CINXE.COM
Egyptian Mathematical Leather Roll
<!DOCTYPE html> <html dir='ltr'> <head> <link href='https://www.blogger.com/static/v1/widgets/55013136-widget_css_bundle.css' rel='stylesheet' type='text/css'/> <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'/> <meta content='blogger' name='generator'/> <link href='http://emlr.blogspot.com/favicon.ico' rel='icon' type='image/x-icon'/> <link href='http://emlr.blogspot.com/' rel='canonical'/> <link rel="alternate" type="application/atom+xml" title="Egyptian Mathematical Leather Roll - Atom" href="http://emlr.blogspot.com/feeds/posts/default" /> <link rel="alternate" type="application/rss+xml" title="Egyptian Mathematical Leather Roll - RSS" href="http://emlr.blogspot.com/feeds/posts/default?alt=rss" /> <link rel="service.post" type="application/atom+xml" title="Egyptian Mathematical Leather Roll - Atom" href="https://www.blogger.com/feeds/38549938/posts/default" /> <link rel="me" href="https://www.blogger.com/profile/15284868993340980422" /> <!--Can't find substitution for tag [blog.ieCssRetrofitLinks]--> <meta content='http://emlr.blogspot.com/' property='og:url'/> <meta content='Egyptian Mathematical Leather Roll' property='og:title'/> <meta content='The EMLR converted 26 1/p and 1/pq unit fractions to not-so-elegant Egyptian fraction series without revealing its method. The EMLR was written by a student who was introduced to Egyptian fractions math that created optimized 2/n tables. The 'red auxiliary' method used in RMP 36 improved the 250 year older EMLR's use of multiples of 2, 3, 4, 5, 6, 7, 10, and 25 that scaled 1/p and 1/pq to unit fraction series.' property='og:description'/> <title>Egyptian Mathematical Leather Roll</title> <style id='page-skin-1' type='text/css'><!-- /* ----------------------------------------------- Blogger Template Style Name: Denim Designer: Darren Delaye URL: www.DarrenDelaye.com Date: 11 Jul 2006 ----------------------------------------------- */ body { background: #efefef; margin: 0; padding: 0px; font: x-small Verdana, Arial; text-align: center; color: #333333; font-size/* */:/**/small; font-size: /**/small; } a:link { color: #336699; } a:visited { color: #336699; } a img { border-width: 0; } #outer-wrapper { font: normal normal 100% Verdana, Arial, Sans-serif;; } /* Header ----------------------------------------------- */ #header-wrapper { margin:0; padding: 0; background-color: #528bc5; text-align: left; } #header { width: 760px; margin: 0 auto; background-color: #336699; border: 1px solid #336699; color: #ffffff; padding: 0; font: normal normal 210% Verdana, Arial, Sans-serif;; } h1.title { padding-top: 38px; margin: 0 14px .1em; line-height: 1.2em; font-size: 100%; } h1.title a, h1.title a:visited { color: #ffffff; text-decoration: none; } #header .description { display: block; margin: 0 14px; padding: 0 0 40px; line-height: 1.4em; font-size: 50%; } /* Content ----------------------------------------------- */ .clear { clear: both; } #content-wrapper { width: 760px; margin: 0 auto; padding: 0 0 15px; text-align: left; background-color: #ffffff; border: 1px solid #cccccc; border-top: 0; } #main-wrapper { margin-left: 14px; width: 464px; float: left; background-color: #ffffff; display: inline; /* fix for doubling margin in IE */ word-wrap: break-word; /* fix for long text breaking sidebar float in IE */ overflow: hidden; /* fix for long non-text content breaking IE sidebar float */ } #sidebar-wrapper { margin-right: 14px; width: 240px; float: right; background-color: #ffffff; display: inline; /* fix for doubling margin in IE */ word-wrap: break-word; /* fix for long text breaking sidebar float in IE */ overflow: hidden; /* fix for long non-text content breaking IE sidebar float */ } /* Headings ----------------------------------------------- */ h2, h3 { margin: 0; } /* Posts ----------------------------------------------- */ .date-header { margin: 1.5em 0 0; font-weight: normal; color: #999999; font-size: 100%; } .post { margin: 0 0 1.5em; padding-bottom: 1.5em; } .post-title { margin: 0; padding: 0; font-size: 125%; font-weight: bold; line-height: 1.1em; } .post-title a, .post-title a:visited, .post-title strong { text-decoration: none; color: #333333; font-weight: bold; } .post div { margin: 0 0 .75em; line-height: 1.3em; } .post-footer { margin: -.25em 0 0; color: #333333; font-size: 87%; } .post-footer .span { margin-right: .3em; } .post img, table.tr-caption-container { padding: 4px; border: 1px solid #cccccc; } .tr-caption-container img { border: none; padding: 0; } .post blockquote { margin: 1em 20px; } .post blockquote p { margin: .75em 0; } /* Comments ----------------------------------------------- */ #comments h4 { margin: 1em 0; color: #999999; } #comments h4 strong { font-size: 110%; } #comments-block { margin: 1em 0 1.5em; line-height: 1.3em; } #comments-block dt { margin: .5em 0; } #comments-block dd { margin: .25em 0 0; } #comments-block dd.comment-footer { margin: -.25em 0 2em; line-height: 1.4em; font-size: 78%; } #comments-block dd p { margin: 0 0 .75em; } .deleted-comment { font-style:italic; color:gray; } .feed-links { clear: both; line-height: 2.5em; } #blog-pager-newer-link { float: left; } #blog-pager-older-link { float: right; } #blog-pager { text-align: center; } /* Sidebar Content ----------------------------------------------- */ .sidebar h2 { margin: 1.6em 0 .5em; padding: 4px 5px; background-color: #ffd595; font-size: 100%; color: #333333; } .sidebar ul { margin: 0; padding: 0; list-style: none; } .sidebar li { margin: 0; padding-top: 0; padding-right: 0; padding-bottom: .5em; padding-left: 15px; text-indent: -15px; line-height: 1.5em; } .sidebar { color: #333333; line-height:1.3em; } .sidebar .widget { margin-bottom: 1em; } .sidebar .widget-content { margin: 0 5px; } /* Profile ----------------------------------------------- */ .profile-img { float: left; margin-top: 0; margin-right: 5px; margin-bottom: 5px; margin-left: 0; padding: 4px; border: 1px solid #cccccc; } .profile-data { margin:0; text-transform:uppercase; letter-spacing:.1em; font-weight: bold; line-height: 1.6em; font-size: 78%; } .profile-datablock { margin:.5em 0 .5em; } .profile-textblock { margin: 0.5em 0; line-height: 1.6em; } /* Footer ----------------------------------------------- */ #footer { clear: both; text-align: center; color: #333333; } #footer .widget { margin:.5em; padding-top: 20px; font-size: 85%; line-height: 1.5em; text-align: left; } --></style> <link href='https://www.blogger.com/dyn-css/authorization.css?targetBlogID=38549938&zx=098bb6b8-3b68-4850-b591-3d8836cde8fa' media='none' onload='if(media!='all')media='all'' rel='stylesheet'/><noscript><link href='https://www.blogger.com/dyn-css/authorization.css?targetBlogID=38549938&zx=098bb6b8-3b68-4850-b591-3d8836cde8fa' rel='stylesheet'/></noscript> <meta name='google-adsense-platform-account' content='ca-host-pub-1556223355139109'/> <meta name='google-adsense-platform-domain' content='blogspot.com'/> </head> <body> <div class='navbar section' id='navbar'><div class='widget Navbar' data-version='1' id='Navbar1'><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar.g?targetBlogID\x3d38549938\x26blogName\x3dEgyptian+Mathematical+Leather+Roll\x26publishMode\x3dPUBLISH_MODE_BLOGSPOT\x26navbarType\x3dBLUE\x26layoutType\x3dLAYOUTS\x26searchRoot\x3dhttps://emlr.blogspot.com/search\x26blogLocale\x3den_US\x26v\x3d2\x26homepageUrl\x3dhttp://emlr.blogspot.com/\x26vt\x3d8788451242680409913', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe", messageHandlersFilter: gapi.iframes.CROSS_ORIGIN_IFRAMES_FILTER, messageHandlers: { 'blogger-ping': function() {} } }); } }); </script><script type="text/javascript"> (function() { var script = document.createElement('script'); script.type = 'text/javascript'; script.src = '//pagead2.googlesyndication.com/pagead/js/google_top_exp.js'; var head = document.getElementsByTagName('head')[0]; if (head) { head.appendChild(script); }})(); </script> </div></div> <div id='outer-wrapper'><div id='wrap2'> <!-- skip links for text browsers --> <span id='skiplinks' style='display:none;'> <a href='#main'>skip to main </a> | <a href='#sidebar'>skip to sidebar</a> </span> <div id='header-wrapper'> <div class='header section' id='header'><div class='widget Header' data-version='1' id='Header1'> <div id='header-inner'> <div class='titlewrapper'> <h1 class='title'> Egyptian Mathematical Leather Roll </h1> </div> <div class='descriptionwrapper'> <p class='description'><span>The EMLR converted 26 1/p and 1/pq unit fractions to not-so-elegant Egyptian fraction series without revealing its method. The EMLR was written by a student who was introduced to Egyptian fractions math that created optimized 2/n tables. The 'red auxiliary' method used in RMP 36 improved the 250 year older EMLR's use of multiples of 2, 3, 4, 5, 6, 7, 10, and 25 that scaled 1/p and 1/pq to unit fraction series.