CINXE.COM
Stars/Radiative dynamo - Wikiversity
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Stars/Radiative dynamo - Wikiversity</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikiversitymwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ede49d64-3429-4978-a672-88820efcd60d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Stars/Radiative_dynamo","wgTitle":"Stars/Radiative dynamo","wgCurRevisionId":2450766,"wgRevisionId":2450766,"wgArticleId":123680,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Pages with broken file links","Articles with hatnote templates targeting a nonexistent page","Astrophysics/Lectures","Charges/Lectures","Stars/Lectures"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Stars/Radiative_dynamo","wgRelevantArticleId":123680,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject": "wikiversity","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q27509358","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"wgSiteNoticeId":"2.101"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready", "skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","wikibase.client.vector-2022","ext.checkUser.clientHints","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/a/a0/Latest_xrt_soft_x-ray.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Latest_xrt_soft_x-ray.gif/800px-Latest_xrt_soft_x-ray.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Latest_xrt_soft_x-ray.gif/640px-Latest_xrt_soft_x-ray.gif"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Stars/Radiative dynamo - Wikiversity"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikiversity.org/wiki/Stars/Radiative_dynamo"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Stars/Radiative_dynamo&action=edit"> <link rel="icon" href="/static/favicon/wikiversity.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikiversity (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikiversity.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikiversity.org/wiki/Stars/Radiative_dynamo"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikiversity Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Stars_Radiative_dynamo rootpage-Stars skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Main-Page" class="mw-list-item"><a href="/wiki/Wikiversity:Main_Page"><span>Main Page</span></a></li><li id="n-Browse" class="mw-list-item"><a href="/wiki/Wikiversity:Browse"><span>Browse</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes in the wiki [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-Guided-tours" class="mw-list-item"><a href="/wiki/Help:Guides"><span>Guided tours</span></a></li><li id="n-Random" class="mw-list-item"><a href="/wiki/Special:RandomRootpage"><span>Random</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="The place to find out"><span>Help</span></a></li> </ul> </div> </div> <div id="p-community" class="vector-menu mw-portlet mw-portlet-community" > <div class="vector-menu-heading"> Community </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Wikiversity:Community_Portal" title="About the project, what you can do, where to find things"><span>Portal</span></a></li><li id="n-Colloquium" class="mw-list-item"><a href="/wiki/Wikiversity:Colloquium"><span>Colloquium</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Wikiversity:News" title="Find background information on current events"><span>News</span></a></li><li id="n-Projects" class="mw-list-item"><a href="/wiki/Wikiversity:Community_projects"><span>Projects</span></a></li><li id="n-Sandbox" class="mw-list-item"><a href="/wiki/Wikiversity:Sandbox"><span>Sandbox</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikiversity:Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikiversity.svg" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikiversity" src="/static/images/mobile/copyright/wikiversity-wordmark-en.svg" style="width: 9.125em; height: 1em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikiversity [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikiversity" aria-label="Search Wikiversity" autocapitalize="sentences" title="Search Wikiversity [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikiversity.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Stars%2FRadiative+dynamo" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Stars%2FRadiative+dynamo" title="You are encouraged to log in; however, it is not mandatory [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="More options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikiversity.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Stars%2FRadiative+dynamo" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Stars%2FRadiative+dynamo" title="You are encouraged to log in; however, it is not mandatory [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Edismiss\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"en\" dir=\"ltr\"\u003E\u003Cdiv class=\"center\" style=\"\"\u003E\n\u003Cbig\u003E\u003Ca href=\"/wiki/Wikiversity:Why_create_an_account%3F\" class=\"mw-redirect\" title=\"Wikiversity:Why create an account?\"\u003EWhy create a Wikiversity account?\u003C/a\u003E\u003C/big\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Beginning</div> </a> </li> <li id="toc-Antidynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Antidynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Antidynamos</span> </div> </a> <ul id="toc-Antidynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Disc_dynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Disc_dynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Disc dynamos</span> </div> </a> <ul id="toc-Disc_dynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Helioseismology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Helioseismology"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Helioseismology</span> </div> </a> <ul id="toc-Helioseismology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Magnetic_dynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Magnetic_dynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Magnetic dynamos</span> </div> </a> <ul id="toc-Magnetic_dynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Planetary_sciences" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Planetary_sciences"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Planetary sciences</span> </div> </a> <ul id="toc-Planetary_sciences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Minerals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Minerals"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Minerals</span> </div> </a> <ul id="toc-Minerals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dynamo_theory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dynamo_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Dynamo