CINXE.COM

Search results for: metal-substituted fullerene

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metal-substituted fullerene</title> <meta name="description" content="Search results for: metal-substituted fullerene"> <meta name="keywords" content="metal-substituted fullerene"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metal-substituted fullerene" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metal-substituted fullerene"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 23</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metal-substituted fullerene</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Electrical and Structural Properties of Polyaniline-Fullerene Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nagaraja">M. Nagaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mahesh"> H. M. Mahesh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rajanna"> K. Rajanna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Manjanna"> J. Manjanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, composites of conjugated polymers with fullerenes (C60) has attracted considerable scientific and technological attention in the field of organic electronics because they possess a novel combination of electrical, optical, ferromagnetic, mechanical and sensor properties. These properties represent major advances in the design of organic electronic devices. With the addition of C60 in the conjugated polymer matrix, the primary photo-excitation of the conjugated polymer undergoes an ultrafast electron transfer, and it has been demonstrated that fullerene molecules may serve as efficient electron acceptors in polymeric solar cells. The present paper includes the systematic studies on the effect of electrical, structural and sensor properties of polyaniline (PANI) matrix by the presence of C60. Polyaniline-fullerene (PANI/C60) composite is prepared by the introduction of fullerene during polymerization of aniline with ammonium persulfate and dodechyl benzene sulfonic acid as oxidant and dopant respectively. FTIR spectroscopy indicated the interaction between PANI and C60. X-ray diffraction proved the formation of a PANI/C60 complex. SEM image shows the highly branched chain structure of the PANI in the presence of C60. The conductivity of the PANI/C60 was found to be more than ten orders of magnitude over the pure PANI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity" title="conductivity">conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fullerene" title=" fullerene"> fullerene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a> </p> <a href="https://publications.waset.org/abstracts/57287/electrical-and-structural-properties-of-polyaniline-fullerene-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Mixture of Polymers and Coating Fullerene Soft Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bouzina">L. Bouzina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bensafi"> A. Bensafi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Duval"> M. Duval</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mathis"> C. Mathis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rawiso"> M. Rawiso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the stability and structural properties of mixtures of model nanoparticles and non-adsorbing polymers in the 'protein limit', where the size of polymers exceeds the particle size substantially. We have synthesized in institute (Charles Sadron Strasbourg) model nanoparticles by coating fullerene C60 molecules with low molecular weight polystyrene (PS) chains (6 PS chains with a degree of polymerization close to 25 and 50 are grafted on each fullerene C60 molecule. We will present a Small Angle Neutron scattering (SANS) study of Tetrahydrofuran (THF) solutions involving long polystyrene (PS) chains and fullerene (C60) nanoparticles. Long PS chains and C60 nanoparticles with different arm lengths were synthesized either hydrogenated or deuteriated. They were characterized through Size Exclusion Chromatography (SEC) and Quasielastic Light Scattering (QLS). In this way, the solubility of the C60 nanoparticles in the usual good solvents of PS was controlled. SANS experiments were performed by use of the contrast variation method in order to measure the partial scattering functions related to both components. They allow us to obtain information about the dispersion state of the C60 nanoparticles as well as the average conformation of the long PS chains. Specifically, they show that the addition of long polymer chains leads to the existence of an additional attractive interaction in between soft nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fulleren%20nanoparticles" title="fulleren nanoparticles">fulleren nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20angle%20neutron%20scattering" title=" small angle neutron scattering"> small angle neutron scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility "> solubility </a> </p> <a href="https://publications.waset.org/abstracts/28932/mixture-of-polymers-and-coating-fullerene-soft-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Wa%20Li">Ho-Wa Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai-Wing%20Tsang"> Sai-Wing