CINXE.COM

Search results for: radionuclides

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: radionuclides</title> <meta name="description" content="Search results for: radionuclides"> <meta name="keywords" content="radionuclides"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="radionuclides" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="radionuclides"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 79</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: radionuclides</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Radionuclides Transport Phenomena in Vadose Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Testoni">R. Testoni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Levizzari"> R. Levizzari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Salve"> M. De Salve</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HYDRUS%201D" title="HYDRUS 1D">HYDRUS 1D</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides%20transport%20phenomena" title=" radionuclides transport phenomena"> radionuclides transport phenomena</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20characterization" title=" site characterization"> site characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title=" radiation protection"> radiation protection</a> </p> <a href="https://publications.waset.org/abstracts/6338/radionuclides-transport-phenomena-in-vadose-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manh-Dung%20Ho">Manh-Dung Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Van-Giap%20Pham"> Van-Giap Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Van-Doanh%20Ho"> Van-Doanh Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Quang-Thien%20Tran"> Quang-Thien Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan-Anh%20Tran"> Tuan-Anh Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20activation%20analysis" title="neutron activation analysis">neutron activation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=k0-based%20method" title=" k0-based method"> k0-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=k0%20factor" title=" k0 factor"> k0 factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Q0%20factor" title=" Q0 factor"> Q0 factor</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20resonance%20energy" title=" effective resonance energy"> effective resonance energy</a> </p> <a href="https://publications.waset.org/abstracts/148104/review-of-k0-factors-and-related-nuclear-data-of-the-selected-radionuclides-for-use-in-k0-naa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Burakowska">A. Burakowska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Piotrowski"> M. Piotrowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kubicki"> M. Kubicki</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Trzaskowska"> H. Trzaskowska</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sosnowiec"> R. Sosnowiec</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Myslek-Laurikainen"> B. Myslek-Laurikainen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20filters" title=" air filters"> air filters</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20beryllium" title=" atmospheric beryllium"> atmospheric beryllium</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20radionuclides" title=" environmental radionuclides"> environmental radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectroscopy" title=" gamma spectroscopy"> gamma spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-latitude%20regions%20radionuclides" title=" mid-latitude regions radionuclides"> mid-latitude regions radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20regions%20radionuclides" title=" polar regions radionuclides"> polar regions radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cycles" title=" solar cycles"> solar cycles</a> </p> <a href="https://publications.waset.org/abstracts/108340/the-concentration-of-selected-cosmogenic-and-anthropogenic-radionuclides-in-the-ground-layer-of-the-atmosphere-polar-and-mid-latitudes-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Deju">R. Deju</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mincu"> M. Mincu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gurau"> D. Gurau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of <sup>137</sup>Cs, <sup>60</sup>Co and <sup>152</sup>Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title="gamma spectrometry">gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20behavior" title=" leaching behavior"> leaching behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse%20and%20recycling%20of%20radioactive%20concrete" title=" reuse and recycling of radioactive concrete"> reuse and recycling of radioactive concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/56421/the-long-term-leaching-behaviour-of-137cs-60co-and-152eu-radionuclides-incorporated-in-mortar-matrices-made-from-natural-aggregates-and-recycled-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Landscape Management in the Emergency Hazard Planning Zone of the Nuclear Power Plant Temelin: Preventive Improvement of Landscape Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Ka%C5%A1parov%C3%A1">Ivana Kašparová</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilie%20Pecharov%C3%A1"> Emilie Pecharová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experience of radiological contamination of land, especially after the Chernobyl and Fukushima disasters have shown the need to explore possibilities to the capture of radionuclides in the area affected and to adapt the landscape management to this purpose ex –ante the considered accident in terms of prevention. The project‚ Minimizing the impact of radiation contamination on land in the emergency zone of Temelin NPP‘ (2012-2015), dealt with the possibility of utilization of wetlands as retention sites for water carrying radionuclides in the case of a radiation accident. A model artificial wetland was designed and adopted as a utility model by the Ministry of Industry and Trade of the Czech Republic. The article shows the conditions of construction of designed wetlands in the landscape with regard to minimizing the negative effect on agricultural production and enhancing the hydrological functionality of the landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20wetland" title="artificial wetland">artificial wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2F%20land%20cover" title=" land use/ land cover"> land use/ land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20maps" title=" old maps"> old maps</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-to-water%20transport%20of%20radionuclides" title=" surface-to-water transport of radionuclides"> surface-to-water transport of radionuclides</a> </p> <a href="https://publications.waset.org/abstracts/58812/landscape-management-in-the-emergency-hazard-planning-zone-of-the-nuclear-power-plant-temelin-preventive-improvement-of-landscape-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> [Keynote Speech]: Determination of Naturally Occurring and Artificial Radionuclide Activity Concentrations in Marine Sediments in Western Marmara, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erol%20Kam">Erol Kam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20U.