CINXE.COM

Joan Adler - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Joan Adler - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="7H47oMX9dYmO-JAMkrJhfK-QQRgaow1PdjKcUSg--2L-Jx-Qt1dSKgdFhvFuQjOE6E6YjcrkPr_WD9jVc43nPg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="joan adler" /> <meta name="description" content="Joan Adler: 11 Followers, 3 Following, 233 Research papers. Research interests: Materials Science &amp; Engineering, Statistical Physics Of Complex Systems, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b092bf3a3df71cf13feee7c143e83a57eb6b94fb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14016,"monthly_visitors":"99 million","monthly_visitor_count":99567017,"monthly_visitor_count_in_millions":99,"user_count":283019692,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739819154000); window.Aedu.timeDifference = new Date().getTime() - 1739819154000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/AdlerJoan" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-c0b60aedadfb9d46b698730fbbcb2e70645c886b405d825adeba3a031c02455d.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":72355,"name":"Materials Science \u0026 Engineering","url":"https://www.academia.edu/Documents/in/Materials_Science_and_Engineering-1"},{"id":21565,"name":"Statistical Physics Of Complex Systems","url":"https://www.academia.edu/Documents/in/Statistical_Physics_Of_Complex_Systems"},{"id":6400,"name":"Photocatalysts","url":"https://www.academia.edu/Documents/in/Photocatalysts"},{"id":4591,"name":"Nanophotonics","url":"https://www.academia.edu/Documents/in/Nanophotonics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/AdlerJoan&quot;,&quot;location&quot;:&quot;/AdlerJoan&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AdlerJoan&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-36306527-e0f5-4efb-b2b7-f6bdecd660a1"></div> <div id="ProfileCheckPaperUpdate-react-component-36306527-e0f5-4efb-b2b7-f6bdecd660a1"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Joan Adler</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Joan" data-follow-user-id="34096021" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="34096021"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">11</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/AdlerJoan/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://terengganu.academia.edu/MohdHasmizamRazali"><img class="profile-avatar u-positionAbsolute" alt="Mohd Hasmizam Razali" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/38934/12987/15920970/s200_mohd_hasmizam.razali.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://terengganu.academia.edu/MohdHasmizamRazali">Mohd Hasmizam Razali</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universiti Malaysia Terengganu</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uca-fr.academia.edu/AlbertoPimpinelli"><img class="profile-avatar u-positionAbsolute" alt="Alberto Pimpinelli" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/42362/2914044/7136866/s200_alberto.pimpinelli.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uca-fr.academia.edu/AlbertoPimpinelli">Alberto Pimpinelli</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Université Clermont Auvergne</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://clarku.academia.edu/SergioGranados"><img class="profile-avatar u-positionAbsolute" alt="Sergio Granados" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/168129/61211/65517/s200_sergio.granados.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://clarku.academia.edu/SergioGranados">Sergio Granados</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Clark University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://illinois.academia.edu/KiranDasari"><img class="profile-avatar u-positionAbsolute" alt="Kiran Dasari" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/1693440/585320/3191167/s200_kiran.dasari.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://illinois.academia.edu/KiranDasari">Kiran Dasari</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Illinois at Urbana-Champaign</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://inserm.academia.edu/MarcSantolini"><img class="profile-avatar u-positionAbsolute" alt="Marc Santolini" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2673853/858797/19788297/s200_marc.santolini.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://inserm.academia.edu/MarcSantolini">Marc Santolini</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Inserm</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://selcuk.academia.edu/HandanGulce"><img class="profile-avatar u-positionAbsolute" alt="Handan Gulce" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/3857305/1417101/1738965/s200_handan.gulce.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://selcuk.academia.edu/HandanGulce">Handan Gulce</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Selcuk University (Selçuk Üniversitesi)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://northwestern.academia.edu/MarcWalton"><img class="profile-avatar u-positionAbsolute" alt="Marc Walton" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/10443208/5217428/5970342/s200_marc.walton.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://northwestern.academia.edu/MarcWalton">Marc Walton</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Northwestern University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://iisc.academia.edu/ChandraPerugu"><img class="profile-avatar u-positionAbsolute" alt="CHANDRA S PERUGU" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/12759090/10027122/11184381/s200_chandra.perugu.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://iisc.academia.edu/ChandraPerugu">CHANDRA S PERUGU</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Indian Institute of Science</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://universidaddelvallecolombia.academia.edu/EdgarEduardoMosqueraVargas"><img class="profile-avatar u-positionAbsolute" alt="Edgar Eduardo Mosquera Vargas" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/28374511/38776721/32322418/s200_edgar_eduardo.mosquera_vargas.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://universidaddelvallecolombia.academia.edu/EdgarEduardoMosqueraVargas">Edgar Eduardo Mosquera Vargas</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad del Valle - Colombia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://wsu.academia.edu/MuhammadKhusairyBakri"><img class="profile-avatar u-positionAbsolute" alt="Muhammad Khusairy Bakri" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/30063857/8694175/11810676/s200_muhammad_khusairy.bakri.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://wsu.academia.edu/MuhammadKhusairyBakri">Muhammad Khusairy Bakri</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Washington State University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34096021" href="https://www.academia.edu/Documents/in/Materials_Science_and_Engineering-1"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/AdlerJoan&quot;,&quot;location&quot;:&quot;/AdlerJoan&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AdlerJoan&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Materials Science \u0026 Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c11d8f61-a17e-4a6a-9df6-50dfbb0cf174"></div> <div id="Pill-react-component-c11d8f61-a17e-4a6a-9df6-50dfbb0cf174"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34096021" href="https://www.academia.edu/Documents/in/Statistical_Physics_Of_Complex_Systems"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Statistical Physics Of Complex Systems&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c7e7bdda-2280-4880-8b7b-fe954dd4d4a7"></div> <div id="Pill-react-component-c7e7bdda-2280-4880-8b7b-fe954dd4d4a7"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34096021" href="https://www.academia.edu/Documents/in/Photocatalysts"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Photocatalysts&quot;]}" data-trace="false" data-dom-id="Pill-react-component-8269b6fa-d1b7-4c29-850f-52c4ed2a24ca"></div> <div id="Pill-react-component-8269b6fa-d1b7-4c29-850f-52c4ed2a24ca"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34096021" href="https://www.academia.edu/Documents/in/Nanophotonics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Nanophotonics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-be9e27f8-7e09-4e39-aacd-2a7b11f7cacf"></div> <div id="Pill-react-component-be9e27f8-7e09-4e39-aacd-2a7b11f7cacf"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="34096021" href="https://www.academia.edu/Documents/in/Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c0a1d960-ceee-4800-aeb7-159e914feb2f"></div> <div id="Pill-react-component-c0a1d960-ceee-4800-aeb7-159e914feb2f"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Joan Adler</h3></div><div class="js-work-strip profile--work_container" data-work-id="126758695"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126758695/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_Helium_3"><img alt="Research paper thumbnail of Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3" class="work-thumbnail" src="https://attachments.academia-assets.com/120587858/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126758695/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_Helium_3">Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 12, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid 3 He in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm 3 . From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d200553e8a0b41f7911650cdd721101" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:120587858,&quot;asset_id&quot;:126758695,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/120587858/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126758695"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126758695"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126758695; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126758695]").text(description); $(".js-view-count[data-work-id=126758695]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126758695; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126758695']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d200553e8a0b41f7911650cdd721101" } } $('.js-work-strip[data-work-id=126758695]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126758695,"title":"Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3","internal_url":"https://www.academia.edu/126758695/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_Helium_3","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":120587858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587858/thumbnails/1.jpg","file_name":"0603323.pdf","download_url":"https://www.academia.edu/attachments/120587858/download_file","bulk_download_file_name":"Path_integral_Monte_Carlo_study_of_phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587858/0603323-libre.pdf?1735861510=\u0026response-content-disposition=attachment%3B+filename%3DPath_integral_Monte_Carlo_study_of_phono.pdf\u0026Expires=1739822753\u0026Signature=FalTXmVLYSF9GhZ0Vywc8WOQ0yhBzEwsOk3UwnuFMpOuQyIXpZ2PRPPQucQ7Gg1UN7lPBaBMmIg5zRtw0vblh2bBgoQnAm~fiJMQpm0H1PyCv6H~X3vInWP8MLbQOOR04nl8x9TsLuZfAxY4bQfXevzPYnpoXO-aSLIm9a81s1zo4-qMhfKXa13o8CIYKdq88Bc3guK2dT3dxjMxodQWaOZVMVO-BHOkYUS-O~LayIqnNYYCRdp-x3x31i-0tz89IJQ-uAL1CYjcPKgSH-t5geIEPDMVtW85aoQ1z5d1r~2DBAKDm~wrcpoqPDF3jTkfx~qQNE4NcqjC9uN2y1fV4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120587857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587857/thumbnails/1.jpg","file_name":"0603323.pdf","download_url":"https://www.academia.edu/attachments/120587857/download_file","bulk_download_file_name":"Path_integral_Monte_Carlo_study_of_phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587857/0603323-libre.pdf?1735861513=\u0026response-content-disposition=attachment%3B+filename%3DPath_integral_Monte_Carlo_study_of_phono.pdf\u0026Expires=1739822753\u0026Signature=Y0UeGLfNLsIgQ9XBoj8dVUlu-PFMqk3F3LOahunYCNvuv3zACu8-0iK0FNLKPphtEip4NjqchuRSQFJv~VdT7EQcex~nzdmiP44TD6jQQ-1NfxARiHdygjBiXlaNAWLNMFzPOhwEJez08KW3NgImPuRflBGy5jUA3TjEMlSMQKXMDpDTYtmI7ybmMVmxJzKLjoqjpswiWwfAcCDpJ8MJO-NvNpKB46L-SsFuYzMkspeE1UwDEznh7pQZaHtNo1dvEHyWn-u6vgrF8SL-GzhtKBnO~FcgCCNimqFpy3wEQkbRwfD-heVZYnbDNWr1eYUdUFVU20raFkWxNHG4wxCsSg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126758694"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126758694/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_II_Thermodynamic_melting"><img alt="Research paper thumbnail of Molecular dynamics study of melting of the bcc metal vanadium. II. Thermodynamic melting" class="work-thumbnail" src="https://attachments.academia-assets.com/120587855/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126758694/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_II_Thermodynamic_melting">Molecular dynamics study of melting of the bcc metal vanadium. II. Thermodynamic melting</a></div><div class="wp-workCard_item"><span>Physical review</span><span>, Nov 3, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We studied the structural, transport and energetic properties of slabs made of 27 atomic layers with a free surface. We investigated premelting phenomena at the low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the temperature increases, the V(111) surface disorders first, then the V(100) surface, while the V(110) surface remains stable up to the melting temperature. Also, as the temperature increases, the disorder spreads from the surface layer into the bulk, establishing a thin quasiliquid film in the surface region. We conclude that the hierarchy of premelting phenomena is inversely proportional to the surface atomic density, being most pronounced for the V(111) surface which has the lowest surface density. Simulation details We model the melting of vanadium with a free surface using molecular dynamics (MD) simulations in a canonical ensemble. The many-body</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0402ece824aac448c119d140c48beb0a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:120587855,&quot;asset_id&quot;:126758694,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/120587855/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126758694"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126758694"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126758694; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126758694]").text(description); $(".js-view-count[data-work-id=126758694]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126758694; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126758694']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0402ece824aac448c119d140c48beb0a" } } $('.js-work-strip[data-work-id=126758694]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126758694,"title":"Molecular dynamics study of melting of the bcc metal vanadium. II. Thermodynamic melting","internal_url":"https://www.academia.edu/126758694/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_II_Thermodynamic_melting","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":120587855,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587855/thumbnails/1.jpg","file_name":"0305082.pdf","download_url":"https://www.academia.edu/attachments/120587855/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587855/0305082-libre.pdf?1735861519=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=FMCIEmly14YzjyU-I4JgWqX4mIBIloDBBWtOhEi0kC7c48Jnkx1s~rbyNY40LNVfVrehlz~eoPXiLrH-oU6EmcVITxEBmHd2ocf1DJv-LEHp3T3z886bYZqbu1TL4YD4h7nIPbzpVQvyT8GnQiNa7eY09sJhSvwrAYHacptd-jddloiIjXyO9AX-phbmYh466~d~sgzuWew5y0eHYnco8ezNI2QKeiXupfOmBOH34Mvi8-JMgYpGtUPo2vxh9ZpuGy2oomIzVDAtwMQgsfbXwcGZPLwBrbmEtbwlZCv9upv6HLMefn5OZRL80XgHiBLRFhBONkICLClg3k7jgX7gkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120587856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587856/thumbnails/1.jpg","file_name":"0305082.pdf","download_url":"https://www.academia.edu/attachments/120587856/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587856/0305082-libre.pdf?1735861521=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=al5hajOwgOOsuY1JpsNppZwcRJGRbXl4ZEoZT4AU2kUYCUoJFeHkompKg~WHV3m~z1abQnCgOrlNG8akvTBvfSmiZNhiAi1pdqJQk6Q2P49WZeNq6uOClJI9IeB-Q9Ts93aImIxnug7gw~gzsN8Z1vnUkI~08yhqgkZ2FUu-ZhGqE4v9CdY3JDAlTBWth04-8gx~m1IfW5PjBnRZE4MHyOgVNEmb-2aFerIR2s~XutuS~J5QOPVyWnPYPpLmQ4SgOKRiyxn29M-OSC6vvdKZ11i3UnKBGDrsm2O202rIND3F4XVh6TMHy61V4Gcp6pGU44Daj0QUtozbnfq9O0lWPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126758692"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126758692/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_I_Mechanical_melting"><img alt="Research paper thumbnail of Molecular dynamics study of melting of the bcc metal vanadium. I. Mechanical melting" class="work-thumbnail" src="https://attachments.academia-assets.com/120587852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126758692/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_I_Mechanical_melting">Molecular dynamics study of melting of the bcc metal vanadium. I. Mechanical melting</a></div><div class="wp-workCard_item"><span>Physical review</span><span>, Nov 3, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present molecular dynamics simulations of the homogeneous (mechanical) melting transition of a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present molecular dynamics simulations of the homogeneous (mechanical) melting transition of a bcc metal, vanadium. We study both the nominally perfect crystal as well as one that includes point defects. According to the Born criterion, a solid cannot be expanded above a critical volume, at which a &#39;rigidity catastrophe&#39; occurs. This catastrophe is caused by the vanishing of the elastic shear modulus. We found that this critical volume is independent of the route by which it is reached whether by heating the crystal, or by adding interstitials at a constant temperature which expand the lattice. Overall, these results are similar to what was found previously for an fcc metal, copper. The simulations establish a phase diagram of the mechanical melting temperature as a function of the concentration of interstitials. Our results show that the Born model of melting applies to bcc metals in both the nominally perfect state and in the case where point defects are present.