</span></p> </div> </div> </div></div> </div> <div id='content-wrapper'> <div id='crosscol-wrapper' style='text-align:center'> <div class='crosscol no-items section' id='crosscol'></div> </div> <div id='main-wrapper'> <div class='main section' id='main'><div class='widget Blog' data-version='1' id='Blog1'> <div class='blog-posts hfeed'> <div class="date-outer"> <h2 class='date-header'><span>Monday, January 08, 2007</span></h2> <div class="date-posts"> <div class='post-outer'> <div class='post hentry uncustomized-post-template' itemprop='blogPost' itemscope='itemscope' itemtype='http://schema.org/BlogPosting'> <meta content='http://www.blogger.com/post-edit.g?blogID=38549938&postID=116828379975471762' itemprop='image_url'/> <meta content='38549938' itemprop='blogId'/> <meta content='116828379975471762' itemprop='postId'/> <a name='116828379975471762'></a> <h3 class='post-title entry-title' itemprop='name'> <a href='http://emlr.blogspot.com/2007/01/egyptian-mathematical-leather-roll.html'>Egyptian Mathematical Leather Roll</a> </h3> <div class='post-header'> <div class='post-header-line-1'></div> </div> <div class='post-body entry-content' id='post-body-116828379975471762' itemprop='description articleBody'> <a href="http://en.wikipedia.org/wiki/Egyptian_Mathematical_Leather_Roll">INTRODUCTION</a><br /> The EMLR dates to the 1850 BC to 2000 BCE period of the Egyptian Middle Kingdom. The leather scroll, housed in the British Museum from 1864 to the present, was not softened and unrolled until 1927. Scholars in the 1927 under reported the majority of the text's arithmetical relationships.<br /> <br /> Early scholars under valued the text by only reporting its additive aspects. Scholars from the 20th century did not consider potential uses of p and q as prime numbers, and other facts are needed to be <b><i>added back</i></b> to<a href="http://independent.academia.edu/MiloGardner/Papers/623827/Egyptian_Fractions_Unit_Fractions_Hekats_and_Wages_-_an_Update"> EMLR and the Rhind Mathematical Papyrus (RMP) 2/n table calculations</a> were updated in a 2011 paper.<br /> <br /> The EMLR student scribe used seven scaling of 1/p and 1/pq ( 2/2, 3/3, 4/4, 5/5, 6/6, 7/7, 10/10), facts outlined in<a href="http://independent.academia.edu/MiloGardner/Papers/512475/Egyptian_Mathematical_Leather_Roll"> 2004</a>. An eighth two-phase 25/25 and 6/6 method scaled 1/8 and 1/16 to out-of-order unit fraction series, hinting at the scribal method also used in <a href="http://planetmath.org/encyclopedia/RMP36AndThe2nTable.html">RMP 36.</a><br /> <br /> Several EMLR and <a href="http://rmprectotable.blogspot.com/">RMP</a> connections are easily seen. The EMLR student was apparently asked to convert 26 rational numbers to unit fraction series as fast as as possible without considering optimization issues. Four binary numbers, 1/2, 1/4, 1/8, and 16 were converted, several more than once. For example 1/8 was converted three times, once by multiplying by <span style="color: red;">3/3</span> obtaining 3/24 = (2 + 1)/24 = 1/12 + 1/24. In total eight multiples: 2, 3, 4, 5, 6, 7, 10, and 25 converted 22 unique unit fractions to non-elegant Egyptian fraction series.<br /> <br /> A least common multiple (LCM), written as m/m, conversion method is decoded from the EMLR by asking what was the simplest method that the 'student' scribe used? A 2008 connection to the well defined RMP LCM (m/m) method simplifies a six year old study of the EMLR.<br /> <br /> Given that the RMP 2/n table, and 84 problems, generally applied m/m LCMs as scaling factors before writing <span style="color: red;">red auxiliary</span> additive facts, with RMP 36 being the most detailed example, the EMLR student was being introduced to the world if proto-number theory. Ahmes, in his version of proto-number theory converted 2/pq by selecting (p + 1), a multiple, to write optimzed Egyptian fraction series.<br /> <br /> For example, 2/21 was raised to (3 + 1)/(3+ 1), or 4/4, writing:<br /> <br /> 2/21*(<span style="color: red;">4/4</span>) =<b> <i>8/84 = (6 + 2)/84</i></b> = 1/14 + 1/42.<br /> <br /> The EMLR proto-number theory preceeds the RMP's proto-number theory by following a clear pattern.<br /> <br /> DECODING SPECIFICS<br /> The EMLR contains eight multiple categories (A -H). Each category begins with one multiple: 2, 3, 4, 5, 6, 7, 10, or 25.<br /> <br /> A. Unit fractions was decomposed into repeating unit fractions, generally an unacceptable means of writing Egyptian fraction series. An exposure to <span style="color: red;">Red auxiliary</span> multiples<span style="color: red;"> 2/2</span> and<span style="color: red;"> 3/3</span>, wrote out identical unit fraction, as the RMP had written: 2/3 = 1/3 + 1/3 (line 7), possibly as a teaching tool, further discussing like cases:<br /> <br /> 2. 