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition"><img alt="Research paper thumbnail of Evidence of giant magnetoresistance effect in heterogeneous nanogranular films produced by ultrashort pulsed laser deposition" class="work-thumbnail" src="https://attachments.academia-assets.com/47068589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862741/Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition">Evidence of giant magnetoresistance effect in heterogeneous nanogranular films produced by ultrashort pulsed laser deposition</a></div><div class="wp-workCard_item"><span>Journal of Materials Processing Technology</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with non-magnetic metallic nanoparticles produced by ultrashort pulsed laser deposition (uPLD). The uPLD, which uses femtosecond laser pulses, has been recently reported as a powerful technique for obtaining nanoparticles and nanogranular films. As-deposited Co–Cu and Fe–Ag films in a moderate volume fraction range of magnetic component (15–25%) present detectable values of this magnetoresistive effect, although the average size of the particles is higher than in typical nanogranular materials for magnetoresistive applications. The determined longitudinal, transverse and perpendicular magnetoresistance behaviours, at the temperatures of 10 and 250 K, confirm the strong influence of the production technique on the complex microstructure of these films and consequently on their peculiar magneto-transport properties. In perspective, by optimizing the production parameters, these nanogranular films appear very promising for potential application in magnetic recording and data storage technology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="826303cc9a746ebe64ff5ed899ab1b07" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068589,&quot;asset_id&quot;:10862741,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068589/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862741"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862741"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862741; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862741]").text(description); $(".js-view-count[data-work-id=10862741]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862741; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862741']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862741, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "826303cc9a746ebe64ff5ed899ab1b07" } } $('.js-work-strip[data-work-id=10862741]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862741,"title":"Evidence of giant magnetoresistance effect in heterogeneous nanogranular films produced by ultrashort pulsed laser deposition","translated_title":"","metadata":{"abstract":"Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with non-magnetic metallic nanoparticles produced by ultrashort pulsed laser deposition (uPLD). The uPLD, which uses femtosecond laser pulses, has been recently reported as a powerful technique for obtaining nanoparticles and nanogranular films. As-deposited Co–Cu and Fe–Ag films in a moderate volume fraction range of magnetic component (15–25%) present detectable values of this magnetoresistive effect, although the average size of the particles is higher than in typical nanogranular materials for magnetoresistive applications. The determined longitudinal, transverse and perpendicular magnetoresistance behaviours, at the temperatures of 10 and 250 K, confirm the strong influence of the production technique on the complex microstructure of these films and consequently on their peculiar magneto-transport properties. In perspective, by optimizing the production parameters, these nanogranular films appear very promising for potential application in magnetic recording and data storage technology.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of Materials Processing Technology"},"translated_abstract":"Giant magnetoresistance effect is found in films of magnetic nanoparticles uniformly mixed with non-magnetic metallic nanoparticles produced by ultrashort pulsed laser deposition (uPLD). The uPLD, which uses femtosecond laser pulses, has been recently reported as a powerful technique for obtaining nanoparticles and nanogranular films. As-deposited Co–Cu and Fe–Ag films in a moderate volume fraction range of magnetic component (15–25%) present detectable values of this magnetoresistive effect, although the average size of the particles is higher than in typical nanogranular materials for magnetoresistive applications. The determined longitudinal, transverse and perpendicular magnetoresistance behaviours, at the temperatures of 10 and 250 K, confirm the strong influence of the production technique on the complex microstructure of these films and consequently on their peculiar magneto-transport properties. In perspective, by optimizing the production parameters, these nanogranular films appear very promising for potential application in magnetic recording and data storage technology.","internal_url":"https://www.academia.edu/10862741/Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_internal_url":"","created_at":"2015-02-17T03:15:52.489-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068589/thumbnails/1.jpg","file_name":"j.jmatprotec.2008.01.00520160706-19298-1fvjr5b.pdf","download_url":"https://www.academia.edu/attachments/47068589/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evidence_of_giant_magnetoresistance_effe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068589/j.jmatprotec.2008.01.00520160706-19298-1fvjr5b-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_of_giant_magnetoresistance_effe.pdf\u0026Expires=1732772190\u0026Signature=hDB1rWCRFdtyED-h7VAt7cf8Bd3Rrzze0O0kljVXVc2foHcJjUJx08diF5enh9ztIIbthWrW17GYVkoGCfzLKP3FTkgTu1SHXcKXN-GR~dnxT5U98PPQxf9e7QZOc-X0ooKmQdd0YW01qIpbkvVOfE0jZ-~WLi8nuuEr6myRXn15BUr2q0QFEM6ANN9dFcl8gmgzF40paPPi61aSQ1CJ7xLddn01lZ7~sUHS4L8PBf8wSiRiB-ipTz0B8Suf-8SM6PLlxCroD3UgxCfO0zcKKX6DCLl-azejDzK0klEaYvinUmYb8ctdSqCGQB4JpWEWpX79ZRATk2N6PH1f4JMGKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evidence_of_giant_magnetoresistance_effect_in_heterogeneous_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068589/thumbnails/1.jpg","file_name":"j.jmatprotec.2008.01.00520160706-19298-1fvjr5b.pdf","download_url":"https://www.academia.edu/attachments/47068589/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evidence_of_giant_magnetoresistance_effe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068589/j.jmatprotec.2008.01.00520160706-19298-1fvjr5b-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_of_giant_magnetoresistance_effe.pdf\u0026Expires=1732772190\u0026Signature=hDB1rWCRFdtyED-h7VAt7cf8Bd3Rrzze0O0kljVXVc2foHcJjUJx08diF5enh9ztIIbthWrW17GYVkoGCfzLKP3FTkgTu1SHXcKXN-GR~dnxT5U98PPQxf9e7QZOc-X0ooKmQdd0YW01qIpbkvVOfE0jZ-~WLi8nuuEr6myRXn15BUr2q0QFEM6ANN9dFcl8gmgzF40paPPi61aSQ1CJ7xLddn01lZ7~sUHS4L8PBf8wSiRiB-ipTz0B8Suf-8SM6PLlxCroD3UgxCfO0zcKKX6DCLl-azejDzK0klEaYvinUmYb8ctdSqCGQB4JpWEWpX79ZRATk2N6PH1f4JMGKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":1574,"name":"Magnetic Recording","url":"https://www.academia.edu/Documents/in/Magnetic_Recording"},{"id":7712,"name":"Giant Magnetoresistance","url":"https://www.academia.edu/Documents/in/Giant_Magnetoresistance"},{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser"},{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":60653,"name":"Transport Properties","url":"https://www.academia.edu/Documents/in/Transport_Properties"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":138807,"name":"Data storage","url":"https://www.academia.edu/Documents/in/Data_storage"},{"id":414303,"name":"Magnetoresistance","url":"https://www.academia.edu/Documents/in/Magnetoresistance"},{"id":473797,"name":"Microstructures","url":"https://www.academia.edu/Documents/in/Microstructures"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":4370357,"url":"http://www.sciencedirect.com/science/article/pii/S0924013608000605"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862740/Mechanical_vibration_sensor_based_on_elastomagnetic_composite"><img alt="Research paper thumbnail of Mechanical vibration sensor based on elastomagnetic composite" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862740/Mechanical_vibration_sensor_based_on_elastomagnetic_composite">Mechanical vibration sensor based on elastomagnetic composite</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A-physical</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic micropar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic microparticles uniformly dispersed in an elastic non-magnetic matrix is presented. A theoretical model predicting a linear behaviour of the sensor response with the vibration frequency and amplitude is reported. The obtained experimental results are in agreement with the model predictions for magnetic particle volume content lower than 15%. The ability of this kind of sensor to work at low frequencies, where other devices present a lack of reliability, is a very interesting characteristic of this elastomagnetic sensor.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862740]").text(description); $(".js-view-count[data-work-id=10862740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862740,"title":"Mechanical vibration sensor based on elastomagnetic composite","translated_title":"","metadata":{"abstract":"A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic microparticles uniformly dispersed in an elastic non-magnetic matrix is presented. A theoretical model predicting a linear behaviour of the sensor response with the vibration frequency and amplitude is reported. The obtained experimental results are in agreement with the model predictions for magnetic particle volume content lower than 15%. The ability of this kind of sensor to work at low frequencies, where other devices present a lack of reliability, is a very interesting characteristic of this elastomagnetic sensor.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Sensors and Actuators A-physical"},"translated_abstract":"A mechanical vibration sensor based on a novel elastomagnetic composite made of magnetic microparticles uniformly dispersed in an elastic non-magnetic matrix is presented. A theoretical model predicting a linear behaviour of the sensor response with the vibration frequency and amplitude is reported. The obtained experimental results are in agreement with the model predictions for magnetic particle volume content lower than 15%. The ability of this kind of sensor to work at low frequencies, where other devices present a lack of reliability, is a very interesting characteristic of this elastomagnetic sensor.","internal_url":"https://www.academia.edu/10862740/Mechanical_vibration_sensor_based_on_elastomagnetic_composite","translated_internal_url":"","created_at":"2015-02-17T03:15:52.121-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mechanical_vibration_sensor_based_on_elastomagnetic_composite","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":7715,"name":"Magnetic Materials","url":"https://www.academia.edu/Documents/in/Magnetic_Materials"},{"id":30372,"name":"Low Frequency","url":"https://www.academia.edu/Documents/in/Low_Frequency"},{"id":1154248,"name":"Theoretical Model","url":"https://www.academia.edu/Documents/in/Theoretical_Model"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":4370356,"url":"http://www.sciencedirect.com/science/article/pii/S0924424705006485"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862739/Dry_laser_cleaning_of_mechanically_thin_films"><img alt="Research paper thumbnail of Dry laser cleaning of mechanically thin films" class="work-thumbnail" src="https://attachments.academia-assets.com/47068584/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862739/Dry_laser_cleaning_of_mechanically_thin_films">Dry laser cleaning of mechanically thin films</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Laser-assisted particle removal