theory</span> </div> </a> <ul id="toc-Dynamo_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hydromagnetic_dynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Hydromagnetic_dynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Hydromagnetic dynamos</span> </div> </a> <ul id="toc-Hydromagnetic_dynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Entities" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Entities"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Entities</span> </div> </a> <ul id="toc-Entities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Radiative_zones" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Radiative_zones"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Radiative zones</span> </div> </a> <ul id="toc-Radiative_zones-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coronal_radiative_layers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Coronal_radiative_layers"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Coronal radiative layers</span> </div> </a> <ul id="toc-Coronal_radiative_layers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convective_dynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Convective_dynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Convective dynamos</span> </div> </a> <ul id="toc-Convective_dynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Radiative_α–Ω_dynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Radiative_α–Ω_dynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Radiative α–Ω dynamos</span> </div> </a> <ul id="toc-Radiative_α–Ω_dynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tayler-Spruit_dynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Tayler-Spruit_dynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Tayler-Spruit dynamos</span> </div> </a> <ul id="toc-Tayler-Spruit_dynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differential_rotations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Differential_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Differential rotations</span> </div> </a> <ul id="toc-Differential_rotations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electromagnetics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Electromagnetics"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Electromagnetics</span> </div> </a> <ul id="toc-Electromagnetics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Magnetohydrodynamic_dynamos" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Magnetohydrodynamic_dynamos"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>Magnetohydrodynamic dynamos</span> </div> </a> <ul id="toc-Magnetohydrodynamic_dynamos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-X-rays" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#X-rays"> <div class="vector-toc-text"> <span class="vector-toc-numb">18</span> <span>X-rays</span> </div> </a> <ul id="toc-X-rays-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Visuals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Visuals"> <div class="vector-toc-text"> <span class="vector-toc-numb">19</span> <span>Visuals</span> </div> </a> <ul id="toc-Visuals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Oranges" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Oranges"> <div class="vector-toc-text"> <span class="vector-toc-numb">20</span> <span>Oranges</span> </div> </a> <ul id="toc-Oranges-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reds" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Reds"> <div class="vector-toc-text"> <span class="vector-toc-numb">21</span> <span>Reds</span> </div> </a> <ul id="toc-Reds-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Liquid_objects" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Liquid_objects"> <div class="vector-toc-text"> <span class="vector-toc-numb">22</span> <span>Liquid objects</span> </div> </a> <ul id="toc-Liquid_objects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nitrogens" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Nitrogens"> <div class="vector-toc-text"> <span class="vector-toc-numb">23</span> <span>Nitrogens</span> </div> </a> <ul id="toc-Nitrogens-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calciums" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Calciums"> <div class="vector-toc-text"> <span class="vector-toc-numb">24</span> <span>Calciums</span> </div> </a> <ul id="toc-Calciums-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sun" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sun"> <div class="vector-toc-text"> <span class="vector-toc-numb">25</span> <span>Sun</span> </div> </a> <ul id="toc-Sun-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mercury" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mercury"> <div class="vector-toc-text"> <span class="vector-toc-numb">26</span> <span>Mercury</span> </div> </a> <ul id="toc-Mercury-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Venus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Venus"> <div class="vector-toc-text"> <span class="vector-toc-numb">27</span> <span>Venus</span> </div> </a> <ul id="toc-Venus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Earth" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Earth"> <div class="vector-toc-text"> <span class="vector-toc-numb">28</span> <span>Earth</span> </div> </a> <ul id="toc-Earth-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Moon" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Moon"> <div class="vector-toc-text"> <span class="vector-toc-numb">29</span> <span>Moon</span> </div> </a> <ul id="toc-Moon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mars" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mars"> <div class="vector-toc-text"> <span class="vector-toc-numb">30</span> <span>Mars</span> </div> </a> <ul id="toc-Mars-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Jupiter" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Jupiter"> <div class="vector-toc-text"> <span class="vector-toc-numb">31</span> <span>Jupiter</span> </div> </a> <ul id="toc-Jupiter-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Io" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Io"> <div class="vector-toc-text"> <span class="vector-toc-numb">32</span> <span>Io</span> </div> </a> <ul id="toc-Io-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Enceladus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Enceladus"> <div class="vector-toc-text"> <span class="vector-toc-numb">33</span> <span>Enceladus</span> </div> </a> <ul id="toc-Enceladus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uranus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Uranus"> <div