%20Y%C3%BCm%C3%BCn"> Z. U. Yümün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural and artificial radionuclides cause radioactive contamination in environments, just as the other non-biodegradable pollutants (heavy metals, etc.) sink to the sea floor and accumulate in sediments. Especially the habitat of benthic foraminifera living on the surface of sediments or in sediments at the seafloor are affected by radioactive pollution in the marine environment. Thus, it is important for pollution analysis to determine the radionuclides. Radioactive pollution accumulates in the lowest level of the food chain and reaches humans at the highest level. The more the accumulation, the more the environment is endangered. This study used gamma spectrometry to investigate the natural and artificial radionuclide distribution of sediment samples taken from living benthic foraminifera habitats in the Western Marmara Sea. The radionuclides, K-40, Cs-137, Ra-226, Mn 54, Zr-95+ and Th-232, were identified in the sediment samples. For this purpose, 18 core samples were taken from depths of about 25-30 meters in the Marmara Sea in 2016. The locations of the core samples were specifically selected exclusively from discharge points for domestic and industrial areas, port locations, and so forth to represent pollution in the study area. Gamma spectrometric analysis was used to determine the radioactive properties of sediments. The radionuclide concentration activity values in the sediment samples obtained were Cs-137=0.9-9.4 Bq/kg, Th-232=18.9-86 Bq/kg, Ra-226=10-50 Bq/kg, K-40=24.4–670 Bq/kg, Mn 54=0.71–0.9 Bq/kg and Zr-95+=0.18–0.19 Bq/kg. These values were compared with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data, and an environmental analysis was carried out. The Ra-226 series, the Th-232 series, and the K-40 radionuclides accumulate naturally and are increasing every day due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to the UNSCEAR values, the K-40, and Th-232 series values were found to be high in almost all the locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ra-226" title="Ra-226">Ra-226</a>, <a href="https://publications.waset.org/abstracts/search?q=Th-232" title=" Th-232"> Th-232</a>, <a href="https://publications.waset.org/abstracts/search?q=K-40" title=" K-40"> K-40</a>, <a href="https://publications.waset.org/abstracts/search?q=Cs-137" title=" Cs-137"> Cs-137</a>, <a href="https://publications.waset.org/abstracts/search?q=Mn%2054" title=" Mn 54"> Mn 54</a>, <a href="https://publications.waset.org/abstracts/search?q=Zr-95%2B" title=" Zr-95+"> Zr-95+</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=Western%20Marmara%20Sea" title=" Western Marmara Sea"> Western Marmara Sea</a> </p> <a href="https://publications.waset.org/abstracts/64866/keynote-speech-determination-of-naturally-occurring-and-artificial-radionuclide-activity-concentrations-in-marine-sediments-in-western-marmara-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Assessment of Physical, Chemical and Radionuclides Concentrations in Pharamasucal Industrial Wastewater Effluents in Amman, Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salem%20Abdullah%20Alhwaiti">Mohammad Salem Abdullah Alhwaiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assess the physical, chemical, and radionuclide concentrations of pharmaceutical industrial wastewater effluents. Fourteen wastewater samples were collected from pharmaceutical industries. The results showed a marked reduction in the levels of TH, Mg, and Ca concentration in wastewater limit for properties and criteria for discharge of wastewater to streams or wadies or water bodies in the effluent, whereas TSS and TDS showed higher concentration allowable for discharge of wastewater to streams or wadies or water bodies. The gross α activity in all the wastewater samples ranged between (0.086-0.234 Bq/L) lowered the 0.1 Bq/L limit set by World Health Organization (WHO), whereas gross β activity in few samples ranged between (2.565-4.800 Bq/L), indicating the higher limit set by WHO. Gamma spectroscopy revealed that K-40, Cr-51, Co-60, I-131, Cs-137, and U-238 activity are ≤0.114 Bq/L, ≤0.062 Bq/L, ≤0.00815Bq/L, ≤0.00792Bq/L, ≤0.00956 Bq/L, and ≤0.151 Bq/L, respectively, indicating lowest concentrations of these radionuclides in the pharmaceutical industrial wastewater effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20wastewater" title="pharmaceutical wastewater">pharmaceutical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20%CE%B1%2F%CE%B2%20activity" title=" gross α/β activity"> gross α/β activity</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/162078/assessment-of-physical-chemical-and-radionuclides-concentrations-in-pharamasucal-industrial-wastewater-effluents-in-amman-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Natural Radioactivity in Foods Consumed in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kam">E. Kam</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Karahan"> G. Karahan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Asl%C4%B1yuksek"> H. Aslıyuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bozkurt"> A. Bozkurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides&rsquo; concentrations. The gross alpha radioactivities were measured as below 1 Bq kg<sup>-1</sup> in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg<sup>-1</sup> to 453 Bq kg<sup>-1</sup>, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of <sup>40</sup>K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of <sup>238</sup>U and <sup>226</sup>Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides <sup>226</sup>Ra, <sup>238</sup>U, and <sup>40</sup>K were calculated as 77.416 &micro;Sv y<sup>-1</sup>, 0.978 &micro;Sv y<sup>-1</sup>, and 140.55 &micro;Sv y<sup>-1</sup>, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foods" title="foods">foods</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20alpha" title=" gross alpha"> gross alpha</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20beta" title=" gross beta"> gross beta</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20equivalent%20dose" title=" annual equivalent dose"> annual equivalent dose</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/52059/natural-radioactivity-in-foods-consumed-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Measurement of Radionuclide Concentrations and Study on Transfer from Soil to Plant in Sfax-Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Machraoui">Sonia Machraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Salam%20Labidi"> Salam Labidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Karunakara%20Naregundi"> Karunakara Naregundi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental radiation measurements are useful to identify areas of potential natural radiation hazard particularly in areas of phosphate industries where enhanced radiation levels are expected to be present. Measurements of primordial radionuclides concentrations have been carried out in samples collected from Sfax City around the SIAPE phosphate industry of Tunis. The samples analysed include fish, beef meat, egg, and vegetables as well as in soil and grass. Measurements were performed by gamma spectrometry method using a 42% relative efficiency N-type HPGe detector. The activity concentrations of radionuclides were measured by gamma ray spectrometry. As expected, the concentrations of radionuclides belonging to uranium and thorium series were low in food materials. In all the samples analysed, the 137Cs concentration was below detection level, except meat samples which showed the activity concentration of 2.4 Bq kg-1 (dry wt.) The soil to grass transfer factor was found to be similar to those reported in literature. The effective dose to the population due to intake of food products were also estimated and are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20doses" title="effective doses">effective doses</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20industry" title=" phosphate industry"> phosphate industry</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20coefficients" title=" transfer coefficients"> transfer coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/60366/measurement-of-radionuclide-concentrations-and-study-on-transfer-from-soil-to-plant-in-sfax-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Determination of Unknown Radionuclides Using High Purity Germanium Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20G.