Tsang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20photovoltaics" title="organic photovoltaics">organic photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=exciton%20binding%20energy" title=" exciton binding energy"> exciton binding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20physics" title=" device physics"> device physics</a> </p> <a href="https://publications.waset.org/abstracts/90334/study-of-exciton-binding-energy-in-photovoltaic-polymers-and-non-fullerene-acceptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kouloumpis">A. Kouloumpis</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Zygouri"> P. Zygouri</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Potsi"> G. Potsi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Spyrou"> K. Spyrou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gournis"> D. Gournis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrids" title="hybrids">hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=fullerenes" title=" fullerenes"> fullerenes</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir-blodgett" title=" langmuir-blodgett"> langmuir-blodgett</a>, <a href="https://publications.waset.org/abstracts/search?q=intercalated%20structures" title=" intercalated structures"> intercalated structures</a> </p> <a href="https://publications.waset.org/abstracts/1523/a-bottom-up-approach-for-the-synthesis-of-highly-ordered-fullerene-intercalated-graphene-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Synthesis of Fullerene Nanorods for Detection of Ethylparaben an Endocrine Disruptor in Cosmetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jahangir%20Ahmad%20Rather">Jahangir Ahmad Rather</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Khudaish"> Emad A. Khudaish</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsanulhaq%20Qurashi"> Ahsanulhaq Qurashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Palanisamy%20Kannan"> Palanisamy Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical modification and assembling of fullerenes are fundamentally important for the application of fullerenes as functional molecules and in molecular devices and organic electronic devices. We have synthesized fullerene nanorods C60NRs conjugate via liquid-liquid interface and the synthesized C60NRs was characterized by FTIR spectroscopy, field emission electron microscopy (FESEM) and X-ray diffraction techniques. The C60NRs were immobilized on glassy carbon electrode via surface bound diazonium salts as an impact strategy. This method involves electrografting of p–nitrophenyl to give GCE–Ph–NO2 and then the terminal nitro-group was chemically reduced to GCE–Ph–NH2 in a presence of sodium borohydride/gold–polyaniline nanocomposite (NaBH4/Au–PANI). The Au–PANI composite was synthesized and characterized by FTIR, UV-vis, SEM and EDX techniques. The C60NRs were immobilized on GCE–Ph–NH2 via amination reaction which involves N-H addition across a π-bond on [60] fullerene. The immobilized C60NRs/GCE was subjected to electrochemical reduction in 1.0 M KOH to yield ERC60NRs/GCE sensor. The developed sensor shows high electrocatalytic activity for the detection of ethylparaben (EP) over a concentration range from 0.01 to 0.52 µM with a detection limit (LOD) 3.8 nM. The amount of EP present in the nourishing repair cream (OlAY®) was determined by standard addition method at the developed ERC60NRs/GCE sensor. The total concentration of EP was found to be 0.011 µM (0.1%) and is within the permissible limit of 0.19 % EP in cosmetics according to the European scientific committee (SCCS) on consumer safety on 22 March 2011 (SCCS/1348/11). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diazonium%20salt%20reduction" title="diazonium salt reduction">diazonium salt reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylparaben%20%28EP%29" title=" ethylparaben (EP)"> ethylparaben (EP)</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptor" title=" endocrine disruptor"> endocrine disruptor</a>, <a href="https://publications.waset.org/abstracts/search?q=fullerene%20nanorods%20%28C60NRs%29" title=" fullerene nanorods (C60NRs)"> fullerene nanorods (C60NRs)</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%E2%80%93polyaniline%20nanocomposite%20%28Au%E2%80%93PANI%29" title=" gold–polyaniline nanocomposite (Au–PANI)"> gold–polyaniline nanocomposite (Au–PANI)</a> </p> <a href="https://publications.waset.org/abstracts/49986/synthesis-of-fullerene-nanorods-for-detection-of-ethylparaben-an-endocrine-disruptor-in-cosmetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Electrochemical Sensing of L-Histidine Based on Fullerene-C60 Mediated Gold Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeeb%20Sutradhar">Sanjeeb Sutradhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Archita%20Patnaik"> Archita Patnaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Histidine is one of the twenty-two naturally occurring essential amino acids exhibiting two conformations, L-histidine and D-histidine. D-Histidine is biologically inert, while L-histidine is bioactive because of its conversion to neurotransmitter or neuromodulator histamine in both brain as well as central nervous system. The deficiency of L-histidine causes serious diseases like Parkinson’s disease, epilepsy and the failure of