class="vector-toc-text"> <span class="vector-toc-numb">34</span> <span>Uranus</span> </div> </a> <ul id="toc-Uranus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neptune" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Neptune"> <div class="vector-toc-text"> <span class="vector-toc-numb">35</span> <span>Neptune</span> </div> </a> <ul id="toc-Neptune-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Brown_dwarfs" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Brown_dwarfs"> <div class="vector-toc-text"> <span class="vector-toc-numb">36</span> <span>Brown dwarfs</span> </div> </a> <ul id="toc-Brown_dwarfs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Giant_stars" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Giant_stars"> <div class="vector-toc-text"> <span class="vector-toc-numb">37</span> <span>Giant stars</span> </div> </a> <ul id="toc-Giant_stars-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hypotheses" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Hypotheses"> <div class="vector-toc-text"> <span class="vector-toc-numb">38</span> <span>Hypotheses</span> </div> </a> <ul id="toc-Hypotheses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">39</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">40</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">41</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">42</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Stars/Radiative dynamo</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q27509358#sitelinks-wikiversity" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stars/Radiative_dynamo" title="View the content page [c]" accesskey="c"><span>Resource</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Talk:Stars/Radiative_dynamo&action=edit&redlink=1" rel="discussion" class="new" title="Discussion about the content page (page does not exist) [t]" accesskey="t"><span>Discuss</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stars/Radiative_dynamo"><span>Read</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit" title="Edit this page [v]" accesskey="v"><span>Edit</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit" title="Edit the source code of this page [e]" accesskey="e"><span>Edit source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Stars/Radiative_dynamo"><span>Read</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit" title="Edit this page [v]" accesskey="v"><span>Edit</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit" title="Edit the source code of this page [e]" accesskey="e"><span>Edit source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Stars/Radiative_dynamo" title="A list of all wiki pages that link here [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Stars/Radiative_dynamo" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&oldid=2450766" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Stars%2FRadiative_dynamo&id=2450766&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikiversity.org%2Fwiki%2FStars%2FRadiative_dynamo"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikiversity.org%2Fwiki%2FStars%2FRadiative_dynamo"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-wikimedia_projects" class="vector-menu mw-portlet mw-portlet-wikimedia_projects" > <div class="vector-menu-heading"> Wikimedia Projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Commons" class="mw-list-item"><a href="https://commons.wikimedia.org/wiki/Main_Page"><span>Commons</span></a></li><li id="n-Wikibooks" class="mw-list-item"><a href="https://en.wikibooks.org/wiki/Project:Main_Page"><span>Wikibooks</span></a></li><li id="n-Wikidata" class="mw-list-item"><a href="https://www.wikidata.org/wiki/Wikidata:Main_Page"><span>Wikidata</span></a></li><li id="n-Wikinews" class="mw-list-item"><a href="https://en.wikinews.org/wiki/Main_Page"><span>Wikinews</span></a></li><li id="n-Wikipedia" class="mw-list-item"><a href="https://en.wikipedia.org/wiki/Main_Page"><span>Wikipedia</span></a></li><li id="n-Wikiquote" class="mw-list-item"><a href="https://en.wikiquote.org/wiki/Main_Page"><span>Wikiquote</span></a></li><li id="n-Wikisource" class="mw-list-item"><a href="https://en.wikisource.org/wiki/Main_Page"><span>Wikisource</span></a></li><li id="n-Wikispecies" class="mw-list-item"><a href="https://species.wikimedia.org/wiki/Main_Page"><span>Wikispecies</span></a></li><li id="n-Wikivoyage" class="mw-list-item"><a href="https://en.wikivoyage.org/wiki/Main_Page"><span>Wikivoyage</span></a></li><li id="n-Wiktionary" class="mw-list-item"><a href="https://en.wiktionary.org/wiki/Project:Main_Page"><span>Wiktionary</span></a></li><li id="n-Meta-Wiki" class="mw-list-item"><a href="https://meta.wikimedia.org/wiki/Main_Page"><span>Meta-Wiki</span></a></li><li id="n-Outreach" class="mw-list-item"><a href="https://outreach.wikimedia.org/wiki/Main_Page"><span>Outreach</span></a></li><li id="n-MediaWiki" class="mw-list-item"><a href="https://www.mediawiki.org/wiki/MediaWiki"><span>MediaWiki</span></a></li><li id="n-Wikimania" class="mw-list-item"><a href="https://meta.wikimedia.org/wiki/Wikimania"><span>Wikimania</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Special:Book&bookcmd=book_creator&referer=Stars%2FRadiative+dynamo"><span>Create a book</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Stars%2FRadiative_dynamo&action=show-download-screen"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Stars/Radiative_dynamo&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q27509358" title="Link to connected data repository item [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikiversity</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div class="subpages">< <bdi dir="ltr"><a href="/wiki/Stars" title="Stars">Stars</a></bdi></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><figure class="mw-halign-right" typeof="mw:Error mw:File/Thumb"><a href="/w/index.php?title=Special:Upload&wpDestFile=Axisymmetric_dynamos.jpg" class="new" title="File:Axisymmetric dynamos.jpg"><span class="mw-file-element mw-broken-media" data-width="200">File:Axisymmetric dynamos.jpg</span></a><figcaption>The computer generated diagrams show magnetic field lines of a poloidal (l) and toroidal (r) fields. Credit: R. Tavakol, A. S. Tworkowski, A. Brandenburg, D. Moss, D. I. Tuominen.