%20Onuk">O. G. Onuk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Taura"> L. S. Taura</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Eze"> C. M. Eze</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ngaram"> S. M. Ngaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decay chain of radioactive elements in the laboratory and the verification of natural radioactivity of the human body was investigated using the High Purity Germanium (HPGe) detector. Properties of the HPGe detectors were also investigated. The efficiency and energy resolution of HPGe detector used in the laboratory was found to be excellent. The detector was calibrated three times so as to cover a wider energy range. Also the Centroid C of the detector was found to have a linear relationship with the energies of the known gamma-rays. Using the three calibrations of the detector, the energy of an unknown radionuclide was found to follow the decay chain of thorium-232 (232Th) and it was also found that an average adult has about 2.5g Potasium-40 (40K) in the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detector" title="detector">detector</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a> </p> <a href="https://publications.waset.org/abstracts/83964/determination-of-unknown-radionuclides-using-high-purity-germanium-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farmesk%20Abubaker">Farmesk Abubaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Tortorici"> Francesco Tortorici</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Capogni"> Marco Capogni</a>, <a href="https://publications.waset.org/abstracts/search?q=Concetta%20Sutera"> Concetta Sutera</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Bellini"> Vincenzo Bellini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birks%20constant" title="Birks constant">Birks constant</a>, <a href="https://publications.waset.org/abstracts/search?q=defocusing%20parameter" title=" defocusing parameter"> defocusing parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4%20code" title=" GEANT4 code"> GEANT4 code</a>, <a href="https://publications.waset.org/abstracts/search?q=TDCR%20parameter" title=" TDCR parameter"> TDCR parameter</a> </p> <a href="https://publications.waset.org/abstracts/131757/effect-of-birks-constant-and-defocusing-parameter-on-triple-to-double-coincidence-ratio-parameter-in-monte-carlo-simulation-geant4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Radiological Assessment of Fish Samples Due to Natural Radionuclides in River Yobe, North Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Abba">H. T. Abba</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Baba%20Kura"> Abbas Baba Kura </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of natural radioactivity of some fish samples in river Yobe was conducted, using gamma spectroscopy method with NaI(TI) detector. Radioactivity is phenomenon that leads to production of radiations, whereas radiation is known to trigger or induce cancer. The fish were analyzed to estimate the radioactivity (activity) concentrations due to natural radionuclides (Radium 222(226Ra), Thorium 232 (232Th) and Potassium 40 (40K)). The obtained result show that the activity concentration for (226Ra), in all the fish samples collected ranges from 15.23±2.45 BqKg-1 to 67.39±2.13 BqKg-1 with an average value of 34.13±1.34 BqKg-1. That of 232Th, ranges from 42.66±0.81 BqKg-1 to 201.18±3.82 BqKg-1, and the average value stands at 96.01±3.82 BqKg-1. The activity concentration for 40K, ranges between 243.3±1.56 BqKg-1 to 618.2±2.81 BqKg-1 and the average is 413.92±1.7 BqKg-1. This study indicated that average daily intake due to natural activity from the fish is valued at 0.913 Bq/day, 2.577Bq/day and 11.088 Bq/day for 226Ra, 232Th and 40K respectively. This shows that the activity concentration values for fish, shows a promising result with most of the fish activity concentrations been within the acceptable limits. However locations (F02, F07 and F12) fish, became outliers with significant values of 112.53μSvy-1, 121.11μSvy-1 and 114.32μSvy-1 effective Dose. This could be attributed to variation in geological formations within the river as while as the feeding habits of these fish. The work shows that consumers of fish from River Yobe have no risk of radioactivity ingestion, even though no amount of radiation is assumed to be totally safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation" title="radiation">radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radio-activity" title=" radio-activity"> radio-activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dose" title=" dose"> dose</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20Yobe" title=" river Yobe "> river Yobe </a> </p> <a href="https://publications.waset.org/abstracts/12312/radiological-assessment-of-fish-samples-due-to-natural-radionuclides-in-river-yobe-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rekaya%20A.%20Shabbir">Rekaya A. Shabbir</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Mingarelli"> Marco Mingarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Glenn%20Flux"> Glenn Flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Choudhury"> Ananya Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20A.%20D.%20Smith"> Tim A. D. Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title="cancer cells">cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20distributions" title=" dose distributions"> dose distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclide%20therapy" title=" radionuclide therapy"> radionuclide therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20gold%20nanoparticles" title=" targeted gold nanoparticles"> targeted gold nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/134283/tumour-radionuclides-therapy-in-vitro-and-in-vivo-dose-distribution-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Sintered Phosphate Cement for HLW Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20M.%20Nelwamondo">S. M. M. Nelwamondo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20M.%20H.%20Meyer"> W. C. M. H. Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Krieg"> H. Krieg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of volatile radionuclides in high level waste (HLW) in the nuclear industry limits the use of high temperature encapsulation technologies (glass and ceramic). Chemically bonded phosphate cement (CBPC) matrixes can be used for encapsulation of low level waste. This waste form is however not suitable for high level waste due to the radiolysis of water in these matrixes. In this research, the sintering behavior of the magnesium potassium phosphate cement waste forms was investigated. The addition of sintering aids resulted in the sintering of these phosphate cement matrixes into dense monoliths containing no water. Experimental evidence will be presented that this waste form can now be considered as a waste form for volatile radionuclides and high level waste as radiation studies indicated no chemical phase transition or physical degradation of this waste form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20bonded%20phosphate%20cements" title="chemically bonded phosphate cements">chemically bonded phosphate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=HLW%20encapsulation" title=" HLW encapsulation"> HLW encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20stability" title=" radiation stability"> radiation stability</a> </p> <a href="https://publications.waset.org/abstracts/30155/sintered-phosphate-cement-for-hlw-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Assessment of Heavy Metals and Radionuclide Concentrations in Mafikeng Waste Water Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mathuthu">M. Mathuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Gaxela"> N. N. Gaxela</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Y.