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a28e2b3dcd5b7bf60c544049a4e76f49" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:120587852,&quot;asset_id&quot;:126758692,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/120587852/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126758692"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126758692"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126758692; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126758692]").text(description); $(".js-view-count[data-work-id=126758692]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126758692; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126758692']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a28e2b3dcd5b7bf60c544049a4e76f49" } } $('.js-work-strip[data-work-id=126758692]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126758692,"title":"Molecular dynamics study of melting of the bcc metal vanadium. I. Mechanical melting","internal_url":"https://www.academia.edu/126758692/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_I_Mechanical_melting","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":120587852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587852/thumbnails/1.jpg","file_name":"0304215.pdf","download_url":"https://www.academia.edu/attachments/120587852/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587852/0304215-libre.pdf?1735861520=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=Vj7pdgTSThfri0g3taVGbsr121RqfGH7ojcL~O~~7XSDOI97vwaTjXytQU8YrZ-mt9267mhSjHPufUUSsb6j0uTDaNNZuAQtXPC2BGyHf5aOr7KeZv65KHPRlq9C9oJ35r-8NAKY~Shy0dDZ3zUvwlWfcsiSjdmHoMgtZA6sPSUIA4R7fz-kZ3fWsXBBbXTZCx72iiJ-ziK50BIMM~j8bUtNp-pN62sbreBMdNCJfLUm2l2CNooc9Fyb1jdE~Clq2BTtjuyTuLToUiwatGNTLDcs-brrpXHdPOSrmzdrtgp42UwPt9mpfyHLsMBvEQaDrbtGwzr9Lhf9J3sFArRb1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120587853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587853/thumbnails/1.jpg","file_name":"0304215.pdf","download_url":"https://www.academia.edu/attachments/120587853/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587853/0304215-libre.pdf?1735861518=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=JE7LvM4tV77-ayrN~DMYizrtIJO6~3vafiK2Idp17Kc31rHY3gSXgFK5jRnmxRhWkTVgAPGLooE0r7L~JA6-WER6d0dxvhJ1SKbYW31uP2fL2cnAMJsHX0Il0a6KVTbGtyboQE2arfLh4w~HMyZSPXTpN1EEx4HdRo1uiw6z-ZFl6mJgE4Kw2vrXPfL93ChBM2SbDStZ3uwg2uU3K-g2HZ9i25pGrOdXQ2UCSHP~97zBdHIuJlVg6U6DxCWwGYwzDk7HGCJ3C~2i96T4zDe4T3BTWap1tUtLt0tRE8MQj59AmPjNOR~dQcmWoEWdwGFDwt09LV9eF2qREoSH~j5qdA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608436"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124608436/Developing_the_educational_value_of_visualizations_in_physics"><img alt="Research paper thumbnail of Developing the educational value of visualizations in physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124608436/Developing_the_educational_value_of_visualizations_in_physics">Developing the educational value of visualizations in physics</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Mar 5, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608436"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608436"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608436; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608436]").text(description); $(".js-view-count[data-work-id=124608436]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608436; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608436']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124608436]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608436,"title":"Developing the educational value of visualizations in physics","internal_url":"https://www.academia.edu/124608436/Developing_the_educational_value_of_visualizations_in_physics","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608435"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608435/Atomic_scale_structure_of_disordered_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mrow_mml_msub_mml_mrow_mml_mi_mathvariant_normal_Ga_mml_mi_mml_mrow_mml_mrow_mml_mn_1_mml_mn_mml_mi_mathvariant_normal_mml_mi_mml_mi_mathvariant_italic_x_mml_mi_"><img alt="Research paper thumbnail of Atomic-scale structure of disordered&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;Ga&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;−&lt;/mml:mi&gt;&lt;mml:mi mathvariant=&quot;italic&quot;&gt;x&lt;/mml:mi&gt;..." class="work-thumbnail" src="https://attachments.academia-assets.com/118803213/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608435/Atomic_scale_structure_of_disordered_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mrow_mml_msub_mml_mrow_mml_mi_mathvariant_normal_Ga_mml_mi_mml_mrow_mml_mrow_mml_mn_1_mml_mn_mml_mi_mathvariant_normal_mml_mi_mml_mi_mathvariant_italic_x_mml_mi_">Atomic-scale structure of disordered&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;Ga&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;−&lt;/mml:mi&gt;&lt;mml:mi mathvariant=&quot;italic&quot;&gt;x&lt;/mml:mi&gt;...</a></div><div class="wp-workCard_item"><span>Physical review</span><span>, Apr 15, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Extended x-ray-absorption fine-structure experiments have previously demonstrated that for each c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Extended x-ray-absorption fine-structure experiments have previously demonstrated that for each composition x, the sample average of all nearest-neighbor A-C distances in an A &amp; &quot;B C semiconductor alloy is closer to the values in the pure (x-+0) AC compound than to the composition-weighted (virtual) lattice average. Such experiments do not reveal, however, the distribution of atomic positions in an alloy, so the principle displacement directions and the degrees of correlation among such atomic displacements remain unknown. Here we calculate both structural and thermodynamic properties of Ga&amp; &quot;In&quot;P alloys using an explicit occupationand position-dependent energy functional. The latter is taken as a modified valence force field, carefully fit to structural energies determined by first-principles local-density calculations. Configurational and vibrational degrees of freedom are then treated via the continuous-space Monte Carlo approach. We find good agreement between the calculated and measured mixing enthalpy of the random alloy, nearest-neighbor bond lengths, and temperature-composition phase diagram. In addition, we predict yet unmeasured quantities such as (a) distributions, fluctuations, and moments of firstand second-neighbor bond lengths as well as bond angles, (b) radial distribution functions, (c) the dependence of short-range order on temperature, and (d) the effect of temperature on atomic displacements. Our calculations provide a detailed picture of how atoms are arranged in substitutionally random but positionally relaxed alloys, and o6&#39;er an explanation for the efFects of site correlations, static atomic relaxations, and dynamic vibrations on the phase-diagram and displacement maps. We find that even in a chemically random alloy (where sites are occupied by Ga or In according to a coin toss), there exists a highly correlated static position distribution whereby the P atoms are displaced deterministically in certain high-symmetry directions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c9af6c98c76d7d548a4ab444b9b5c435" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803213,&quot;asset_id&quot;:124608435,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803213/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608435"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608435"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608435; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608435]").text(description); $(".js-view-count[data-work-id=124608435]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608435; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608435']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c9af6c98c76d7d548a4ab444b9b5c435" } } $('.js-work-strip[data-work-id=124608435]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608435,"title":"Atomic-scale structure of disordered\u003cmml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"\u003e\u003cmml:mrow\u003e\u003cmml:msub\u003e\u003cmml:mrow\u003e\u003cmml:mi mathvariant=\"normal\"\u003eGa\u003c/mml:mi\u003e\u003c/mml:mrow\u003e\u003cmml:mrow\u003e\u003cmml:mn\u003e1\u003c/mml:mn\u003e\u003cmml:mi mathvariant=\"normal\"\u003e−\u003c/mml:mi\u003e\u003cmml:mi mathvariant=\"italic\"\u003ex\u003c/mml:mi\u003e...","internal_url":"https://www.academia.edu/124608435/Atomic_scale_structure_of_disordered_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mrow_mml_msub_mml_mrow_mml_mi_mathvariant_normal_Ga_mml_mi_mml_mrow_mml_mrow_mml_mn_1_mml_mn_mml_mi_mathvariant_normal_mml_mi_mml_mi_mathvariant_italic_x_mml_mi_","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803213/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/118803213/download_file","bulk_download_file_name":"Atomic_scale_structure_of_disordered_mml.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803213/fulltext-libre.pdf?1728587150=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_structure_of_disordered_mml.pdf\u0026Expires=1739822753\u0026Signature=Gq2vj0hORTE-9PAnhpxC7D97BUCJwvcWcyfbswPP5sWaJOVHySKOcKbBUbuxL84~sKPqGc0qvZhOUReaZXc8DoTNtocYNSvKObf0vuA9iVQUs0CTZxpV6u4fwc6GxmNd7~NJoRhG26~DNwA21YWxSNaRt-t63y1p58G1zE~rOen-7Q6ThwJhUq~W6BI6IB7n3ydXejKK2jLwomuTEHvb4oL3had2MS-NgxI4a6C-XNf2bv37JE9NCT~gOHO8mWwVR0QZtOUXTKJBAFbn9hgGreRNhAg9ss3OADUHSNewZabYwFsce0IXv6QCgK3X3FAKCABkSf1eNAGceQNgTJzOkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608434/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mmultiscripts_mml_mi_mathvariant_normal_He_mml_mi_mml_mprescripts_mml_none_mml_mn_4_mml_mn_mml_mmultiscripts_mml_math_"><img alt="Research paper thumbnail of Path-integral Monte Carlo study of phonons in the bcc phase of&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mmultiscripts&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;He&lt;/mml:mi&gt;&lt;mml:mprescripts /&gt;&lt;mml:none /&gt;&lt;mml:mn&gt;4&lt;/mml:mn&gt;&lt;/mml:mmultiscripts&gt;&lt;/mml:math&gt;" class="work-thumbnail" src="https://attachments.academia-assets.com/118803186/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608434/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mmultiscripts_mml_mi_mathvariant_normal_He_mml_mi_mml_mprescripts_mml_none_mml_mn_4_mml_mn_mml_mmultiscripts_mml_math_">Path-integral Monte Carlo study of phonons in the bcc phase of&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mmultiscripts&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;He&lt;/mml:mi&gt;&lt;mml:mprescripts /&gt;&lt;mml:none /&gt;&lt;mml:mn&gt;4&lt;/mml:mn&gt;&lt;/mml:mmultiscripts&gt;&lt;/mml:math&gt;</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, Jun 28, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid 4 He in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21 cm 3. Both the single-phonon contribution to the dynamic structure factor and the total dynamic structure factor are evaluated. From the dynamic structure factor, we obtain the phonon dispersion relations along the main crystalline directions, [001], [011] and [111]. We calculate both the longitudinal and transverse phonon branches. For the latter, no previous simulations exist. We discuss the differences between dispersion relations resulting from the single-phonon part vs. the total dynamic structure factor. In addition, we evaluate the formation energy of a vacancy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b04b00519722823efe988969900501c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803186,&quot;asset_id&quot;:124608434,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803186/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608434]").text(description); $(".js-view-count[data-work-id=124608434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b04b00519722823efe988969900501c3" } } $('.js-work-strip[data-work-id=124608434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608434,"title":"Path-integral Monte Carlo study of phonons in the bcc phase of\u003cmml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"\u003e\u003cmml:mmultiscripts\u003e\u003cmml:mi mathvariant=\"normal\"\u003eHe\u003c/mml:mi\u003e\u003cmml:mprescripts /\u003e\u003cmml:none /\u003e\u003cmml:mn\u003e4\u003c/mml:mn\u003e\u003c/mml:mmultiscripts\u003e\u003c/mml:math\u003e","internal_url":"https://www.academia.edu/124608434/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mmultiscripts_mml_mi_mathvariant_normal_He_mml_mi_mml_mprescripts_mml_none_mml_mn_4_mml_mn_mml_mmultiscripts_mml_math_","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803186/thumbnails/1.jpg","file_name":"0502108.pdf","download_url":"https://www.academia.edu/attachments/118803186/download_file","bulk_download_file_name":"Path_integral_Monte_Carlo_study_of_phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803186/0502108-libre.pdf?1728587130=\u0026response-content-disposition=attachment%3B+filename%3DPath_integral_Monte_Carlo_study_of_phono.pdf\u0026Expires=1739822753\u0026Signature=JkJUfIF4l87fNjqTR0hvBA3vUERNXGEB3v6IYdRTT4ofmY6j0NHox3kffF97POL04CBQpKHn7Zm~RtGYw9c~Mp1nj1fAnYFAiDY5F38GmnDHbox6xTaKpLBiBOsL~0BaeJVN2oBHRrIHBOMhG7PoIz0cr57nZe5njlWbjmbQ6SWZI4i1ERLY7xs9o17OZcFcQTPJJ2FHLZyYqY4ToHx87127jOQoRp0epXkxqm3OoDfXV5zEb1vUYBT9CmtISj6FUq-uary322DfUEXk1AFUoA4F3DtE4u4xcJvBnHalmlC6FfBBxA69HwEvQUjf4bG05zPzF97Ggq1O7zCbnNGttg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608433"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608433/Visualization_in_the_integrated_SimPhoNy_multiscale_simulation_framework"><img alt="Research paper thumbnail of Visualization in the integrated SimPhoNy multiscale simulation framework" class="work-thumbnail" src="https://attachments.academia-assets.com/118803214/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608433/Visualization_in_the_integrated_SimPhoNy_multiscale_simulation_framework">Visualization in the integrated SimPhoNy multiscale simulation framework</a></div><div class="wp-workCard_item"><span>Computer Physics Communications</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe three distinct approaches to visualization for multiscale materials modelling researc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe three distinct approaches to visualization for multiscale materials modelling research. These have been developed with the framework of the SimPhoNy FP7 EU-project, and complement each other in their requirements and possibilities. All have been integrated via wrappers to one or more of the simulation approaches within the SimPhoNy project. In this manuscript we describe and contrast their features. Together they cover visualization needs from electronic to macroscopic scales and are suited to simulations made on personal computers, workstations or advanced High Performance parallel computers. Examples as well as recommendations for future calculations are presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb2f89a661eedf80cab24c4b4bf6c8d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803214,&quot;asset_id&quot;:124608433,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803214/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608433"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608433"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608433; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608433]").text(description); $(".js-view-count[data-work-id=124608433]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608433; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608433']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb2f89a661eedf80cab24c4b4bf6c8d3" } } $('.js-work-strip[data-work-id=124608433]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608433,"title":"Visualization in the integrated SimPhoNy multiscale simulation framework","internal_url":"https://www.academia.edu/124608433/Visualization_in_the_integrated_SimPhoNy_multiscale_simulation_framework","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803214/thumbnails/1.jpg","file_name":"j.cpc.2018.05.00520241010-1-skuwpi.pdf","download_url":"https://www.academia.edu/attachments/118803214/download_file","bulk_download_file_name":"Visualization_in_the_integrated_SimPhoNy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803214/j.cpc.2018.05.00520241010-1-skuwpi-libre.pdf?1728587138=\u0026response-content-disposition=attachment%3B+filename%3DVisualization_in_the_integrated_SimPhoNy.pdf\u0026Expires=1739822753\u0026Signature=WakWOpAsgVL5N0C6NCcEH~43aA4RJHPybotyKvFY5Bb2085g47ME5RE2ow4BwhDcKQPy8DIjitWL6DdXR-anGkBp1VRkFG89nm2cu4bH8W4zCSVt6kQlIi-2BpNfS8bylJXpSLpHfwglh4TybgJo5AeaIcLELftIYPh1S5bXadR7SbuubtLiWpe6S6Oi-b1lzYwYPJfcxdAatDFwJrbUKKPlrxAQoP4LLC-8JHKe8Y3pq~4rCWb4cItSjNzaoA~-2de~TPv3Bk17YjAERWn8tO3lBbJqf0GIaWfJWQ6U6Jn2gHKcBYOjfwG1cHbCCcMnZzJw~BdWSGLC5gVJwxB~sA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608377/Path_Integral_Monte_Carlo_Study_of_Phonons_in_the_bcc_Phase_of_3He"><img alt="Research paper thumbnail of Path-Integral Monte Carlo Study of Phonons in the bcc Phase of 3He" class="work-thumbnail" src="https://attachments.academia-assets.com/118803160/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608377/Path_Integral_Monte_Carlo_Study_of_Phonons_in_the_bcc_Phase_of_3He">Path-Integral Monte Carlo Study of Phonons in the bcc Phase of 3He</a></div><div class="wp-workCard_item"><span>Journal of Low Temperature Physics</span><span>, Sep 27, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid 4 He in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21 cm 3. Both the single-phonon contribution to the dynamic structure factor and the total dynamic structure factor are evaluated. From the dynamic structure factor, we obtain the phonon dispersion relations along the main crystalline directions, [001], [011] and [111]. We calculate both the longitudinal and transverse phonon branches. For the latter, no previous simulations exist. We discuss the differences between dispersion relations resulting from the single-phonon part vs. the total dynamic structure factor. In addition, we evaluate the formation energy of a vacancy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a20c2e367488eabf6355a0a189c836e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803160,&quot;asset_id&quot;:124608377,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803160/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608377]").text(description); $(".js-view-count[data-work-id=124608377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a20c2e367488eabf6355a0a189c836e9" } } $('.js-work-strip[data-work-id=124608377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608377,"title":"Path-Integral Monte Carlo Study of Phonons in the bcc Phase of 3He","internal_url":"https://www.academia.edu/124608377/Path_Integral_Monte_Carlo_Study_of_Phonons_in_the_bcc_Phase_of_3He","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803160,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803160/thumbnails/1.jpg","file_name":"0502108.pdf","download_url":"https://www.academia.edu/attachments/118803160/download_file","bulk_download_file_name":"Path_Integral_Monte_Carlo_Study_of_Phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803160/0502108-libre.pdf?1728587133=\u0026response-content-disposition=attachment%3B+filename%3DPath_Integral_Monte_Carlo_Study_of_Phono.pdf\u0026Expires=1739822754\u0026Signature=Rcff~EFNkdW-rI5mpRCdZRmtx~7jgk-HGMkh9oIWj683fDV16qjbzUJebmQfDvAHt5cCHlXtKMp7GB-ww46j9IGV~nJIkZgmeHkKujSWlmIyRK6iqhw1vwVISZ0Ce0XNkYWy2eQrpPHWoQ0JRYupifV-Ezz4rop50DP1-Xv8mOmIYyp9mTY0qBZFxkrFuJ3nIUOEo21zYcc7aFwxa9g5O29c5pP3KCkXA5AdGPl7F~F9B4QiNi4ewP3qu4KzS8EEuefXQ9orPxY52A~gK~DrXSI~4XNEfQcJzKAr4RbB9ioQ10iDgx2AiK~0XnZwqX0Y~BCjd4WKqefok4X09J1ggQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118803159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803159/thumbnails/1.jpg","file_name":"0502108.pdf","download_url":"https://www.academia.edu/attachments/118803159/download_file","bulk_download_file_name":"Path_Integral_Monte_Carlo_Study_of_Phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803159/0502108-libre.pdf?1728587135=\u0026response-content-disposition=attachment%3B+filename%3DPath_Integral_Monte_Carlo_Study_of_Phono.pdf\u0026Expires=1739822754\u0026Signature=UcTHQzmqeP8F4hS7p3ukk7At7I-cFPNpsY6FH8G--49d49YBOLdznRI4B28m5y4qRh2XSfenP6ak6Qau18LGUrunGFQ2lAnQRanxlpheHPoyEaaEbDur8ugv4NUQU~JWKFAH5tVxiQLs--BRvhdnaTsvGW9QwBOtOlvtsXd0caxZWl~5byoZxBL~2ybSn32GfJLznuJSG8w1Vs7sTWYt0xsUbnL~dehMt0ILxLjt0x-y1Un3psJesbOezbgYLZekzAQdSRjoACWomD3JSEvh6AmlRF8ph02rc5xCt-971DvhASNN4VejgRlcvuNzY0fkvAs7WrB3JQM33fMzMbI0sw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121133862"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121133862/Israel"><img