1/5*<i><b><span style="color: red;">(2/2</span>) = 2/10</b> </i>= 1/10 + 1/10 (line 4)<br /> <br /> 3. 1/3*<b><i>(<span style="color: red;">2/2</span>) = 2/6</i></b>= 1/6 + 1/6 (line 5)<br /> <br /> 4. 1/2*<b>(<span style="color: red;">3/3</span>) = 3/6</b>= 1/6 + 1/6 + 1/6 (line 6)<br /> <br /> The first EMLR lesson restated four rational numbers with multiples. The multiples created non-Egyptian fractions. This lesson shows that a unit fraction, multiplied by a multiple m, factor into m unit fractions.<br /> <br /> The second EMLR lesson converted 22 unit fractions by multiple of 3, 4, 5, 6, 7, 10 and 25 . Answers were written in not-so-elegant Egyptian fraction series. Hence, optimal Egyptian fractions were not taught in this course.<br /> <br /> A summary of the remaining six categories (B -H) follows:<br /> <br /> B. Multiple of 3 (10 to 11 questions)<br /> <br /> There are 10 questions, and maybe an 11th, that the student was asked to use a multiple of 3, restating a unit fraction by 1/n* (<span style="color: red;">3/3)</span> = <span style="color: red;">3/(3</span>n) = (2 + 1)/<span style="color: red;">3</span>n. The student created not-so- elegant Egyptian fraction series by assuming a least common multiple such that: 1/6, 1/8, 1/10, 1/12, 1/14, 1/16, 1/20, 1/30, 1/32, and 1/64 were converted by three-steps (implied by the EMLR to RMP class of Egyptian fraction series):<br /> <br /> 5. 1/3*(<span style="color: red;">3/3</span>) =<b> 3/9 = (2 + 1)/9</b> = 1/4 + 1/12 (line 3)<br /> <br /> 6. 1/6*(<span style="color: red;">3/3)</span> = <b>3/18 = (2 + 1)/18</b> = 1/9 + 1/18 (line 11)<br /> <br /> 7. 1/8 *(<span style="color: red;">3/3</span>) = <b>3/24 = (2 + 1)/24</b> = 1/12 + 1/24 (line 13)<br /> <br /> 8. 1/10*(<span style="color: red;">3/3</span>) =<b> 3/30 = (2 + 1)/30</b> = 1/15 + 1/30 (line 24)<br /> <br /> 9. 1/12 *(<span style="color: red;">3/3</span>) = <b>3/36 = ( 2 + 1)/36</b> = 1/18 + 1/36 (line 20)<br /> <br /> 10. 1/14*(<span style="color: red;">3/3</span>) = <b>3/42 = (2 + 1)/42</b> = 1/21 + 1/42 (line 21)<br /> <br /> 11. 1/16*(<span style="color: red;">3/3</span>) = <b>3/48 = (2 + 1)/48</b> = 1/24 + 1/48 (line 19)<br /> <br /> 12. 1/20*(<span style="color: red;">3/3</span>) = <b>3/60 = (2 + 1)/60</b> = 1/30 + 1/60 (line 23)<br /> <br /> 13. 1/30*(<span style="color: red;">3/3</span>) =<b> 3/90 = (2 + 1)/90</b> = 1/45 + 1/90 (line 22)<br /> <br /> 14. 1/32*(<span style="color: red;">3/3</span>) =<b> 3/96 = (2 + 1)/96</b> = 1/48 + 1/96 (line 25)<br /> <br /> 15. 1/64*(<span style="color: red;">3/3</span>) = <b>3/192 = (2 + 1)/192</b> = 1/96 + 1/192 (line 26)<br /> <br /> and possibly,<br /> <br /> 16. 1/13*<span style="color: red;">(3/3</span>) = <b>3/39 = (2 + 1)/39</b> = 2/39 + 1/39 = 1/39 + 1/26 + 1/78<br /> <br /> since the RMP reports 2/39 = 1/26 + 1/78<br /> <br /> But was the EMLR student exposed to RMP methods?<br /> <br /> If not, going on to line 17 and the error 1/13 = 3/49, the student may have assumed 3, 6, 8 or another <span style="color: red;">red</span> reference number. Whatever the student's beginning point, the EMLR answer:<br /> <br /> 1/13 = 1/28 + 1/49 + 1/196 did not balance.<br /> <br /> Since the first term in any RMP series 'gave away" the LCM , LCM 28 was considered per:<br /> <br /> 1/13 x (28/28) = 28/364 = (13 + 7 + 4 + 2 + 1)/364 = 1/28 + 1/52 + 1/91 + 1/182 + 2/364<br /> <br /> which required 2/182 = 1/91 + 1/91<br /> <br /> and required 2/91 to be solved ... Ahmes could used LCM 60 and recorded<br /> <br /> 2/91 = 120/5460 = (91 + 13 + 6)/5460 = 1/60 + 1/420 + 1/90<br /> <br /> However Ahmes found a better series per LCM 70<br /> <br /> <a href="http://rmprectotable.blogspot.com/" target="_blank"><span class="yshortcuts" id="lw_1291400746_1">http://rmprectotable.blogspot.com/</span></a> wrting<br /> <br /> 2/91 (70/70) = 140/6370 = (91 + 49)/6370 = 1/70 + 1/30<br /> <br /> Note the link 2/35 solved by LCM 30 per<br /> <br /> 2/35(30/30) = 60/1050 = (35 + 25)/1050 = 1/30 + 1/42<br /> <br /> My view is that EMLR was likely an introduction to the RMP 2/n tables ... and not a link to OK aloebraic arithmetic as proposed by others (Stefan M., for example).<br /> <br /> In summary: If I would have been the EMLR teacher an impossible 1/13-type problem would have suggested LCM 28. LCM 6 would have solved the problem. but wthout knowing the LCM and red auxiliary number method EMLR students would have been introduced the next level of scribal arithmetic, 2/n tables and RANs in an interesting manner.