%20Olobatoke"> R. Y. Olobatoke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was carried out to assess the heavy metal and radionuclide concentrations of water from the waste water treatment plant in Mafikeng Local Municipality to evaluate treatment efficiency. Ten water samples were collected from various stages of water treatment which included sewage delivered to the plant, the two treatment stages and the effluent and also the community. The samples were analyzed for heavy metal content using Inductive Coupled Plasma Mass Spectrometer. Gross α/β activity concentration in water samples was evaluated by Liquid Scintillation Counting whereas the concentration of individual radionuclides was measured by gamma spectroscopy. The results showed marked reduction in the levels of heavy metal concentration from 3 µg/L (As)–670 µg/L (Na) in sewage into the plant to 2 µg/L (As)–170 µg/L (Fe) in the effluent. Beta activity was not detected in water samples except in the in-coming sewage, the concentration of which was within reference limits. However, the gross α activity in all the water samples (7.7-8.02 Bq/L) exceeded the 0.1 Bq/L limit set by World Health Organization (WHO). Gamma spectroscopy analysis revealed very high concentrations of 235U and 226Ra in water samples, with the lowest concentrations (9.35 and 5.44 Bq/L respectively) in the in-coming sewage and highest concentrations (73.8 and 47 Bq/L respectively) in the community water suggesting contamination along water processing line. All the values were considerably higher than the limits of South Africa Target Water Quality Range and WHO. However, the estimated total doses of the two radionuclides for the analyzed water samples (10.62 - 45.40 µSv yr-1) were all well below the reference level of the committed effective dose of 100 µSv yr-1 recommended by WHO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gross%20%CE%B1%2F%CE%B2%20activity" title="gross α/β activity">gross α/β activity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=235U" title=" 235U"> 235U</a>, <a href="https://publications.waset.org/abstracts/search?q=226Ra" title=" 226Ra"> 226Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20sample" title=" water sample"> water sample</a> </p> <a href="https://publications.waset.org/abstracts/20169/assessment-of-heavy-metals-and-radionuclide-concentrations-in-mafikeng-waste-water-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Radiological Hazard Assessments and Control of Radionuclides Emitted from Building Materials in Kuwait Using Expert Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulla%20Almulla">Abdulla Almulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20Mahdi"> Wafaa Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building materials can make a significant contribution to the level of natural radioactivity in closed dwelling areas. Therefore, developing an expert system for monitoring the activity concentrations (ACs) of naturally occurring radioactive materials (NORMs) existing in building materials is useful for limiting the population’s exposure to gamma radiation emitted from those materials. The present work not only is aimed at examining the indoor radon concentration emitted by the building materials that are originated from various countries but are commercially available in Kuwait, but also is aimed at developing an expert system for monitoring the radiation emitted from these materials and classifying it as normal (acceptable) or dangerous (unacceptable). This system makes it possible to always monitor any radiological risks to human health. When detecting high doses of radiation, the system gives warning messages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=NORMs" title=" NORMs"> NORMs</a>, <a href="https://publications.waset.org/abstracts/search?q=HNBRA" title=" HNBRA"> HNBRA</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20concentrations" title=" activity concentrations"> activity concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a> </p> <a href="https://publications.waset.org/abstracts/154286/radiological-hazard-assessments-and-control-of-radionuclides-emitted-from-building-materials-in-kuwait-using-expert-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> The Safety Related Functions of The Engineered Barriers of the IAEA Borehole Disposal System: The Ghana Pilot Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Essel">Paul Essel</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20T.%20Glover"> Eric T. Glover</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustav%20Gbeddy"> Gustav Gbeddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaw%20Adjei-Kyereme"> Yaw Adjei-Kyereme</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20M.%20A.%20Dawood"> Abdallah M. A. Dawood</a>, <a href="https://publications.waset.org/abstracts/search?q=Evans%20M.%20Ameho"> Evans M. Ameho</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20A.%20Aberikae"> Emmanuel A. Aberikae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radioactive materials mainly in the form of Sealed Radioactive Sources are being used in various sectors (medicine, agriculture, industry, research, and teaching) for the socio-economic development of Ghana. The use of these beneficial radioactive materials has resulted in an inventory of Disused Sealed Radioactive Sources (DSRS) in storage. Most of the DSRS are legacy/historic sources which cannot be returned to their manufacturer or country of origin. Though small in volume, DSRS can be intensively radioactive and create a significant safety and security liability. They need to be managed in a safe and secure manner in accordance with the fundamental safety objective. The Radioactive Waste Management Center (RWMC) of the Ghana Atomic Energy Commission (GAEC) is currently storing a significant volume of DSRS. The initial activities of the DSRS range from 7.4E+5 Bq to 6.85E+14 Bq. If not managed properly, such DSRS can represent a potential hazard to human health and the environment. Storage is an important interim step, especially for DSRS containing very short-lived radionuclides, which can decay to exemption levels within a few years. Long-term storage, however, is considered an unsustainable option for DSRS with long half-lives hence the need for a disposal facility. The GAEC intends to use the International Atomic Energy Agency’s (IAEA’s) Borehole Disposal System (BDS) to provide a safe, secure, and cost-effective disposal option to dispose of its DSRS in storage. The proposed site for implementation of the BDS is on the GAEC premises at Kwabenya. The site has been characterized to gain a general understanding in terms of its regional setting, its past evolution and likely future natural evolution over the assessment time frame. Due to the long half-lives of some of the radionuclides to be disposed of (Ra-226 with half-life of 1600 years), the engineered barriers of the system must be robust to contain these radionuclides for this long period before they decay to harmless levels. There is the need to assess the safety related functions of the engineered barriers of this disposal system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title="radionuclides">radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=disposal" title=" disposal"> disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20waste" title=" radioactive waste"> radioactive waste</a>, <a href="https://publications.waset.org/abstracts/search?q=engineered%20barrier" title=" engineered barrier"> engineered barrier</a> </p> <a href="https://publications.waset.org/abstracts/180713/the-safety-related-functions-of-the-engineered-barriers-of-the-iaea-borehole-disposal-system-the-ghana-pilot-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Analysing the Mesoscale Variations of 7Be and 210Pb Concentrations in a Complex Orography, Guadalquivir Valley, Southern Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hern%C3%A1ndez-Ceballos">M. A. Hernández-Ceballos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20San%20Miguel"> E. G. San Miguel</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gal%C3%A1n"> C. Galán</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Bol%C3%ADvar"> J. P. Bolívar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of 