alt="Research paper thumbnail of Israel" class="work-thumbnail" src="https://attachments.academia-assets.com/116096561/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121133862/Israel">Israel</a></div><div class="wp-workCard_item"><span>ACM SIGGRAPH Computer Graphics</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e97df16ec854a2bb8bd816f5b46d0c00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116096561,&quot;asset_id&quot;:121133862,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116096561/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121133862"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121133862"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121133862; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121133862]").text(description); $(".js-view-count[data-work-id=121133862]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121133862; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121133862']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e97df16ec854a2bb8bd816f5b46d0c00" } } $('.js-work-strip[data-work-id=121133862]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121133862,"title":"Israel","internal_url":"https://www.academia.edu/121133862/Israel","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":116096561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116096561/thumbnails/1.jpg","file_name":"232301.pdf","download_url":"https://www.academia.edu/attachments/116096561/download_file","bulk_download_file_name":"Israel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116096561/232301-libre.pdf?1718630611=\u0026response-content-disposition=attachment%3B+filename%3DIsrael.pdf\u0026Expires=1739822754\u0026Signature=S9txthxYKNL1-3kaVs32uIAuL~PvB6H0Xzq9i9nFDmaVNSudjvgfvudZ8S3lIAjhOFxCuTkVIlnazr6kvWPERB4RqUwfiYA9w-fNwG3ia1K02f1ohUgcpHDVwkX3Oj98YxQMzsgI27eUsFAGVal5XGqWkJUgllFOJCOnebv6l8O2SNE7e3AJpuBzYdh5nNdvt-djHcmDSoXD0TwIdaFjgLnQ4gAshMbUsEdGmL4p~7SKHMWg8Zty1vsbu2KEtrzahLa5IIczQlNdkTWnCCJzMzZkOgxjq7CrfGDhM3Rdxx6v9Lhu~WP-B3XaKJFFOe~T71xzEvFFQqP5qkX47CRCIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116096560,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116096560/thumbnails/1.jpg","file_name":"232301.pdf","download_url":"https://www.academia.edu/attachments/116096560/download_file","bulk_download_file_name":"Israel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116096560/232301-libre.pdf?1718630612=\u0026response-content-disposition=attachment%3B+filename%3DIsrael.pdf\u0026Expires=1739822754\u0026Signature=MUnpKv-ZDtdujjz7zFHz3ad86Bzrv3gAKPH7EymzZoqdEUgyEQAD~TnOH5LslizQYmBwoffGEkgNaAVqMiaRGA7GzfSWlQzYrVax75RELJuOu-52fC1LLJpBQJBqTv7rqYGK-yH~ERR6N0cX-FzLicnITLq~BWyXVniI7PXuCyoazdIGKF2tx9JihQr~tWirLwNowtUAN1xHpNtUfp1ifkOLhfLIskA5F9h4KqzaIDWda~g1DvTconco6u98qHsmNi4rDBCWXBoxrvGjlbGAXNOLXkFEC-Ovt8CZ4eW1ogHL3Vu9REGsi3XFKtK1FSdNRby7bxHxPnJ-Ha1zNr-CiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115145877"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115145877/Visualization_of_electronic_density_of_nanotube_with_AViz"><img alt="Research paper thumbnail of Visualization of electronic density of nanotube with AViz" class="work-thumbnail" src="https://attachments.academia-assets.com/111639682/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115145877/Visualization_of_electronic_density_of_nanotube_with_AViz">Visualization of electronic density of nanotube with AViz</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The spatial volume occupied by an atom depends on its electronic density. Although this density c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The spatial volume occupied by an atom depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent algorithms and packages to calculate it numerically for other materials. Three-dimensional visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. In a recent project, we explored one approach to this: the extension of an analglyphic stereo visualization application based on the AViz package for hydrogen atoms and simple molecules to larger structures such as nanotubes. I will describe these techniques and demonstrate the use of analyglyphic stereo in AViz, [1, 2]. The use of AViz dot-mode visualization for electronic density was first developed in an undergraduate project about the hydrogen atom[3]. We then visualized the electronic density resulting from simulations of larger molecules and solids in the same way. Further studies [4] used a den...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="74e4269b1d3eddaf18939111f63abfdb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111639682,&quot;asset_id&quot;:115145877,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111639682/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115145877"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115145877"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115145877; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115145877]").text(description); $(".js-view-count[data-work-id=115145877]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115145877; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115145877']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "74e4269b1d3eddaf18939111f63abfdb" } } $('.js-work-strip[data-work-id=115145877]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115145877,"title":"Visualization of electronic density of nanotube with AViz","internal_url":"https://www.academia.edu/115145877/Visualization_of_electronic_density_of_nanotube_with_AViz","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":111639682,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111639682/thumbnails/1.jpg","file_name":"omri_a_meytal.pdf","download_url":"https://www.academia.edu/attachments/111639682/download_file","bulk_download_file_name":"Visualization_of_electronic_density_of_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111639682/omri_a_meytal-libre.pdf?1708412563=\u0026response-content-disposition=attachment%3B+filename%3DVisualization_of_electronic_density_of_n.pdf\u0026Expires=1739822754\u0026Signature=gTM5F0fclydzie4820OhbP91wjZKcWQx2fKz-hkVvc~tyAiqYyt81yPH0SsB4e3mlBiBKrt~6dzZvbwNdNJK~WMa9-BKmKBvpst7CvUsr-iS7EffZNSWLrZfJ6p9--Yuul7kwQGEjouB9gPNMKZP2iqrMjys-S1hUJS96xFaqxzIIA~fmoUq0UFw8hb2H9~M5gLEwpUAn-CCdm0BsuHEbjcIrPGKqUF6tT2jjlzPBbrG7asENX8lnJkEtCARRDgeOLw1-wCbpT9Rgqroh3WsD8lYDKU5IawKelIyy6CshJh6mcstcvq7oiUYxmytEElKsCJnYdM2v-v9FzFT8rhWMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":111639681,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111639681/thumbnails/1.jpg","file_name":"omri_a_meytal.pdf","download_url":"https://www.academia.edu/attachments/111639681/download_file","bulk_download_file_name":"Visualization_of_electronic_density_of_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111639681/omri_a_meytal-libre.pdf?1708412563=\u0026response-content-disposition=attachment%3B+filename%3DVisualization_of_electronic_density_of_n.pdf\u0026Expires=1739822754\u0026Signature=T-BMkCRa9BBdJSxWc6ApYgOpml1cetzUgXsaaSv3dKho8grGj6edxXo2zUeGeG9NAc9NxLEwue1EvZ4hrTjtJBT6g-oMIc0Ey-kTiulD~YrzKP0cQiyL3YKgVS2M8bGUy4HmCt83xIcG91YaPEvve8sP0ngO4oDqtmiIOnsbE9-n52U6JDgQhZ6X6ZEhCWoC8LcoRmIfzV0o0KkQG1RqBS8mI2j4xYzUOJOU1LAHB4EGHNcGdthw~zI6vXIA9l18Mm3mlXqVaDtTXpop-d8~mBi9qF1qfyWaCb7TO4~PqP1DqUOYmJ10odIBurJqoN-ji12whdOlvDzD8H94JG~yNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785048"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785048/Localization_Length_Exponent_in_Quantum_Percolation"><img alt="Research paper thumbnail of Localization Length Exponent in Quantum Percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/109908826/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785048/Localization_Length_Exponent_in_Quantum_Percolation">Localization Length Exponent in Quantum Percolation</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Mar 13, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connecting perfect one-dimensional leads to sites i and j on the quantum percolation (QP) model, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connecting perfect one-dimensional leads to sites i and j on the quantum percolation (QP) model, we calculate the transmission coefficient T ij (E) at an energy E near the band center and the averages of Σ ij T ij , Σ ij r 2 ij T ij , and Σ ij r 4 ij T ij to tenth order in the concentration p. In three dimensions, all three series diverge at p q =0.36 +0.01 −0.02 , with exponents γ=0.82 +0.10 −0.15 , γ+2ν, and γ+4ν. We find ν=0.38±0.07, differing from &quot;usual&quot; Anderson localization and violating the bound ν≥2/d of Chayes et al. [Phys. Rev. Lett. 57, 2999 (1986)]. Thus, QP belongs to a new universality class.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c61ab6edf627d8643122d8182d2e172e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908826,&quot;asset_id&quot;:112785048,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908826/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785048"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785048"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785048; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785048]").text(description); $(".js-view-count[data-work-id=112785048]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785048; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785048']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c61ab6edf627d8643122d8182d2e172e" } } $('.js-work-strip[data-work-id=112785048]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785048,"title":"Localization Length Exponent in Quantum Percolation","internal_url":"https://www.academia.edu/112785048/Localization_Length_Exponent_in_Quantum_Percolation","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908826/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/109908826/download_file","bulk_download_file_name":"Localization_Length_Exponent_in_Quantum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908826/viewcontent-libre.pdf?1704218638=\u0026response-content-disposition=attachment%3B+filename%3DLocalization_Length_Exponent_in_Quantum.pdf\u0026Expires=1739822754\u0026Signature=HchRzSsR-sBybOqTxYDzdWjfVfZGL11HDPD047aL8jyD2y9oGyFwFGAbU0mJnShhZSPW~YMIkaTt7PNw4sy9WnjRfayHhWU3JV20qD0X57gEK5wMRo0kzMVvOEmsTn4SNi9zJ1ClGxCpe8z15QGGBphPS0bfYqFg4VSLEgmSwLNlCUO4Cro~Q~xGhpt3tfn-qZMe8sWfQp2V7b1ia6vhQhNi5r8-pr-RxaUwdPejY1nfqdzp9ET1XAClTaEm355C2-U1oLBLkdj5YWb0JEThox8zDiSc4gg2uUM8llIq7Ceylrq-lu0jeMDoEw7bm5iI2Yspg~O3VYU4wsSMdYvKvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109908825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908825/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/109908825/download_file","bulk_download_file_name":"Localization_Length_Exponent_in_Quantum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908825/viewcontent-libre.pdf?1704218639=\u0026response-content-disposition=attachment%3B+filename%3DLocalization_Length_Exponent_in_Quantum.pdf\u0026Expires=1739822754\u0026Signature=FIh8gVUoLYQDWgXPFXTyuhLGX-wYrRs6-hqBhVkOPcZIp6nr~NlffMfOWnkOzevWG5qwtyB5ZVjuBt8BSz9sYIHdi0JFOC7BCh6ygyWfqO26-Uv2k83YqhCT4cfLWBHz9aMsWTHo1BD6i~a8qpn6BlAuSEobVuUns-66aFN0gB6Wup34KpEveqnZJd2aeZVm7wXlQao89as2TyK-ltA7HO52DY50ZufmCOj6bqukTMmkc1zx2sQkxutZ1VQgdpVc3NRw-gvUpQIma8zN294~lZCHkP2mZ6yqLGeHSCJD6cFDCTkrIJ0mmKs8iUecWqmyvCeVZBh-VIai3B4e3T99jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785047/Three_dimensional_visualization_of_simulations_of_liquids_and_solids"><img alt="Research paper thumbnail of Three dimensional visualization of simulations of liquids and solids" class="work-thumbnail" src="https://attachments.academia-assets.com/109908861/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785047/Three_dimensional_visualization_of_simulations_of_liquids_and_solids">Three dimensional visualization of simulations of liquids and solids</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Visualization in three dimensions is invaluable for understanding the nature of condensed and flu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Visualization in three dimensions is invaluable for understanding the nature of condensed and fluid systems, but it is not always easy. In nature it is hard to view sample interiors, but on computers it is possible. We describe and contrast two opposite approaches - “smoke” visualization for viewing interiors of liquid samples and interactive WebGL for solids and molecules. Both are extensions of earlier Technion Computational Physics group projects and complement and are interoperable with the recent SimPhoNy Fp7 project. They require only desktop hardware and software accessible to students. Examples and standalone instructions for both are presented, starting with sample creation and concluding with image galleries.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3cbcbd67205529c79888ae3309da5b81" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908861,&quot;asset_id&quot;:112785047,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908861/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785047]").text(description); $(".js-view-count[data-work-id=112785047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3cbcbd67205529c79888ae3309da5b81" } } $('.js-work-strip[data-work-id=112785047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785047,"title":"Three dimensional visualization of simulations of liquids and solids","internal_url":"https://www.academia.edu/112785047/Three_dimensional_visualization_of_simulations_of_liquids_and_solids","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908861,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908861/thumbnails/1.jpg","file_name":"vin3iop.pdf","download_url":"https://www.academia.edu/attachments/109908861/download_file","bulk_download_file_name":"Three_dimensional_visualization_of_simul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908861/vin3iop-libre.pdf?1704218634=\u0026response-content-disposition=attachment%3B+filename%3DThree_dimensional_visualization_of_simul.pdf\u0026Expires=1739822754\u0026Signature=WB4~YRVZmFPQPvqRmYm~l14Z2uqK7nSdNVN79pu2hn3kIUgqvgURcekXbWXX-xdFzv~cqn65YC9Ci9plNaexykHSEtoBOLq3jzqM-nnFo6gzlrydN0ivdlgGKaaw-sRZV6c89R7abINBRwQiQrebdIxxqIloX5dS6yXuEmxCf3IaOU6cCoENeJ76f5IL-dV9-RjVCMHOUdLywZkU7tIHKWL3PdU~TJbKrBA5~RBRDfKCrUt6TxLntDbZ7N8RXLXRLXng8Kii2-YRCTQhivkFAynXZsu4Tm0rrep7HTRoFj4q2JnY2NrN1S8NNA6K825ev9959joeHVvPKNcEzGC5Hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785046/GPUs_in_a_computational_physics_course"><img alt="Research paper thumbnail of GPUs in a computational physics course" class="work-thumbnail" src="https://attachments.academia-assets.com/109908860/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785046/GPUs_in_a_computational_physics_course">GPUs in a computational physics course</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In an introductory computational physics class of the type that many of us give, time constraints...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In an introductory computational physics class of the type that many of us give, time constraints lead to hard choices on topics. Everyone likes to include their own research in such a class but an overview of many areas is paramount. Parallel programming algorithms using MPI is one important topic. Both the principle and the need to break the &quot;fear barrier&quot; of using a large machine with a queuing system via ssh must be sucessfully passed on. Due to the plateau in chip development and to power considerations future HPC hardware choices will include heavy use of GPUs. Thus the need to introduce these at the level of an introductory course has arisen. Just as for parallel coding, explanation of the benefits and simple examples to guide the hesitant first time user should be selected. Several student projects using GPUs that include how-to pages were proposed at the Technion. Two of the more successful ones were lattice Boltzmann and a finite element code, and we present these in detail.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f52f8347f0145bcce8a695aa5b516606" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908860,&quot;asset_id&quot;:112785046,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908860/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785046]").text(description); $(".js-view-count[data-work-id=112785046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f52f8347f0145bcce8a695aa5b516606" } } $('.js-work-strip[data-work-id=112785046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785046,"title":"GPUs in a computational physics course","internal_url":"https://www.academia.edu/112785046/GPUs_in_a_computational_physics_course","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908860,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908860/thumbnails/1.jpg","file_name":"1dd7960adfb3aed2c139c45358632ad1fd4f.pdf","download_url":"https://www.academia.edu/attachments/109908860/download_file","bulk_download_file_name":"GPUs_in_a_computational_physics_course.