<br /> <br /> <table cellpadding="0" cellspacing="0" id="xpalettetable" style="height: 3px; width: 130px;"><tbody> <tr><td bgcolor="#ff0000" onclick="PaletteClick('#ff0000')" onmouseout="PaletteOut(this)" onmouseover="PaletteOver(this)" style="border: 1px solid rgb(187, 187, 187);" unselectable="on"><img height="1" src="http://www.blogger.com/post-edit.g?blogID=38549938&postID=116828379975471762" width="1" /></td></tr> </tbody></table>Recalling Gillings suggested the identity 1= 1/2 + 1/3 + 1/6 method (written as LCM<span style="color: red;"> 6</span>), calculated by:<br /> <br /> 1/13*(<span style="color: red;">6/6</span>) =<b> 6/78 = ( 3 + 2 + 1)/78</b> = 1/26 1/39 + 1/78<br /> <br /> a deeper lesson may have been involved. <br /> <br /> The EMLR student may not have been expected to solve this problem. In a related problem Ahmes solved this problem by <span style="color: red;">red</span> LCM<span style="color: red;"> 14</span>:<br /> <br /> 1/13*(<span style="color: red;">14/14</span>) = 14/182 = <span style="color: red;">(13 + 1</span>) = 1/14 + 1/182<br /> <br /> or, in by algebraic relationship used by Fibonacci, 2,900 years later:<br /> <br /> 1/p*[(n+ 1)/(n + 1)] = (n + 1)/np<br /> <br /> Note that the EMLR student could have selected LCM<span style="color: red;"> 28</span>:<br /> <br /> 1/13*(<span style="color: red;">28/28</span>) = <b>28/364 = (14 + 13 + 1)/364</b> = 1/26 + 1/28 + 1/364<br /> <br /> another easy to grasp approach.<br /> <br /> Ahmes used the 1/13-type conversion method four times. Ahmes modified the method an additional 20 times to solve larger n/p conversions. Fibonacci included the method as one of his first of seven conversation methods in 1202 AD writing the Liber Abaci.<br /> <br /> Ahmes converted 2/97 by a related <span style="color: red;">LCM 56</span>. Advanced EMLR students may have converted 1/13 by using the reference number by, as Ahmes may have also solved this problem:<br /> <br /> 1/13*(<span style="color: red;">56/56</span>) = <b>56/(13*56) = (28 + 13+ 8 + 7)/(13*56)</b> = 1/26 + 1/56 + 1/91 + 1/104<br /> <br /> That is, had LCM <span style="color: red;">14</span>, 28 or 56 been suggested the associated data would have been new to the EMLR student. Note the (n + 1) form of its aliquot (additive) parts. The form solved 2/5, 2/7, 2/11, 2/23, with a modified form solving 2/97 in the<a href="http://test/"> RMP</a>. In conclusion the student may been expected to be confused.<br /> <br /> Returning to other EMLR decoding issues, <span style="color: red;">LCM</span> <span style="color: red;">5</span> allowed the student to solve<br /> <br /> 1/4 and 1/8:<br /> <br /> C. Multiple of 5 (2 questions):<br /> <br /> 17. 1/4*(<span style="color: red;">5/5</span>)= <b>5/20 = (4 +1)/20</b>= 1/5 + 1/20 (line 2)<br /> <br /> 18. 1/8*(<span style="color: red;">5/5</span>)=<b>5/40 = (4+ 1)/40</b> = 1/10 + 1/40 (line 1)<br /> <br /> D. Multiple of 6 ( 4 questions)<br /> <br /> 19. 1/7*(<span style="color: red;">6/6</span>) = <b>6/42 = (3 + 2 + 1)/42</b>= 1/14 + 1/21 + 1/42 (line 14)<br /> <br /> 20. 1/9*(<span style="color: red;">6/6</span>) =<b> 6/54 = (3 + 2 + 1)/54</b> = 1/18 + 1/27 + 1/54 (line 15)<br /> <br /> 21. 1/11*(<span style="color: red;">6/6</span>) =<b> 6/66 = (3 + 2 + 1)/66</b>= 1/22 + 1/33 + 1/66 (line 16)<br /> <br /> 16. 1/13*(<span style="color: red;">6/6</span>) = 6/78 = ( 3 + 2 + 1)/78 = 1/26 1/39 + 1/78 (Gillings' suggestion)<br /> <br /> 22. 1/15*(<span style="color: red;">6/6</span>) = <b>6/90 = (3 + 2+ 1)/90</b> = 1/30 + 1/45 + 1/90 (line 18)<br /> <br /> E. Multiple of 7 (one question)<br /> <br /> 23 . 1/4*(<span style="color: red;">7/7</span>) =<b> 7/28 = (4 + 2 + 1)/28</b> = 1/7 + 1/14 + 1/28 (line 12)<br /> <br /> F. Multiple of 10 (one question)<br /> <br /> 24. 1/15*(<span style="color: red;">10/10</span>) = <b>10/150 = ( 6 + 3 + 1)/150</b> = 1/25 + 1/50 + 1/150 (line 10)<br /> <br /> G. Modified multiple of 25 (2 questions)<br /> <br /> Alternative one:<br /> <br /> Increased denominator by LCM 25, and use LCM 6 (likely reading of the text):<br /> <br /> 25. 1/8*(<span style="color: red;">25/25</span>) = <b>25/200 = (8 + 17)/200</b> = 1/25 + 17/200<br /> <br /> with,<br /> <br /> 17/200*(<span style="color: red;">6/6</span>) = <b>102/1200 = (80 + 16 + 6)/1200</b> = 1/15 + 1/75 + 1/200<br /> <br /> hence an out-of-order series indicated a 2-phase method writing:<br /> <br /> 1/8 = 1/25 + 1/15 + 1/75 + 1/200 (line 8)<br /> <br /> 26. 