{{<a href="/wiki/Template:Fairuse" title="Template:Fairuse">fairuse</a>}}</figcaption></figure> <p>A <b>radiative dynamo</b> is "a dynamo taking place in the radiative layers"<sup id="cite_ref-Petit_1-0" class="reference"><a href="#cite_note-Petit-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> of a star. </p><p>It is a theoretical construction to explain the magnetohydrodynamic properties of plasma occurring in the outer atmospheric layers of astronomical objects including stars. As such it is a part of theoretical <a href="/wiki/Stars/Sciences" title="Stars/Sciences">stellar science</a> and theoretical <a href="/wiki/Astrophysics" title="Astrophysics">astrophysics</a>. </p> <div style="clear:both;"></div> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Antidynamos">Antidynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=1" title="Edit section: Antidynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=1" title="Edit section's source code: Antidynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An "<b>antidynamo theorem</b> is one of several results that restrict the type of magnetic fields that may be produced by dynamo action."<sup id="cite_ref-AntidynamoTheorem_2-0" class="reference"><a href="#cite_note-AntidynamoTheorem-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>No "axisymmetric magnetic field can be maintained through a self-sustaining dynamo action by an axially symmetric current."<sup id="cite_ref-Cowling_3-0" class="reference"><a href="#cite_note-Cowling-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>A "dipole, an axisymmetric magnetic field. These magnetic fields are self-sustained through fluid motion in the Sun or planets, with the necessary non symmetry for the planets deriving from the Coriolis force caused by their rapid rotation, and one cause of non-symmetry for the Sun being its differential rotation."<sup id="cite_ref-AntidynamoTheorem_2-1" class="reference"><a href="#cite_note-AntidynamoTheorem-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Successful "dynamos do not possess a high degree of symmetry."<sup id="cite_ref-AntidynamoTheorem_2-2" class="reference"><a href="#cite_note-AntidynamoTheorem-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Disc_dynamos">Disc dynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=2" title="Edit section: Disc dynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=2" title="Edit section's source code: Disc dynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b>disk generator</b> "is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and the rim (or ends of the cylinder), the electrical polarity depending on the direction of rotation and the orientation of the field."<sup id="cite_ref-HomopolarGenerator_4-0" class="reference"><a href="#cite_note-HomopolarGenerator-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>Large "research generators can produce hundreds of volts, and some systems have multiple generators in series to produce an even larger voltage.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> They are unusual in that they can source tremendous electric current, some more than a million amperes, because the homopolar generator can be made to have very low internal resistance."<sup id="cite_ref-HomopolarGenerator_4-1" class="reference"><a href="#cite_note-HomopolarGenerator-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>Then, in reverse, more than a million amperes as a current between the rim of a disc and the center creates a potential difference and rotates an electrically conductive disc in a plane perpendicular to form a uniform magnetic field. </p><p>"Since cosmical clouds of ionized gas are generally magnetized, their motion produces induced electric fields [..] For example the motion of the magnetized interplanetary plasma produces electric fields that are essential for the production of aurora and magnetic storms".<sup id="cite_ref-Alfven_6-0" class="reference"><a href="#cite_note-Alfven-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>The "rotation of a conductor in a magnetic field produces an electric field in the system at rest. This phenomenon is well known from laboratory experiments and is usually called 'homopolar ' or 'unipolar' induction."<sup id="cite_ref-Alfven_6-1" class="reference"><a href="#cite_note-Alfven-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Helioseismology">Helioseismology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=3" title="Edit section: Helioseismology" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=3" title="Edit section's source code: Helioseismology"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Helioseismology has shown that "[at] the tachocline [within the <a href="/w/index.php?title=Star/Sun&action=edit&redlink=1" class="new" title="Star/Sun (page does not exist)">Sun</a>,] the rotation abruptly changes to solid body rotation in the solar radiation zone.<sup id="cite_ref-Christensen_7-0" class="reference"><a href="#cite_note-Christensen-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup>"<sup id="cite_ref-SolarRotation_8-0" class="reference"><a href="#cite_note-SolarRotation-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>The Sun is a stellar example where a radiative dynamo is not occurring within its radiative zone. </p> <div class="mw-heading mw-heading2"><h2 id="Magnetic_dynamos">Magnetic dynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=4" title="Edit section: Magnetic dynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=4" title="Edit section's source code: Magnetic dynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>"An alternative to the radiative–dynamo model is that the magnetic field originates in the material that formed the star. If the protostellar cloud which forms a star is weakly magnetic, conservation of magnetic energy would result in a very strong main–sequence field. We call these fossil fields [...] In order for the fossil field model to work, the field must be able to survive the collapse of the protostellar cloud during the star formation process. The fossil field argument also relies on a stable field configuration being reached that would avoid destruction on main–sequence lifetimes. Certain stable configurations have been found [...] and simulations have suggested that arbitrary field configurations do relax to these stable states [...] However, simple field configurations are still subject to the same instabilities as the fields [...] generated by dynamo action, in particular the Tayler instability [...] the fossil field model predicts field evolution similar to that of the dynamo model [...] the fossil field strength has to be several orders of magnitude larger than the initial field in the case of a magnetic dynamo in order to reproduce the same final field. [...] a significant fraction of flux could survive [from the pre-main sequence] but only if the magnetic diffusivity was sufficiently low."