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908860/1dd7960adfb3aed2c139c45358632ad1fd4f-libre.pdf?1704218634=\u0026response-content-disposition=attachment%3B+filename%3DGPUs_in_a_computational_physics_course.pdf\u0026Expires=1739822754\u0026Signature=C0pPGF2tW0dMavrBAgzoyLhb0v9zpDl4uckQx713PBwHweZnykqqcFInMjkmajnHcrZQ6sS-P~MaB5e9-Jp8CJ8HAvmgCBVe8KxuJNIwRGqhSRiL58At~lzVWcka8dokHcZS5IV3rZRPALDNklCghaRk8FAP~mKedNAXYBJIT-rE~LCT5Ovbrv7PgsaTphTfWv8wo8YV3GfFFrhfAXgFdrez0USmmuWIyMrVkZ94Z5Uv~dFiHezkKUlDv~zj-FuZYZX9kqnDiiV3wrOiJQ~FMoH7bWMEWbnJQnMtf2hkf2KyNHQTu5h3N6weN0bW4y4KMAVvxYyAi3wdT3yq~qFVrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785045"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785045/Groundstates_of_liquid_crystals_with_colloids_a_project_for_undergraduate_students"><img alt="Research paper thumbnail of Groundstates of liquid crystals with colloids: a project for undergraduate students" class="work-thumbnail" src="https://attachments.academia-assets.com/109908858/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785045/Groundstates_of_liquid_crystals_with_colloids_a_project_for_undergraduate_students">Groundstates of liquid crystals with colloids: a project for undergraduate students</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Although simulated annealing has become a useful tool for optimization of many systems, its initi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Although simulated annealing has become a useful tool for optimization of many systems, its initial raison d&#39;etre of achieving the groundstate structure for a spin or atomic/molecular condensed system remains important. Such modelling, whether using analog models such as glass beads or by invoking simple computer models can be suited to undergraduate projects. In this paper we discuss the application of simulated annealing to find the groundstate of a system of liquid crystals (LC) with suspended colloids. These systems are expected to have interesting conductive behaviour, relevant to applications for television and computer screens. In our first stage, a pure LC system was simulated in python and vizualized by undergraduates and presented on an educational website. In the next stage colloid(s) were added, and the original code modified accordingly. Interesting effects such as ordering around the colloid have been seen and will be described. In the final stage and in order to study larger samples, the code was rewritten in C++ and several algorithmic modifications were made. Speed up factors between 100 and more than 1000 were obtained, and fascinating closed cells surrounding the colloids were observed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9a31da750bfa1849d2b68ec3560c0d6f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908858,&quot;asset_id&quot;:112785045,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908858/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785045"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785045"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785045; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785045]").text(description); $(".js-view-count[data-work-id=112785045]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785045; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785045']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9a31da750bfa1849d2b68ec3560c0d6f" } } $('.js-work-strip[data-work-id=112785045]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785045,"title":"Groundstates of liquid crystals with colloids: a project for undergraduate students","internal_url":"https://www.academia.edu/112785045/Groundstates_of_liquid_crystals_with_colloids_a_project_for_undergraduate_students","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908858/thumbnails/1.jpg","file_name":"f6c3e77077eb8e63376c430da3a65690748c.pdf","download_url":"https://www.academia.edu/attachments/109908858/download_file","bulk_download_file_name":"Groundstates_of_liquid_crystals_with_col.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908858/f6c3e77077eb8e63376c430da3a65690748c-libre.pdf?1704218639=\u0026response-content-disposition=attachment%3B+filename%3DGroundstates_of_liquid_crystals_with_col.pdf\u0026Expires=1739822754\u0026Signature=AXlmTIZl6eskXDpvljEowk6UT3Az60LF99WS0OUDYGlyP0dk6KwemC83DkFOjaO0xb8Dmo53kugnPES0lsfyT7yXJUYk4bXP-pw32FLZJD5ZymN3-h~OEgaXVzJf6euLZDn5gsKt3BFucXhfK6o5gWOK~i0F6mPzk81v3odO-q2NCIvpp4ct7v9AJdFyZJH2qj7pyvmKmNO8G28V4MZtfzrhwmw0JwpnMXr3DvsuKMoQucV3mclPz-d8o9O31nznjOq2Zuy0KbuRwx5djUtXwR5gz0CZSkxKWkxloVYMPwXjCBK8-hCS5rLHHTn-bYJNlNWMW6KRhAmkQy1GmeS4BA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785043"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785043/Series_study_of_random_animals_in_general_dimensions"><img alt="Research paper thumbnail of Series study of random animals in general dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/109908857/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785043/Series_study_of_random_animals_in_general_dimensions">Series study of random animals in general dimensions</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We construct general-dimension series for the random animal problem up to 15th order. These repre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We construct general-dimension series for the random animal problem up to 15th order. These represent an improvement of five terms in four dimensions and above and one term in three dimensions. These series are analyzed, together with existing series in two dimensions, and series for the related Yang-Lee edge problem, to obtain accurate estimates of critical parameters, in particular, the correction to scaling exponent. There appears to be excellent agreement between the two models for both dominant and correction exponents.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="390c351058522797eb8d4819b607048b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908857,&quot;asset_id&quot;:112785043,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908857/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785043"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785043"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785043; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785043]").text(description); $(".js-view-count[data-work-id=112785043]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785043; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785043']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "390c351058522797eb8d4819b607048b" } } $('.js-work-strip[data-work-id=112785043]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785043,"title":"Series study of random animals in general dimensions","internal_url":"https://www.academia.edu/112785043/Series_study_of_random_animals_in_general_dimensions","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908857/thumbnails/1.jpg","file_name":"be9f4c7d5a145667f1d1492ec322d1cbc285.pdf","download_url":"https://www.academia.edu/attachments/109908857/download_file","bulk_download_file_name":"Series_study_of_random_animals_in_genera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908857/be9f4c7d5a145667f1d1492ec322d1cbc285-libre.pdf?1704218645=\u0026response-content-disposition=attachment%3B+filename%3DSeries_study_of_random_animals_in_genera.pdf\u0026Expires=1739822754\u0026Signature=BBe2d5Y0YP3H6nJdVXW6jlUA1sBUvP2FtIzn9DoLsif97XjWLUnEq7WH9S0VFy5nXNJMzK9sco0P-wDNt48zQjzkKJv9l--cI8A14bthq4rN9StKImHd0FtrFaRJwC-rMnnQPNOYdCXY860MwGJSbDVCpfEKDRoGk8trTAv4BrWH891uwsAxKgl1pAkJRDPVXQQRQ8MDvJRl69FuumHpUpR7O4wzyAQQY13paJzTRIp3-OmRZhALUq2hu3wpJ~KBJN8nZiBtgBtUkV0eTyt4DM21JLT6HM5o-56JtrexofY0jEs3205h~fZBAgeCRDhpl4dZsQZamRJYv1CrvMIWrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785041/Distribution_of_the_logarithms_of_currents_in_percolating_resistor_networks_II_Series_expansions"><img alt="Research paper thumbnail of Distribution of the logarithms of currents in percolating resistor networks. II. Series expansions" class="work-thumbnail" src="https://attachments.academia-assets.com/109965176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785041/Distribution_of_the_logarithms_of_currents_in_percolating_resistor_networks_II_Series_expansions">Distribution of the logarithms of currents in percolating resistor networks. II. Series expansions</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate the distribution of the logarithms, logi, of the currents in percolating resistor ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate the distribution of the logarithms, logi, of the currents in percolating resistor networks via the method of series expansions. Exact results in one dimension and expansions to thirteenth order in the bond occupation probability, p, in general dimension, for the moments of this distribution have been generated. We have studied both the moments and cumulants derived therefrom with several extrapolation procedures. The results have been compared with recent predictions for the behavior of the moments and cumulants of this distribution. An extensive comparison between exact results and series of different lengths in one dimension sheds light on many aspects of the analysis of series with logarithmic corrections. The numerical results of the series expansions in higher dimensions are generally consistent with the theoretical predictions. We confirm that the distribution of the logarithms of the currents is unifractal as a function of the logarithm of linear system size, even though the distribution of the currents is multifractal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a34a369347d8422474ea18986dc17045" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109965176,&quot;asset_id&quot;:112785041,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109965176/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785041]").text(description); $(".js-view-count[data-work-id=112785041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a34a369347d8422474ea18986dc17045" } } $('.js-work-strip[data-work-id=112785041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785041,"title":"Distribution of the logarithms of currents in percolating resistor networks. II. Series expansions","internal_url":"https://www.academia.edu/112785041/Distribution_of_the_logarithms_of_currents_in_percolating_resistor_networks_II_Series_expansions","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109965176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109965176/thumbnails/1.jpg","file_name":"626f36fe3b1e5aa337e6ea5db8e94e9fae04.pdf","download_url":"https://www.academia.edu/attachments/109965176/download_file","bulk_download_file_name":"Distribution_of_the_logarithms_of_curren.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109965176/626f36fe3b1e5aa337e6ea5db8e94e9fae04-libre.pdf?1704301371=\u0026response-content-disposition=attachment%3B+filename%3DDistribution_of_the_logarithms_of_curren.pdf\u0026Expires=1739822754\u0026Signature=P9GBFayLXhFSQrnTRR6PgRZgxTvYjcoDcg-2KFj0Yg8OkNjth8c246SA-rLPDYllrIy5gEQuaJmx7nL9xn6yVNr0MKRrmAqmEJg963Sj4yYrbz-DLU4ztqxGx~l4JCQA4f85NKHggWOl9MoDqamRx5vvDJXhqFYjthmHx8~2tuIeLOK0WS5~jBlftpHrWNArwJmm-cLW1bUOnp5u0CQfN~-9qY6KY3b0ZipR8bN8GHRhWvP6gIUP8btXcT-yIhB0Us3HlgJqD4vfr4gpPEiMRWMH1FlndF6cUemuC8G2kp3YK0mJci1gMoa5ohaRr8hoJSQ8GT27qVxGPTZMHiWHBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785040/Series_study_of_percolation_moments_in_general_dimension"><img alt="Research paper thumbnail of Series study of percolation moments in general dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/109908856/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785040/Series_study_of_percolation_moments_in_general_dimension">Series study of percolation moments in general dimension</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Series expansions for general moments of the bond-percolation cluster-size distribution on hyperc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Series expansions for general moments of the bond-percolation cluster-size distribution on hypercubic lattices to 15th order in the concentration have been obtained. This is one more than the previously published series for the mean cluster size in three dimensions and four terms more for higher moments and higher dimensions. Critical exponents, amplitude ratios, and thresholds have been calculated from these and other series by a variety of independent analysis techniques. A comprehensive summary of extant estimates for exponents, some universal amplitude ratios, and thresholds for percolation in all dimensions is given, and our results are shown to be in excellent agreement with the ε expansion and some of the most accurate simulation estimates. We obtain threshold values of 0.2488±0.0002 and 0.180 25±0.000 15 for the three-dimensional bond problem on the simple-cubic and body-centered-cubic lattices, respectively, and 0.160 05±0.000 15 and 0.118 19±0.000 04, for the hypercubic bond problem in four and five dimensions, respectively. Our direct exponent estimates are γ=1.805±0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d58f578a0356df2e13a9091de37c4aba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908856,&quot;asset_id&quot;:112785040,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908856/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785040]").text(description); $(".js-view-count[data-work-id=112785040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d58f578a0356df2e13a9091de37c4aba" } } $('.js-work-strip[data-work-id=112785040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785040,"title":"Series study of percolation moments in general dimension","internal_url":"https://www.academia.edu/112785040/Series_study_of_percolation_moments_in_general_dimension","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908856/thumbnails/1.jpg","file_name":"b74e9ea13af9ef9ed92ea5d753263c1dc713.pdf","download_url":"https://www.academia.edu/attachments/109908856/download_file","bulk_download_file_name":"Series_study_of_percolation_moments_in_g.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908856/b74e9ea13af9ef9ed92ea5d753263c1dc713-libre.pdf?1704218652=\u0026response-content-disposition=attachment%3B+filename%3DSeries_study_of_percolation_moments_in_g.pdf\u0026Expires=1739822754\u0026Signature=gILbQUzpSblG1xv6XzI3P0-~ZzmHPEzTc88pE9T726EhiWAbYl3PRRD4WC7-ayDxQc7Odg-kHv4U-Ia-1hrIK~2atzXW2paI9vjtqPoO2zf3tg79W0zaIimujUrvA2cIaMe70b7hzH3Zlxe7MKQciwLGBcEW0~nEBO874pzDgJOprp-WHmZGR2d1-Rmd795IUQgbrAVWJsm4gcE-0rejqAkw~36r1ZEvsSZ2IfIZy134fSo0Q-XOA7aOqRDC0EgvzeXK20Nutiyxbn1if88DbH1wsREXLiGQi7zi~Ysi~8nySoQevGxsZ8F8vWShljPo3wavynvjeLmtmYv5gUeWyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785038/Erratum_Dilute_spin_glass_at_zero_temperature_in_general_dimension"><img alt="Research paper thumbnail of Erratum: Dilute spin glass at zero temperature in general dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/109965215/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785038/Erratum_Dilute_spin_glass_at_zero_temperature_in_general_dimension">Erratum: Dilute spin glass at zero temperature in general dimension</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1991</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We inadvertently quoted in Table II only the second term of Eq. (2.2) multiphed by (1 cry) .-The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We inadvertently quoted in Table II only the second term of Eq. (2.2) multiphed by (1 cry) .-The complete series for g is given in Table I. TABLE I. Series coefficients for y, where&#39; =I+ g &quot;a(m, n)p&quot;&#39;d&quot;</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c5303bb8be68f7eb6ee6a1acb62b28d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109965215,&quot;asset_id&quot;:112785038,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109965215/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785038]").text(description); $(".js-view-count[data-work-id=112785038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c5303bb8be68f7eb6ee6a1acb62b28d3" } } $('.js-work-strip[data-work-id=112785038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785038,"title":"Erratum: Dilute spin glass at zero temperature in general dimension","internal_url":"https://www.academia.edu/112785038/Erratum_Dilute_spin_glass_at_zero_temperature_in_general_dimension","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109965215,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109965215/thumbnails/1.jpg","file_name":"PhysRevB.43.pdf","download_url":"https://www.academia.edu/attachments/109965215/download_file","bulk_download_file_name":"Erratum_Dilute_spin_glass_at_zero_temper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109965215/PhysRevB.43-libre.pdf?1704301355=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Dilute_spin_glass_at_zero_temper.pdf\u0026Expires=1739822754\u0026Signature=g7eXONVoZAcudV2tvT12d818RBOvIlPe174NfQ1vp6h0QZRYhSH42KLaPIiDXf9X4Jolg4tqejIwlQ~CBj4O0~QwaayBhNNSUzf63N-i1Tcg1k6VCSBs4XsfHJcYRbayBzKeZ7bQZylnJdGoi~coc6u3H7pVCM1m2sDmc5UFl7vFooEabqbO0NsH2qOgIQxzaPpYZy1WSe4IPUGSOIzw2wxbKRhtSQaRnF74xFea62If28QeNZHo8i0WXiLtSV4LD5uzUMUvg9lzui56zuuFIv5TCqojhrqViQOkn6pGbNfDfF4u8JeGyTcJC4EaEBzW-tqy0mTskbwXlB~iDnFvVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785037"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785037/Evidence_for_Two_Exponent_Scaling_in_the_Random_Field_Ising_Model"><img alt="Research paper thumbnail of Evidence for Two Exponent Scaling in the Random Field Ising Model" class="work-thumbnail" src="https://attachments.academia-assets.com/109908854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785037/Evidence_for_Two_Exponent_Scaling_in_the_Random_Field_Ising_Model">Evidence for Two Exponent Scaling in the Random Field Ising Model</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Novel methods were used to generate and analyze new 15 term high temperature series for both the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Novel methods were used to generate and analyze new 15 term high temperature series for both the (connected) susceptibility χ and the structure factor (disconnected susceptibility) χ d for the random field Ising model with dimensionless coupling K=J/kT, in general dimension d. For both the bimodal and the Gaussian field distributions, with mean square field J 2 g, we find that (χ d-χ)/K 2 gχ 2 =1 as T→T c (g), for a range of [h 2 ]=J 2 g and d=3,4,5. This confirms the exponent relation γ¯=2γ (where χ d~t −γ¯, χ~t −γ , t=T-T c) providing that random field exponents are determined by two (and not three) independent exponents. We also present new accurate values for γ.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59afb2a270c64447cbf73d7c3561a135" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908854,&quot;asset_id&quot;:112785037,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785037"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785037"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785037; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785037]").text(description); $(".js-view-count[data-work-id=112785037]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785037; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785037']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59afb2a270c64447cbf73d7c3561a135" } } $('.js-work-strip[data-work-id=112785037]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785037,"title":"Evidence for Two Exponent Scaling in the Random Field Ising Model","internal_url":"https://www.academia.edu/112785037/Evidence_for_Two_Exponent_Scaling_in_the_Random_Field_Ising_Model","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908854/thumbnails/1.jpg","file_name":"ec1e7f1c1cd181353d4ee9d02ff00f362395.pdf","download_url":"https://www.academia.edu/attachments/109908854/download_file","bulk_download_file_name":"Evidence_for_Two_Exponent_Scaling_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908854/ec1e7f1c1cd181353d4ee9d02ff00f362395-libre.pdf?1704218639=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_for_Two_Exponent_Scaling_in_the.pdf\u0026Expires=1739822754\u0026Signature=H6wNKE7O7ewgJNJCxCRR7kNmel~EcIODHWh~K7ITHQhlAoMYdXSrX8EHFmqYKnnVxTqhQIuyLPBWkzhwQpfOQeA8koUCSwg63MsxxhxUuQwrRxP7CZ3sTizSDR-VEC1TEIs94TMoGj9~fNLFRTgwIaSNby-hT0uGpbF3innJ79PbBGafi0yOD-jhfqreQFBFpRLbuPPUMp9Qgf3hOQEsnjwygmAh9rl1I8cU46DcoFeLNOTXoYjSvOi0STxWuPdLMWevznEmcUo0yaOoKHXr0AcsvRmB2TeKfZE6b5vjjOYeZLdcjWS64fJdXnN0ScP1gAw-IVG9EMJFiu02fxz~zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785035/Low_concentration_series_in_general_dimension"><img alt="Research paper thumbnail of Low-concentration series in general dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/109908855/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785035/Low_concentration_series_in_general_dimension">Low-concentration series in general dimension</a></div><div class="wp-workCard_item"><span>Journal of Statistical Physics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We discuss recent work on the development and analysis of low-concentration series. For many mode...