7Be and 210Pb activity concentrations in surface air along the Guadalquivir valley (southern Iberian Peninsula) is presented in this study. Samples collected for 48 h, every fifteen days, from September 2012 to November 2013 at two sampling sites (Huelva city in the mouth and Cordoba city in the middle (located 250 km far away)), are used to 1) analysing the spatial variability and 2) understanding the influence of wind conditions on 7Be and 210Pb. Similar average concentrations were registered along the valley. The mean 7Be activity concentration was 4.46 ± 0.21 mBq/m3 at Huelva and 4.33 ± 0.20 mBq/m3 at Cordoba, although registering higher maximum and minimum values at Cordoba (9.44 mBq/m3 and 1.80 mBq/m3) than at Huelva (7.95 mBq/m3 and 1.04 mBq/m3). No significant differences were observed in the 210Pb mean activity concentrations between Cordoba (0.40 ± 0.04 mBq/m3) and Huelva (0.35 ± 0.04 mBq/m3), although the maximum (1.10 mBq/m3 and 0.87 mBq/m3) and minimum (0.02 mBq/m3 and 0.04 mBq/m3) values were recorded in Cordoba. Although similar average concentrations were obtained in both sites, the temporal evolution of both natural radionuclides presents differences between them. The meteorological analysis of two sampling periods, in which large differences on 7Be and 210Pb concentrations are observed, indicates the different impact of surface and upper wind dynamics. The analysis reveals the different impact of the two sea-land breeze patterns usually observed along the valley (pure and non-pure) and the corresponding air masses at higher layers associated with each one. The pure, with short development (around 30 km inland) and increasing accumulation process, favours high concentrations of both radionuclides in Huelva (coastal site), while the non-pure, with winds sweeping the valley until arrive to Cordoba (250 km far away), causes high activity values at this site. These results reveal the impact of mesoscale conditions on these two natural radionuclides, and the importance of these circulations on its spatial and temporal variability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=7Be" title="7Be">7Be</a>, <a href="https://publications.waset.org/abstracts/search?q=210Pb" title=" 210Pb"> 210Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20masses" title=" air masses"> air masses</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoscale%20process" title=" mesoscale process"> mesoscale process</a> </p> <a href="https://publications.waset.org/abstracts/19967/analysing-the-mesoscale-variations-of-7be-and-210pb-concentrations-in-a-complex-orography-guadalquivir-valley-southern-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Numerical Response of Coaxial HPGe Detector for Skull and Knee Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pabitra%20Sahu">Pabitra Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manohari"> M. Manohari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Priyadharshini"> S. Priyadharshini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Santhanam"> R. Santhanam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrasekaran"> S. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Venkatraman"> B. Venkatraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation workers of reprocessing plants have a potential for internal exposure due to actinides and fission products. Radionuclides like Americium, lead, Polonium and Europium are bone seekers and get accumulated in the skeletal part. As the major skeletal content is in the skull (13%) and knee (22%), measurements of old intake have to be carried out in the skull and knee. At the Indira Gandhi Centre for Atomic Research, a twin HPGe-based actinide monitor is used for the measurement of actinides present in bone. Efficiency estimation, which is one of the prerequisites for the quantification of radionuclides, requires anthropomorphic phantoms. Such phantoms are very limited. Hence, in this study, efficiency curves for a Twin HPGe-based actinide monitoring system are established theoretically using the FLUKA Monte Carlo method and ICRP adult male voxel phantom. In the case of skull measurement, the detector is placed over the forehead, and for knee measurement, one detector is placed over each knee. The efficiency values of radionuclides present in the knee and skull vary from 3.72E-04 to 4.19E-04 CPS/photon and 5.22E-04 to 7.07E-04 CPS/photon, respectively, for the energy range 17 to 3000keV. The efficiency curves for the measurement are established, and it is found that initially, the efficiency value increases up to 100 keV and then starts decreasing. It is found that the skull efficiency values are 4% to 63% higher than that of the knee, depending on the energy for all the energies except 17.74 keV. The reason is the closeness of the detector to the skull compared to the knee. But for 17.74 keV the efficiency of the knee is more than the skull due to the higher attenuation caused in the skull bones because of its greater thickness. The Minimum Detectable Activity (MDA) for 241Am present in the skull and knee is 9 Bq. 239Pu has a MDA of 950 Bq and 1270 Bq for knee and skull, respectively, for a counting time of 1800 sec. This paper discusses the simulation method and the results obtained in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLUKA%20Monte%20Carlo%20Method" title="FLUKA Monte Carlo Method">FLUKA Monte Carlo Method</a>, <a href="https://publications.waset.org/abstracts/search?q=ICRP%20adult%20male%20voxel%20phantom" title=" ICRP adult male voxel phantom"> ICRP adult male voxel phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=knee" title=" knee"> knee</a>, <a href="https://publications.waset.org/abstracts/search?q=Skull." title=" Skull."> Skull.</a> </p> <a href="https://publications.waset.org/abstracts/185283/numerical-response-of-coaxial-hpge-detector-for-skull-and-knee-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> A Comparison of Biosorption of Radionuclides Tl-201 on Different Biosorbents and Their Empirical Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Yapici">Sinan Yapici</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Eroglu"> Hayrettin Eroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge of the aqueous radionuclides wastes used for the diagnoses of diseases and treatments of patients in nuclear medicine can cause fatal health problems when the radionuclides and its stable daughter component mix with underground water. Tl-201, which is one of the radionuclides commonly used in the nuclear medicine, is a toxic substance and is converted to its stable daughter component Hg-201, which is also a poisonous heavy metal: Tl201 → Hg201 + Gamma Ray [135-167 Kev (12%)] + X Ray [69-83 Kev (88%)]; t1/2 = 73,1 h. The purpose of the present work was to remove Tl-201 radionuclides from aqueous solution by biosorption on the solid bio wastes of food and cosmetic industry as bio sorbents of prina from an olive oil plant, rose residue from a rose oil plant and tea residue from a tea plant, and to make a comparison of the biosorption efficiencies. The effects of the biosorption temperature, initial pH of the aqueous solution, bio sorbent dose, particle size and stirring speed on the biosorption yield were investigated in a batch process. It was observed that the biosorption is a rapid process with an equilibrium time less than 10 minutes for all the bio sorbents. The efficiencies were found to be close to each other and measured maximum efficiencies were 93,30 percent for rose residue, 94,1 for prina and 98,4 for tea residue. In a temperature range of 283 and 313 K, the adsorption decreased with increasing temperature almost in a similar way. In a pH range of 2-10, increasing pH enhanced biosorption efficiency up to pH=7 and then the efficiency remained constant in a similar path for all the biosorbents. Increasing stirring speed from 360 to 720 rpm