<sup id="cite_ref-Potter_9-0" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Planetary_sciences">Planetary sciences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=5" title="Edit section: Planetary sciences" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=5" title="Edit section's source code: Planetary sciences"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r2661592">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/w/index.php?title=Planets/Sciences&action=edit&redlink=1" class="new" title="Planets/Sciences (page does not exist)">Planets/Sciences</a> and <a href="/w/index.php?title=Planetary_sciences&action=edit&redlink=1" class="new" title="Planetary sciences (page does not exist)">Planetary sciences</a></div> <p>"According to dynamo theory, the [Earth's magnetic] field is generated within the molten outer core region where heat creates convection motions of conducting materials, generating electric currents. These in turn produce the Earth's magnetic field. The convection movements in the core are chaotic; the magnetic poles drift and periodically change alignment. This causes <a href="https://en.wikipedia.org/wiki/geomagnetic_reversal" class="extiw" title="w:geomagnetic reversal">field reversals</a> at irregular intervals averaging a few times every million years. The most recent reversal occurred approximately 700,000 years ago.<sup id="cite_ref-fitzpatrick2006_10-0" class="reference"><a href="#cite_note-fitzpatrick2006-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-campbelwh_11-0" class="reference"><a href="#cite_note-campbelwh-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup>"<sup id="cite_ref-Earth_12-0" class="reference"><a href="#cite_note-Earth-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Minerals">Minerals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=6" title="Edit section: Minerals" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=6" title="Edit section's source code: Minerals"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Minerals" title="Minerals">Minerals</a></div> <p>"Radioactive potassium [...] appears also to be a substantial source of heat in the Earth's core"<sup id="cite_ref-Sanders_13-0" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>"Radioactive potassium, uranium and thorium are thought to be the three main sources of heat in the Earth's interior, aside from that generated by the formation of the planet. Together, the heat keeps the mantle actively churning and the core generating a protective magnetic field."<sup id="cite_ref-Sanders_13-1" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>Much "less potassium [occurs] in the Earth's crust and mantle than [is] expected based on the composition of rocky meteors that supposedly formed the Earth. If, as some have proposed, the missing potassium resides in the Earth's iron core, how did an element as light as potassium get there, especially since iron and potassium don't mix?"<sup id="cite_ref-Sanders_13-2" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>At "the high pressures and temperatures in the Earth's interior, potassium can form an alloy with iron never before observed. During the planet's formation, this potassium-iron alloy could have sunk to the core, depleting potassium in the overlying mantle and crust and providing a radioactive potassium heat source in addition to that supplied by uranium and thorium in the core."<sup id="cite_ref-Sanders_13-3" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>The "new alloy [is created] by squeezing iron and potassium between the tips of two diamonds [a diamond anvil] to temperatures and pressures characteristic of 600-700 kilometers below the surface - 2,500 degrees Celsius and nearly 4 million pounds per square inch, or a quarter of a million times atmospheric pressure."<sup id="cite_ref-Sanders_13-4" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>"Our new findings indicate that the core may contain as much as 1,200 parts per million potassium -just over one tenth of one percent."<sup id="cite_ref-Lee_14-0" class="reference"><a href="#cite_note-Lee-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>"This amount may seem small, and is comparable to the concentration of radioactive potassium naturally present in bananas. Combined over the entire mass of the Earth's core, however, it can be enough to provide one-fifth of the heat given off by the Earth."<sup id="cite_ref-Lee_14-1" class="reference"><a href="#cite_note-Lee-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>"With one experiment, Lee and Jeanloz demonstrated that potassium may be an important heat source for the geodynamo, provided a way out of some troublesome aspects of the core's thermal evolution, and further demonstrated that modern computational mineral physics not only complements experimental work, but that it can provide guidance to fruitful experimental explorations,"<sup id="cite_ref-Bukowinski_15-0" class="reference"><a href="#cite_note-Bukowinski-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>"More experiments need to be done to show that iron can actually pull potassium away from the silicate rocks that dominate in the Earth's mantle."<sup id="cite_ref-Buffett_16-0" class="reference"><a href="#cite_note-Buffett-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>"They proved it would be possible to dissolve potassium into liquid iron."<sup id="cite_ref-Buffett_16-1" class="reference"><a href="#cite_note-Buffett-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>"Modelers need heat, so this is one source, because the radiogenic isotope of potassium can produce heat and that can help power convection in the core and drive the magnetic field. They proved it could go in. What's important is how much is pulled out of the silicate. There's still work to be done."<sup id="cite_ref-Buffett_16-2" class="reference"><a href="#cite_note-Buffett-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>"If a significant amount of potassium does reside in the Earth's core, this would clear up a lingering question - why the ratio of potassium to uranium in stony meteorites (chondrites), which presumably coalesced to form the Earth, is eight times greater than the observed ratio in the Earth's crust. Though some geologists have asserted that the missing potassium resides in the core, there was no mechanism by which it could have reached the core. Other elements like oxygen and carbon form compounds or alloys with iron and presumably were dragged down by iron as it sank to the core. But at normal temperature and pressure, potassium does not associate with iron."<sup id="cite_ref-Sanders_13-5" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>"Early in Earth's history, the interior temperature and pressure would not have been high enough to make this alloy."