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We discuss recent work on the development and analysis of low-concentration series. For many models, the recent breakthrough in the extremely efficient nofree-end method of series generation facilitates the derivation of 15th-order series for multiple moments in general dimension. The 15th-order series have been obtained for lattice animals, percolation, and the Edwards Anderson Ising spin glass. In the latter cases multiple moments have been found. From complete graph tables through to 13th order, general dimension 13th-order series have been derived for the resistive susceptibility, the moments of the logarithms of the distribution of currents in resistor networks, and the average transmission coefficient in the quantum percolation problem, l lth-order series have been found for several other systems, including the crossover from animals to percolation, the full resistance distribution, nonlinear resistive susceptibility and current distribution in dilute resistor networks, diffusion on percolation clusters, the dilute Ising model, dilute antiferromagnet in a field, and random field Ising model and self-avoiding walks on percolation clusters. Series for the dilute spin-l/2 quantum Heisenberg ferromagnet are in the process of development. Analysis of these series gives estimates for critical thresholds, amplitude ratios, and critical exponents for all dimensions. Where comparisons are possible, our series results are in good agreement with both z-expansion results near the upper critical dimension and with exact results (when available) in low dimensions, and are competitive with other numerical approaches in intermediate realistic dimensions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="13a2a80d05620ee4b6240673fd39a67c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908855,&quot;asset_id&quot;:112785035,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908855/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785035]").text(description); $(".js-view-count[data-work-id=112785035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "13a2a80d05620ee4b6240673fd39a67c" } } $('.js-work-strip[data-work-id=112785035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785035,"title":"Low-concentration series in general dimension","internal_url":"https://www.academia.edu/112785035/Low_concentration_series_in_general_dimension","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908855,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908855/thumbnails/1.jpg","file_name":"bf0111276020240102-1-aw72q7.pdf","download_url":"https://www.academia.edu/attachments/109908855/download_file","bulk_download_file_name":"Low_concentration_series_in_general_dime.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908855/bf0111276020240102-1-aw72q7-libre.pdf?1704218640=\u0026response-content-disposition=attachment%3B+filename%3DLow_concentration_series_in_general_dime.pdf\u0026Expires=1739822754\u0026Signature=fDyf0DtwGAJmfSP997kYY0xvLrWWQZUvFe1Njp29zTJBN8ND9mJYtCnmqWRDMJkGsQ9ebvKagSvP7dbOsaEE9BZ2GKTQs4cWzCRQh6uVsxkMh9pESWw0q84~OasRRH3yL40fV6z46UBwSmLKNArVpXMlWamAybGhKpN5dPRIQgSv-drwpmko2gs8ZDJDyGwQ2JNDGTBFJB0-ebh93E811E0Ifg2-xsiiUOH783ZGUys1mCa6NoPOuQhRsA~fiI36fPCqeqT1v9sHwwnjcSfrkRoYbT2TRuNK1XsIJhfJ0F3x97q1tbCExJQh4wxztfxl0AXOGqJtXcFy~gO5SJ7Zdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3413192" id="papers"><div class="js-work-strip profile--work_container" data-work-id="126758695"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126758695/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_Helium_3"><img alt="Research paper thumbnail of Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3" class="work-thumbnail" src="https://attachments.academia-assets.com/120587858/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126758695/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_Helium_3">Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 12, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid 3 He in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm 3 . From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d200553e8a0b41f7911650cdd721101" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:120587858,&quot;asset_id&quot;:126758695,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/120587858/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126758695"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126758695"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126758695; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126758695]").text(description); $(".js-view-count[data-work-id=126758695]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126758695; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126758695']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d200553e8a0b41f7911650cdd721101" } } $('.js-work-strip[data-work-id=126758695]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126758695,"title":"Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3","internal_url":"https://www.academia.edu/126758695/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_Helium_3","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":120587858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587858/thumbnails/1.jpg","file_name":"0603323.pdf","download_url":"https://www.academia.edu/attachments/120587858/download_file","bulk_download_file_name":"Path_integral_Monte_Carlo_study_of_phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587858/0603323-libre.pdf?1735861510=\u0026response-content-disposition=attachment%3B+filename%3DPath_integral_Monte_Carlo_study_of_phono.pdf\u0026Expires=1739822753\u0026Signature=FalTXmVLYSF9GhZ0Vywc8WOQ0yhBzEwsOk3UwnuFMpOuQyIXpZ2PRPPQucQ7Gg1UN7lPBaBMmIg5zRtw0vblh2bBgoQnAm~fiJMQpm0H1PyCv6H~X3vInWP8MLbQOOR04nl8x9TsLuZfAxY4bQfXevzPYnpoXO-aSLIm9a81s1zo4-qMhfKXa13o8CIYKdq88Bc3guK2dT3dxjMxodQWaOZVMVO-BHOkYUS-O~LayIqnNYYCRdp-x3x31i-0tz89IJQ-uAL1CYjcPKgSH-t5geIEPDMVtW85aoQ1z5d1r~2DBAKDm~wrcpoqPDF3jTkfx~qQNE4NcqjC9uN2y1fV4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120587857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587857/thumbnails/1.jpg","file_name":"0603323.pdf","download_url":"https://www.academia.edu/attachments/120587857/download_file","bulk_download_file_name":"Path_integral_Monte_Carlo_study_of_phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587857/0603323-libre.pdf?1735861513=\u0026response-content-disposition=attachment%3B+filename%3DPath_integral_Monte_Carlo_study_of_phono.pdf\u0026Expires=1739822753\u0026Signature=Y0UeGLfNLsIgQ9XBoj8dVUlu-PFMqk3F3LOahunYCNvuv3zACu8-0iK0FNLKPphtEip4NjqchuRSQFJv~VdT7EQcex~nzdmiP44TD6jQQ-1NfxARiHdygjBiXlaNAWLNMFzPOhwEJez08KW3NgImPuRflBGy5jUA3TjEMlSMQKXMDpDTYtmI7ybmMVmxJzKLjoqjpswiWwfAcCDpJ8MJO-NvNpKB46L-SsFuYzMkspeE1UwDEznh7pQZaHtNo1dvEHyWn-u6vgrF8SL-GzhtKBnO~FcgCCNimqFpy3wEQkbRwfD-heVZYnbDNWr1eYUdUFVU20raFkWxNHG4wxCsSg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126758694"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126758694/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_II_Thermodynamic_melting"><img alt="Research paper thumbnail of Molecular dynamics study of melting of the bcc metal vanadium. II. Thermodynamic melting" class="work-thumbnail" src="https://attachments.academia-assets.com/120587855/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126758694/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_II_Thermodynamic_melting">Molecular dynamics study of melting of the bcc metal vanadium. II. Thermodynamic melting</a></div><div class="wp-workCard_item"><span>Physical review</span><span>, Nov 3, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We studied the structural, transport and energetic properties of slabs made of 27 atomic layers with a free surface. We investigated premelting phenomena at the low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the temperature increases, the V(111) surface disorders first, then the V(100) surface, while the V(110) surface remains stable up to the melting temperature. Also, as the temperature increases, the disorder spreads from the surface layer into the bulk, establishing a thin quasiliquid film in the surface region. We conclude that the hierarchy of premelting phenomena is inversely proportional to the surface atomic density, being most pronounced for the V(111) surface which has the lowest surface density. Simulation details We model the melting of vanadium with a free surface using molecular dynamics (MD) simulations in a canonical ensemble. The many-body</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0402ece824aac448c119d140c48beb0a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:120587855,&quot;asset_id&quot;:126758694,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/120587855/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126758694"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126758694"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126758694; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126758694]").text(description); $(".js-view-count[data-work-id=126758694]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126758694; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126758694']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0402ece824aac448c119d140c48beb0a" } } $('.js-work-strip[data-work-id=126758694]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126758694,"title":"Molecular dynamics study of melting of the bcc metal vanadium. II. Thermodynamic melting","internal_url":"https://www.academia.edu/126758694/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_II_Thermodynamic_melting","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":120587855,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587855/thumbnails/1.jpg","file_name":"0305082.pdf","download_url":"https://www.academia.edu/attachments/120587855/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587855/0305082-libre.pdf?1735861519=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=FMCIEmly14YzjyU-I4JgWqX4mIBIloDBBWtOhEi0kC7c48Jnkx1s~rbyNY40LNVfVrehlz~eoPXiLrH-oU6EmcVITxEBmHd2ocf1DJv-LEHp3T3z886bYZqbu1TL4YD4h7nIPbzpVQvyT8GnQiNa7eY09sJhSvwrAYHacptd-jddloiIjXyO9AX-phbmYh466~d~sgzuWew5y0eHYnco8ezNI2QKeiXupfOmBOH34Mvi8-JMgYpGtUPo2vxh9ZpuGy2oomIzVDAtwMQgsfbXwcGZPLwBrbmEtbwlZCv9upv6HLMefn5OZRL80XgHiBLRFhBONkICLClg3k7jgX7gkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120587856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587856/thumbnails/1.jpg","file_name":"0305082.pdf","download_url":"https://www.academia.edu/attachments/120587856/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587856/0305082-libre.pdf?1735861521=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=al5hajOwgOOsuY1JpsNppZwcRJGRbXl4ZEoZT4AU2kUYCUoJFeHkompKg~WHV3m~z1abQnCgOrlNG8akvTBvfSmiZNhiAi1pdqJQk6Q2P49WZeNq6uOClJI9IeB-Q9Ts93aImIxnug7gw~gzsN8Z1vnUkI~08yhqgkZ2FUu-ZhGqE4v9CdY3JDAlTBWth04-8gx~m1IfW5PjBnRZE4MHyOgVNEmb-2aFerIR2s~XutuS~J5QOPVyWnPYPpLmQ4SgOKRiyxn29M-OSC6vvdKZ11i3UnKBGDrsm2O202rIND3F4XVh6TMHy61V4Gcp6pGU44Daj0QUtozbnfq9O0lWPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126758692"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126758692/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_I_Mechanical_melting"><img alt="Research paper thumbnail of Molecular dynamics study of melting of the bcc metal vanadium. I. Mechanical melting" class="work-thumbnail" src="https://attachments.academia-assets.com/120587852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126758692/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_I_Mechanical_melting">Molecular dynamics study of melting of the bcc metal vanadium. I. Mechanical melting</a></div><div class="wp-workCard_item"><span>Physical review</span><span>, Nov 3, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present molecular dynamics simulations of the homogeneous (mechanical) melting transition of a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present molecular dynamics simulations of the homogeneous (mechanical) melting transition of a bcc metal, vanadium. We study both the nominally perfect crystal as well as one that includes point defects. According to the Born criterion, a solid cannot be expanded above a critical volume, at which a &#39;rigidity catastrophe&#39; occurs. This catastrophe is caused by the vanishing of the elastic shear modulus. We found that this critical volume is independent of the route by which it is reached whether by heating the crystal, or by adding interstitials at a constant temperature which expand the lattice. Overall, these results are similar to what was found previously for an fcc metal, copper. The simulations establish a phase diagram of the mechanical melting temperature as a function of the concentration of interstitials. Our results show that the Born model of melting applies to bcc metals in both the nominally perfect state and in the case where point defects are present.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a28e2b3dcd5b7bf60c544049a4e76f49" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:120587852,&quot;asset_id&quot;:126758692,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/120587852/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126758692"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126758692"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126758692; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126758692]").text(description); $(".js-view-count[data-work-id=126758692]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126758692; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126758692']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a28e2b3dcd5b7bf60c544049a4e76f49" } } $('.js-work-strip[data-work-id=126758692]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126758692,"title":"Molecular dynamics study of melting of the bcc metal vanadium. I. Mechanical melting","internal_url":"https://www.academia.edu/126758692/Molecular_dynamics_study_of_melting_of_the_bcc_metal_vanadium_I_Mechanical_melting","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":120587852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587852/thumbnails/1.jpg","file_name":"0304215.pdf","download_url":"https://www.academia.edu/attachments/120587852/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587852/0304215-libre.pdf?1735861520=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=Vj7pdgTSThfri0g3taVGbsr121RqfGH7ojcL~O~~7XSDOI97vwaTjXytQU8YrZ-mt9267mhSjHPufUUSsb6j0uTDaNNZuAQtXPC2BGyHf5aOr7KeZv65KHPRlq9C9oJ35r-8NAKY~Shy0dDZ3zUvwlWfcsiSjdmHoMgtZA6sPSUIA4R7fz-kZ3fWsXBBbXTZCx72iiJ-ziK50BIMM~j8bUtNp-pN62sbreBMdNCJfLUm2l2CNooc9Fyb1jdE~Clq2BTtjuyTuLToUiwatGNTLDcs-brrpXHdPOSrmzdrtgp42UwPt9mpfyHLsMBvEQaDrbtGwzr9Lhf9J3sFArRb1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120587853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120587853/thumbnails/1.jpg","file_name":"0304215.pdf","download_url":"https://www.academia.edu/attachments/120587853/download_file","bulk_download_file_name":"Molecular_dynamics_study_of_melting_of_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120587853/0304215-libre.pdf?1735861518=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_dynamics_study_of_melting_of_t.pdf\u0026Expires=1739822753\u0026Signature=JE7LvM4tV77-ayrN~DMYizrtIJO6~3vafiK2Idp17Kc31rHY3gSXgFK5jRnmxRhWkTVgAPGLooE0r7L~JA6-WER6d0dxvhJ1SKbYW31uP2fL2cnAMJsHX0Il0a6KVTbGtyboQE2arfLh4w~HMyZSPXTpN1EEx4HdRo1uiw6z-ZFl6mJgE4Kw2vrXPfL93ChBM2SbDStZ3uwg2uU3K-g2HZ9i25pGrOdXQ2UCSHP~97zBdHIuJlVg6U6DxCWwGYwzDk7HGCJ3C~2i96T4zDe4T3BTWap1tUtLt0tRE8MQj59AmPjNOR~dQcmWoEWdwGFDwt09LV9eF2qREoSH~j5qdA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608436"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124608436/Developing_the_educational_value_of_visualizations_in_physics"><img alt="Research paper thumbnail of Developing the educational value of visualizations in physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124608436/Developing_the_educational_value_of_visualizations_in_physics">Developing the educational value of visualizations in physics</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Mar 5, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608436"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608436"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608436; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608436]").text(description); $(".js-view-count[data-work-id=124608436]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608436; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608436']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124608436]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608436,"title":"Developing the educational value of visualizations in physics","internal_url":"https://www.academia.edu/124608436/Developing_the_educational_value_of_visualizations_in_physics","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608435"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608435/Atomic_scale_structure_of_disordered_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mrow_mml_msub_mml_mrow_mml_mi_mathvariant_normal_Ga_mml_mi_mml_mrow_mml_mrow_mml_mn_1_mml_mn_mml_mi_mathvariant_normal_mml_mi_mml_mi_mathvariant_italic_x_mml_mi_"><img alt="Research paper thumbnail of Atomic-scale structure of disordered&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;Ga&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;−&lt;/mml:mi&gt;&lt;mml:mi mathvariant=&quot;italic&quot;&gt;x&lt;/mml:mi&gt;..." class="work-thumbnail" src="https://attachments.academia-assets.com/118803213/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608435/Atomic_scale_structure_of_disordered_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mrow_mml_msub_mml_mrow_mml_mi_mathvariant_normal_Ga_mml_mi_mml_mrow_mml_mrow_mml_mn_1_mml_mn_mml_mi_mathvariant_normal_mml_mi_mml_mi_mathvariant_italic_x_mml_mi_">Atomic-scale structure of disordered&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;Ga&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;−&lt;/mml:mi&gt;&lt;mml:mi mathvariant=&quot;italic&quot;&gt;x&lt;/mml:mi&gt;...