enhanced slightly the biosorption efficiency almost at the same ratio for all bio sorbents. Increasing particle size decreased the efficiency for all biosorbent; however the most negatively effected biosorbent was prina with a decrease in biosorption efficiency from about 84 percent to 40 with an increase in the nominal particle size 0,181 mm to 1,05 while the least effected one, tea residue, went down from about 97 percent to 87,5. The biosorption efficiencies of all the bio sorbents increased with increasing biosorbent dose in the range of 1,5 to 15,0 g/L in a similar manner. The fit of the experimental results to the adsorption isotherms proved that the biosorption process for all the bio sorbents can be represented best by Freundlich model. The kinetic analysis showed that all the processes fit very well to pseudo second order rate model. The thermodynamics calculations gave ∆G values between -8636 J mol-1 and -5378 for tea residue, -5313 and -3343 for rose residue, and -5701 and -3642 for prina with a ∆H values of -39516 J mol-1, -23660 and -26190, and ∆S values of -108.8 J mol-1 K-1, -64,0, -72,0 respectively, showing spontaneous and exothermic character of the processes. An empirical biosorption model in the following form was derived for each biosorbent as function of the parameters and time, taking into account the form of kinetic model, with regression coefficients over 0.9990 where At is biosorbtion efficiency at any time and Ae is the equilibrium efficiency, t is adsorption period as s, ko a constant, pH the initial acidity of biosorption medium, w the stirring speed as s-1, S the biosorbent dose as g L-1, D the particle size as m, and a, b, c, and e are the powers of the parameters, respectively, E a constant containing activation energy and T the temperature as K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation" title="radiation">radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=diosorption" title=" diosorption"> diosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=thallium" title=" thallium"> thallium</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20modelling" title=" empirical modelling"> empirical modelling</a> </p> <a href="https://publications.waset.org/abstracts/12849/a-comparison-of-biosorption-of-radionuclides-tl-201-on-different-biosorbents-and-their-empirical-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> The Concentration of Natural Alpha Emitters Radionuclides in Fish and Their Contribution to the Internal Dose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wagner%20Pereira">Wagner Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Alphonse%20Kelecom"> Alphonse Kelecom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining can impact the environment, and the major impact of some mining activities is the radiological impact. In human populations, such impact is well studied and regulated. For biota, this assessment always had as focus the protection of human food chain. The protection of biota itself is a new approach, still developing. In order to contribute to this new approach, fish collecting was carried out in areas of naturally occurring radioactive materials (NORM), where a uranium mine is in decommissioning phase. The activity concentrations were analyzed, in Bq/kg wet weight, for Uranium (Unat), Th-232 and Ra-226 in the lambari fish Astyanax bimaculatus L. (omnivorous fish) and in the traíra fish Hoplias malabaricus Bloch, 1794 (carnivorous fish). Seven composite samples (that is: a sufficient number of individuals to reach at least 2 kg of fresh weight) were collected every six months between 2013 and 2015. The mean activity concentrations (AC) for uranium ranged from 1.12 (lambari) to 0.60 (lungfish). For Th, variations ranged from 0.30 to 0.05 (lambari and traíra, respectively). Finally, the Ra-226 means ranged between 0.08 and 0.03. No temporal trends of accumulation could be identified. Systematically, the AC values of radionuclides were higher in omnivorous fish when compared to the carnivore ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biota%20dose" title="biota dose">biota dose</a>, <a href="https://publications.waset.org/abstracts/search?q=NORM" title=" NORM"> NORM</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a> </p> <a href="https://publications.waset.org/abstracts/60939/the-concentration-of-natural-alpha-emitters-radionuclides-in-fish-and-their-contribution-to-the-internal-dose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Tajadod">Maryam Tajadod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20metastases" title="bone metastases">bone metastases</a>, <a href="https://publications.waset.org/abstracts/search?q=lutetium-177" title=" lutetium-177"> lutetium-177</a>, <a href="https://publications.waset.org/abstracts/search?q=radium-223" title=" radium-223"> radium-223</a>, <a href="https://publications.waset.org/abstracts/search?q=actinium-225" title=" actinium-225"> actinium-225</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title=" absorbed dose"> absorbed dose</a> </p> <a href="https://publications.waset.org/abstracts/149268/assessment-of-the-radiation-absorbed-dose-produced-by-lu-177-ra-223-ac-225-for-metastatic-prostate-cancer-in-a-bone-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Tadevosyan">A. H. Tadevosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mayrapetyan"> S. K. Mayrapetyan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20B.%20Tavakalyan"> N. B. Tavakalyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Pyuskyulyan"> K. I. Pyuskyulyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Hovsepyan"> A. H. Hovsepyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Sergeeva"> S. N. Sergeeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media–plant due to counter ions variation in the polymeric sorbents. As the research object, Japanese basil-Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media–plant system as well as accumulation in the plants has been cleared up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioceaseum" title="radioceaseum">radioceaseum</a>, <a href="https://publications.waset.org/abstracts/search?q=Japanese%20basil" title=" Japanese basil"> Japanese basil</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-plant%20system" title=" soil-plant system"> soil-plant system</a> </p> <a href="https://publications.waset.org/abstracts/7057/regulation-of-transfer-of-137cs-by-polymeric-sorbents-for-grow-ecologically-sound-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Study of the Transport of ²²⁶Ra Colloidal in Mining Context Using a Multi-Disciplinary Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Reymond">Marine Reymond</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Descostes"> Michael Descostes</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Muguet"> Marie Muguet</a>, <a href="https://publications.waset.org/abstracts/search?q=Clemence%20Besancon"> Clemence Besancon</a>, <a href="https://publications.waset.org/abstracts/search?q=Martine%20Leermakers"> Martine Leermakers</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Beaucaire"> Catherine Beaucaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Billon"> Sophie Billon</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Patrier"> Patricia Patrier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ²²⁶Ra is one of the radionuclides resulting from the disintegration of ²³⁸U. Due to its half-life (1600 y) and its high specific activity (3.7 x 1010 Bq/g), ²²⁶Ra is found at the ultra-trace level in the natural environment (usually below 1 Bq/L, i.e. 10-13 mol/L). Because of its decay in ²²²Rn, a radioactive gas with a shorter half-life (3.8 days) which is difficult to control and dangerous for humans when inhaled, ²²⁶Ra is subject to a dedicated monitoring in surface waters especially in the context of uranium mining. In natural waters, radionuclides occur in dissolved, colloidal or particular forms. Due to the size of