has acquired a growing importance in last few years, finding appl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Laser-assisted particle removal has acquired a growing importance in last few years, finding applications in several fields ranging from microelectronics to conservation and restoration of materials having cultural or historical interest. Recently new ‘indirect’ laser cleaning techniques such as ‘shock’ and ‘verso’ laser cleaning have been developed. Here we present a simple laser cleaning mechanical model in order to associate cleaning efficiency to surface deformation characteristics during cleaning pulse and apply it to examine the behaviour of ‘verso’ laser cleaning which has experimentally shown promising results on cellulosic (paper and cotton) materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e728f1ae2d04dca0194675abca4ca10f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068584,&quot;asset_id&quot;:10862739,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068584/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862739]").text(description); $(".js-view-count[data-work-id=10862739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862739, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e728f1ae2d04dca0194675abca4ca10f" } } $('.js-work-strip[data-work-id=10862739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862739,"title":"Dry laser cleaning of mechanically thin films","translated_title":"","metadata":{"abstract":"Laser-assisted particle removal has acquired a growing importance in last few years, finding applications in several fields ranging from microelectronics to conservation and restoration of materials having cultural or historical interest. Recently new ‘indirect’ laser cleaning techniques such as ‘shock’ and ‘verso’ laser cleaning have been developed. Here we present a simple laser cleaning mechanical model in order to associate cleaning efficiency to surface deformation characteristics during cleaning pulse and apply it to examine the behaviour of ‘verso’ laser cleaning which has experimentally shown promising results on cellulosic (paper and cotton) materials.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Laser-assisted particle removal has acquired a growing importance in last few years, finding applications in several fields ranging from microelectronics to conservation and restoration of materials having cultural or historical interest. Recently new ‘indirect’ laser cleaning techniques such as ‘shock’ and ‘verso’ laser cleaning have been developed. Here we present a simple laser cleaning mechanical model in order to associate cleaning efficiency to surface deformation characteristics during cleaning pulse and apply it to examine the behaviour of ‘verso’ laser cleaning which has experimentally shown promising results on cellulosic (paper and cotton) materials.","internal_url":"https://www.academia.edu/10862739/Dry_laser_cleaning_of_mechanically_thin_films","translated_internal_url":"","created_at":"2015-02-17T03:15:51.838-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068584,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068584/thumbnails/1.jpg","file_name":"j.apsusc.2004.05.21620160706-13674-udi3sm.pdf","download_url":"https://www.academia.edu/attachments/47068584/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dry_laser_cleaning_of_mechanically_thin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068584/j.apsusc.2004.05.21620160706-13674-udi3sm-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDry_laser_cleaning_of_mechanically_thin.pdf\u0026Expires=1732772190\u0026Signature=KnPje9p5EzWWgQIavELQKlzxByGuMupBqECaZ13jufkUs0h0ITR1pjvgLMFuVAEpDnDb5MAn3dkNXC1bRZ23h82LqGUfJRMcGz0~6khIa3l~m9p-FotPWDMHr01AQcAqv2nQoN4GdqyT2eVzWpQEc--xbEOcKRmgGcp2OTQp74GtdFNjFkSNStjIN9i1lPzqXFyK11KYmvUt9Hxzt8n3xudg-y5NLRVVj2yoZ6kMJ~KhICYV-62V0Fb2iVoKwH~~AYx2~teAnzEeuWpht71RHrLrqIrAdhutrMkFTlFJ3QY9q8tfu5ESxddFfL4dXVu09A9Vz9khO3Mg20o~WkPbvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dry_laser_cleaning_of_mechanically_thin_films","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068584,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068584/thumbnails/1.jpg","file_name":"j.apsusc.2004.05.21620160706-13674-udi3sm.pdf","download_url":"https://www.academia.edu/attachments/47068584/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dry_laser_cleaning_of_mechanically_thin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068584/j.apsusc.2004.05.21620160706-13674-udi3sm-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDry_laser_cleaning_of_mechanically_thin.pdf\u0026Expires=1732772190\u0026Signature=KnPje9p5EzWWgQIavELQKlzxByGuMupBqECaZ13jufkUs0h0ITR1pjvgLMFuVAEpDnDb5MAn3dkNXC1bRZ23h82LqGUfJRMcGz0~6khIa3l~m9p-FotPWDMHr01AQcAqv2nQoN4GdqyT2eVzWpQEc--xbEOcKRmgGcp2OTQp74GtdFNjFkSNStjIN9i1lPzqXFyK11KYmvUt9Hxzt8n3xudg-y5NLRVVj2yoZ6kMJ~KhICYV-62V0Fb2iVoKwH~~AYx2~teAnzEeuWpht71RHrLrqIrAdhutrMkFTlFJ3QY9q8tfu5ESxddFfL4dXVu09A9Vz9khO3Mg20o~WkPbvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":144061,"name":"Laser Cleaning","url":"https://www.academia.edu/Documents/in/Laser_Cleaning"}],"urls":[{"id":4370355,"url":"http://www.sciencedirect.com/science/article/pii/S0169433204008359"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862738/Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum"><img alt="Research paper thumbnail of Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum" class="work-thumbnail" src="https://attachments.academia-assets.com/47068583/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862738/Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum">Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in hi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in high vacuum, and subsequently analyzed. The proof-of-principle experiments aim to modify the size characteristics of the produced nanoparticles. For nickel it is found that: (i) ultraviolet laser pulses lead to a remarkable change in the nanoparticles size distribution with respect to visible laser pulses; (ii) irradiation of the femtosecond pulses induced ablation plume with a second, delayed ultraviolet laser pulse can change the size characteristics of the produced nanoparticles.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c140f84a265a6bd796669174db8750c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068583,&quot;asset_id&quot;:10862738,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068583/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862738]").text(description); $(".js-view-count[data-work-id=10862738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c140f84a265a6bd796669174db8750c2" } } $('.js-work-strip[data-work-id=10862738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862738,"title":"Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum","translated_title":"","metadata":{"abstract":"Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in high vacuum, and subsequently analyzed. The proof-of-principle experiments aim to modify the size characteristics of the produced nanoparticles. For nickel it is found that: (i) ultraviolet laser pulses lead to a remarkable change in the nanoparticles size distribution with respect to visible laser pulses; (ii) irradiation of the femtosecond pulses induced ablation plume with a second, delayed ultraviolet laser pulse can change the size characteristics of the produced nanoparticles.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in high vacuum, and subsequently analyzed. The proof-of-principle experiments aim to modify the size characteristics of the produced nanoparticles. For nickel it is found that: (i) ultraviolet laser pulses lead to a remarkable change in the nanoparticles size distribution with respect to visible laser pulses; (ii) irradiation of the femtosecond pulses induced ablation plume with a second, delayed ultraviolet laser pulse can change the size characteristics of the produced nanoparticles.","internal_url":"https://www.academia.edu/10862738/Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum","translated_internal_url":"","created_at":"2015-02-17T03:15:51.642-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068583/thumbnails/1.jpg","file_name":"Nanoparticles_size_modifications_during_20160706-19293-1xinvnh.pdf","download_url":"https://www.academia.edu/attachments/47068583/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nanoparticles_size_modifications_during.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068583/Nanoparticles_size_modifications_during_20160706-19293-1xinvnh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DNanoparticles_size_modifications_during.pdf\u0026Expires=1732772190\u0026Signature=Tz7VgbgKu2ClJP9lNqU9rDWQG9psp0QZxcF~Y4yV-V~LZDHtFNcWEppr9JdjrJPCb6NNEEeAdvE9q1BnKdNEDcpB~V-e35VpTZELZ05azYVHfw~~eTS95VsivDnhbFaV36u2pAsD5DPEyIASUGxYwC9pzurbpAQygC-VoZFNbloJFQniCGs6EIlagYrneaxMERN3Xf5~LNS156E7HXZ-wM5FATd3cUno3lObUbCCwbTMac~O0I7-ivFhGRu3uiGhFYojor-3oHEi~LMpfAtc7uyeAc~eBGoDp1cChY~BXP9QfY9K5ZXYzh5A~~u-66lhaZpbP6Dt2MCOA7t3X-tQ0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nanoparticles_size_modifications_during_femtosecond_laser_ablation_of_nickel_in_vacuum","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068583/thumbnails/1.jpg","file_name":"Nanoparticles_size_modifications_during_20160706-19293-1xinvnh.pdf","download_url":"https://www.academia.edu/attachments/47068583/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nanoparticles_size_modifications_during.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068583/Nanoparticles_size_modifications_during_20160706-19293-1xinvnh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DNanoparticles_size_modifications_during.pdf\u0026Expires=1732772190\u0026Signature=Tz7VgbgKu2ClJP9lNqU9rDWQG9psp0QZxcF~Y4yV-V~LZDHtFNcWEppr9JdjrJPCb6NNEEeAdvE9q1BnKdNEDcpB~V-e35VpTZELZ05azYVHfw~~eTS95VsivDnhbFaV36u2pAsD5DPEyIASUGxYwC9pzurbpAQygC-VoZFNbloJFQniCGs6EIlagYrneaxMERN3Xf5~LNS156E7HXZ-wM5FATd3cUno3lObUbCCwbTMac~O0I7-ivFhGRu3uiGhFYojor-3oHEi~LMpfAtc7uyeAc~eBGoDp1cChY~BXP9QfY9K5ZXYzh5A~~u-66lhaZpbP6Dt2MCOA7t3X-tQ0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":87546,"name":"Ultraviolet","url":"https://www.academia.edu/Documents/in/Ultraviolet"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":391216,"name":"Size Distribution","url":"https://www.academia.edu/Documents/in/Size_Distribution"}],"urls":[{"id":4370354,"url":"http://www.sciencedirect.com/science/article/pii/S0169433207008525"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862737"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862737/Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions"><img alt="Research paper thumbnail of Measurement of nanoparticles of organic carbon in non-sooting flame conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/47068580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862737/Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions">Measurement of nanoparticles of organic carbon in non-sooting flame conditions</a></div><div class="wp-workCard_item"><span>Proceedings of The Combustion Institute</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work we compare the results of several nanoparticle measurement techniques with the aim o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work we compare the results of several nanoparticle measurement techniques with the aim of investigating the formation of nanoparticles in non-sooting to slightly sooting flames. In slightly sooting conditions there is quite good agreement between Differential Mobility Analyser (DMA), Atomic Force Microscopy (AFM), and optical measurements on particle size and concentration. However, in rich flames below the onset of soot, DMA measures a strong drop-off in the total particle volume fraction at low fuel to air mixtures, which is not observed in optical or AFM measurements that detect a more gradual decrease in particle concentration with decreasing C/O and almost constant spectroscopic properties. The disagreement is significantly larger than experimental error and is only observed when the particle size distribution includes solely particles smaller than about 3 nm.Particle losses in the DMA sampling system does not seem to be the only possible reason for justifying the discrepancy with the other techniques. Further investigations are necessary in order to characterize chemically and physically this class of nanoparticles which constitute the earliest stage in the formation of particulate carbon.