1/16*(<span style="color: red;">25/25</span>) = <b>25/400 = (17 + 8)/400</b> = 1/50 + 17/400<br /> <br /> with,<br /> <br /> 17/400 *(<span style="color: red;">6/6</span>) =<b> 102/2400 = (80 + 16 + 6)/2400</b> = 1/50 + 1/30 + 1/150 + 1/400 (line 9)<br /> <br /> 25a . Alternative two (an unlikely reading of the text)<br /> <br /> Decrease the denominator by factoring 1/5 in a second step per:<br /> <br /> 1/8*(<span style="color: red;">25/25</span>) =<b> 25/200 = (24 + 1)/200</b> = 24/200 + 1/200<br /> <br /> factor 1/5 from<b> 24/200 = 1/5 *(24/40</b>) = 1/5*(3/5)<br /> <br /> such that.<br /> <br /> 3/5*<b>(3/3) = 9/15 = (5 + 3 + 1)/15</b> = 1/3 + 1/5 + 1/15<br /> <br /> meant <br /> <br /> 1/8 = <b>1/5*(1/3 + 1/5 + 1/15) + 1/200</b><br /> <br /> re-written as <br /> <br /> 1/8 = 1/25 + 1/15 + 1/75 + 1/200<br /> <br /> to show that an out-of-order series indicated two LCMs 25 and 3 had been used.<br /> <br /> SUMMARY<br /> <br /> The EMLR recorded 26 lines of unit fraction information. To decode one or more scribal methods in which 1/p and 1/pq unit fractions were converted to a unit fraction series, non-optimal LCM m values must be determined. Scribal LCM m values can be seen as scaling factors by<b> adding back initial details</b>. Seen in terms of the RMP 2/n table (concise but not optimal unit fraction series) suggests that the EMLR answer sheet recoded basic test results. The EMLR student data can be seen recording conversions of 1/p and 1/pq to non-optimal unit fraction series as an opportunity to learn <a href="http://rmprectotable.blogspot.com/">RMP 2/n table</a> conversion methods at a later time.<br /> <br /> REFERENCES<br /> <br /> 1. Gillings, Richard J, "Mathematics in the Time of the Pharaohs" Dover books, New York, 1982, ISBN 0-486-24315-X<br /> <br /> 2. Gardner, Milo R., 'The Egyptian Mathematical Leather Roll, Attested Short Term and Long Term'. in History of the Mathematical Sciences, editors Ivor Grattan-Guiness, B.S. Yadav, Hindustan Book Agency, New Delhi, 2002, ISBN 81-84931-45-3.<br /> <br /> 3. Gardner, Milo, " Mathematical Roll of Egypt", Encyclopaedia of the <b>History</b> of Science, Technology, and <b>Medicine</b> in <b>Non-Western</b> Cultures, Springer, Nov. 2005.<br /> <br /> <br /> LINKS:<br /> <br /> 1. <a href="http://en.wikipedia.org/wiki/Egyptian_Mathematical_Leather_Roll">EMLR</a> (Wikipedia)<br /> <br /> 2. <a href="http://planetmath.org/encyclopedia/EgyptianMathematicalLeatherRoll2.html">EMLR</a> (Planetmath)<br /> <br /> 3. <a href="http://ahmespapyrus.blogspot.com/2009/01/ahmes-papyrus-new-and-old.html">Ahmes Papyrus</a><br /> <br /> 4. <a href="http://en.wikipedia.org/wiki/RMP_2/n_table"> RMP 2/n Table</a> (Wikipedia)<br /> <br /> 5. <a href="http://rmprectotable.blogspot.com/">Breaking the RMP 2/n Table Code</a> (blog)<br /> <br /> 6.<a href="http://rmp36.blogspot.com/"> RMP 36 and the 2/n table</a> (blog)<br /> <br /> 7. <a href="http://planetmath.org/encyclopedia/EgyptianMath3.html">Hultsch-Bruins Method</a> (Planetmath)<br /> <br /> author: <a href="http://en.wikipedia.org/wiki/User:Milogardner">Milo Gardner<br /> </a> <div style='clear: both;'></div> </div> <div class='post-footer'> <div class='post-footer-line post-footer-line-1'> <span class='post-author vcard'> Posted by <span class='fn' itemprop='author' itemscope='itemscope' itemtype='http://schema.org/Person'> <meta content='https://www.blogger.com/profile/15284868993340980422' itemprop='url'/> <a class='g-profile' href='https://www.blogger.com/profile/15284868993340980422' rel='author' title='author profile'> <span itemprop='name'>Milo R. Gardner</span> </a> </span> </span> <span class='post-timestamp'> at <meta content='http://emlr.blogspot.com/2007/01/egyptian-mathematical-leather-roll.html' itemprop='url'/> <a class='timestamp-link' href='http://emlr.blogspot.com/2007/01/egyptian-mathematical-leather-roll.html' rel='bookmark' title='permanent link'><abbr class='published' itemprop='datePublished' title='2007-01-08T11:00:00-08:00'>11:00 AM</abbr></a> </span> <span class='post-comment-link'> </span> <span class='post-icons'> <span class='item-control blog-admin pid-543988211'> <a href='https://www.blogger.com/post-edit.g?blogID=38549938&postID=116828379975471762&from=pencil' title='Edit Post'> <img alt='' class='icon-action' height='18' src='https://resources.blogblog.com/img/icon18_edit_allbkg.gif' width='18'/> </a> </span> </span> <div class='post-share-buttons goog-inline-block'> </div> </div> <div class='post-footer-line post-footer-line-2'> <span class='post-labels'> </span> </div> <div class='post-footer-line post-footer-line-3'> <span