</a></div><div class="wp-workCard_item"><span>Physical review</span><span>, Apr 15, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Extended x-ray-absorption fine-structure experiments have previously demonstrated that for each c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Extended x-ray-absorption fine-structure experiments have previously demonstrated that for each composition x, the sample average of all nearest-neighbor A-C distances in an A &amp; &quot;B C semiconductor alloy is closer to the values in the pure (x-+0) AC compound than to the composition-weighted (virtual) lattice average. Such experiments do not reveal, however, the distribution of atomic positions in an alloy, so the principle displacement directions and the degrees of correlation among such atomic displacements remain unknown. Here we calculate both structural and thermodynamic properties of Ga&amp; &quot;In&quot;P alloys using an explicit occupationand position-dependent energy functional. The latter is taken as a modified valence force field, carefully fit to structural energies determined by first-principles local-density calculations. Configurational and vibrational degrees of freedom are then treated via the continuous-space Monte Carlo approach. We find good agreement between the calculated and measured mixing enthalpy of the random alloy, nearest-neighbor bond lengths, and temperature-composition phase diagram. In addition, we predict yet unmeasured quantities such as (a) distributions, fluctuations, and moments of firstand second-neighbor bond lengths as well as bond angles, (b) radial distribution functions, (c) the dependence of short-range order on temperature, and (d) the effect of temperature on atomic displacements. Our calculations provide a detailed picture of how atoms are arranged in substitutionally random but positionally relaxed alloys, and o6&#39;er an explanation for the efFects of site correlations, static atomic relaxations, and dynamic vibrations on the phase-diagram and displacement maps. We find that even in a chemically random alloy (where sites are occupied by Ga or In according to a coin toss), there exists a highly correlated static position distribution whereby the P atoms are displaced deterministically in certain high-symmetry directions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c9af6c98c76d7d548a4ab444b9b5c435" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803213,&quot;asset_id&quot;:124608435,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803213/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608435"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608435"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608435; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608435]").text(description); $(".js-view-count[data-work-id=124608435]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608435; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608435']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c9af6c98c76d7d548a4ab444b9b5c435" } } $('.js-work-strip[data-work-id=124608435]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608435,"title":"Atomic-scale structure of disordered\u003cmml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"\u003e\u003cmml:mrow\u003e\u003cmml:msub\u003e\u003cmml:mrow\u003e\u003cmml:mi mathvariant=\"normal\"\u003eGa\u003c/mml:mi\u003e\u003c/mml:mrow\u003e\u003cmml:mrow\u003e\u003cmml:mn\u003e1\u003c/mml:mn\u003e\u003cmml:mi mathvariant=\"normal\"\u003e−\u003c/mml:mi\u003e\u003cmml:mi mathvariant=\"italic\"\u003ex\u003c/mml:mi\u003e...","internal_url":"https://www.academia.edu/124608435/Atomic_scale_structure_of_disordered_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mrow_mml_msub_mml_mrow_mml_mi_mathvariant_normal_Ga_mml_mi_mml_mrow_mml_mrow_mml_mn_1_mml_mn_mml_mi_mathvariant_normal_mml_mi_mml_mi_mathvariant_italic_x_mml_mi_","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803213/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/118803213/download_file","bulk_download_file_name":"Atomic_scale_structure_of_disordered_mml.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803213/fulltext-libre.pdf?1728587150=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_structure_of_disordered_mml.pdf\u0026Expires=1739822753\u0026Signature=Gq2vj0hORTE-9PAnhpxC7D97BUCJwvcWcyfbswPP5sWaJOVHySKOcKbBUbuxL84~sKPqGc0qvZhOUReaZXc8DoTNtocYNSvKObf0vuA9iVQUs0CTZxpV6u4fwc6GxmNd7~NJoRhG26~DNwA21YWxSNaRt-t63y1p58G1zE~rOen-7Q6ThwJhUq~W6BI6IB7n3ydXejKK2jLwomuTEHvb4oL3had2MS-NgxI4a6C-XNf2bv37JE9NCT~gOHO8mWwVR0QZtOUXTKJBAFbn9hgGreRNhAg9ss3OADUHSNewZabYwFsce0IXv6QCgK3X3FAKCABkSf1eNAGceQNgTJzOkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608434/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mmultiscripts_mml_mi_mathvariant_normal_He_mml_mi_mml_mprescripts_mml_none_mml_mn_4_mml_mn_mml_mmultiscripts_mml_math_"><img alt="Research paper thumbnail of Path-integral Monte Carlo study of phonons in the bcc phase of&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mmultiscripts&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;He&lt;/mml:mi&gt;&lt;mml:mprescripts /&gt;&lt;mml:none /&gt;&lt;mml:mn&gt;4&lt;/mml:mn&gt;&lt;/mml:mmultiscripts&gt;&lt;/mml:math&gt;" class="work-thumbnail" src="https://attachments.academia-assets.com/118803186/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608434/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mmultiscripts_mml_mi_mathvariant_normal_He_mml_mi_mml_mprescripts_mml_none_mml_mn_4_mml_mn_mml_mmultiscripts_mml_math_">Path-integral Monte Carlo study of phonons in the bcc phase of&lt;mml:math xmlns:mml=&quot;http://www.w3.org/1998/Math/MathML&quot; display=&quot;inline&quot;&gt;&lt;mml:mmultiscripts&gt;&lt;mml:mi mathvariant=&quot;normal&quot;&gt;He&lt;/mml:mi&gt;&lt;mml:mprescripts /&gt;&lt;mml:none /&gt;&lt;mml:mn&gt;4&lt;/mml:mn&gt;&lt;/mml:mmultiscripts&gt;&lt;/mml:math&gt;</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, Jun 28, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid 4 He in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21 cm 3. Both the single-phonon contribution to the dynamic structure factor and the total dynamic structure factor are evaluated. From the dynamic structure factor, we obtain the phonon dispersion relations along the main crystalline directions, [001], [011] and [111]. We calculate both the longitudinal and transverse phonon branches. For the latter, no previous simulations exist. We discuss the differences between dispersion relations resulting from the single-phonon part vs. the total dynamic structure factor. In addition, we evaluate the formation energy of a vacancy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b04b00519722823efe988969900501c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803186,&quot;asset_id&quot;:124608434,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803186/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608434]").text(description); $(".js-view-count[data-work-id=124608434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b04b00519722823efe988969900501c3" } } $('.js-work-strip[data-work-id=124608434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608434,"title":"Path-integral Monte Carlo study of phonons in the bcc phase of\u003cmml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"\u003e\u003cmml:mmultiscripts\u003e\u003cmml:mi mathvariant=\"normal\"\u003eHe\u003c/mml:mi\u003e\u003cmml:mprescripts /\u003e\u003cmml:none /\u003e\u003cmml:mn\u003e4\u003c/mml:mn\u003e\u003c/mml:mmultiscripts\u003e\u003c/mml:math\u003e","internal_url":"https://www.academia.edu/124608434/Path_integral_Monte_Carlo_study_of_phonons_in_the_bcc_phase_of_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_display_inline_mml_mmultiscripts_mml_mi_mathvariant_normal_He_mml_mi_mml_mprescripts_mml_none_mml_mn_4_mml_mn_mml_mmultiscripts_mml_math_","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803186/thumbnails/1.jpg","file_name":"0502108.pdf","download_url":"https://www.academia.edu/attachments/118803186/download_file","bulk_download_file_name":"Path_integral_Monte_Carlo_study_of_phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803186/0502108-libre.pdf?1728587130=\u0026response-content-disposition=attachment%3B+filename%3DPath_integral_Monte_Carlo_study_of_phono.pdf\u0026Expires=1739822753\u0026Signature=JkJUfIF4l87fNjqTR0hvBA3vUERNXGEB3v6IYdRTT4ofmY6j0NHox3kffF97POL04CBQpKHn7Zm~RtGYw9c~Mp1nj1fAnYFAiDY5F38GmnDHbox6xTaKpLBiBOsL~0BaeJVN2oBHRrIHBOMhG7PoIz0cr57nZe5njlWbjmbQ6SWZI4i1ERLY7xs9o17OZcFcQTPJJ2FHLZyYqY4ToHx87127jOQoRp0epXkxqm3OoDfXV5zEb1vUYBT9CmtISj6FUq-uary322DfUEXk1AFUoA4F3DtE4u4xcJvBnHalmlC6FfBBxA69HwEvQUjf4bG05zPzF97Ggq1O7zCbnNGttg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608433"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608433/Visualization_in_the_integrated_SimPhoNy_multiscale_simulation_framework"><img alt="Research paper thumbnail of Visualization in the integrated SimPhoNy multiscale simulation framework" class="work-thumbnail" src="https://attachments.academia-assets.com/118803214/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608433/Visualization_in_the_integrated_SimPhoNy_multiscale_simulation_framework">Visualization in the integrated SimPhoNy multiscale simulation framework</a></div><div class="wp-workCard_item"><span>Computer Physics Communications</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe three distinct approaches to visualization for multiscale materials modelling researc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe three distinct approaches to visualization for multiscale materials modelling research. These have been developed with the framework of the SimPhoNy FP7 EU-project, and complement each other in their requirements and possibilities. All have been integrated via wrappers to one or more of the simulation approaches within the SimPhoNy project. In this manuscript we describe and contrast their features. Together they cover visualization needs from electronic to macroscopic scales and are suited to simulations made on personal computers, workstations or advanced High Performance parallel computers. Examples as well as recommendations for future calculations are presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb2f89a661eedf80cab24c4b4bf6c8d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803214,&quot;asset_id&quot;:124608433,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803214/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608433"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608433"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608433; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608433]").text(description); $(".js-view-count[data-work-id=124608433]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608433; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608433']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb2f89a661eedf80cab24c4b4bf6c8d3" } } $('.js-work-strip[data-work-id=124608433]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608433,"title":"Visualization in the integrated SimPhoNy multiscale simulation framework","internal_url":"https://www.academia.edu/124608433/Visualization_in_the_integrated_SimPhoNy_multiscale_simulation_framework","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803214/thumbnails/1.jpg","file_name":"j.cpc.2018.05.00520241010-1-skuwpi.pdf","download_url":"https://www.academia.edu/attachments/118803214/download_file","bulk_download_file_name":"Visualization_in_the_integrated_SimPhoNy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803214/j.cpc.2018.05.00520241010-1-skuwpi-libre.pdf?1728587138=\u0026response-content-disposition=attachment%3B+filename%3DVisualization_in_the_integrated_SimPhoNy.pdf\u0026Expires=1739822753\u0026Signature=WakWOpAsgVL5N0C6NCcEH~43aA4RJHPybotyKvFY5Bb2085g47ME5RE2ow4BwhDcKQPy8DIjitWL6DdXR-anGkBp1VRkFG89nm2cu4bH8W4zCSVt6kQlIi-2BpNfS8bylJXpSLpHfwglh4TybgJo5AeaIcLELftIYPh1S5bXadR7SbuubtLiWpe6S6Oi-b1lzYwYPJfcxdAatDFwJrbUKKPlrxAQoP4LLC-8JHKe8Y3pq~4rCWb4cItSjNzaoA~-2de~TPv3Bk17YjAERWn8tO3lBbJqf0GIaWfJWQ6U6Jn2gHKcBYOjfwG1cHbCCcMnZzJw~BdWSGLC5gVJwxB~sA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124608377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124608377/Path_Integral_Monte_Carlo_Study_of_Phonons_in_the_bcc_Phase_of_3He"><img alt="Research paper thumbnail of Path-Integral Monte Carlo Study of Phonons in the bcc Phase of 3He" class="work-thumbnail" src="https://attachments.academia-assets.com/118803160/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124608377/Path_Integral_Monte_Carlo_Study_of_Phonons_in_the_bcc_Phase_of_3He">Path-Integral Monte Carlo Study of Phonons in the bcc Phase of 3He</a></div><div class="wp-workCard_item"><span>Journal of Low Temperature Physics</span><span>, Sep 27, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid 4 He in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21 cm 3. Both the single-phonon contribution to the dynamic structure factor and the total dynamic structure factor are evaluated. From the dynamic structure factor, we obtain the phonon dispersion relations along the main crystalline directions, [001], [011] and [111]. We calculate both the longitudinal and transverse phonon branches. For the latter, no previous simulations exist. We discuss the differences between dispersion relations resulting from the single-phonon part vs. the total dynamic structure factor. In addition, we evaluate the formation energy of a vacancy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a20c2e367488eabf6355a0a189c836e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118803160,&quot;asset_id&quot;:124608377,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118803160/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124608377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124608377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124608377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124608377]").text(description); $(".js-view-count[data-work-id=124608377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124608377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124608377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a20c2e367488eabf6355a0a189c836e9" } } $('.js-work-strip[data-work-id=124608377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124608377,"title":"Path-Integral Monte Carlo Study of Phonons in the bcc Phase of 3He","internal_url":"https://www.academia.edu/124608377/Path_Integral_Monte_Carlo_Study_of_Phonons_in_the_bcc_Phase_of_3He","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":118803160,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803160/thumbnails/1.jpg","file_name":"0502108.pdf","download_url":"https://www.academia.edu/attachments/118803160/download_file","bulk_download_file_name":"Path_Integral_Monte_Carlo_Study_of_Phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803160/0502108-libre.pdf?1728587133=\u0026response-content-disposition=attachment%3B+filename%3DPath_Integral_Monte_Carlo_Study_of_Phono.pdf\u0026Expires=1739822754\u0026Signature=Rcff~EFNkdW-rI5mpRCdZRmtx~7jgk-HGMkh9oIWj683fDV16qjbzUJebmQfDvAHt5cCHlXtKMp7GB-ww46j9IGV~nJIkZgmeHkKujSWlmIyRK6iqhw1vwVISZ0Ce0XNkYWy2eQrpPHWoQ0JRYupifV-Ezz4rop50DP1-Xv8mOmIYyp9mTY0qBZFxkrFuJ3nIUOEo21zYcc7aFwxa9g5O29c5pP3KCkXA5AdGPl7F~F9B4QiNi4ewP3qu4KzS8EEuefXQ9orPxY52A~gK~DrXSI~4XNEfQcJzKAr4RbB9ioQ10iDgx2AiK~0XnZwqX0Y~BCjd4WKqefok4X09J1ggQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118803159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118803159/thumbnails/1.jpg","file_name":"0502108.pdf","download_url":"https://www.academia.edu/attachments/118803159/download_file","bulk_download_file_name":"Path_Integral_Monte_Carlo_Study_of_Phono.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118803159/0502108-libre.pdf?1728587135=\u0026response-content-disposition=attachment%3B+filename%3DPath_Integral_Monte_Carlo_Study_of_Phono.pdf\u0026Expires=1739822754\u0026Signature=UcTHQzmqeP8F4hS7p3ukk7At7I-cFPNpsY6FH8G--49d49YBOLdznRI4B28m5y4qRh2XSfenP6ak6Qau18LGUrunGFQ2lAnQRanxlpheHPoyEaaEbDur8ugv4NUQU~JWKFAH5tVxiQLs--BRvhdnaTsvGW9QwBOtOlvtsXd0caxZWl~5byoZxBL~2ybSn32GfJLznuJSG8w1Vs7sTWYt0xsUbnL~dehMt0ILxLjt0x-y1Un3psJesbOezbgYLZekzAQdSRjoACWomD3JSEvh6AmlRF8ph02rc5xCt-971DvhASNN4VejgRlcvuNzY0fkvAs7WrB3JQM33fMzMbI0sw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121133862"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121133862/Israel"><img alt="Research paper thumbnail of Israel" class="work-thumbnail" src="https://attachments.academia-assets.com/116096561/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121133862/Israel">Israel</a></div><div class="wp-workCard_item"><span>ACM SIGGRAPH Computer Graphics</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e97df16ec854a2bb8bd816f5b46d0c00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116096561,&quot;asset_id&quot;:121133862,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116096561/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121133862"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121133862"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121133862; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121133862]").text(description); $(".js-view-count[data-work-id=121133862]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121133862; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121133862']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e97df16ec854a2bb8bd816f5b46d0c00" } } $('.js-work-strip[data-work-id=121133862]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121133862,"title":"Israel","internal_url":"https://www.academia.edu/121133862/Israel","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":116096561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116096561/thumbnails/1.jpg","file_name":"232301.pdf","download_url":"https://www.academia.edu/attachments/116096561/download_file","bulk_download_file_name":"Israel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116096561/232301-libre.pdf?1718630611=\u0026response-content-disposition=attachment%3B+filename%3DIsrael.pdf\u0026Expires=1739822754\u0026Signature=S9txthxYKNL1-3kaVs32uIAuL~PvB6H0Xzq9i9nFDmaVNSudjvgfvudZ8S3lIAjhOFxCuTkVIlnazr6kvWPERB4RqUwfiYA9w-fNwG3ia1K02f1ohUgcpHDVwkX3Oj98YxQMzsgI27eUsFAGVal5XGqWkJUgllFOJCOnebv6l8O2SNE7e3AJpuBzYdh5nNdvt-djHcmDSoXD0TwIdaFjgLnQ4gAshMbUsEdGmL4p~7SKHMWg8Zty1vsbu2KEtrzahLa5IIczQlNdkTWnCCJzMzZkOgxjq7CrfGDhM3Rdxx6v9Lhu~WP-B3XaKJFFOe~T71xzEvFFQqP5qkX47CRCIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116096560,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116096560/thumbnails/1.jpg","file_name":"232301.pdf","download_url":"https://www.academia.edu/attachments/116096560/download_file","bulk_download_file_name":"Israel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116096560/232301-libre.pdf?1718630612=\u0026response-content-disposition=attachment%3B+filename%3DIsrael.pdf\u0026Expires=1739822754\u0026Signature=MUnpKv-ZDtdujjz7zFHz3ad86Bzrv3gAKPH7EymzZoqdEUgyEQAD~TnOH5LslizQYmBwoffGEkgNaAVqMiaRGA7GzfSWlQzYrVax75RELJuOu-52fC1LLJpBQJBqTv7rqYGK-yH~ERR6N0cX-FzLicnITLq~BWyXVniI7PXuCyoazdIGKF2tx9JihQr~tWirLwNowtUAN1xHpNtUfp1ifkOLhfLIskA5F9h4KqzaIDWda~g1DvTconco6u98qHsmNi4rDBCWXBoxrvGjlbGAXNOLXkFEC-Ovt8CZ4eW1ogHL3Vu9REGsi3XFKtK1FSdNRby7bxHxPnJ-Ha1zNr-CiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115145877"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115145877/Visualization_of_electronic_density_of_nanotube_with_AViz"><img alt="Research paper thumbnail of Visualization of electronic density of nanotube with AViz" class="work-thumbnail" src="https://attachments.academia-assets.com/111639682/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115145877/Visualization_of_electronic_density_of_nanotube_with_AViz">Visualization of electronic density of nanotube with AViz</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The spatial volume occupied by an atom depends on its electronic density. Although this density c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The spatial volume occupied by an atom depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent algorithms and packages to calculate it numerically for other materials. Three-dimensional visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. In a recent project, we explored one approach to this: the extension of an analglyphic stereo visualization application based on the AViz package for hydrogen atoms and simple molecules to larger structures such as nanotubes. I will describe these techniques and demonstrate the use of analyglyphic stereo in AViz, [1, 2]. The use of AViz dot-mode visualization for electronic density was first developed in an undergraduate project about the hydrogen atom[3]. We then visualized the electronic density resulting from simulations of larger molecules and solids in the same way. Further studies [4] used a den...