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b4209addf89300ca0d52ae79678a51e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068580,&quot;asset_id&quot;:10862737,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068580/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862737"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862737"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862737; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862737]").text(description); $(".js-view-count[data-work-id=10862737]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862737; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862737']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862737, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b4209addf89300ca0d52ae79678a51e4" } } $('.js-work-strip[data-work-id=10862737]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862737,"title":"Measurement of nanoparticles of organic carbon in non-sooting flame conditions","translated_title":"","metadata":{"abstract":"In this work we compare the results of several nanoparticle measurement techniques with the aim of investigating the formation of nanoparticles in non-sooting to slightly sooting flames. In slightly sooting conditions there is quite good agreement between Differential Mobility Analyser (DMA), Atomic Force Microscopy (AFM), and optical measurements on particle size and concentration. However, in rich flames below the onset of soot, DMA measures a strong drop-off in the total particle volume fraction at low fuel to air mixtures, which is not observed in optical or AFM measurements that detect a more gradual decrease in particle concentration with decreasing C/O and almost constant spectroscopic properties. The disagreement is significantly larger than experimental error and is only observed when the particle size distribution includes solely particles smaller than about 3 nm.Particle losses in the DMA sampling system does not seem to be the only possible reason for justifying the discrepancy with the other techniques. Further investigations are necessary in order to characterize chemically and physically this class of nanoparticles which constitute the earliest stage in the formation of particulate carbon.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Proceedings of The Combustion Institute"},"translated_abstract":"In this work we compare the results of several nanoparticle measurement techniques with the aim of investigating the formation of nanoparticles in non-sooting to slightly sooting flames. In slightly sooting conditions there is quite good agreement between Differential Mobility Analyser (DMA), Atomic Force Microscopy (AFM), and optical measurements on particle size and concentration. However, in rich flames below the onset of soot, DMA measures a strong drop-off in the total particle volume fraction at low fuel to air mixtures, which is not observed in optical or AFM measurements that detect a more gradual decrease in particle concentration with decreasing C/O and almost constant spectroscopic properties. The disagreement is significantly larger than experimental error and is only observed when the particle size distribution includes solely particles smaller than about 3 nm.Particle losses in the DMA sampling system does not seem to be the only possible reason for justifying the discrepancy with the other techniques. Further investigations are necessary in order to characterize chemically and physically this class of nanoparticles which constitute the earliest stage in the formation of particulate carbon.","internal_url":"https://www.academia.edu/10862737/Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions","translated_internal_url":"","created_at":"2015-02-17T03:15:51.385-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068580/thumbnails/1.jpg","file_name":"j.proci.2008.06.21620160706-17159-3efba.pdf","download_url":"https://www.academia.edu/attachments/47068580/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_nanoparticles_of_organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068580/j.proci.2008.06.21620160706-17159-3efba-libre.pdf?1467858719=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_nanoparticles_of_organic.pdf\u0026Expires=1732772190\u0026Signature=XOYFckNL6WgxYVJaCVcy1028yjipIYxF1bkaxkVeYFW2k5YV6myKEJuMrTlmNs8AM6ct-l0XBj2n94w-SzW0OV5ZE76H4jX2QFiDPLfDSIyh0UPeJjwIvwFGR2WFqhHr6VmC5YCH4FzDQ9nL1spz9ftrcN01EE3EDeWXz8PJjlgfQbJ6EXFdE6ASgIN-hBc70bstDcXOlOBpNEWKRza-PEoC7HV7Pj81EQOhsCIGeq8APx2TPJpChwqyw4TrBFiuTYsyca3iAhdAlnXBMLDqE5o9Kn8zwcBbSG0Kf4F3jVDK3ci~gg99JyxbQVTMgPJ6QNoCB8e40wLzsarVLB6Qlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measurement_of_nanoparticles_of_organic_carbon_in_non_sooting_flame_conditions","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068580/thumbnails/1.jpg","file_name":"j.proci.2008.06.21620160706-17159-3efba.pdf","download_url":"https://www.academia.edu/attachments/47068580/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_nanoparticles_of_organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068580/j.proci.2008.06.21620160706-17159-3efba-libre.pdf?1467858719=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_nanoparticles_of_organic.pdf\u0026Expires=1732772190\u0026Signature=XOYFckNL6WgxYVJaCVcy1028yjipIYxF1bkaxkVeYFW2k5YV6myKEJuMrTlmNs8AM6ct-l0XBj2n94w-SzW0OV5ZE76H4jX2QFiDPLfDSIyh0UPeJjwIvwFGR2WFqhHr6VmC5YCH4FzDQ9nL1spz9ftrcN01EE3EDeWXz8PJjlgfQbJ6EXFdE6ASgIN-hBc70bstDcXOlOBpNEWKRza-PEoC7HV7Pj81EQOhsCIGeq8APx2TPJpChwqyw4TrBFiuTYsyca3iAhdAlnXBMLDqE5o9Kn8zwcBbSG0Kf4F3jVDK3ci~gg99JyxbQVTMgPJ6QNoCB8e40wLzsarVLB6Qlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":47297,"name":"Automotive Engineering","url":"https://www.academia.edu/Documents/in/Automotive_Engineering"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":1136005,"name":"Particle Size Distribution","url":"https://www.academia.edu/Documents/in/Particle_Size_Distribution"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":4370353,"url":"http://www.sciencedirect.com/science/article/pii/S1540748908002289"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862736/Magnetoelastic_sensor_application_in_civil_buildings_monitoring"><img alt="Research paper thumbnail of Magnetoelastic sensor application in civil buildings monitoring" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862736/Magnetoelastic_sensor_application_in_civil_buildings_monitoring">Magnetoelastic sensor application in civil buildings monitoring</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A-physical</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of the resonant mechanical waves inside a Fe62.5Co6Ni7.5Zr6Cu1Nb2B15 ribbon, for strain and/or stress real-time monitoring in civil buildings is reported. This novel sensor exhibits better sensitivity than resistive and vibrating wire strain gauges, good reliability and stability.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862736]").text(description); $(".js-view-count[data-work-id=10862736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862736, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862736,"title":"Magnetoelastic sensor application in civil buildings monitoring","translated_title":"","metadata":{"abstract":"The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of the resonant mechanical waves inside a Fe62.5Co6Ni7.5Zr6Cu1Nb2B15 ribbon, for strain and/or stress real-time monitoring in civil buildings is reported. This novel sensor exhibits better sensitivity than resistive and vibrating wire strain gauges, good reliability and stability.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Sensors and Actuators A-physical"},"translated_abstract":"The development of a novel magnetoelastic sensor, based on the stress influence on amplitude of the resonant mechanical waves inside a Fe62.5Co6Ni7.5Zr6Cu1Nb2B15 ribbon, for strain and/or stress real-time monitoring in civil buildings is reported. This novel sensor exhibits better sensitivity than resistive and vibrating wire strain gauges, good reliability and stability.","internal_url":"https://www.academia.edu/10862736/Magnetoelastic_sensor_application_in_civil_buildings_monitoring","translated_internal_url":"","created_at":"2015-02-17T03:15:51.146-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Magnetoelastic_sensor_application_in_civil_buildings_monitoring","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":571336,"name":"Real Time Monitoring","url":"https://www.academia.edu/Documents/in/Real_Time_Monitoring"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1349407,"name":"Strain Gauge","url":"https://www.academia.edu/Documents/in/Strain_Gauge"}],"urls":[{"id":4370352,"url":"http://www.sciencedirect.com/science/article/pii/S0924424705001652"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862735/Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition"><img alt="Research paper thumbnail of Morphology, structure and magnetic properties of (Tb0.3Dy0.7Fe2)100-xFex nanogranular films produced by ultrashort pulsed laser deposition" class="work-thumbnail" src="https://attachments.academia-assets.com/47068600/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862735/Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition">Morphology, structure and magnetic properties of (Tb0.3Dy0.7Fe2)100-xFex nanogranular films produced by ultrashort pulsed laser deposition</a></div><div class="wp-workCard_item"><span>Nanotechnology</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d6a1a01acd76ee95e40d8331ba9da88" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068600,&quot;asset_id&quot;:10862735,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068600/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862735]").text(description); $(".js-view-count[data-work-id=10862735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d6a1a01acd76ee95e40d8331ba9da88" } } $('.js-work-strip[data-work-id=10862735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862735,"title":"Morphology, structure and magnetic properties of (Tb0.3Dy0.7Fe2)100-xFex nanogranular films produced by ultrashort pulsed laser deposition","translated_title":"","metadata":{"grobid_abstract":"This paper focuses on the development and optimization of electroplated cobalt-nickel (CoNi) alloys for use in biomedical microdevices. CoNi films were electrodeposited from glycine-containing electrolyte solutions at acidic pH. The influence of pH (2.5-5), temperature (55 and 80 • C), current density (from −5 to −40 mA cm −2 ), glycine concentration (0.5 and 1 mol dm −3 ) and the nature of the metal salts (chlorides or sulphates) on the composition and the magnetic properties of the films were systematically analyzed. The cobalt content varied between 50 and 83 wt% depending on the applied conditions. As a result, deposits showed variable morphologies, different structures (either hexagonal close-packed (hcp) or mixed hcp and face-centered cubic phases) and tunable magnetic properties, ranging from semi-hard (18.51 kA m −1 , i.e. 233 Oe) to very soft (1.43 kA m −1 , i.e. 18 Oe). To understand the role of glycine in this system, a comparison of the electrochemical processes, and the structural and magnetic properties is made for samples produced in glycine-containing and glycine-free baths.