class='post-location'> </span> </div> </div> </div> </div> </div></div> </div> <div class='blog-pager' id='blog-pager'> <a class='home-link' href='http://emlr.blogspot.com/'>Home</a> </div> <div class='clear'></div> <div class='blog-feeds'> <div class='feed-links'> Subscribe to: <a class='feed-link' href='http://emlr.blogspot.com/feeds/posts/default' target='_blank' type='application/atom+xml'>Posts (Atom)</a> </div> </div> </div></div> </div> <div id='sidebar-wrapper'> <div class='sidebar section' id='sidebar'><div class='widget BlogArchive' data-version='1' id='BlogArchive1'> <h2>Blog Archive</h2> <div class='widget-content'> <div id='ArchiveList'> <div id='BlogArchive1_ArchiveList'> <ul class='hierarchy'> <li class='archivedate expanded'> <a class='toggle' href='javascript:void(0)'> <span class='zippy toggle-open'> ▼  </span> </a> <a class='post-count-link' href='http://emlr.blogspot.com/2007/'> 2007 </a> <span class='post-count' dir='ltr'>(1)</span> <ul class='hierarchy'> <li class='archivedate expanded'> <a class='toggle' href='javascript:void(0)'> <span class='zippy toggle-open'> ▼  </span> </a> <a class='post-count-link' href='http://emlr.blogspot.com/2007/01/'> January </a> <span class='post-count' dir='ltr'>(1)</span> <ul class='posts'> <li><a href='http://emlr.blogspot.com/2007/01/egyptian-mathematical-leather-roll.html'>Egyptian Mathematical Leather Roll</a></li> </ul> </li> </ul> </li> </ul> </div> </div> <div class='clear'></div> </div> </div><div class='widget LinkList' data-version='1' id='LinkList1'> <h2>Links</h2> <div class='widget-content'> <ul> <li><a href='http://news.google.com/'>Google News</a></li> <li><a href='http://help.blogger.com/bin/answer.py?answer=110'>Edit-Me</a></li> <li><a href='http://help.blogger.com/bin/answer.py?answer=110'>Edit-Me</a></li> </ul> <div class='clear'></div> </div> </div><div class='widget Profile' data-version='1' id='Profile1'> <h2>About Me</h2> <div class='widget-content'> <a href='https://www.blogger.com/profile/15284868993340980422'><img alt='My photo' class='profile-img' height='60' src='//blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhMnprOmtz62MHYsD_gHtY0doXSj6nY2qiuQM70_wUpy38OAa6ERsKmllknOWtkuoqwE-9zsaOVOUDAb5S6Z-S25ZT0Fiy_Wvy9HD4X1HJzAQnhvAWVQCQM5_iksDY6RVw/s220/IMGP0070.JPG' width='80'/></a> <dl class='profile-datablock'> <dt class='profile-data'> <a class='profile-name-link g-profile' href='https://www.blogger.com/profile/15284868993340980422' rel='author' style='background-image: url(//www.blogger.com/img/logo-16.png);'> Milo R. Gardner </a> </dt> <dd class='profile-textblock'>Mathematical sides of code breaking (cryptanalytics) were learned 50 years ago in the US Army. Meta and micro patterns have been parsed as ancient codes from Egyptian and other texts over the last 20 years.</dd> </dl> <a class='profile-link' href='https://www.blogger.com/profile/15284868993340980422' rel='author'>View my complete profile</a> <div class='clear'></div> </div> </div></div> </div> <!-- spacer for skins that want sidebar and main to be the same height--> <div class='clear'> </div> </div> <!-- end content-wrapper --> <div id='footer-wrapper'> <div class='footer no-items section' id='footer'></div> </div> </div></div> <!-- end outer-wrapper --> <script type="text/javascript" src="https://www.blogger.com/static/v1/widgets/984859869-widgets.js"></script> <script type='text/javascript'> window['__wavt'] = 'AOuZoY4kGk1ahVC8p0AiS9Y4hd9z0vWn2A:1732425796182';_WidgetManager._Init('//www.blogger.com/rearrange?blogID\x3d38549938','//emlr.blogspot.com/','38549938'); _WidgetManager._SetDataContext([{'name': 'blog', 'data': {'blogId': '38549938', 'title': 'Egyptian Mathematical Leather Roll', 'url': 'http://emlr.blogspot.com/', 'canonicalUrl': 'http://emlr.blogspot.com/', 'homepageUrl': 'http://emlr.blogspot.com/', 'searchUrl': 'http://emlr.blogspot.com/search', 'canonicalHomepageUrl': 'http://emlr.blogspot.com/', 'blogspotFaviconUrl': 'http://emlr.blogspot.com/favicon.ico', 'bloggerUrl': 'https://www.blogger.com', 'hasCustomDomain': false, 'httpsEnabled': true, 'enabledCommentProfileImages': true, 'gPlusViewType': 'FILTERED_POSTMOD', 'adultContent': false, 'analyticsAccountNumber': '', 'encoding': 'UTF-8', 'locale': 'en-US', 'localeUnderscoreDelimited': 'en', 'languageDirection': 'ltr', 'isPrivate': false, 'isMobile': false, 'isMobileRequest': false, 'mobileClass': '', 'isPrivateBlog': false, 'isDynamicViewsAvailable': true, 'feedLinks': '\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22Egyptian Mathematical Leather Roll - Atom\x22 