colloids, generally ranging between 1 nm and 1 µm and their high specific surface areas, the colloidal fraction could be involved in the transport of trace elements, including radionuclides in the environment. The colloidal fraction is not always easy to determine and few existing studies focus on ²²⁶Ra. In the present study, a complete multidisciplinary approach is proposed to assess the colloidal transport of ²²⁶Ra. It includes water sampling by conventional filtration (0.2µm) and the innovative Diffusive Gradient in Thin Films technique to measure the dissolved fraction (<10nm), from which the colloidal fraction could be estimated. Suspended matter in these waters were also sampled and characterized mineralogically by X-Ray Diffraction, infrared spectroscopy and scanning electron microscopy. All of these data, which were acquired on a rehabilitated former uranium mine, allowed to build a geochemical model using the geochemical calculation code PhreeqC to describe, as accurately as possible, the colloidal transport of ²²⁶Ra. Colloidal transport of ²²⁶Ra was found, for some of the sampling points, to account for up to 95% of the total ²²⁶Ra measured in water. Mineralogical characterization and associated geochemical modelling highlight the role of barite, a barium sulfate mineral well known to trap ²²⁶Ra into its structure. Barite was shown to be responsible for the colloidal ²²⁶Ra fraction despite the presence of kaolinite and ferrihydrite, which are also known to retain ²²⁶Ra by sorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colloids" title="colloids">colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20context" title=" mining context"> mining context</a>, <a href="https://publications.waset.org/abstracts/search?q=radium" title=" radium"> radium</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a> </p> <a href="https://publications.waset.org/abstracts/148914/study-of-the-transport-of-226ra-colloidal-in-mining-context-using-a-multi-disciplinary-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Cesium 137 Leaching from Soils of Territories, Polluted by Radionuclides </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Vasilenkov">S. V. Vasilenkov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Demina"> O. N. Demina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chernobyl NPP accident is the biggest in history of nuclear energetic. Bryansk region of Russia was exposed by the most intensive radiation pollution. For that, we made some researches in order to find the methods of soil rehabilitation on territories, polluted by radionuclides with the means of Cesium 137 leaching by watering. For experiments we took the soil from the upper more polluted 10 cm layer of different species. Cesium 137 leaching was made by different methods in washing columns. Washout of Cesium was made by periodical cycles in terms of 4-6 days. In experiments with easy argillaceous soil with start specific radioactivity 4158 bk/kg through 17 cycles the effective reducing was achieved and contained 1512 bk/kg. Besides, results of researches showed, that in the first 6-10 cycles we can see reducing of washing rate but after application of intensificators: ultrasound water processing, aerification, application of fertilizers (KCl), lime, freezing, we can see increasing of Cesium 137 leaching. The experimental investigations in washout of Cesium (Cs) – 137 from the soil were carried out in the field and laboratorial conditions during its freezing and melting. The experiments showed, that washout of Cesium (Cs) – 137 from the soil is rather high after freezing, than non-frozen soil is. And it conforms to washout of Cesium, made under the influence of the intensificaters. This fact allows to recommend chip and easy to construct technically arrangement for regulation of the snow-melt runoff for rehabilitation of the radioactive impoundment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesium%20137%20leaching" title=" Cesium 137 leaching"> Cesium 137 leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/2351/cesium-137-leaching-from-soils-of-territories-polluted-by-radionuclides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Analyzing the Contamination of Some Food Crops Due to Mineral Deposits in Ondo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Chinyere%20Nwankpa">Alexander Chinyere Nwankpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nneka%20Ngozi%20Nwankpa"> Nneka Ngozi Nwankpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Nigeria, the Federal government is trying to make sure that everyone has access to enough food that is nutritiously adequate and safe. But in the southwest of Nigeria, notably in Ondo State, the most valuable minerals such as oil and gas, bitumen, kaolin, limestone talc, columbite, tin, gold, coal, and phosphate are abundant. Therefore, some regions of Ondo State are now linked to large quantities of natural radioactivity as a result of the mineral presence. In this work, the baseline radioactivity levels in some of the most important food crops in Ondo State were analyzed, allowing for the prediction of probable radiological health impacts. To this effect, maize (Zea mays), yam (Dioscorea alata) and cassava (Manihot esculenta) tubers were collected from the farmlands in the State because they make up the majority of food's nutritional needs. Ondo State was divided into eight zones in order to provide comprehensive coverage of the research region. At room temperature, the maize (Zea mays), yam (Dioscorea alata), and cassava (Manihot esculenta) samples were dried until they reached a consistent weight. They were pulverized, homogenized, and 250 g packed in a 1-liter Marinelli beaker and kept for 28 days to achieve secular equilibrium. The activity concentrations of Radium-226 (Ra-226), Thorium-232 (Th-232), and Potassium-40 (K-40) were determined in the food samples using Gamma-ray spectrometry. Firstly, the Hyper Pure Germanium detector was calibrated using standard radioactive sources. The gamma counting, which lasted for 36000s for each sample, was carried out in the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria. The mean activity concentration of Ra-226, Th-232 and K-40 for yam were 1.91 ± 0.10 Bq/kg, 2.34 ± 0.21 Bq/kg and 48.84 ± 3.14 Bq/kg, respectively. The content of the radionuclides in maize gave a mean value of 2.83 ± 0.21 Bq/kg for Ra-226, 2.19 ± 0.07 Bq/kg for Th-232 and 41.11 ± 2.16 Bq/kg for K-40. The mean activity concentrations in cassava were 2.52 ± 0.31 Bq/kg for Ra-226, 1.94 ± 0.21 Bq/kg for Th-232 and 45.12 ± 3.31 Bq/kg for K-40. The average committed effective doses in zones 6-8 were 0.55 µSv/y for the consumption of yam, 0.39 µSv/y for maize, and 0.49 µSv/y for cassava. These values are higher than the annual dose guideline of 0.35 µSv/y for the general public. Therefore, the values obtained in this work show that there is radiological contamination of some foodstuffs consumed in some parts of Ondo State. However, we recommend that systematic and appropriate methods also need to be established for the measurement of gamma-emitting radionuclides since these constitute important contributors to the internal exposure of man through ingestion, inhalation, or wound on the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a> </p> <a href="https://publications.waset.org/abstracts/163110/analyzing-the-contamination-of-some-food-crops-due-to-mineral-deposits-in-ondo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Visetpotjanakit">S. Visetpotjanakit</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Khrautongkieo"> C. Khrautongkieo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting &sup3;H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, &sup1;&sup3;⁴Cs and &sup1;&sup3;⁷Cs and developed radiochemical techniques for analysing &sup1;&sup3;⁴Cs, &sup1;&sup3;⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained &lsquo;Accepted&rsquo; statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=international%20atomic%20energy%20agency" title="international atomic energy agency">international atomic energy agency</a>, <a href="https://publications.waset.org/abstracts/search?q=proficiency%20test" title=" proficiency test"> proficiency test</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20monitoring" title=" radiation monitoring"> radiation monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater" title=" seawater"> seawater</a> </p> <a href="https://publications.waset.org/abstracts/93787/participation-in-iaea-proficiency-test-to-analyse-cobalt-strontium-and-caesium-in-seawater-using-direct-counting-and-radiochemical-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Distribution of Gamma-Radiation Levels in Core Sediment Samples in Gulf of İzmir, Eastern Aegean Sea, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Kurt">D. Kurt</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20F.