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="74e4269b1d3eddaf18939111f63abfdb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111639682,&quot;asset_id&quot;:115145877,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111639682/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115145877"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115145877"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115145877; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115145877]").text(description); $(".js-view-count[data-work-id=115145877]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115145877; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115145877']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "74e4269b1d3eddaf18939111f63abfdb" } } $('.js-work-strip[data-work-id=115145877]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115145877,"title":"Visualization of electronic density of nanotube with AViz","internal_url":"https://www.academia.edu/115145877/Visualization_of_electronic_density_of_nanotube_with_AViz","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":111639682,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111639682/thumbnails/1.jpg","file_name":"omri_a_meytal.pdf","download_url":"https://www.academia.edu/attachments/111639682/download_file","bulk_download_file_name":"Visualization_of_electronic_density_of_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111639682/omri_a_meytal-libre.pdf?1708412563=\u0026response-content-disposition=attachment%3B+filename%3DVisualization_of_electronic_density_of_n.pdf\u0026Expires=1739822754\u0026Signature=gTM5F0fclydzie4820OhbP91wjZKcWQx2fKz-hkVvc~tyAiqYyt81yPH0SsB4e3mlBiBKrt~6dzZvbwNdNJK~WMa9-BKmKBvpst7CvUsr-iS7EffZNSWLrZfJ6p9--Yuul7kwQGEjouB9gPNMKZP2iqrMjys-S1hUJS96xFaqxzIIA~fmoUq0UFw8hb2H9~M5gLEwpUAn-CCdm0BsuHEbjcIrPGKqUF6tT2jjlzPBbrG7asENX8lnJkEtCARRDgeOLw1-wCbpT9Rgqroh3WsD8lYDKU5IawKelIyy6CshJh6mcstcvq7oiUYxmytEElKsCJnYdM2v-v9FzFT8rhWMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":111639681,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111639681/thumbnails/1.jpg","file_name":"omri_a_meytal.pdf","download_url":"https://www.academia.edu/attachments/111639681/download_file","bulk_download_file_name":"Visualization_of_electronic_density_of_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111639681/omri_a_meytal-libre.pdf?1708412563=\u0026response-content-disposition=attachment%3B+filename%3DVisualization_of_electronic_density_of_n.pdf\u0026Expires=1739822754\u0026Signature=T-BMkCRa9BBdJSxWc6ApYgOpml1cetzUgXsaaSv3dKho8grGj6edxXo2zUeGeG9NAc9NxLEwue1EvZ4hrTjtJBT6g-oMIc0Ey-kTiulD~YrzKP0cQiyL3YKgVS2M8bGUy4HmCt83xIcG91YaPEvve8sP0ngO4oDqtmiIOnsbE9-n52U6JDgQhZ6X6ZEhCWoC8LcoRmIfzV0o0KkQG1RqBS8mI2j4xYzUOJOU1LAHB4EGHNcGdthw~zI6vXIA9l18Mm3mlXqVaDtTXpop-d8~mBi9qF1qfyWaCb7TO4~PqP1DqUOYmJ10odIBurJqoN-ji12whdOlvDzD8H94JG~yNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785048"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785048/Localization_Length_Exponent_in_Quantum_Percolation"><img alt="Research paper thumbnail of Localization Length Exponent in Quantum Percolation" class="work-thumbnail" src="https://attachments.academia-assets.com/109908826/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785048/Localization_Length_Exponent_in_Quantum_Percolation">Localization Length Exponent in Quantum Percolation</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, Mar 13, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connecting perfect one-dimensional leads to sites i and j on the quantum percolation (QP) model, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connecting perfect one-dimensional leads to sites i and j on the quantum percolation (QP) model, we calculate the transmission coefficient T ij (E) at an energy E near the band center and the averages of Σ ij T ij , Σ ij r 2 ij T ij , and Σ ij r 4 ij T ij to tenth order in the concentration p. In three dimensions, all three series diverge at p q =0.36 +0.01 −0.02 , with exponents γ=0.82 +0.10 −0.15 , γ+2ν, and γ+4ν. We find ν=0.38±0.07, differing from &quot;usual&quot; Anderson localization and violating the bound ν≥2/d of Chayes et al. [Phys. Rev. Lett. 57, 2999 (1986)]. Thus, QP belongs to a new universality class.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c61ab6edf627d8643122d8182d2e172e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908826,&quot;asset_id&quot;:112785048,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908826/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785048"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785048"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785048; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785048]").text(description); $(".js-view-count[data-work-id=112785048]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785048; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785048']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c61ab6edf627d8643122d8182d2e172e" } } $('.js-work-strip[data-work-id=112785048]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785048,"title":"Localization Length Exponent in Quantum Percolation","internal_url":"https://www.academia.edu/112785048/Localization_Length_Exponent_in_Quantum_Percolation","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908826/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/109908826/download_file","bulk_download_file_name":"Localization_Length_Exponent_in_Quantum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908826/viewcontent-libre.pdf?1704218638=\u0026response-content-disposition=attachment%3B+filename%3DLocalization_Length_Exponent_in_Quantum.pdf\u0026Expires=1739822754\u0026Signature=HchRzSsR-sBybOqTxYDzdWjfVfZGL11HDPD047aL8jyD2y9oGyFwFGAbU0mJnShhZSPW~YMIkaTt7PNw4sy9WnjRfayHhWU3JV20qD0X57gEK5wMRo0kzMVvOEmsTn4SNi9zJ1ClGxCpe8z15QGGBphPS0bfYqFg4VSLEgmSwLNlCUO4Cro~Q~xGhpt3tfn-qZMe8sWfQp2V7b1ia6vhQhNi5r8-pr-RxaUwdPejY1nfqdzp9ET1XAClTaEm355C2-U1oLBLkdj5YWb0JEThox8zDiSc4gg2uUM8llIq7Ceylrq-lu0jeMDoEw7bm5iI2Yspg~O3VYU4wsSMdYvKvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109908825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908825/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/109908825/download_file","bulk_download_file_name":"Localization_Length_Exponent_in_Quantum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908825/viewcontent-libre.pdf?1704218639=\u0026response-content-disposition=attachment%3B+filename%3DLocalization_Length_Exponent_in_Quantum.pdf\u0026Expires=1739822754\u0026Signature=FIh8gVUoLYQDWgXPFXTyuhLGX-wYrRs6-hqBhVkOPcZIp6nr~NlffMfOWnkOzevWG5qwtyB5ZVjuBt8BSz9sYIHdi0JFOC7BCh6ygyWfqO26-Uv2k83YqhCT4cfLWBHz9aMsWTHo1BD6i~a8qpn6BlAuSEobVuUns-66aFN0gB6Wup34KpEveqnZJd2aeZVm7wXlQao89as2TyK-ltA7HO52DY50ZufmCOj6bqukTMmkc1zx2sQkxutZ1VQgdpVc3NRw-gvUpQIma8zN294~lZCHkP2mZ6yqLGeHSCJD6cFDCTkrIJ0mmKs8iUecWqmyvCeVZBh-VIai3B4e3T99jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785047/Three_dimensional_visualization_of_simulations_of_liquids_and_solids"><img alt="Research paper thumbnail of Three dimensional visualization of simulations of liquids and solids" class="work-thumbnail" src="https://attachments.academia-assets.com/109908861/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785047/Three_dimensional_visualization_of_simulations_of_liquids_and_solids">Three dimensional visualization of simulations of liquids and solids</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Visualization in three dimensions is invaluable for understanding the nature of condensed and flu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Visualization in three dimensions is invaluable for understanding the nature of condensed and fluid systems, but it is not always easy. In nature it is hard to view sample interiors, but on computers it is possible. We describe and contrast two opposite approaches - “smoke” visualization for viewing interiors of liquid samples and interactive WebGL for solids and molecules. Both are extensions of earlier Technion Computational Physics group projects and complement and are interoperable with the recent SimPhoNy Fp7 project. They require only desktop hardware and software accessible to students. Examples and standalone instructions for both are presented, starting with sample creation and concluding with image galleries.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3cbcbd67205529c79888ae3309da5b81" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908861,&quot;asset_id&quot;:112785047,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908861/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785047]").text(description); $(".js-view-count[data-work-id=112785047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3cbcbd67205529c79888ae3309da5b81" } } $('.js-work-strip[data-work-id=112785047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785047,"title":"Three dimensional visualization of simulations of liquids and solids","internal_url":"https://www.academia.edu/112785047/Three_dimensional_visualization_of_simulations_of_liquids_and_solids","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908861,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908861/thumbnails/1.jpg","file_name":"vin3iop.pdf","download_url":"https://www.academia.edu/attachments/109908861/download_file","bulk_download_file_name":"Three_dimensional_visualization_of_simul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908861/vin3iop-libre.pdf?1704218634=\u0026response-content-disposition=attachment%3B+filename%3DThree_dimensional_visualization_of_simul.pdf\u0026Expires=1739822754\u0026Signature=WB4~YRVZmFPQPvqRmYm~l14Z2uqK7nSdNVN79pu2hn3kIUgqvgURcekXbWXX-xdFzv~cqn65YC9Ci9plNaexykHSEtoBOLq3jzqM-nnFo6gzlrydN0ivdlgGKaaw-sRZV6c89R7abINBRwQiQrebdIxxqIloX5dS6yXuEmxCf3IaOU6cCoENeJ76f5IL-dV9-RjVCMHOUdLywZkU7tIHKWL3PdU~TJbKrBA5~RBRDfKCrUt6TxLntDbZ7N8RXLXRLXng8Kii2-YRCTQhivkFAynXZsu4Tm0rrep7HTRoFj4q2JnY2NrN1S8NNA6K825ev9959joeHVvPKNcEzGC5Hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785046/GPUs_in_a_computational_physics_course"><img alt="Research paper thumbnail of GPUs in a computational physics course" class="work-thumbnail" src="https://attachments.academia-assets.com/109908860/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785046/GPUs_in_a_computational_physics_course">GPUs in a computational physics course</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In an introductory computational physics class of the type that many of us give, time constraints...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In an introductory computational physics class of the type that many of us give, time constraints lead to hard choices on topics. Everyone likes to include their own research in such a class but an overview of many areas is paramount. Parallel programming algorithms using MPI is one important topic. Both the principle and the need to break the &quot;fear barrier&quot; of using a large machine with a queuing system via ssh must be sucessfully passed on. Due to the plateau in chip development and to power considerations future HPC hardware choices will include heavy use of GPUs. Thus the need to introduce these at the level of an introductory course has arisen. Just as for parallel coding, explanation of the benefits and simple examples to guide the hesitant first time user should be selected. Several student projects using GPUs that include how-to pages were proposed at the Technion. Two of the more successful ones were lattice Boltzmann and a finite element code, and we present these in detail.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f52f8347f0145bcce8a695aa5b516606" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908860,&quot;asset_id&quot;:112785046,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908860/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785046]").text(description); $(".js-view-count[data-work-id=112785046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f52f8347f0145bcce8a695aa5b516606" } } $('.js-work-strip[data-work-id=112785046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785046,"title":"GPUs in a computational physics course","internal_url":"https://www.academia.edu/112785046/GPUs_in_a_computational_physics_course","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908860,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908860/thumbnails/1.jpg","file_name":"1dd7960adfb3aed2c139c45358632ad1fd4f.pdf","download_url":"https://www.academia.edu/attachments/109908860/download_file","bulk_download_file_name":"GPUs_in_a_computational_physics_course.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908860/1dd7960adfb3aed2c139c45358632ad1fd4f-libre.pdf?1704218634=\u0026response-content-disposition=attachment%3B+filename%3DGPUs_in_a_computational_physics_course.pdf\u0026Expires=1739822754\u0026Signature=C0pPGF2tW0dMavrBAgzoyLhb0v9zpDl4uckQx713PBwHweZnykqqcFInMjkmajnHcrZQ6sS-P~MaB5e9-Jp8CJ8HAvmgCBVe8KxuJNIwRGqhSRiL58At~lzVWcka8dokHcZS5IV3rZRPALDNklCghaRk8FAP~mKedNAXYBJIT-rE~LCT5Ovbrv7PgsaTphTfWv8wo8YV3GfFFrhfAXgFdrez0USmmuWIyMrVkZ94Z5Uv~dFiHezkKUlDv~zj-FuZYZX9kqnDiiV3wrOiJQ~FMoH7bWMEWbnJQnMtf2hkf2KyNHQTu5h3N6weN0bW4y4KMAVvxYyAi3wdT3yq~qFVrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785045"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785045/Groundstates_of_liquid_crystals_with_colloids_a_project_for_undergraduate_students"><img alt="Research paper thumbnail of Groundstates of liquid crystals with colloids: a project for undergraduate students" class="work-thumbnail" src="https://attachments.academia-assets.com/109908858/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785045/Groundstates_of_liquid_crystals_with_colloids_a_project_for_undergraduate_students">Groundstates of liquid crystals with colloids: a project for undergraduate students</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Although simulated annealing has become a useful tool for optimization of many systems, its initi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Although simulated annealing has become a useful tool for optimization of many systems, its initial raison d&#39;etre of achieving the groundstate structure for a spin or atomic/molecular condensed system remains important. Such modelling, whether using analog models such as glass beads or by invoking simple computer models can be suited to undergraduate projects. In this paper we discuss the application of simulated annealing to find the groundstate of a system of liquid crystals (LC) with suspended colloids. These systems are expected to have interesting conductive behaviour, relevant to applications for television and computer screens. In our first stage, a pure LC system was simulated in python and vizualized by undergraduates and presented on an educational website. In the next stage colloid(s) were added, and the original code modified accordingly. Interesting effects such as ordering around the colloid have been seen and will be described. In the final stage and in order to study larger samples, the code was rewritten in C++ and several algorithmic modifications were made. Speed up factors between 100 and more than 1000 were obtained, and fascinating closed cells surrounding the colloids were observed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9a31da750bfa1849d2b68ec3560c0d6f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908858,&quot;asset_id&quot;:112785045,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908858/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785045"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785045"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785045; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785045]").text(description); $(".js-view-count[data-work-id=112785045]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785045; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785045']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9a31da750bfa1849d2b68ec3560c0d6f" } } $('.js-work-strip[data-work-id=112785045]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785045,"title":"Groundstates of liquid crystals with colloids: a project for undergraduate students","internal_url":"https://www.academia.edu/112785045/Groundstates_of_liquid_crystals_with_colloids_a_project_for_undergraduate_students","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908858/thumbnails/1.jpg","file_name":"f6c3e77077eb8e63376c430da3a65690748c.pdf","download_url":"https://www.academia.edu/attachments/109908858/download_file","bulk_download_file_name":"Groundstates_of_liquid_crystals_with_col.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908858/f6c3e77077eb8e63376c430da3a65690748c-libre.pdf?1704218639=\u0026response-content-disposition=attachment%3B+filename%3DGroundstates_of_liquid_crystals_with_col.pdf\u0026Expires=1739822754\u0026Signature=AXlmTIZl6eskXDpvljEowk6UT3Az60LF99WS0OUDYGlyP0dk6KwemC83DkFOjaO0xb8Dmo53kugnPES0lsfyT7yXJUYk4bXP-pw32FLZJD5ZymN3-h~OEgaXVzJf6euLZDn5gsKt3BFucXhfK6o5gWOK~i0F6mPzk81v3odO-q2NCIvpp4ct7v9AJdFyZJH2qj7pyvmKmNO8G28V4MZtfzrhwmw0JwpnMXr3DvsuKMoQucV3mclPz-d8o9O31nznjOq2Zuy0KbuRwx5djUtXwR5gz0CZSkxKWkxloVYMPwXjCBK8-hCS5rLHHTn-bYJNlNWMW6KRhAmkQy1GmeS4BA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785043"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785043/Series_study_of_random_animals_in_general_dimensions"><img alt="Research paper thumbnail of Series study of random animals in general dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/109908857/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785043/Series_study_of_random_animals_in_general_dimensions">Series study of random animals in general dimensions</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We construct general-dimension series for the random animal problem up to 15th order. These repre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We construct general-dimension series for the random animal problem up to 15th order. These represent an improvement of five terms in four dimensions and above and one term in three dimensions. These series are analyzed, together with existing series in two dimensions, and series for the related Yang-Lee edge problem, to obtain accurate estimates of critical parameters, in particular, the correction to scaling exponent. There appears to be excellent agreement between the two models for both dominant and correction exponents.