href\x3d\x22http://emlr.blogspot.com/feeds/posts/default\x22 /\x3e\n\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/rss+xml\x22 title\x3d\x22Egyptian Mathematical Leather Roll - RSS\x22 href\x3d\x22http://emlr.blogspot.com/feeds/posts/default?alt\x3drss\x22 /\x3e\n\x3clink rel\x3d\x22service.post\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22Egyptian Mathematical Leather Roll - Atom\x22 href\x3d\x22https://www.blogger.com/feeds/38549938/posts/default\x22 /\x3e\n', 'meTag': '\x3clink rel\x3d\x22me\x22 href\x3d\x22https://www.blogger.com/profile/15284868993340980422\x22 /\x3e\n', 'adsenseHostId': 'ca-host-pub-1556223355139109', 'adsenseHasAds': false, 'adsenseAutoAds': false, 'boqCommentIframeForm': true, 'loginRedirectParam': '', 'view': '', 'dynamicViewsCommentsSrc': '//www.blogblog.com/dynamicviews/4224c15c4e7c9321/js/comments.js', 'dynamicViewsScriptSrc': '//www.blogblog.com/dynamicviews/d78375fb222d99b3', 'plusOneApiSrc': 'https://apis.google.com/js/platform.js', 'disableGComments': true, 'interstitialAccepted': false, 'sharing': {'platforms': [{'name': 'Get link', 'key': 'link', 'shareMessage': 'Get link', 'target': ''}, {'name': 'Facebook', 'key': 'facebook', 'shareMessage': 'Share to Facebook', 'target': 'facebook'}, {'name': 'BlogThis!', 'key': 'blogThis', 'shareMessage': 'BlogThis!', 'target': 'blog'}, {'name': 'X', 'key': 'twitter', 'shareMessage': 'Share to X', 'target': 'twitter'}, {'name': 'Pinterest', 'key': 'pinterest', 'shareMessage': 'Share to Pinterest', 'target': 'pinterest'}, {'name': 'Email', 'key': 'email', 'shareMessage': 'Email', 'target': 'email'}], 'disableGooglePlus': true, 'googlePlusShareButtonWidth': 0, 'googlePlusBootstrap': '\x3cscript type\x3d\x22text/javascript\x22\x3ewindow.___gcfg \x3d {\x27lang\x27: \x27en\x27};\x3c/script\x3e'}, 'hasCustomJumpLinkMessage': false, 'jumpLinkMessage': 'Read more', 'pageType': 'index', 'pageName': '', 'pageTitle': 'Egyptian Mathematical Leather Roll'}}, {'name': 'features', 'data': {}}, {'name': 'messages', 'data': {'edit': 'Edit', 'linkCopiedToClipboard': 'Link copied to clipboard!', 'ok': 'Ok', 'postLink': 'Post Link'}}, {'name': 'template', 'data': {'isResponsive': false, 'isAlternateRendering': false, 'isCustom': false}}, {'name': 'view', 'data': {'classic': {'name': 'classic', 'url': '?view\x3dclassic'}, 'flipcard': {'name': 'flipcard', 'url': '?view\x3dflipcard'}, 'magazine': {'name': 'magazine', 'url': '?view\x3dmagazine'}, 'mosaic': {'name': 'mosaic', 'url': '?view\x3dmosaic'}, 'sidebar': {'name': 'sidebar', 'url': '?view\x3dsidebar'}, 'snapshot': {'name': 'snapshot', 'url': '?view\x3dsnapshot'}, 'timeslide': {'name': 'timeslide', 'url': '?view\x3dtimeslide'}, 'isMobile': false, 'title': 'Egyptian Mathematical Leather Roll', 'description': 'The EMLR converted 26 1/p and 1/pq unit fractions to not-so-elegant Egyptian fraction series without revealing its method. The EMLR was written by a student who was introduced to Egyptian fractions math that created optimized 2/n tables. The \x27red auxiliary\x27 method used in RMP 36 improved the 250 year older EMLR\x27s use of multiples of 2, 3, 4, 5, 6, 7, 10, and 25 that scaled 1/p and 1/pq to unit fraction series.', 'url': 'http://emlr.blogspot.com/', 'type': 'feed', 'isSingleItem': false, 'isMultipleItems': true, 'isError': false, 'isPage': false, 'isPost': false, 'isHomepage': true, 'isArchive': false, 'isLabelSearch': false}}]); _WidgetManager._RegisterWidget('_NavbarView', new _WidgetInfo('Navbar1', 'navbar', document.getElementById('Navbar1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HeaderView', new _WidgetInfo('Header1', 'header', document.getElementById('Header1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogView', new _WidgetInfo('Blog1', 'main', document.getElementById('Blog1'), {'cmtInteractionsEnabled': false, 'lightboxEnabled': true, 'lightboxModuleUrl': 'https://www.blogger.com/static/v1/jsbin/2646514562-lbx.js', 'lightboxCssUrl': 'https://www.blogger.com/static/v1/v-css/1964470060-lightbox_bundle.css'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogArchiveView', new _WidgetInfo('BlogArchive1', 'sidebar', document.getElementById('BlogArchive1'), {'languageDirection': 'ltr', 'loadingMessage': 'Loading\x26hellip;'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_LinkListView', new _WidgetInfo('LinkList1', 'sidebar', document.getElementById('LinkList1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_ProfileView', new _WidgetInfo('Profile1', 'sidebar', document.getElementById('Profile1'), {}, 'displayModeFull')); </script> </body> </html>