normal erythropoiesis development. Gold nanocomposites are attractive materials due to their excellent biocompatibility and are easy to adsorb on the electrode surface. In the present investigation, hydrophobic fullerene-C60 was functionalized with homocysteine via nucleophilic addition reaction to make it hydrophilic and to successively make the nanocomposite with in-situ prepared gold nanoparticles with ascorbic acid as reducing agent. The electronic structure calculations of the AuNPs@Hcys-C60 nanocomposite showed a drastic reduction of HOMO-LUMO gap compared to the corresponding molecules of interest, indicating enhanced electron transportability to the electrode surface. In addition, the electrostatic potential map of the nanocomposite showed the charge was distributed over either end of the nanocomposite, evidencing faster direct electron transfer from nanocomposite to the electrode surface. This nanocomposite showed catalytic activity; the nanocomposite modified glassy carbon electrode showed a tenfold higher kₑt, the electron transfer rate constant than the bare glassy carbon electrode. Significant improvement in its sensing behavior by square wave voltammetry was noted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fullerene-C60" title="fullerene-C60">fullerene-C60</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanocomposites" title=" gold nanocomposites"> gold nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Histidine" title=" L-Histidine"> L-Histidine</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/63166/electrochemical-sensing-of-l-histidine-based-on-fullerene-c60-mediated-gold-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Enhancing the Efficiency of Organic Solar Cells Using Metallic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sankara%20Rao%20Gollu">Sankara Rao Gollu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakant%20Sharma"> Ramakant Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Srinivas"> G. Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Souvik%20Kundu"> Souvik Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipti%20Gupta"> Dipti Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, bulk heterojunction organic solar cells (BHJ OSCs) based on polymer–fullerene attracted a large research attention due to their numerous advantages such as light weight, easy processability, eco-friendly, low-cost, and capability for large area roll-to-roll manufacturing. BHJ OSCs usually suffer from insufficient light absorption due to restriction on keeping thin ( < 150 nm) photoactive layer because of small exciton diffusion length ( ~ 10 nm) and low charge carrier mobilities. It is thus highly desirable that light absorption as well as charge transport properties are enhanced by alternative methods so as to improve the device efficiency. In this work, therefore, we have focused on the strategy of incorporating metallic nanostructures in the active layer or charge transport layer to enhance the absorption and improve the charge transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cell" title="organic solar cell">organic solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20heterojunction" title=" bulk heterojunction"> bulk heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-fullerene" title=" polymer-fullerene"> polymer-fullerene</a> </p> <a href="https://publications.waset.org/abstracts/43900/enhancing-the-efficiency-of-organic-solar-cells-using-metallic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee">Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang"> Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube" title="single-walled carbon nanotube">single-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20delivery" title=" nanoparticle delivery"> nanoparticle delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlocal%20Timoshenko%20beam%20theory" title=" Nonlocal Timoshenko beam theory"> Nonlocal Timoshenko beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Runge-Kutta%20Method" title=" Runge-Kutta Method"> Runge-Kutta Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20der%20Waals%20force" title=" Van der Waals force"> Van der Waals force</a> </p> <a href="https://publications.waset.org/abstracts/65037/vibration-behavior-of-nanoparticle-delivery-in-a-single-walled-carbon-nanotube-using-nonlocal-timoshenko-beam-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Nanoporous Metals Reinforced with Fullerenes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deni%CC%87z%20Ezgi%CC%87%20G%C3%BClmez">Deni̇z Ezgi̇ Gülmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesut%20Kirca"> Mesut Kirca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fullerene" title="fullerene">fullerene</a>, <a href="https://publications.waset.org/abstracts/search?q=intersecting%20spheres" title=" intersecting spheres"> intersecting spheres</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamic" title=" molecular dynamic"> molecular dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20metals" title=" nanoporous metals"> nanoporous metals</a> </p> <a