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="390c351058522797eb8d4819b607048b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908857,&quot;asset_id&quot;:112785043,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908857/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785043"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785043"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785043; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785043]").text(description); $(".js-view-count[data-work-id=112785043]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785043; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785043']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "390c351058522797eb8d4819b607048b" } } $('.js-work-strip[data-work-id=112785043]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785043,"title":"Series study of random animals in general dimensions","internal_url":"https://www.academia.edu/112785043/Series_study_of_random_animals_in_general_dimensions","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908857/thumbnails/1.jpg","file_name":"be9f4c7d5a145667f1d1492ec322d1cbc285.pdf","download_url":"https://www.academia.edu/attachments/109908857/download_file","bulk_download_file_name":"Series_study_of_random_animals_in_genera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908857/be9f4c7d5a145667f1d1492ec322d1cbc285-libre.pdf?1704218645=\u0026response-content-disposition=attachment%3B+filename%3DSeries_study_of_random_animals_in_genera.pdf\u0026Expires=1739822754\u0026Signature=BBe2d5Y0YP3H6nJdVXW6jlUA1sBUvP2FtIzn9DoLsif97XjWLUnEq7WH9S0VFy5nXNJMzK9sco0P-wDNt48zQjzkKJv9l--cI8A14bthq4rN9StKImHd0FtrFaRJwC-rMnnQPNOYdCXY860MwGJSbDVCpfEKDRoGk8trTAv4BrWH891uwsAxKgl1pAkJRDPVXQQRQ8MDvJRl69FuumHpUpR7O4wzyAQQY13paJzTRIp3-OmRZhALUq2hu3wpJ~KBJN8nZiBtgBtUkV0eTyt4DM21JLT6HM5o-56JtrexofY0jEs3205h~fZBAgeCRDhpl4dZsQZamRJYv1CrvMIWrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785041/Distribution_of_the_logarithms_of_currents_in_percolating_resistor_networks_II_Series_expansions"><img alt="Research paper thumbnail of Distribution of the logarithms of currents in percolating resistor networks. II. Series expansions" class="work-thumbnail" src="https://attachments.academia-assets.com/109965176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785041/Distribution_of_the_logarithms_of_currents_in_percolating_resistor_networks_II_Series_expansions">Distribution of the logarithms of currents in percolating resistor networks. II. Series expansions</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate the distribution of the logarithms, logi, of the currents in percolating resistor ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate the distribution of the logarithms, logi, of the currents in percolating resistor networks via the method of series expansions. Exact results in one dimension and expansions to thirteenth order in the bond occupation probability, p, in general dimension, for the moments of this distribution have been generated. We have studied both the moments and cumulants derived therefrom with several extrapolation procedures. The results have been compared with recent predictions for the behavior of the moments and cumulants of this distribution. An extensive comparison between exact results and series of different lengths in one dimension sheds light on many aspects of the analysis of series with logarithmic corrections. The numerical results of the series expansions in higher dimensions are generally consistent with the theoretical predictions. We confirm that the distribution of the logarithms of the currents is unifractal as a function of the logarithm of linear system size, even though the distribution of the currents is multifractal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a34a369347d8422474ea18986dc17045" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109965176,&quot;asset_id&quot;:112785041,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109965176/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785041]").text(description); $(".js-view-count[data-work-id=112785041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a34a369347d8422474ea18986dc17045" } } $('.js-work-strip[data-work-id=112785041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785041,"title":"Distribution of the logarithms of currents in percolating resistor networks. II. Series expansions","internal_url":"https://www.academia.edu/112785041/Distribution_of_the_logarithms_of_currents_in_percolating_resistor_networks_II_Series_expansions","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109965176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109965176/thumbnails/1.jpg","file_name":"626f36fe3b1e5aa337e6ea5db8e94e9fae04.pdf","download_url":"https://www.academia.edu/attachments/109965176/download_file","bulk_download_file_name":"Distribution_of_the_logarithms_of_curren.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109965176/626f36fe3b1e5aa337e6ea5db8e94e9fae04-libre.pdf?1704301371=\u0026response-content-disposition=attachment%3B+filename%3DDistribution_of_the_logarithms_of_curren.pdf\u0026Expires=1739822754\u0026Signature=P9GBFayLXhFSQrnTRR6PgRZgxTvYjcoDcg-2KFj0Yg8OkNjth8c246SA-rLPDYllrIy5gEQuaJmx7nL9xn6yVNr0MKRrmAqmEJg963Sj4yYrbz-DLU4ztqxGx~l4JCQA4f85NKHggWOl9MoDqamRx5vvDJXhqFYjthmHx8~2tuIeLOK0WS5~jBlftpHrWNArwJmm-cLW1bUOnp5u0CQfN~-9qY6KY3b0ZipR8bN8GHRhWvP6gIUP8btXcT-yIhB0Us3HlgJqD4vfr4gpPEiMRWMH1FlndF6cUemuC8G2kp3YK0mJci1gMoa5ohaRr8hoJSQ8GT27qVxGPTZMHiWHBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785040/Series_study_of_percolation_moments_in_general_dimension"><img alt="Research paper thumbnail of Series study of percolation moments in general dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/109908856/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785040/Series_study_of_percolation_moments_in_general_dimension">Series study of percolation moments in general dimension</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Series expansions for general moments of the bond-percolation cluster-size distribution on hyperc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Series expansions for general moments of the bond-percolation cluster-size distribution on hypercubic lattices to 15th order in the concentration have been obtained. This is one more than the previously published series for the mean cluster size in three dimensions and four terms more for higher moments and higher dimensions. Critical exponents, amplitude ratios, and thresholds have been calculated from these and other series by a variety of independent analysis techniques. A comprehensive summary of extant estimates for exponents, some universal amplitude ratios, and thresholds for percolation in all dimensions is given, and our results are shown to be in excellent agreement with the ε expansion and some of the most accurate simulation estimates. We obtain threshold values of 0.2488±0.0002 and 0.180 25±0.000 15 for the three-dimensional bond problem on the simple-cubic and body-centered-cubic lattices, respectively, and 0.160 05±0.000 15 and 0.118 19±0.000 04, for the hypercubic bond problem in four and five dimensions, respectively. Our direct exponent estimates are γ=1.805±0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d58f578a0356df2e13a9091de37c4aba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908856,&quot;asset_id&quot;:112785040,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908856/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785040]").text(description); $(".js-view-count[data-work-id=112785040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d58f578a0356df2e13a9091de37c4aba" } } $('.js-work-strip[data-work-id=112785040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785040,"title":"Series study of percolation moments in general dimension","internal_url":"https://www.academia.edu/112785040/Series_study_of_percolation_moments_in_general_dimension","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908856,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908856/thumbnails/1.jpg","file_name":"b74e9ea13af9ef9ed92ea5d753263c1dc713.pdf","download_url":"https://www.academia.edu/attachments/109908856/download_file","bulk_download_file_name":"Series_study_of_percolation_moments_in_g.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908856/b74e9ea13af9ef9ed92ea5d753263c1dc713-libre.pdf?1704218652=\u0026response-content-disposition=attachment%3B+filename%3DSeries_study_of_percolation_moments_in_g.pdf\u0026Expires=1739822754\u0026Signature=gILbQUzpSblG1xv6XzI3P0-~ZzmHPEzTc88pE9T726EhiWAbYl3PRRD4WC7-ayDxQc7Odg-kHv4U-Ia-1hrIK~2atzXW2paI9vjtqPoO2zf3tg79W0zaIimujUrvA2cIaMe70b7hzH3Zlxe7MKQciwLGBcEW0~nEBO874pzDgJOprp-WHmZGR2d1-Rmd795IUQgbrAVWJsm4gcE-0rejqAkw~36r1ZEvsSZ2IfIZy134fSo0Q-XOA7aOqRDC0EgvzeXK20Nutiyxbn1if88DbH1wsREXLiGQi7zi~Ysi~8nySoQevGxsZ8F8vWShljPo3wavynvjeLmtmYv5gUeWyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785038/Erratum_Dilute_spin_glass_at_zero_temperature_in_general_dimension"><img alt="Research paper thumbnail of Erratum: Dilute spin glass at zero temperature in general dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/109965215/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785038/Erratum_Dilute_spin_glass_at_zero_temperature_in_general_dimension">Erratum: Dilute spin glass at zero temperature in general dimension</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1991</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We inadvertently quoted in Table II only the second term of Eq. (2.2) multiphed by (1 cry) .-The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We inadvertently quoted in Table II only the second term of Eq. (2.2) multiphed by (1 cry) .-The complete series for g is given in Table I. TABLE I. Series coefficients for y, where&#39; =I+ g &quot;a(m, n)p&quot;&#39;d&quot;</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c5303bb8be68f7eb6ee6a1acb62b28d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109965215,&quot;asset_id&quot;:112785038,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109965215/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785038]").text(description); $(".js-view-count[data-work-id=112785038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c5303bb8be68f7eb6ee6a1acb62b28d3" } } $('.js-work-strip[data-work-id=112785038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785038,"title":"Erratum: Dilute spin glass at zero temperature in general dimension","internal_url":"https://www.academia.edu/112785038/Erratum_Dilute_spin_glass_at_zero_temperature_in_general_dimension","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109965215,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109965215/thumbnails/1.jpg","file_name":"PhysRevB.43.pdf","download_url":"https://www.academia.edu/attachments/109965215/download_file","bulk_download_file_name":"Erratum_Dilute_spin_glass_at_zero_temper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109965215/PhysRevB.43-libre.pdf?1704301355=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Dilute_spin_glass_at_zero_temper.pdf\u0026Expires=1739822754\u0026Signature=g7eXONVoZAcudV2tvT12d818RBOvIlPe174NfQ1vp6h0QZRYhSH42KLaPIiDXf9X4Jolg4tqejIwlQ~CBj4O0~QwaayBhNNSUzf63N-i1Tcg1k6VCSBs4XsfHJcYRbayBzKeZ7bQZylnJdGoi~coc6u3H7pVCM1m2sDmc5UFl7vFooEabqbO0NsH2qOgIQxzaPpYZy1WSe4IPUGSOIzw2wxbKRhtSQaRnF74xFea62If28QeNZHo8i0WXiLtSV4LD5uzUMUvg9lzui56zuuFIv5TCqojhrqViQOkn6pGbNfDfF4u8JeGyTcJC4EaEBzW-tqy0mTskbwXlB~iDnFvVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785037"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785037/Evidence_for_Two_Exponent_Scaling_in_the_Random_Field_Ising_Model"><img alt="Research paper thumbnail of Evidence for Two Exponent Scaling in the Random Field Ising Model" class="work-thumbnail" src="https://attachments.academia-assets.com/109908854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785037/Evidence_for_Two_Exponent_Scaling_in_the_Random_Field_Ising_Model">Evidence for Two Exponent Scaling in the Random Field Ising Model</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Novel methods were used to generate and analyze new 15 term high temperature series for both the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Novel methods were used to generate and analyze new 15 term high temperature series for both the (connected) susceptibility χ and the structure factor (disconnected susceptibility) χ d for the random field Ising model with dimensionless coupling K=J/kT, in general dimension d. For both the bimodal and the Gaussian field distributions, with mean square field J 2 g, we find that (χ d-χ)/K 2 gχ 2 =1 as T→T c (g), for a range of [h 2 ]=J 2 g and d=3,4,5. This confirms the exponent relation γ¯=2γ (where χ d~t −γ¯, χ~t −γ , t=T-T c) providing that random field exponents are determined by two (and not three) independent exponents. We also present new accurate values for γ.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59afb2a270c64447cbf73d7c3561a135" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908854,&quot;asset_id&quot;:112785037,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785037"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785037"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785037; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785037]").text(description); $(".js-view-count[data-work-id=112785037]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785037; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785037']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59afb2a270c64447cbf73d7c3561a135" } } $('.js-work-strip[data-work-id=112785037]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785037,"title":"Evidence for Two Exponent Scaling in the Random Field Ising Model","internal_url":"https://www.academia.edu/112785037/Evidence_for_Two_Exponent_Scaling_in_the_Random_Field_Ising_Model","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908854/thumbnails/1.jpg","file_name":"ec1e7f1c1cd181353d4ee9d02ff00f362395.pdf","download_url":"https://www.academia.edu/attachments/109908854/download_file","bulk_download_file_name":"Evidence_for_Two_Exponent_Scaling_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908854/ec1e7f1c1cd181353d4ee9d02ff00f362395-libre.pdf?1704218639=\u0026response-content-disposition=attachment%3B+filename%3DEvidence_for_Two_Exponent_Scaling_in_the.pdf\u0026Expires=1739822754\u0026Signature=H6wNKE7O7ewgJNJCxCRR7kNmel~EcIODHWh~K7ITHQhlAoMYdXSrX8EHFmqYKnnVxTqhQIuyLPBWkzhwQpfOQeA8koUCSwg63MsxxhxUuQwrRxP7CZ3sTizSDR-VEC1TEIs94TMoGj9~fNLFRTgwIaSNby-hT0uGpbF3innJ79PbBGafi0yOD-jhfqreQFBFpRLbuPPUMp9Qgf3hOQEsnjwygmAh9rl1I8cU46DcoFeLNOTXoYjSvOi0STxWuPdLMWevznEmcUo0yaOoKHXr0AcsvRmB2TeKfZE6b5vjjOYeZLdcjWS64fJdXnN0ScP1gAw-IVG9EMJFiu02fxz~zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="112785035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/112785035/Low_concentration_series_in_general_dimension"><img alt="Research paper thumbnail of Low-concentration series in general dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/109908855/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/112785035/Low_concentration_series_in_general_dimension">Low-concentration series in general dimension</a></div><div class="wp-workCard_item"><span>Journal of Statistical Physics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We discuss recent work on the development and analysis of low-concentration series. For many mode...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We discuss recent work on the development and analysis of low-concentration series. For many models, the recent breakthrough in the extremely efficient nofree-end method of series generation facilitates the derivation of 15th-order series for multiple moments in general dimension. The 15th-order series have been obtained for lattice animals, percolation, and the Edwards Anderson Ising spin glass. In the latter cases multiple moments have been found. From complete graph tables through to 13th order, general dimension 13th-order series have been derived for the resistive susceptibility, the moments of the logarithms of the distribution of currents in resistor networks, and the average transmission coefficient in the quantum percolation problem, l lth-order series have been found for several other systems, including the crossover from animals to percolation, the full resistance distribution, nonlinear resistive susceptibility and current distribution in dilute resistor networks, diffusion on percolation clusters, the dilute Ising model, dilute antiferromagnet in a field, and random field Ising model and self-avoiding walks on percolation clusters. Series for the dilute spin-l/2 quantum Heisenberg ferromagnet are in the process of development. Analysis of these series gives estimates for critical thresholds, amplitude ratios, and critical exponents for all dimensions. Where comparisons are possible, our series results are in good agreement with both z-expansion results near the upper critical dimension and with exact results (when available) in low dimensions, and are competitive with other numerical approaches in intermediate realistic dimensions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="13a2a80d05620ee4b6240673fd39a67c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109908855,&quot;asset_id&quot;:112785035,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109908855/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="112785035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="112785035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 112785035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=112785035]").text(description); $(".js-view-count[data-work-id=112785035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 112785035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='112785035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "13a2a80d05620ee4b6240673fd39a67c" } } $('.js-work-strip[data-work-id=112785035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":112785035,"title":"Low-concentration series in general dimension","internal_url":"https://www.academia.edu/112785035/Low_concentration_series_in_general_dimension","owner_id":34096021,"coauthors_can_edit":true,"owner":{"id":34096021,"first_name":"Joan","middle_initials":null,"last_name":"Adler","page_name":"AdlerJoan","domain_name":"independent","created_at":"2015-08-20T22:08:44.618-07:00","display_name":"Joan Adler","url":"https://independent.academia.edu/AdlerJoan"},"attachments":[{"id":109908855,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109908855/thumbnails/1.jpg","file_name":"bf0111276020240102-1-aw72q7.pdf","download_url":"https://www.academia.edu/attachments/109908855/download_file","bulk_download_file_name":"Low_concentration_series_in_general_dime.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109908855/bf0111276020240102-1-aw72q7-libre.pdf?1704218640=\u0026response-content-disposition=attachment%3B+filename%3DLow_concentration_series_in_general_dime.pdf\u0026Expires=1739822754\u0026Signature=fDyf0DtwGAJmfSP997kYY0xvLrWWQZUvFe1Njp29zTJBN8ND9mJYtCnmqWRDMJkGsQ9ebvKagSvP7dbOsaEE9BZ2GKTQs4cWzCRQh6uVsxkMh9pESWw0q84~OasRRH3yL40fV6z46UBwSmLKNArVpXMlWamAybGhKpN5dPRIQgSv-drwpmko2gs8ZDJDyGwQ2JNDGTBFJB0-ebh93E811E0Ifg2-xsiiUOH783ZGUys1mCa6NoPOuQhRsA~fiI36fPCqeqT1v9sHwwnjcSfrkRoYbT2TRuNK1XsIJhfJ0F3x97q1tbCExJQh4wxztfxl0AXOGqJtXcFy~gO5SJ7Zdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "258028fbdb20495ea11434576560e97d5b93e94d97b7b1a73072ca430e0b2881", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="3Q9cp97MTT-e8x21LCDWXzSwWVnvig8pLIh4LAOq3l_PVniXrGZqnBdOC0jQ0ISnc26AzD_NPNmMtTyoWBnCAw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/AdlerJoan" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="2GoHMD5LJw7_H4VIqFht7zlCEzY84PHtAr8QdTAro37KMyMATOEArXaik7VUqD8XfpzKo-ynwh2iglTxa5i_Ig" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10