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Nanotechnology","grobid_abstract_attachment_id":47068600},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862735/Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_internal_url":"","created_at":"2015-02-17T03:15:50.894-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068600,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068600/thumbnails/1.jpg","file_name":"Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh.pdf","download_url":"https://www.academia.edu/attachments/47068600/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphology_structure_and_magnetic_proper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068600/Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMorphology_structure_and_magnetic_proper.pdf\u0026Expires=1732772190\u0026Signature=B~LnZ2Um3Im7ONxts49Xo9KzPSHfmqPQZoC5NGWYIxnAwtaIvBXo6TLPrZO1cl~fhXLjhjistatRhBKYySoRTkU-cR1bu60ws5ExEjZVYUYXNvvBjTz4RNBTC3Y0Bo0BA9muPqUgmGAoZQuVhqb0TUafWVnsl4IyyYKr-38CqtgjUsq167Gn4W3mZUIJuOtIgCbGVFA9J7yMDdpc56YKMQu8bRa3E0gVFG3ci1WqcjSTx2rtlGrjcwkZ2Jy7RdXwlfqfSujKkJ181ALYeYiclovS28XvM69J7yPuK6fp6pOa8WwuXP~q7iMIpshE~mUE4buynNge09iolq3yq3-Vjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Morphology_structure_and_magnetic_properties_of_Tb0_3Dy0_7Fe2_100_xFex_nanogranular_films_produced_by_ultrashort_pulsed_laser_deposition","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068600,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068600/thumbnails/1.jpg","file_name":"Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh.pdf","download_url":"https://www.academia.edu/attachments/47068600/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphology_structure_and_magnetic_proper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068600/Morphology_structure_and_magnetic_proper20160706-7800-kc9jfh-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMorphology_structure_and_magnetic_proper.pdf\u0026Expires=1732772190\u0026Signature=B~LnZ2Um3Im7ONxts49Xo9KzPSHfmqPQZoC5NGWYIxnAwtaIvBXo6TLPrZO1cl~fhXLjhjistatRhBKYySoRTkU-cR1bu60ws5ExEjZVYUYXNvvBjTz4RNBTC3Y0Bo0BA9muPqUgmGAoZQuVhqb0TUafWVnsl4IyyYKr-38CqtgjUsq167Gn4W3mZUIJuOtIgCbGVFA9J7yMDdpc56YKMQu8bRa3E0gVFG3ci1WqcjSTx2rtlGrjcwkZ2Jy7RdXwlfqfSujKkJ181ALYeYiclovS28XvM69J7yPuK6fp6pOa8WwuXP~q7iMIpshE~mUE4buynNge09iolq3yq3-Vjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4120,"name":"Crystal Growth","url":"https://www.academia.edu/Documents/in/Crystal_Growth"},{"id":10866,"name":"Morphology","url":"https://www.academia.edu/Documents/in/Morphology"},{"id":15934,"name":"Magnetic thin film","url":"https://www.academia.edu/Documents/in/Magnetic_thin_film"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":49427,"name":"Thin Films","url":"https://www.academia.edu/Documents/in/Thin_Films"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":133975,"name":"Magnetic Properties","url":"https://www.academia.edu/Documents/in/Magnetic_Properties"},{"id":151662,"name":"Additives","url":"https://www.academia.edu/Documents/in/Additives"},{"id":158597,"name":"Iron","url":"https://www.academia.edu/Documents/in/Iron"},{"id":173959,"name":"Current Density","url":"https://www.academia.edu/Documents/in/Current_Density"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":1826493,"name":"Clinical Allergy and Immunology","url":"https://www.academia.edu/Documents/in/Clinical_Allergy_and_Immunology"},{"id":1993786,"name":"Cumulant","url":"https://www.academia.edu/Documents/in/Cumulant"}],"urls":[{"id":4370351,"url":"http://stacks.iop.org/0957-4484/17/i=2/a=033?key=crossref.7b18a4dd4cf2eb6cc2fa4899e331f6d9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862734/Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix"><img alt="Research paper thumbnail of Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862734/Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix">Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A-physical</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly dispersed into a silicone-insulating matrix has been studied as a function of the filler content. A proper experimental apparatus was realized to investigate the direct dependence of resistivity on an uniaxial strain. In particular, when the volume fraction of the conductive charge approaches the conduction percolation threshold, at a proper value of the volume strain a little increment (2%) of the relative deformation can induce a transition from the insulating to conducting state accompanied by a giant resistivity change (about nine orders of magnitude). Some evidence that elastomer matrix properties contribute to determine both the peculiar development of the elasto-resistive coupling and its reversibility has been also found. The obtained results indicate the opportunity to optimize the investigated composite materials for the application as core of novel sensor devices governed by a threshold strain.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862734]").text(description); $(".js-view-count[data-work-id=10862734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862734,"title":"Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix","translated_title":"","metadata":{"abstract":"The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly dispersed into a silicone-insulating matrix has been studied as a function of the filler content. A proper experimental apparatus was realized to investigate the direct dependence of resistivity on an uniaxial strain. In particular, when the volume fraction of the conductive charge approaches the conduction percolation threshold, at a proper value of the volume strain a little increment (2%) of the relative deformation can induce a transition from the insulating to conducting state accompanied by a giant resistivity change (about nine orders of magnitude). Some evidence that elastomer matrix properties contribute to determine both the peculiar development of the elasto-resistive coupling and its reversibility has been also found. The obtained results indicate the opportunity to optimize the investigated composite materials for the application as core of novel sensor devices governed by a threshold strain.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Sensors and Actuators A-physical"},"translated_abstract":"The piezoresistivity in a heterogeneous material formed by conducting nickel particles uniformly dispersed into a silicone-insulating matrix has been studied as a function of the filler content. A proper experimental apparatus was realized to investigate the direct dependence of resistivity on an uniaxial strain. In particular, when the volume fraction of the conductive charge approaches the conduction percolation threshold, at a proper value of the volume strain a little increment (2%) of the relative deformation can induce a transition from the insulating to conducting state accompanied by a giant resistivity change (about nine orders of magnitude). Some evidence that elastomer matrix properties contribute to determine both the peculiar development of the elasto-resistive coupling and its reversibility has been also found. The obtained results indicate the opportunity to optimize the investigated composite materials for the application as core of novel sensor devices governed by a threshold strain.","internal_url":"https://www.academia.edu/10862734/Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix","translated_internal_url":"","created_at":"2015-02-17T03:15:50.649-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Giant_resistivity_change_induced_by_strain_in_a_composite_of_conducting_particles_in_an_elastomer_matrix","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":385916,"name":"Percolation threshold","url":"https://www.academia.edu/Documents/in/Percolation_threshold"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":2295024,"name":"Volume Fraction","url":"https://www.academia.edu/Documents/in/Volume_Fraction"}],"urls":[{"id":4370350,"url":"http://www.sciencedirect.com/science/article/pii/S0924424705007120"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862733/Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy"><img alt="Research paper thumbnail of Morphological characterization of the early process of soot formation by atomic force microscopy" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862733/Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy">Morphological characterization of the early process of soot formation by atomic force microscopy</a></div><div class="wp-workCard_item"><span>Combustion and Flame</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles prod...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles produced in rich flames. Very small particles (about 2 nm) have been found in pre-inception region of soot forming premixed flames, whereas both small nanoparticles as well as large soot particles have been found in the soot region of the flames. The smaller particles are very flat in shape if compared with the bigger ones, and this probably depends upon the different nature of the collected particles.Particle size distribution functions are reported for different sampling conditions. The results of AFM measurements are in good agreement with previous measurements performed with ultraviolet (UV) light scattering/extinction technique on the same flames.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862733]").text(description); $(".js-view-count[data-work-id=10862733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862733,"title":"Morphological characterization of the early process of soot formation by atomic force microscopy","translated_title":"","metadata":{"abstract":"Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles produced in rich flames. Very small particles (about 2 nm) have been found in pre-inception region of soot forming premixed flames, whereas both small nanoparticles as well as large soot particles have been found in the soot region of the flames. The smaller particles are very flat in shape if compared with the bigger ones, and this probably depends upon the different nature of the collected particles.Particle size distribution functions are reported for different sampling conditions. The results of AFM measurements are in good agreement with previous measurements performed with ultraviolet (UV) light scattering/extinction technique on the same flames.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Combustion and Flame"},"translated_abstract":"Atomic Force Microscopy (AFM) has been used for the characterization of nanometric particles produced in rich flames. Very small particles (about 2 nm) have been found in pre-inception region of soot forming premixed flames, whereas both small nanoparticles as well as large soot particles have been found in the soot region of the flames. The smaller particles are very flat in shape if compared with the bigger ones, and this probably depends upon the different nature of the collected particles.Particle size distribution functions are reported for different sampling conditions. The results of AFM measurements are in good agreement with previous measurements performed with ultraviolet (UV) light scattering/extinction technique on the same flames.","internal_url":"https://www.academia.edu/10862733/Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy","translated_internal_url":"","created_at":"2015-02-17T03:15:50.402-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Morphological_characterization_of_the_early_process_of_soot_formation_by_atomic_force_microscopy","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":47297,"name":"Automotive Engineering","url":"https://www.academia.edu/Documents/in/Automotive_Engineering"},{"id":87546,"name":"Ultraviolet","url":"https://www.academia.edu/Documents/in/Ultraviolet"},{"id":391216,"name":"Size Distribution","url":"https://www.academia.edu/Documents/in/Size_Distribution"},{"id":477100,"name":"UV light","url":"https://www.academia.edu/Documents/in/UV_light"},{"id":1136005,"name":"Particle Size Distribution","url":"https://www.academia.edu/Documents/in/Particle_Size_Distribution"}],"urls":[{"id":4370349,"url":"http://www.sciencedirect.com/science/article/pii/S0010218002004340"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862732/Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm"><img