href="https://publications.waset.org/abstracts/47462/nanoporous-metals-reinforced-with-fullerenes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Cheng%20Yang">Kai-Cheng Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Ling%20Chen"> Yen-Ling Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Er-Chieh%20Cho"> Er-Chieh Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuen-Chan%20Lee"> Kuen-Chan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=fullerene" title=" fullerene"> fullerene</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20scavenging%20activity" title=" radical scavenging activity"> radical scavenging activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/38692/carboxyfullerene-modified-titanium-dioxide-nanoparticles-in-singlet-oxygen-and-hydroxyl-radicals-scavenging-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Nosik">Dmitry Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickolay%20Nosik"> Nickolay Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Elli%20Kaplina"> Elli Kaplina</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Lobach"> Olga Lobach</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Chataeva"> Marina Chataeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Lev%20Rasnetsov"> Lev Rasnetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20drug" title="antiviral drug">antiviral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus%20%28hiv%29" title=" human immunodeficiency virus (hiv)"> human immunodeficiency virus (hiv)</a>, <a href="https://publications.waset.org/abstracts/search?q=herpes%20simplex%20virus%20%28hsv%29" title=" herpes simplex virus (hsv)"> herpes simplex virus (hsv)</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20viral%20infection" title=" mixed viral infection"> mixed viral infection</a> </p> <a href="https://publications.waset.org/abstracts/29635/inhibition-of-mixed-infection-caused-by-human-immunodeficiency-virus-and-herpes-virus-by-fullerene-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Carbon Nanotubes and Novel Applications for Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Ismar">Ezgi Ismar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotextiles" title=" nanotextiles"> nanotextiles</a> </p> <a href="https://publications.waset.org/abstracts/33980/carbon-nanotubes-and-novel-applications-for-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20W.%20Hasan">Syed W. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiqun%20Tian"> Zhiqun Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%20nanoparticles" title="Ag nanoparticles">Ag nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Conductive%20fibers" title=" Conductive fibers"> Conductive fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=Graphene" title=" Graphene"> Graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Wet%20spinning" title=" Wet spinning"> Wet spinning</a> </p> <a href="https://publications.waset.org/abstracts/122583/wet-spun-graphene-fibers-with-silver-nanoparticles-for-flexible-electronic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Opto-Electronic Properties of Novel Structures: Sila-Fulleranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farah%20Marsusi">Farah Marsusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Qasemnazhand"> Mohammad Qasemnazhand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density-functional theory (DFT) was applied to investigate the geometry and electronic properties H-terminated Si-fullerene (Si-fullerane). Natural bond orbital (NBO) analysis confirms sp3 hybridization nature of Si-Si bonds in Si-fulleranes. Quantum confinement effect (QCE) does not affect band gap (BG) so strongly in the size between 1 to 1.7 nm. In contrast, the geometry and symmetry of the cage have significant influence on BG. In contrast to their carbon analogues, pentagon rings increase the stability of the cages. Functionalized Si-cages are stable and can be chemically very active. The electronic properties are highly sensitive to the surface chemistry via functionalization with different chemical groups. As a result, BGs and chemical activities of these cages can be drastically tuned through the chemistry of the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=sila-fullerens" title=" sila-fullerens"> sila-fullerens</a>, <a href="https://publications.waset.org/abstracts/search?q=NBO%20analysis" title=" NBO analysis"> NBO analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=opto-electronic%20properties" title=" opto-electronic properties"> opto-electronic properties</a> </p> <a href="https://publications.waset.org/abstracts/49771/opto-electronic-properties-of-novel-structures-sila-fulleranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Ahmmad">Bashir Ahmmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kensaku%20Kanomata">Kensaku Kanomata</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumihiko%20Hirose"> Fumihiko Hirose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water/alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, repectively. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental conditions were changed. Also, a comparison between Pt/TiO2, WNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2 and GS/TiO2 were tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20materials" title=" carbon materials"> carbon materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20reforming" title=" alcohol reforming"> alcohol reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20oxide" title=" titanium oxide"> titanium oxide</a> </p> <a href="https://publications.waset.org/abstracts/3272/enhanced-photocatalytic-hydrogen-production-on-tio2-by-using-carbon-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Improved Photo-Active Layer Properties for Efficient Organic Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chahrazed%20Bendenia">Chahrazed Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhila%20Bendenia"> Souhila Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Moulebhar"> Samia Moulebhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Merad-Dib"> Hanaa Merad-Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Merabet"> Sarra Merabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sid%20Ahmed%20Khantar"> Sid Ahmed Khantar</a>, <a href="https://publications.waset.org/abstracts/search?q=Baghdad%20Hadri"> Baghdad Hadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, organic solar cells (OSCs) have become the fundamental concern of researchers thanks to their advantages in terms of flexibility, manufacturing processes and low cost. The performance of these devices is influenced by various factors, such as the layers introduced in the stacking of the solar cell realized. In our work, the modeling of a reverse OSC under AM1.5G illumination will be determined. The photo-active polymer/fullerene layer will be analyzed from the polymer variation of this layer using the SCAPS simulator to extract the J-V characteristics: open circuit voltage (Voc), short circuit current (Jsc), filling factor (FF) and power conversion efficiency (η). The results obtained indicated that the materials used have a significant impact on improving the photovoltaic parameters of the devices studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar" title="solar">solar</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=simulator" title=" simulator"> simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristics" title=" characteristics"> characteristics</a> </p> <a href="https://publications.waset.org/abstracts/174231/improved-photo-active-layer-properties-for-efficient-organic-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Makha">Mohammed Makha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakob%20Heier"> Jakob Heier</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20N%C3%BCesch"> Frank Nüesch</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Hany"> Roland Hany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20photovoltaics" title="organic photovoltaics">organic photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20phase%20diagram" title=" ternary phase diagram"> ternary phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20organic%20solar%20cells" title=" ternary organic solar cells"> ternary organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20solar%20cell" title=" transparent solar cell"> transparent solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination" title=" lamination"> lamination</a> </p> <a href="https://publications.waset.org/abstracts/67034/ternary-organic-blend-for-semitransparent-solar-cells-with-enhanced-short-circuit-current-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Mathematical Model for Interaction Energy of Toroidal Molecules and Other Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakhapoom%20Sarapat">Pakhapoom Sarapat</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20M.%20Hill"> James M. Hill</a>, <a href="https://publications.waset.org/abstracts/search?q=Duangkamon%20Baowan"> Duangkamon Baowan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotori provide several properties such as high tensile strength and heat resistance. They are promised to be ideal structures for encapsulation, and their encapsulation ability can be determined by the interaction energy between the carbon nanotori and the encapsulated nanostructures. Such interaction energy is evaluated using Lennard-Jones potential and continuum approximation. Here, four problems relating to toroidal molecules are determined in order to find the most stable configuration. Firstly, the interaction energy between a carbon nanotorus and an atom is examined. The second problem relates to the energy of a fullerene encapsulated inside a carbon nanotorus. Next, the interaction energy between two symmetrically situated and parallel nanotori is considered. Finally, the classical mechanics is applied to model the interaction energy between the toroidal structure of cyclodextrin and the spherical DNA molecules. These mathematical models might be exploited to study a number of promising devices for future developments in bio and nanotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotori" title="carbon nanotori">carbon nanotori</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20approximation" title=" continuum approximation"> continuum approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Lennard-Jones%20potential" title=" Lennard-Jones potential"> Lennard-Jones potential</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology "> nanotechnology </a> </p> <a href="https://publications.waset.org/abstracts/109061/mathematical-model-for-interaction-energy-of-toroidal-molecules-and-other-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samvel%20H.