<sup id="cite_ref-Lee_14-2" class="reference"><a href="#cite_note-Lee-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>"But as more and more meteorites piled on, the pressure and temperature would have increased to the point where this alloy could form."<sup id="cite_ref-Lee_14-3" class="reference"><a href="#cite_note-Lee-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>"The Earth is thought to have formed from the collision of many rocky asteroids, perhaps hundreds of kilometers in diameter, in the early solar system. As the proto-Earth gradually bulked up, continuing asteroid collisions and gravitational collapse kept the planet molten. Heavier elements - in particular iron - would have sunk to the core in 10 to 100 million years' time, carrying with it other elements that bind to iron."<sup id="cite_ref-Sanders_13-6" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>"Gradually, however, the Earth would have cooled off and become a dead rocky globe with a cold iron ball at the core if not for the continued release of heat by the decay of radioactive elements like potassium-40, uranium-238 and thorium-232, which have half-lives of 1.25 billion, 4 billion and 14 billion years, respectively. About one in every thousand potassium atoms is radioactive."<sup id="cite_ref-Sanders_13-7" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>"The heat generated in the core turns the iron into a convecting dynamo that maintains a magnetic field strong enough to shield the planet from the solar wind. This heat leaks out into the mantle, causing convection in the rock that moves crustal plates and fuels volcanoes."<sup id="cite_ref-Sanders_13-8" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>Pure "iron and pure potassium [combined] in a diamond anvil cell [that] squeezed the small sample to 26 gigapascals of pressure while heating the sample with a laser above 2,500 Kelvin (4,000 degrees Fahrenheit), which is above the melting points of both potassium and iron. [Repeat] six times in the high-intensity X-ray beams of two different accelerators - Lawrence Berkeley National Laboratory's Advanced Light Source and the Stanford Synchrotron Radiation Laboratory - to obtain X-ray diffraction images of the samples' internal structure. The images confirmed that potassium and iron had mixed evenly to form an alloy, much as iron and carbon mix to form steel alloy."<sup id="cite_ref-Sanders_13-9" class="reference"><a href="#cite_note-Sanders-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>"In the theoretical magma ocean of a proto-Earth, the pressure at a depth of 400-1,000 kilometers (270-670 miles) would be between 15 and 35 gigapascals and the temperature would be 2,200-3,000 Kelvin."<sup id="cite_ref-Jeanloz_17-0" class="reference"><a href="#cite_note-Jeanloz-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>"At these temperatures and pressures, the underlying physics changes and the electron density shifts, making potassium look more like iron."<sup id="cite_ref-Jeanloz_17-1" class="reference"><a href="#cite_note-Jeanloz-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>"At high pressure, the periodic table looks totally different."<sup id="cite_ref-Jeanloz_17-2" class="reference"><a href="#cite_note-Jeanloz-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>"The work by Lee and Jeanloz provides the first proof that potassium is indeed miscible in iron at high pressures and, perhaps as significantly, it further vindicates the computational physics that underlies the original prediction."<sup id="cite_ref-Bukowinski_15-1" class="reference"><a href="#cite_note-Bukowinski-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>"If it can be further demonstrated that potassium would enter iron in significant amounts in the presence of silicate minerals, conditions representative of likely core formation processes, then potassium could provide the extra heat needed to explain why the Earth's inner core hasn't frozen to as large a size as the thermal history of the core suggests it should."<sup id="cite_ref-Bukowinski_15-2" class="reference"><a href="#cite_note-Bukowinski-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Dynamo_theory">Dynamo theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=7" title="Edit section: Dynamo theory" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=7" title="Edit section's source code: Dynamo theory"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Def.</b> any conversion of mechanical energy into electrical energy and associated magnetic fields is called a <b>dynamo</b>. </p><p><b>Def.</b> "a dynamo taking place in the radiative layers"<sup id="cite_ref-Petit_1-1" class="reference"><a href="#cite_note-Petit-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> of a star, or other astronomical object, is called a <b>radiative dynamo</b>, or <b>stellar radiative dynamo</b>. </p><p>"[M]otions resulting from [a <i>linear</i> magnetohydrodynamic] instability act as a dynamo to sustain the magnetic field."<sup id="cite_ref-Brandenburg_18-0" class="reference"><a href="#cite_note-Brandenburg-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> "Supersonic flows are initially generated by the Balbus-Hawley magnetic shear instability."<sup id="cite_ref-Brandenburg_18-1" class="reference"><a href="#cite_note-Brandenburg-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p>A plasma with local magnetohydrodynamic instabilities creates mechanical turbulence, motion, or shear (a dynamo) which in turn generates or sustains the local magnetic field. </p><p>When this magnetohydrodynamic dynamo occurs between or within radiative layers, a radiative dynamo is operating. </p><p>"There are three requisites for a dynamo to [occur and subsequently] operate:"<sup id="cite_ref-DynamoTheory_19-0" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <ul><li>An electrically conductive fluid medium [such as a plasma or liquid iron]</li> <li>[local magnetohydrodynamic instabilities]</li> <li>An ... energy source to [create the local magnetohydrodynamic instabilities and] to drive [mechanical turbulence, motion, or shear] within the fluid.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Hydromagnetic_dynamos">Hydromagnetic dynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=8" title="Edit section: Hydromagnetic dynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=8" title="Edit section's source code: Hydromagnetic dynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Magnetic induction may be represented by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36c015fe5fdcd43019f00487b56bdff89dd39b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.424ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0.