alt="Research paper thumbnail of Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862732/Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm">Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm</a></div><div class="wp-workCard_item"><span>Proceedings of The Combustion Institute</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862732]").text(description); $(".js-view-count[data-work-id=10862732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862732,"title":"Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm","translated_title":"","metadata":{"abstract":"The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Proceedings of The Combustion Institute"},"translated_abstract":"The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.","internal_url":"https://www.academia.edu/10862732/Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm","translated_internal_url":"","created_at":"2015-02-17T03:15:50.197-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Surface_deposition_and_coagulation_efficiency_of_combustion_generated_nanoparticles_in_the_size_range_from_1_to_10_nm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":4512,"name":"Light Scattering","url":"https://www.academia.edu/Documents/in/Light_Scattering"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":47297,"name":"Automotive Engineering","url":"https://www.academia.edu/Documents/in/Automotive_Engineering"},{"id":59051,"name":"Kinetic Theory","url":"https://www.academia.edu/Documents/in/Kinetic_Theory"},{"id":107730,"name":"van der Waals interaction","url":"https://www.academia.edu/Documents/in/van_der_Waals_interaction"},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion"},{"id":391216,"name":"Size Distribution","url":"https://www.academia.edu/Documents/in/Size_Distribution"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":1499498,"name":"High energy","url":"https://www.academia.edu/Documents/in/High_energy"}],"urls":[{"id":4370348,"url":"http://www.sciencedirect.com/science/article/pii/S0082078404003212"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862731/Detection_of_combustion_formed_nanoparticles"><img alt="Research paper thumbnail of Detection of combustion formed nanoparticles" class="work-thumbnail" src="https://attachments.academia-assets.com/47068607/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862731/Detection_of_combustion_formed_nanoparticles">Detection of combustion formed nanoparticles</a></div><div class="wp-workCard_item"><span>Chemosphere</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microsc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microscopy (AFM) and differential mobility analysis (DMA) are used to follow the evolution of the particles formed in flames. These particle sizing techniques were chosen because of their sensitivity to detect inception particles, which have diameters, d&lt;5 nm, too small to be observed with typical particle measurement instrumentation. The size of the particles determined by AFM and DMA compares well with the size determined by in situ optical measurements, indicating that the interpretation of the UV–visible optical signal is quite good, and strongly showing the presence of d=2–4 nm particles. UV–visible extinction measurements are also used to determine the concentration of d=2–4 nm particles at the exhausts of practical combustion systems. A numerical model, able to reproduce the experimentally observed low coagulation rate of nanoparticles with respect to soot particles, is used to investigate the operating conditions in the combustion chamber and exhaust system for which 2–4 nm particles survive the exhaust or grow to larger sizes. Combustion generated nanoparticles are suspected to affect human and environmental health because of their affinity for water, small size, low rate of coagulation, and large surface area/weight ratio. The ability to isolate nanoparticles from soot particles in hydrosols collected from combustion may be useful for future analysis by a variety of techniques and toxicological assays.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="86246cb00db1146dc6420c8247d855e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068607,&quot;asset_id&quot;:10862731,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068607/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862731]").text(description); $(".js-view-count[data-work-id=10862731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "86246cb00db1146dc6420c8247d855e9" } } $('.js-work-strip[data-work-id=10862731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862731,"title":"Detection of combustion formed nanoparticles","translated_title":"","metadata":{"abstract":"UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microscopy (AFM) and differential mobility analysis (DMA) are used to follow the evolution of the particles formed in flames. These particle sizing techniques were chosen because of their sensitivity to detect inception particles, which have diameters, d\u003c5 nm, too small to be observed with typical particle measurement instrumentation. The size of the particles determined by AFM and DMA compares well with the size determined by in situ optical measurements, indicating that the interpretation of the UV–visible optical signal is quite good, and strongly showing the presence of d=2–4 nm particles. UV–visible extinction measurements are also used to determine the concentration of d=2–4 nm particles at the exhausts of practical combustion systems. A numerical model, able to reproduce the experimentally observed low coagulation rate of nanoparticles with respect to soot particles, is used to investigate the operating conditions in the combustion chamber and exhaust system for which 2–4 nm particles survive the exhaust or grow to larger sizes. Combustion generated nanoparticles are suspected to affect human and environmental health because of their affinity for water, small size, low rate of coagulation, and large surface area/weight ratio. The ability to isolate nanoparticles from soot particles in hydrosols collected from combustion may be useful for future analysis by a variety of techniques and toxicological assays.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Chemosphere"},"translated_abstract":"UV–visible extinction and scattering and two extra situ sampling techniques: atomic force microscopy (AFM) and differential mobility analysis (DMA) are used to follow the evolution of the particles formed in flames. These particle sizing techniques were chosen because of their sensitivity to detect inception particles, which have diameters, d\u003c5 nm, too small to be observed with typical particle measurement instrumentation. The size of the particles determined by AFM and DMA compares well with the size determined by in situ optical measurements, indicating that the interpretation of the UV–visible optical signal is quite good, and strongly showing the presence of d=2–4 nm particles. UV–visible extinction measurements are also used to determine the concentration of d=2–4 nm particles at the exhausts of practical combustion systems. A numerical model, able to reproduce the experimentally observed low coagulation rate of nanoparticles with respect to soot particles, is used to investigate the operating conditions in the combustion chamber and exhaust system for which 2–4 nm particles survive the exhaust or grow to larger sizes. Combustion generated nanoparticles are suspected to affect human and environmental health because of their affinity for water, small size, low rate of coagulation, and large surface area/weight ratio. The ability to isolate nanoparticles from soot particles in hydrosols collected from combustion may be useful for future analysis by a variety of techniques and toxicological assays.","internal_url":"https://www.academia.edu/10862731/Detection_of_combustion_formed_nanoparticles","translated_internal_url":"","created_at":"2015-02-17T03:15:49.968-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068607,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068607/thumbnails/1.jpg","file_name":"Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2.pdf","download_url":"https://www.academia.edu/attachments/47068607/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_combustion_formed_nanoparti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068607/Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_combustion_formed_nanoparti.pdf\u0026Expires=1732772190\u0026Signature=Op0slTXLSrhxP-679D1wEHAPZi38lg6GdxylguDmZzvl-GcCMlYNxCwDw7xI9by8pl5eS9Wgr0KLVq5ClmDnI1cXJpiHGx0Trms6HasohlrUNhwdHeSR2gucBREMIibKzJy-hAx9Q-ImfBoZtZqodmfi991eyflfY6TKW5UxAyfhqPnAatZQpuGRXpG7StunhUMP8ieKYjUkg5S5FlUOO8lN2TUVF5Vz9nufc1UL8wA84PpX4wDrXXQu0U0QaWP1Q3vJ9XWq2JUQ7HNFh9PTvmHerufOsscQNF~vYRx6fwy1IZGE9cy~lvcZQ9RISwhQjKEvZ3aPtnAS0HMJ3Dflzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detection_of_combustion_formed_nanoparticles","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068607,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068607/thumbnails/1.jpg","file_name":"Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2.pdf","download_url":"https://www.academia.edu/attachments/47068607/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_combustion_formed_nanoparti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068607/Detection_of_combustion_formed_nanoparti20160706-3336-1f2yoc2-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_combustion_formed_nanoparti.pdf\u0026Expires=1732772190\u0026Signature=Op0slTXLSrhxP-679D1wEHAPZi38lg6GdxylguDmZzvl-GcCMlYNxCwDw7xI9by8pl5eS9Wgr0KLVq5ClmDnI1cXJpiHGx0Trms6HasohlrUNhwdHeSR2gucBREMIibKzJy-hAx9Q-ImfBoZtZqodmfi991eyflfY6TKW5UxAyfhqPnAatZQpuGRXpG7StunhUMP8ieKYjUkg5S5FlUOO8lN2TUVF5Vz9nufc1UL8wA84PpX4wDrXXQu0U0QaWP1Q3vJ9XWq2JUQ7HNFh9PTvmHerufOsscQNF~vYRx6fwy1IZGE9cy~lvcZQ9RISwhQjKEvZ3aPtnAS0HMJ3Dflzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7403,"name":"Environmental Health","url":"https://www.academia.edu/Documents/in/Environmental_Health"},{"id":11801,"name":"Environmental Monitoring","url":"https://www.academia.edu/Documents/in/Environmental_Monitoring"},{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":67662,"name":"Incineration","url":"https://www.academia.edu/Documents/in/Incineration"},{"id":343667,"name":"Theoretical Models","url":"https://www.academia.edu/Documents/in/Theoretical_Models"},{"id":386356,"name":"Surface Area","url":"https://www.academia.edu/Documents/in/Surface_Area"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"},{"id":477865,"name":"Operant Conditioning","url":"https://www.academia.edu/Documents/in/Operant_Conditioning"},{"id":497452,"name":"Numerical Model","url":"https://www.academia.edu/Documents/in/Numerical_Model"},{"id":605600,"name":"Refuse disposal","url":"https://www.academia.edu/Documents/in/Refuse_disposal"},{"id":678683,"name":"Sampling Technique","url":"https://www.academia.edu/Documents/in/Sampling_Technique"},{"id":1656539,"name":"Air Pollutants","url":"https://www.academia.edu/Documents/in/Air_Pollutants"}],"urls":[{"id":4370347,"url":"http://www.sciencedirect.com/science/article/pii/S004565350200718X"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862730/Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions"><img alt="Research paper thumbnail of Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862730/Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions">Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions</a></div><div class="wp-workCard_item"><span>Environmental Engineering Science</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.108...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.1089/ees.2007.0189 ... Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions ... Gianluca Lanzuolo,1,* Lee Anne Sgro,1 Andrea De Filippo,1 ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862730]").text(description); $(".js-view-count[data-work-id=10862730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862730,"title":"Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions","translated_title":"","metadata":{"abstract":"ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.1089/ees.2007.0189 ... Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions ... Gianluca Lanzuolo,1,* Lee Anne Sgro,1 Andrea De Filippo,1 ...","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Environmental Engineering Science"},"translated_abstract":"ENVIRONMENTAL ENGINEERING SCIENCE Volume 25, Number 10, 2008 © Mary Ann Liebert, Inc. DOI: 10.1089/ees.2007.0189 ... Coagulation of Organic Carbon Nanoparticles in Exhaust Conditions ... Gianluca Lanzuolo,1,* Lee Anne Sgro,1 Andrea De Filippo,1 ...","internal_url":"https://www.academia.edu/10862730/Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions","translated_internal_url":"","created_at":"2015-02-17T03:15:49.690-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Coagulation_of_Organic_Carbon_Nanoparticles_in_Exhaust_Conditions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":55,"name":"Environmental Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Engineering"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":1133132,"name":"Environmental","url":"https://www.academia.edu/Documents/in/Environmental"},{"id":1137273,"name":"Environmental Science and Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Science_and_Engineering-1"},{"id":1957240,"name":"ENVIRONMENTAL SCIENCE AND MANAGEMENT","url":"https://www.academia.edu/Documents/in/ENVIRONMENTAL_SCIENCE_AND_MANAGEMENT"}],"urls":[{"id":4370346,"url":"http://www.liebertonline.com/doi/abs/10.1089/ees.2007.0189"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862729/Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers"><img alt="Research paper thumbnail of Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers" class="work-thumbnail" src="https://attachments.academia-assets.com/47068585/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862729/Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers">Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9fbef2414bdf9aad7d77668a36201d6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068585,&quot;asset_id&quot;:10862729,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068585/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862729]").text(description); $(".js-view-count[data-work-id=10862729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9fbef2414bdf9aad7d77668a36201d6d" } } $('.js-work-strip[data-work-id=10862729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862729,"title":"Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers","translated_title":"","metadata":{"grobid_abstract":"We present femtosecond optical time-resolved pump-probe investigations of superconducting hybrids structures consisting of Nb/NiCu bilayers with various thickness. Measurements performed on pure Nb and NiCu films are also given. The photoresponse experiments provide the quasiparticle relaxation times in bilayers of different thickness ratios. The study of the photoresponse as a function of the temperature reveals the spatial evolution of the superconductor order parameter across the bilayers. #","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Applied Surface Science","grobid_abstract_attachment_id":47068585},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862729/Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers","translated_internal_url":"","created_at":"2015-02-17T03:15:49.453-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068585,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068585/thumbnails/1.jpg","file_name":"j.apsusc.2005.03.07920160706-19293-17tw39y.pdf","download_url":"https://www.academia.edu/attachments/47068585/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_photoresponse_of_nanometer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068585/j.apsusc.2005.03.07920160706-19293-17tw39y-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_photoresponse_of_nanometer.pdf\u0026Expires=1732772190\u0026Signature=Yhg5k0dRx2itGax4O6DwVe6F1Sa374rN323bqH2fN09BQ6f4YcrZwtE~BsEYOQLLv1f2yvYaN-0h0M3qjinsWf3JsEhPPRFAy-uK58cnkFc1RuZ32qXSMyH08ZF-4oVXoK6WFQrtS5nSjowbwBoIUvEdFFG41N2QVqPLk0vZHqkNVQmP3c0x1nHA8LVydMqLXkUG9lETSK73CuvrtAmop2On7aczFGycCrKyaPLPIrXbKf1PpI5ymtOaJiRVlSrLrD92PYUkb9um2sb8~Nd0eoP9QndYwcBS3ACcilDbvo-V~rUOcB7Q77VfpXL8kM~CIvrRnHL0Y7RszQr5g-2hsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Time_resolved_photoresponse_of_nanometer_thick_Nb_NiCu_bilayers","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068585,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068585/thumbnails/1.jpg","file_name":"j.apsusc.2005.03.07920160706-19293-17tw39y.pdf","download_url":"https://www.academia.edu/attachments/47068585/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_photoresponse_of_nanometer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068585/j.apsusc.2005.03.07920160706-19293-17tw39y-libre.pdf?1467858716=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_photoresponse_of_nanometer.pdf\u0026Expires=1732772190\u0026Signature=Yhg5k0dRx2itGax4O6DwVe6F1Sa374rN323bqH2fN09BQ6f4YcrZwtE~BsEYOQLLv1f2yvYaN-0h0M3qjinsWf3JsEhPPRFAy-uK58cnkFc1RuZ32qXSMyH08ZF-4oVXoK6WFQrtS5nSjowbwBoIUvEdFFG41N2QVqPLk0vZHqkNVQmP3c0x1nHA8LVydMqLXkUG9lETSK73CuvrtAmop2On7aczFGycCrKyaPLPIrXbKf1PpI5ymtOaJiRVlSrLrD92PYUkb9um2sb8~Nd0eoP9QndYwcBS3ACcilDbvo-V~rUOcB7Q77VfpXL8kM~CIvrRnHL0Y7RszQr5g-2hsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":125513,"name":"Superconductors","url":"https://www.academia.edu/Documents/in/Superconductors"},{"id":158186,"name":"Time Resolved","url":"https://www.academia.edu/Documents/in/Time_Resolved"},{"id":960474,"name":"Order Parameter","url":"https://www.academia.edu/Documents/in/Order_Parameter"}],"urls":[{"id":4370345,"url":"http://www.sciencedirect.com/science/article/pii/S0169433205003922"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862728/Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm"><img alt="Research paper thumbnail of Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm" class="work-thumbnail" src="https://attachments.academia-assets.com/47068575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862728/Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm">Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm</a></div><div class="wp-workCard_item"><span>Sensors and Actuators A: Physical</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ecb34a523c34416eebd2cb8bf0d08d3a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068575,&quot;asset_id&quot;:10862728,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068575/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862728]").text(description); $(".js-view-count[data-work-id=10862728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ecb34a523c34416eebd2cb8bf0d08d3a" } } $('.js-work-strip[data-work-id=10862728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862728,"title":"Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm","translated_title":"","metadata":{"grobid_abstract":"The development of a versatile magnetoelastic sensor prototype for on-line elastic deformation monitoring and fracture alarm in civil engineering is reported. The sensor is based on the variation of resonant longitudinal magnetoelastic waves amplitude due to elastic status change in the amorphous Fe 62.5 Co 6 Ni 7.5 Zr 6 Cu 1 Nb 2 B 15 active core. Tests on a tufa wall under mass loading were conducted. The obtained results show a good reliability and sensitivity (1 mV/10 m) of the sensor response in the m-cm deformation range. The sensor is able to predict the approaching to the fracture regime, monitoring a preceding characteristic behavior.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Sensors and Actuators A: Physical","grobid_abstract_attachment_id":47068575},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862728/Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm","translated_internal_url":"","created_at":"2015-02-17T03:15:49.314-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068575/thumbnails/1.jpg","file_name":"j.sna.2005.05.01920160706-2141-1gci67p.pdf","download_url":"https://www.academia.edu/attachments/47068575/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnetoelastic_sensor_for_real_time_moni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068575/j.sna.2005.05.01920160706-2141-1gci67p-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMagnetoelastic_sensor_for_real_time_moni.pdf\u0026Expires=1732772190\u0026Signature=Y8LnXnkna~S4MlG5iafvT7~rwdupzTg7xH5cBccEPWPUiSTSWcjVp-SvKNa6qVS7grY2cL~YPcQmbFThpsHH70DHtbkSgcYclDDsQonk5X5rtfGWFmZdL4fl9EHcqjadWlv7pF7J53KX2GQDVuYmPGEq5vrMScTh3QV~MRpJoUg4kub3uWPKVAjsO~jD38q27YUw5xMTZLqp-4NKX8Nl5apihhfxsW-ynqkn~WsFOuytZ-7oitCdaw7mgnxHDNDPThVMJJ2f4CjtbY1KxJ15-pq5codanv7DnDO009mPu5ZdQU7HHs-KCkqKPKIadIssO4Vz1DgzvJsle6c5~Ydf6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Magnetoelastic_sensor_for_real_time_monitoring_of_elastic_deformation_and_fracture_alarm","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068575/thumbnails/1.jpg","file_name":"j.sna.2005.05.01920160706-2141-1gci67p.pdf","download_url":"https://www.academia.edu/attachments/47068575/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnetoelastic_sensor_for_real_time_moni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068575/j.sna.2005.05.01920160706-2141-1gci67p-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMagnetoelastic_sensor_for_real_time_moni.pdf\u0026Expires=1732772190\u0026Signature=Y8LnXnkna~S4MlG5iafvT7~rwdupzTg7xH5cBccEPWPUiSTSWcjVp-SvKNa6qVS7grY2cL~YPcQmbFThpsHH70DHtbkSgcYclDDsQonk5X5rtfGWFmZdL4fl9EHcqjadWlv7pF7J53KX2GQDVuYmPGEq5vrMScTh3QV~MRpJoUg4kub3uWPKVAjsO~jD38q27YUw5xMTZLqp-4NKX8Nl5apihhfxsW-ynqkn~WsFOuytZ-7oitCdaw7mgnxHDNDPThVMJJ2f4CjtbY1KxJ15-pq5codanv7DnDO009mPu5ZdQU7HHs-KCkqKPKIadIssO4Vz1DgzvJsle6c5~Ydf6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":14081,"name":"Structural Health Monitoring","url":"https://www.academia.edu/Documents/in/Structural_Health_Monitoring"},{"id":571336,"name":"Real Time Monitoring","url":"https://www.academia.edu/Documents/in/Real_Time_Monitoring"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862727"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862727/Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses"><img alt="Research paper thumbnail of Production of nanoparticles of different materials by means of ultrashort laser pulses" class="work-thumbnail" src="https://attachments.academia-assets.com/47068569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862727/Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses">Production of nanoparticles of different materials by means of ultrashort laser pulses</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investigate the possibility of producing nanoparticles with controlled size and shape. A systematic morphology characterization of deposited products was performed for nickel and silicon as a function of laser pulse intensity and wavelength, at a fixed pulse repetition rate. The nanoparticles were investigated by atomic force microscopy, and clear trends for their size and shape anisotropy were evidenced. The best conditions to obtain nanosized particles of oblate ellipsoidal shape, with the minor axis below 10 nm, were determined in the case of nickel targets. Our results show that ultrashort pulse laser deposition can be considered as an interesting technique for the tailoring of nanogranular films with the desired particles dimension and shape, according to the peculiar properties required in specific applications. Moreover, the preliminary features are very promising from the point of view of the production of magnetoresistive films with specific