%20Sargsyan">Samvel H. Sargsyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-continual" title=" discrete-continual"> discrete-continual</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic" title=" elastic"> elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar" title=" micropolar"> micropolar</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a>, <a href="https://publications.waset.org/abstracts/search?q=shell" title=" shell"> shell</a> </p> <a href="https://publications.waset.org/abstracts/82214/application-of-the-micropolar-beam-theory-for-the-construction-of-the-discrete-continual-model-of-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> C₅₉Pd: A Heterogeneous Catalytic Material for Heck Coupling Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjusha%20C.%20Padole">Manjusha C. Padole</a>, <a href="https://publications.waset.org/abstracts/search?q=Parag%20A.%20Deshpande"> Parag A. Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density functional theory calculations were carried out for identification of an active heterogeneous catalyst to carry out Heck coupling reaction which is of pharmaceutical importance. One of the carbonaceous nanomaterials, heterofullerene, was designed for the reaction. Stability and reactivity of the proposed heterofullerenes (C59M, M = Pd/Ni) were established with insights into the metal-carbon bond, electron affinity and chemical potential. Adsorbent potentials of both the heterofullerenes were examined from the adsorption study of four halobenzenes (C6H5F, C6H5Cl, C6H5Br and C6H5I). Oxidative addition activities of all four halobenzenes were investigated by developing free energy landscapes over both the heterofullerenes for rate determining step (oxidative addition). C6H5I showed a good catalytic activity for the rate determining step. Thus, C6H5I was proposed as a suitable halobenzene and complete free energy landscapes for Heck coupling reaction were developed over C59Pd and C59Ni. Smaller activation barriers observed over C59Pd in comparison with C59Ni put us in a position to propose C59Pd to be an efficient heterofullerene for carrying Heck coupling reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-substituted%20fullerene" title="metal-substituted fullerene">metal-substituted fullerene</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20affinity" title=" electron affinity"> electron affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20addition" title=" oxidative addition"> oxidative addition</a>, <a href="https://publications.waset.org/abstracts/search?q=Heck%20coupling%20reaction" title=" Heck coupling reaction"> Heck coupling reaction</a> </p> <a href="https://publications.waset.org/abstracts/60474/c59pd-a-heterogeneous-catalytic-material-for-heck-coupling-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Investigation of Polymer Solar Cells Degradation Behavior Using High Defect States Influence Over Various Polymer Absorber Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azzeddine%20Abdelalim">Azzeddine Abdelalim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Rogti"> Fatiha Rogti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degradation phenomenon in polymer solar cells (PCSs) has not been clearly explained yet. In fact, there are many causes that show up and influence these cells in a variety of ways. Also, there has been a growing concern over this degradation in the photovoltaic community. One of the main variables deciding PSCs photovoltaic output is defect states. In this research, devices modeling is carried out to analyze the multiple effects of degradation by applying high defect states (HDS) on ideal PSCs, mainly poly(3-hexylthiophene) (P3HT) absorber layer. Besides, a comparative study is conducted between P3HT and other PSCs by a simulation program called Solar Cell Capacitance Simulator (SCAPS). The adjustments to the defect parameters in several absorber layers explain the effect of HDS on the total output properties of PSCs. The performance parameters for HDS, quantum efficiency, and energy band were therefore examined. This research attempts to explain the degradation process of PSCs and the causes of their low efficiency. It was found that the defects often affect PSCs performance, but defect states have a little effect on output when the defect level is less than 1014cm-3, which gives similar performance values with P3HT cells when these defects is about 1019cm-3. The high defect states can cause up to 11% relative reduction in conversion efficiency of ideal P3HT. In the center of the band gap, defect states become more noxious. This approach is for one of the degradation processes potential of PSCs especially that use fullerene derivative acceptors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20defect%20states" title=" high defect states"> high defect states</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20solar%20cells" title=" polymer solar cells"> polymer solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCAPS-1D" title=" SCAPS-1D"> SCAPS-1D</a> </p> <a href="https://publications.waset.org/abstracts/162233/investigation-of-polymer-solar-cells-degradation-behavior-using-high-defect-states-influence-over-various-polymer-absorber-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Thin