}"></span></dd></dl> <p>Conservation of mass is represented by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {u} =0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {u} =0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc255ecd121e043aabdb5e959385cf823251da13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.008ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {u} =0.}"></span></dd></dl> <p>Conservation of momentum is given by the Navier-Stokes equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {D\mathbf {u} }{Dt}}=-\nabla p+\nu \nabla ^{2}\mathbf {u} +\rho '\mathbf {g} +2\mathbf {\Omega } \times \mathbf {u} +\mathbf {\Omega } \times \mathbf {\Omega } \times \mathbf {R} +\mathbf {J} \times \mathbf {B} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mrow> <mrow> <mi>D</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>p</mi> <mo>+</mo> <mi>ν<!-- ν --></mi> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>+</mo> <msup> <mi>ρ<!-- ρ --></mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {D\mathbf {u} }{Dt}}=-\nabla p+\nu \nabla ^{2}\mathbf {u} +\rho '\mathbf {g} +2\mathbf {\Omega } \times \mathbf {u} +\mathbf {\Omega } \times \mathbf {\Omega } \times \mathbf {R} +\mathbf {J} \times \mathbf {B} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0af78afe1778ee3352212b003e61f86bbe6c364b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:61.125ex; height:5.176ex;" alt="{\displaystyle {\frac {D\mathbf {u} }{Dt}}=-\nabla p+\nu \nabla ^{2}\mathbf {u} +\rho '\mathbf {g} +2\mathbf {\Omega } \times \mathbf {u} +\mathbf {\Omega } \times \mathbf {\Omega } \times \mathbf {R} +\mathbf {J} \times \mathbf {B} ,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span> is the kinematic viscosity, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ρ<!-- ρ --></mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2400eb83af71f78fcb442e55bf294cebdfb9803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.887ex; height:3.009ex;" alt="{\displaystyle \rho '}"></span> is the density perturbation that provides buoyancy (for thermal convection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho '=\alpha \Delta T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ρ<!-- ρ --></mi> <mo>′</mo> </msup> <mo>=</mo> <mi>α<!-- α --></mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho '=\alpha \Delta T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d37a89f243081d524c053ed903c1e8bfbbac276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.045ex; height:3.009ex;" alt="{\displaystyle \rho '=\alpha \Delta T}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> is the rotation rate of the Earth, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7686846b1a6b756cb514954000004ab5e7b2a5ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.381ex; height:2.176ex;" alt="{\displaystyle \mathbf {J} }"></span> is the electrical current density. </p><p>For heat a transport equation is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial T}{\partial t}}=\kappa \nabla ^{2}T+\epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>T</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>κ<!-- κ --></mi> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>T</mi> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial T}{\partial t}}=\kappa \nabla ^{2}T+\epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f71d7e3fe3fab14437fce101e4143398099c2968" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.639ex; height:5.509ex;" alt="{\displaystyle {\frac {\partial T}{\partial t}}=\kappa \nabla ^{2}T+\epsilon }"></span></dd></dl> <p>"where <i>T</i> is temperature, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa =k/\rho c_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>ρ<!-- ρ --></mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa =k/\rho c_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/848ecdd6aa859cdd5ea7a96f665515875531f37d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.079ex; height:3.009ex;" alt="{\displaystyle \kappa =k/\rho c_{p}}"></span> is the thermal diffusivity with <i>k</i> thermal conductivity, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77463f4fbb953a6f1fe19d83708e553f6d21457f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.066ex; height:2.343ex;" alt="{\displaystyle c_{p}}"></span> heat capacity, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> density, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\displaystyle \epsilon }"></span> is an optional heat source."<sup id="cite_ref-DynamoTheory_19-1" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p>"Often the pressure is the dynamic pressure, with the hydrostatic pressure and centripetal potential removed. These equations are then non-dimensionalized, introducing the non-dimensional parameters"<sup id="cite_ref-DynamoTheory_19-2" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ra={\frac {g\alpha TD^{3}}{\nu \kappa }},E={\frac {\nu }{\Omega D^{2}}},Pr={\frac {\nu }{\kappa }},Pm={\frac {\nu }{\eta }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>g</mi> <mi>α<!-- α --></mi> <mi>T</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mi>κ<!-- κ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ν<!-- ν --></mi> <mrow> <mi mathvariant="normal">Ω<!-- Ω --></mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mi>P</mi> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ν<!-- ν --></mi> <mi>κ<!-- κ --></mi> </mfrac> </mrow> <mo>,</mo> <mi>P</mi> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ν<!-- ν --></mi> <mi>η<!-- η --></mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Ra={\frac {g\alpha TD^{3}}{\nu \kappa }},E={\frac {\nu }{\Omega D^{2}}},Pr={\frac {\nu }{\kappa }},Pm={\frac {\nu }{\eta }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3153c746aeff44c57692ebac38c62b12586a656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:45.282ex; height:6.176ex;" alt="{\displaystyle Ra={\frac {g\alpha TD^{3}}{\nu \kappa }},E={\frac {\nu }{\Omega D^{2}}},Pr={\frac {\nu }{\kappa }},Pm={\frac {\nu }{\eta }},}"></span></dd></dl> <p>"where <i>Ra</i> is the Rayleigh number, <i>E</i> the Ekman number, <i>Pr</i> and <i>Pm</i> the Prandtl and magnetic Prandtl number. Magnetic field scaling is often in Elsasser number units <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(\rho \Omega /\sigma )^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>ρ<!-- ρ --></mi> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>σ<!-- σ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(\rho \Omega /\sigma )^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cef738dfac1663ad1c31676c03eacb9a699f2a3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.742ex; height:3.343ex;" alt="{\displaystyle B=(\rho \Omega /\sigma )^{1/2}}"></span>."