%20Barut"> İ. F. Barut</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20%C3%9C.%20Y%C3%BCm%C3%BCn"> Z. Ü. Yümün</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kam"> E. Kam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After development of the industrial revolution, industrial plants and settlements have spread widely on the sea coasts. This concentration also brings environmental pollution in the sea. This study focuses on the Gulf of İzmir where is located in West of Turkey and it is a fascinating natural gulf of the Eastern Aegean Sea. Investigating marine current sediment is extremely important to detect pollution. Natural radionuclides’ pollution of the marine environment which is also known as a significant environmental anxiety. Ground drilling cores (the depth of each sediment is variant) were collected from the Gulf of İzmir’s four different locations which were Karşıyaka, İnciraltı, Çeşmealtı and Bayraklı. These sediment cores were put in preserving bags with weight around 1 kg, and they were dried at room temperature in a week for moisture removal. Then, they were sieved with 1 mm sieve holes, and finally these powdered samples were relocation to polyethylene Marinelli beakers of 100 ml versions. Each prepared sediment was waited to reach radioactive equilibrium between uranium and thorium for 40 days. Gamma spectrometry measurements were settled using a HPG (High- Purity Germanium) semiconductor detector. Semiconductor detectors are very good at separating power of the energy, they are easily able to differentiate peaks that are pretty close to each other. That is why, gamma spectroscopy’s usage is common for the determination of the activities of U - 238, Th - 232, Ra - 226, Cr - 137 and K - 40 in Bq kg⁻¹. In this study, the results display that the average concentrations of activities’ values are in respectively; 2.2 ± 1.5 Bq/ kg⁻¹, 0.98 ± 0.02 Bq/ kg⁻¹, 8 ± 0.96 Bq/ kg⁻¹, 0.93 ± 0.14 Bq/ kg⁻¹, and 76.05 ± 0.93 Bq/ kg⁻¹. The outcomes of the study are able to be used as a criterion for forthcoming research and the obtained data would be pragmatic for radiological mapping of the precise areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma" title="gamma">gamma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulf%20of%20%C4%B0zmir%20%28Eastern%20Aegean%20Sea-Turkey%29" title=" Gulf of İzmir (Eastern Aegean Sea-Turkey)"> Gulf of İzmir (Eastern Aegean Sea-Turkey)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20radionuclides" title=" natural radionuclides"> natural radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/48225/distribution-of-gamma-radiation-levels-in-core-sediment-samples-in-gulf-of-izmir-eastern-aegean-sea-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Sharma">Anil Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Mahur"> Ajay Kumar Mahur</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Sonkawade"> R. G. Sonkawade</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Sharma"> A. C. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Prasad"> R. Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20radioactivity" title="natural radioactivity">natural radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radium%20equivalent%20activity" title=" radium equivalent activity"> radium equivalent activity</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose%20rate" title=" absorbed dose rate"> absorbed dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20ray%20spectroscopy" title=" gamma ray spectroscopy "> gamma ray spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/26839/measurement-of-radon-exhalation-rate-natural-radioactivity-and-radiation-hazard-assessment-in-soil-samples-from-the-surrounding-area-of-kasimpur-thermal-power-plant-kasimpur-u-p-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> The Influence of Phosphate Fertilizers on Radiological Situation of Cultivated Lands: ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs Concentrations in Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Szaci%C5%82owski">Grzegorz Szaciłowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Konop"> Marta Konop</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%C5%82gorzata%20Dymecka"> Małgorzata Dymecka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20O%C5%9Bko"> Jakub Ośko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1996, the European Council Directive 96/29/EURATOM pointed phosphate fertilizers to have a potentially negative influence on the environment from the radiation protection point of view. Fertilizers along with irrigation and crop rotation were the milestones that allowed to increase agricultural productivity. Firstly based on natural materials such as compost, manure, fish processing waste, etc., and since the 19th century created synthetically, fertilizers caused a boom in crop yield and helped to propel global food production, especially after World War II. In this work the concentrations of ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs in selected fertilizers and soil samples were determined. The results were used to calculate the annual addition of natural radionuclides and increment of the external radiation exposure caused by the use of studied fertilizers. Soils intended for different types of crops were sampled in early spring when no vegetation had occurred yet. Analysed fertilizers were those with which the soil was previously fertilized. For gamma radionuclides, a high purity germanium detector GX3520 from Canberra was used. The polonium concentration was determined by radiochemical separation followed by measurement by means of alpha spectrometry. The spectrometer used in this study was equipped with 450 cm² PIPS detector from Canberra. Obtained results showed significant differences in radionuclide composition between phosphate and nitrogenous fertilizers (e.g. the radium equivalent activity for phosphate fertilizer was 207.7 Bq/kg in comparison to <5.6 Bq/kg for nitrogenous fertilizer). The calculated increase of external radiation exposure due to use of phosphate fertilizer ranged between 3.4 and 5.4 nG/h, which represents up to 10% of the polish average outdoor exposure due to terrestrial gamma radiation (45 nGy/h). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B2%C2%B9%E2%81%B0Po" title="²¹⁰Po">²¹⁰Po</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20spectrometry" title=" alpha spectrometry"> alpha spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title=" gamma spectrometry"> gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20fertilizer" title=" phosphate fertilizer"> phosphate fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/143407/the-influence-of-phosphate-fertilizers-on-radiological-situation-of-cultivated-lands-21po-226ra-232th-4k-and-137cs-concentrations-in-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radionuclides&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radionuclides&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radionuclides&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10