Films of Glassy Carbon Prepared by Cluster Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Diaf">Hatem Diaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrice%20Melinon"> Patrice Melinon</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Pereira"> Antonio Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Moine"> Bernard Moine</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Blanchard"> Nicholas Blanchard</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Bourquard"> Florent Bourquard</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Garrelie"> Florence Garrelie</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Donnet"> Christophe Donnet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glassy carbon exhibits excellent biological compatibility with live tissues meaning it has high potential for applications in life science. Moreover, glassy carbon has interesting properties including 'high temperature resistance', hardness, low density, low electrical resistance, low friction, and low thermal resistance. The structure of glassy carbon has long been a subject of debate. It is now admitted that glassy carbon is 100% sp2. This term is a little bit confusing as long sp2 hybridization defined from quantum chemistry is related to both properties: threefold configuration and pi bonding (parallel pz orbitals). Using plasma laser deposition of carbon clusters combined with pulsed nano/femto laser annealing, we are able to synthesize thin films of glassy carbon of good quality (probed by G band/ D disorder band ratio in Raman spectroscopy) without thermal post annealing. A careful inspecting of Raman signal, plasmon losses and structure performed by HRTEM (High Resolution Transmission Electron Microscopy) reveals that both properties (threefold and pi orbitals) cannot coexist together. The structure of the films is compared to models including schwarzites based from negatively curved surfaces at the opposite of onions or fullerene-like structures with positively curved surfaces. This study shows that a huge collection of porous carbon named vitreous carbon with different structures can coexist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon" title="glassy carbon">glassy carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20deposition" title=" cluster deposition"> cluster deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title=" electronic structure"> electronic structure</a> </p> <a href="https://publications.waset.org/abstracts/69832/thin-films-of-glassy-carbon-prepared-by-cluster-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Facile Wick and Oil Flame Synthesis of High-Quality Hydrophilic Carbon Nano Onions for Flexible Binder-Free Supercapacitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debananda%20Mohapatra">Debananda Mohapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Subramanya%20Badrayyana"> Subramanya Badrayyana</a>, <a href="https://publications.waset.org/abstracts/search?q=Smrutiranjan%20Parida"> Smrutiranjan Parida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nano-onions (CNOs) are the spherical graphitic nanostructures composed of concentric shells of graphitic carbon can be hypothesized as the intermediate state between fullerenes and graphite. These are very important members in fullerene family also known as the multi-shelled fullerenes can be envisioned as promising supercapacitor electrode with high energy & power density as they provide easy access to ions at electrode-electrolyte interface due to their curvature. There is still very sparse report concerning on CNOs as electrode despite having an excellent electrodechemical performance record due to their unavailability and lack of convenient methods for their high yield preparation and purification. Keeping all these current pressing issues in mind, we present a facile scalable and straightforward flame synthesis method of pure and highly dispersible CNOs without contaminated by any other forms of carbon; hence, a post processing purification procedure is not necessary. To the best of our knowledge, this is the very first time; we developed an extremely simple, light weight, novel inexpensive, flexible free standing pristine CNOs electrode without using any binder element. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by ‘dipping and drying’ process providing outstanding stretchability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102 F/g, energy density 3.5 Wh/kg and power density 1224 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge –discharge cycles. Furthermore, this unique method not only affords binder free - freestanding electrode but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binder-free" title="binder-free">binder-free</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20synthesis" title=" flame synthesis"> flame synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nano%20onion" title=" carbon nano onion"> carbon nano onion</a> </p> <a href="https://publications.waset.org/abstracts/56501/facile-wick-and-oil-flame-synthesis-of-high-quality-hydrophilic-carbon-nano-onions-for-flexible-binder-free-supercapacitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10