anisotropy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1f36cbec895611e792c454c4fb877ad1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068569,&quot;asset_id&quot;:10862727,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068569/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862727"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862727"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862727; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862727]").text(description); $(".js-view-count[data-work-id=10862727]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862727; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862727']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862727, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1f36cbec895611e792c454c4fb877ad1" } } $('.js-work-strip[data-work-id=10862727]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862727,"title":"Production of nanoparticles of different materials by means of ultrashort laser pulses","translated_title":"","metadata":{"abstract":"Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investigate the possibility of producing nanoparticles with controlled size and shape. A systematic morphology characterization of deposited products was performed for nickel and silicon as a function of laser pulse intensity and wavelength, at a fixed pulse repetition rate. The nanoparticles were investigated by atomic force microscopy, and clear trends for their size and shape anisotropy were evidenced. The best conditions to obtain nanosized particles of oblate ellipsoidal shape, with the minor axis below 10 nm, were determined in the case of nickel targets. Our results show that ultrashort pulse laser deposition can be considered as an interesting technique for the tailoring of nanogranular films with the desired particles dimension and shape, according to the peculiar properties required in specific applications. Moreover, the preliminary features are very promising from the point of view of the production of magnetoresistive films with specific anisotropy.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investigate the possibility of producing nanoparticles with controlled size and shape. A systematic morphology characterization of deposited products was performed for nickel and silicon as a function of laser pulse intensity and wavelength, at a fixed pulse repetition rate. The nanoparticles were investigated by atomic force microscopy, and clear trends for their size and shape anisotropy were evidenced. The best conditions to obtain nanosized particles of oblate ellipsoidal shape, with the minor axis below 10 nm, were determined in the case of nickel targets. Our results show that ultrashort pulse laser deposition can be considered as an interesting technique for the tailoring of nanogranular films with the desired particles dimension and shape, according to the peculiar properties required in specific applications. Moreover, the preliminary features are very promising from the point of view of the production of magnetoresistive films with specific anisotropy.","internal_url":"https://www.academia.edu/10862727/Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses","translated_internal_url":"","created_at":"2015-02-17T03:15:49.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068569/thumbnails/1.jpg","file_name":"j.apsusc.2005.07.08920160706-1934-yz4kv4.pdf","download_url":"https://www.academia.edu/attachments/47068569/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Production_of_nanoparticles_of_different.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068569/j.apsusc.2005.07.08920160706-1934-yz4kv4-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DProduction_of_nanoparticles_of_different.pdf\u0026Expires=1732772190\u0026Signature=OyUjrQkwDTnvXpIISbf0sh98RNcMjESB~O-p0Vn9upl3gakMlAs-OARaTci~~aal5MDMEYdSfUhRRr1ad~rU6plsgT5~RiM69sXVJpwTcDe2bYLY~-1iz-VfYvgJEYZdKqND8Mc5tXCrqBBkkowNtF2ygtSOjvVYp~M7YPXh-WjufE1pLzyWhTxDLp1EPlfGQn-YCHuNKT0tz6OP~ivC9bvduo6g0LTkKW0do5oT4nrnAksvftwThHX-VCVhylAHgPa-mGiwVpcEu76Fo7vgIOyejrjkkRwfbUyNsrZxkSYqPMsxPpQsKSY~ZMipUwpv-Fe3NaysBrtLmHNck07R9g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Production_of_nanoparticles_of_different_materials_by_means_of_ultrashort_laser_pulses","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068569/thumbnails/1.jpg","file_name":"j.apsusc.2005.07.08920160706-1934-yz4kv4.pdf","download_url":"https://www.academia.edu/attachments/47068569/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Production_of_nanoparticles_of_different.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068569/j.apsusc.2005.07.08920160706-1934-yz4kv4-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DProduction_of_nanoparticles_of_different.pdf\u0026Expires=1732772190\u0026Signature=OyUjrQkwDTnvXpIISbf0sh98RNcMjESB~O-p0Vn9upl3gakMlAs-OARaTci~~aal5MDMEYdSfUhRRr1ad~rU6plsgT5~RiM69sXVJpwTcDe2bYLY~-1iz-VfYvgJEYZdKqND8Mc5tXCrqBBkkowNtF2ygtSOjvVYp~M7YPXh-WjufE1pLzyWhTxDLp1EPlfGQn-YCHuNKT0tz6OP~ivC9bvduo6g0LTkKW0do5oT4nrnAksvftwThHX-VCVhylAHgPa-mGiwVpcEu76Fo7vgIOyejrjkkRwfbUyNsrZxkSYqPMsxPpQsKSY~ZMipUwpv-Fe3NaysBrtLmHNck07R9g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":24373,"name":"Atomic Force Microscopy","url":"https://www.academia.edu/Documents/in/Atomic_Force_Microscopy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":892890,"name":"Point of View","url":"https://www.academia.edu/Documents/in/Point_of_View"}],"urls":[{"id":4370344,"url":"http://www.sciencedirect.com/science/article/pii/S0169433205013747"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862726"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862726/UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth"><img alt="Research paper thumbnail of UV–vis spectroscopy for on-line monitoring of Au nanoparticles size during growth" class="work-thumbnail" src="https://attachments.academia-assets.com/47068579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862726/UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth">UV–vis spectroscopy for on-line monitoring of Au nanoparticles size during growth</a></div><div class="wp-workCard_item"><span>Applied Surface Science</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a pol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a polymeric stabilizer (poly(N-vinyl pyrrolidone), PVP). On-line UV–vis spectroscopic characterization and transmission electron microscopy (TEM) analysis are presented. Optical spectroscopy data show that the temporal evolution of absorption spectra and the absorbance peak properties are correlated to the off-line size measurements obtained at chemical reaction end by TEM micrographs. The Au cluster size behaves linearly with time above a threshold temperature (70 °C), according to a deposition-controlled growth mechanism.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="777cc26c81b5277643c093d6522d408a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068579,&quot;asset_id&quot;:10862726,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068579/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862726"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862726"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862726; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862726]").text(description); $(".js-view-count[data-work-id=10862726]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862726; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862726']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862726, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "777cc26c81b5277643c093d6522d408a" } } $('.js-work-strip[data-work-id=10862726]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862726,"title":"UV–vis spectroscopy for on-line monitoring of Au nanoparticles size during growth","translated_title":"","metadata":{"abstract":"Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a polymeric stabilizer (poly(N-vinyl pyrrolidone), PVP). On-line UV–vis spectroscopic characterization and transmission electron microscopy (TEM) analysis are presented. Optical spectroscopy data show that the temporal evolution of absorption spectra and the absorbance peak properties are correlated to the off-line size measurements obtained at chemical reaction end by TEM micrographs. The Au cluster size behaves linearly with time above a threshold temperature (70 °C), according to a deposition-controlled growth mechanism.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Applied Surface Science"},"translated_abstract":"Gold nanoparticles have been prepared by alcoholic reduction of Au(III) ions in presence of a polymeric stabilizer (poly(N-vinyl pyrrolidone), PVP). On-line UV–vis spectroscopic characterization and transmission electron microscopy (TEM) analysis are presented. Optical spectroscopy data show that the temporal evolution of absorption spectra and the absorbance peak properties are correlated to the off-line size measurements obtained at chemical reaction end by TEM micrographs. The Au cluster size behaves linearly with time above a threshold temperature (70 °C), according to a deposition-controlled growth mechanism.","internal_url":"https://www.academia.edu/10862726/UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth","translated_internal_url":"","created_at":"2015-02-17T03:15:48.893-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068579/thumbnails/1.jpg","file_name":"UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah.pdf","download_url":"https://www.academia.edu/attachments/47068579/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"UV_vis_spectroscopy_for_on_line_monitori.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068579/UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DUV_vis_spectroscopy_for_on_line_monitori.pdf\u0026Expires=1732772190\u0026Signature=hNF7uuTHeF1ZiAwXPgPF1Qvxq-jfID-hntdIoCPGs5L6lXHWFh~IZUb9707enOc~OGxAeJ3FvCZ-YQoknhCVm9lYTSyCQJKiNuKj4nB5~1OPQwNUCYAF9noV4bUX3NzqqJ~ITUxkbd9CwkPojz7gmzh0l1vggXyjwuPgNfb~vj09RdIlUJ~29wfekfxXCc7bbY2paXH2tajk5Ny9ASRnCIaLbzUK6LbFj0~Qx1PkVbNPyhAe88YatpRAu0nf7KoU6801csUhwkw~itfTqlukie~V~3GNR89EcB7TKfuWXSIYTidMod--Yr~tUPyhmf309PBOxzUYX0CwkLXD6BOQvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"UV_vis_spectroscopy_for_on_line_monitoring_of_Au_nanoparticles_size_during_growth","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068579/thumbnails/1.jpg","file_name":"UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah.pdf","download_url":"https://www.academia.edu/attachments/47068579/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"UV_vis_spectroscopy_for_on_line_monitori.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068579/UVvis_spectroscopy_for_on-line_monitorin20160706-13679-1wysyah-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DUV_vis_spectroscopy_for_on_line_monitori.pdf\u0026Expires=1732772190\u0026Signature=hNF7uuTHeF1ZiAwXPgPF1Qvxq-jfID-hntdIoCPGs5L6lXHWFh~IZUb9707enOc~OGxAeJ3FvCZ-YQoknhCVm9lYTSyCQJKiNuKj4nB5~1OPQwNUCYAF9noV4bUX3NzqqJ~ITUxkbd9CwkPojz7gmzh0l1vggXyjwuPgNfb~vj09RdIlUJ~29wfekfxXCc7bbY2paXH2tajk5Ny9ASRnCIaLbzUK6LbFj0~Qx1PkVbNPyhAe88YatpRAu0nf7KoU6801csUhwkw~itfTqlukie~V~3GNR89EcB7TKfuWXSIYTidMod--Yr~tUPyhmf309PBOxzUYX0CwkLXD6BOQvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13033,"name":"Optical Spectroscopy","url":"https://www.academia.edu/Documents/in/Optical_Spectroscopy"},{"id":14076,"name":"Transmission Electron Microscopy","url":"https://www.academia.edu/Documents/in/Transmission_Electron_Microscopy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":65698,"name":"Gold nanoparticle","url":"https://www.academia.edu/Documents/in/Gold_nanoparticle"},{"id":168481,"name":"UV/Vis spectroscopy","url":"https://www.academia.edu/Documents/in/UV_Vis_spectroscopy"},{"id":539878,"name":"Chemical Reaction","url":"https://www.academia.edu/Documents/in/Chemical_Reaction"},{"id":1019577,"name":"Absorption Spectra","url":"https://www.academia.edu/Documents/in/Absorption_Spectra"},{"id":1251963,"name":"Surface Plasmon","url":"https://www.academia.edu/Documents/in/Surface_Plasmon"}],"urls":[{"id":4370343,"url":"http://www.sciencedirect.com/science/article/pii/S0169433205003685"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862725/Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate"><img alt="Research paper thumbnail of Metal oxide nanoparticles formed from solution droplets under high heating rate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862725/Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate">Metal oxide nanoparticles formed from solution droplets under high heating rate</a></div><div class="wp-workCard_item"><span>Experimental Thermal and Fluid Science</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored in a stoichiometric laminar premixed flame doped with droplets of cadmium, nickel(II) and lead(II) nitrate aqueous solutions. Generated particles were thermophoretically collected and analyzed by Atomic Force Microscopy (AFM). The results showed that most of the particles have sizes lower than 10 nm. The size distribution function shapes and time evolutions depend on the metal salt solubility and thermal decomposition characteristics. By comparing the thermophoretically collected matter and the amount of injected metal precursors, a size dependent adhesion efficiency of the particles on probe mica plates has been found. The results showed that nanoparticles have a low capability to adhere on a surface, regardless of the used metal. The adhesion efficiency quickly decreases for particles smaller than 10 nm. As a consequence, the smallest particles are present in the flame with a relative high number concentration. This feature is of great interest when developing filtering systems able to remove nanoparticles with size lower than 10 nm at the exhaust of combustion systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862725]").text(description); $(".js-view-count[data-work-id=10862725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862725, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=10862725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862725,"title":"Metal oxide nanoparticles formed from solution droplets under high heating rate","translated_title":"","metadata":{"abstract":"ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored in a stoichiometric laminar premixed flame doped with droplets of cadmium, nickel(II) and lead(II) nitrate aqueous solutions. Generated particles were thermophoretically collected and analyzed by Atomic Force Microscopy (AFM). The results showed that most of the particles have sizes lower than 10 nm. The size distribution function shapes and time evolutions depend on the metal salt solubility and thermal decomposition characteristics. By comparing the thermophoretically collected matter and the amount of injected metal precursors, a size dependent adhesion efficiency of the particles on probe mica plates has been found. The results showed that nanoparticles have a low capability to adhere on a surface, regardless of the used metal. The adhesion efficiency quickly decreases for particles smaller than 10 nm. As a consequence, the smallest particles are present in the flame with a relative high number concentration. This feature is of great interest when developing filtering systems able to remove nanoparticles with size lower than 10 nm at the exhaust of combustion systems.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Experimental Thermal and Fluid Science"},"translated_abstract":"ABSTRACT The formation mechanisms of combustion generated metal oxide nanoparticles were explored in a stoichiometric laminar premixed flame doped with droplets of cadmium, nickel(II) and lead(II) nitrate aqueous solutions. Generated particles were thermophoretically collected and analyzed by Atomic Force Microscopy (AFM). The results showed that most of the particles have sizes lower than 10 nm. The size distribution function shapes and time evolutions depend on the metal salt solubility and thermal decomposition characteristics. By comparing the thermophoretically collected matter and the amount of injected metal precursors, a size dependent adhesion efficiency of the particles on probe mica plates has been found. The results showed that nanoparticles have a low capability to adhere on a surface, regardless of the used metal. The adhesion efficiency quickly decreases for particles smaller than 10 nm. As a consequence, the smallest particles are present in the flame with a relative high number concentration. This feature is of great interest when developing filtering systems able to remove nanoparticles with size lower than 10 nm at the exhaust of combustion systems.","internal_url":"https://www.academia.edu/10862725/Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate","translated_internal_url":"","created_at":"2015-02-17T03:15:48.756-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Metal_oxide_nanoparticles_formed_from_solution_droplets_under_high_heating_rate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10862724"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10862724/Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts"><img alt="Research paper thumbnail of Measurements of Nanoparticles of Organic Carbon and Soot in Flames and Vehicle Exhausts" class="work-thumbnail" src="https://attachments.academia-assets.com/47068588/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10862724/Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts">Measurements of Nanoparticles of Organic Carbon and Soot in Flames and Vehicle Exhausts</a></div><div class="wp-workCard_item"><span>Environmental Science &amp; Technology</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40d0324a039eac5940337e29321c97eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:47068588,&quot;asset_id&quot;:10862724,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/47068588/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10862724"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10862724"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10862724; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10862724]").text(description); $(".js-view-count[data-work-id=10862724]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10862724; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10862724']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10862724, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40d0324a039eac5940337e29321c97eb" } } $('.js-work-strip[data-work-id=10862724]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10862724,"title":"Measurements of Nanoparticles of Organic Carbon and Soot in Flames and Vehicle Exhausts","translated_title":"","metadata":{"grobid_abstract":"We measured the size distribution and UV extinction spectra of carbonaceous nanoparticles present in the size range of 1-100 nm in the exhausts of 2004 model gasoline and diesel powered vehicles and compared the results with those obtained in premixed flames. In addition to soot particles, nanoparticles of organic carbon (NOC) were measured in the emissions of these test vehicles in significant number and mass concentrations. The number and mass concentration of NOC was higher than soot in gasoline vehicle emissions. In diesel emissions, NOC had a higher number concentration than soot in terms of number concentration, but in terms of mass concentration, soot was higher than NOC. The size (1-3 nm) and extinction spectra in the UV-visible (strong in the UV and transparent in the visible) of macromolecules/nanoparticles collected in water samples from the vehicles are similar to those measured in laboratory hydrocarbon-air flames, suggesting that these nanoparticles are formed in hydrocarbon combustion reactions. We advance the hypothesis that NOC in vehicle emissions are produced by high-temperature combustion processes and not by low-temperature condensation processes.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Environmental Science \u0026 Technology","grobid_abstract_attachment_id":47068588},"translated_abstract":null,"internal_url":"https://www.academia.edu/10862724/Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts","translated_internal_url":"","created_at":"2015-02-17T03:15:48.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26387366,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47068588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068588/thumbnails/1.jpg","file_name":"Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp.pdf","download_url":"https://www.academia.edu/attachments/47068588/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurements_of_Nanoparticles_of_Organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068588/Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMeasurements_of_Nanoparticles_of_Organic.pdf\u0026Expires=1732772190\u0026Signature=HuAgdZLDt6s2gq6gruQBejaBOhzrq1pgEEGqmjNfG39h30qrETFHkfyKs0yVWND7BsWvaz5EfnP4fSqipq76Czlb4fxNiZ356jbERyWHcprj0wX5gStJHnoJx4e~zlOQnbaPXGcK1HDYQG5osP7BXhGQ6stugrYBiQHF8DRMk5iRLB9UPY9FC4q4mAaT77i4oJzTs-9mFTZDIn-ikTIskz3DRgsa0PFXjPAvHpSqeAGLu6j3ycXvFjKj37xBsIdxyoCvWGckY-caiakRy9AXW0IQfh4jKE4oDuPsTK5V3OgL3ymwdu9uWmZD0l6O4d94268A158pmMhxL2VpvtbUlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measurements_of_Nanoparticles_of_Organic_Carbon_and_Soot_in_Flames_and_Vehicle_Exhausts","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":26387366,"first_name":"Alberto","middle_initials":null,"last_name":"Barone","page_name":"AlbertoBarone","domain_name":"unipa","created_at":"2015-02-17T03:07:40.010-08:00","display_name":"Alberto Barone","url":"https://unipa.academia.edu/AlbertoBarone"},"attachments":[{"id":47068588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47068588/thumbnails/1.jpg","file_name":"Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp.pdf","download_url":"https://www.academia.edu/attachments/47068588/download_file?st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&st=MTczMjc2ODU5MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurements_of_Nanoparticles_of_Organic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47068588/Measurements_of_Nanoparticles_of_Organic20160706-11165-yupfnp-libre.pdf?1467858717=\u0026response-content-disposition=attachment%3B+filename%3DMeasurements_of_Nanoparticles_of_Organic.pdf\u0026Expires=1732772190\u0026Signature=HuAgdZLDt6s2gq6gruQBejaBOhzrq1pgEEGqmjNfG39h30qrETFHkfyKs0yVWND7BsWvaz5EfnP4fSqipq76Czlb4fxNiZ356jbERyWHcprj0wX5gStJHnoJx4e~zlOQnbaPXGcK1HDYQG5osP7BXhGQ6stugrYBiQHF8DRMk5iRLB9UPY9FC4q4mAaT77i4oJzTs-9mFTZDIn-ikTIskz3DRgsa0PFXjPAvHpSqeAGLu6j3ycXvFjKj37xBsIdxyoCvWGckY-caiakRy9AXW0IQfh4jKE4oDuPsTK5V3OgL3ymwdu9uWmZD0l6O4d94268A158pmMhxL2VpvtbUlg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2215,"name":"Water","url":"https://www.academia.edu/Documents/in/Water"},{"id":5303,"name":"Carbon","url":"https://www.academia.edu/Documents/in/Carbon"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":34633,"name":"Environmental science and technology","url":"https://www.academia.edu/Documents/in/Environmental_science_and_technology"},{"id":94701,"name":"Vehicle Emissions","url":"https://www.academia.edu/Documents/in/Vehicle_Emissions"},{"id":235690,"name":"Fires","url":"https://www.academia.edu/Documents/in/Fires"},{"id":283313,"name":"Soot","url":"https://www.academia.edu/Documents/in/Soot"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":743616,"name":"Gasoline","url":"https://www.academia.edu/Documents/in/Gasoline"},{"id":1133132,"name":"Environmental","url":"https://www.academia.edu/Documents/in/Environmental"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "962c02bc1c53d9dd8503e3429f79cc0b8174c857933494da6895dc6daafcfc31", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="AwJIk/pOT7D0xmJCUnkZvBzCSyAKCHXqPMS1O0zhFpBWbUUFyisonPaPW2TDjzHuutXmfpiNvdMVV0knGuQEoA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://unipa.academia.edu/AlbertoBarone" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="V0gTBancVFrxKaQkMed8ZkjUmFXAnMqB6LIUZpOA2F4CJx6TmbkzdvNgnQKgEVQ07sM1C1IZArjBIeh6xYXKbg==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10