<sup id="cite_ref-DynamoTheory_19-3" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Entities">Entities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=9" title="Edit section: Entities" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=9" title="Edit section's source code: Entities"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/w/index.php?title=Radiation_astronomy/Entities&action=edit&redlink=1" class="new" title="Radiation astronomy/Entities (page does not exist)">Radiation astronomy/Entities</a> and <a href="/w/index.php?title=Entity_astronomy&action=edit&redlink=1" class="new" title="Entity astronomy (page does not exist)">Entity astronomy</a></div> <p>"The proliferation of models has [...] created [...] different ways [to model] the core, [normalize] equations, [define] dimensionless parameters, [choose] boundary conditions, and [select] energy sources."<sup id="cite_ref-Kono2002_20-0" class="reference"><a href="#cite_note-Kono2002-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>The "major topics [are]"<sup id="cite_ref-Kono2002_20-1" class="reference"><a href="#cite_note-Kono2002-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <ol><li>inset and evolution of convection,</li> <li>character of the magnetic field generated, and</li> <li>comparison with the observed geomagnetic field.</li></ol> <p>"Although there are large differences in the way that the simulations are defined, the magnetic fields that they generate have some surprising similarities. The fields are dominated by the axial dipole. In some models they are most strongly generated in shear layers near the upper and lower boundaries and near the tangent cylinder, an imaginary surface touching the inner core on its equator. Convection rolls occur within which a type of the α effect distorts the toroidal field lines to create poloidal magnetic field."<sup id="cite_ref-Kono2002_20-2" class="reference"><a href="#cite_note-Kono2002-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>Kinematic dynamo theory: "the boundary conditions defining the energy flow (e.g., an inhomogeneous heat flux or distribution of buoyancy sources) are very influential [...] They change the frequency and the mode of magnetic polarity reversals as well as the ratio in strengths of the dipole and nondipole moments."<sup id="cite_ref-Kono2002_20-3" class="reference"><a href="#cite_note-Kono2002-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>Polarity "reversals reminiscent of the paleomagnetically observed field reversals have already been simulated by some of the models [as have other] features such as drift of the field, its secular variation, and statistical properties of Gauss coefficients".<sup id="cite_ref-Kono2002_20-4" class="reference"><a href="#cite_note-Kono2002-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Radiative_zones">Radiative zones</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=10" title="Edit section: Radiative zones" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=10" title="Edit section's source code: Radiative zones"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>White dwarfs whose primary spectral classification is DA have hydrogen-dominated atmospheres. They make up the majority (approximately 80%) of all observed white dwarfs.<sup id="cite_ref-Fontaine_21-0" class="reference"><a href="#cite_note-Fontaine-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup>. </p><p>DA spectral type, having only hydrogen absorption lines in its spectrum, white dwarf material is initially plasma—a fluid composed of nuclei and electrons. "Helium is unquestionably absent from the atmospheres of ... DA stars, and [there is a] low metal abundance".<sup id="cite_ref-Shipman_22-0" class="reference"><a href="#cite_note-Shipman-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>"In a DA star the "radiative layer ... lies above the convective zone."<sup id="cite_ref-Shipman_22-1" class="reference"><a href="#cite_note-Shipman-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>Only a small number of white dwarfs have been examined for fields, and it has been estimated that at least 10% of white dwarfs have fields in excess of 1 million gauss (100 T).<sup id="cite_ref-Jordan_23-0" class="reference"><a href="#cite_note-Jordan-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Liebert_24-0" class="reference"><a href="#cite_note-Liebert-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Coronal_radiative_layers">Coronal radiative layers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=11" title="Edit section: Coronal radiative layers" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=11" title="Edit section's source code: Coronal radiative layers"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Plasmas/Plasma_objects/Coronal_clouds" title="Plasmas/Plasma objects/Coronal clouds">Plasmas/Plasma objects/Coronal clouds</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Latest_xrt_soft_x-ray.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Latest_xrt_soft_x-ray.gif/200px-Latest_xrt_soft_x-ray.gif" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Latest_xrt_soft_x-ray.gif/300px-Latest_xrt_soft_x-ray.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Latest_xrt_soft_x-ray.gif/400px-Latest_xrt_soft_x-ray.gif 2x" data-file-width="1024" data-file-height="1024" /></a><figcaption>The Sun in the soft X-rays as seen by the <a href="https://en.wikipedia.org/wiki/Hinode" class="extiw" title="w:Hinode">Hinode</a> X-ray Telescope (XRT) on October 15, 2009. Credit: .</figcaption></figure> <p>"[F]or radiative losses of the solar corona, it is meant the energy flux irradiated from the external atmosphere of the Sun (traditionally divided into chromosphere, transition region and corona), and, in particular, the processes of production of the radiation coming from the solar corona and transition region, where the plasma is optically-thin. On the contrary, in the chromosphere, where the temperature decreases from the photospheric value of 6000 K to the minimum of 4400 K, the optical depth is about 1, and the radiation is thermal."<sup id="cite_ref-CoronalRadiativeLosses_25-0" class="reference"><a href="#cite_note-CoronalRadiativeLosses-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>"The energy flux irradiated from the corona changes in active regions, in the quiet Sun and in coronal holes; actually, part of the energy is irradiated outwards, but approximatively the same amount of the energy flux is conducted back towards the <a href="/w/index.php?title=Chromosphere&action=edit&redlink=1" class="new" title="Chromosphere (page does not exist)">chromosphere</a>, through the steep <a href="/w/index.php?title=Transition_region&action=edit&redlink=1" class="new" title="Transition region (page does not exist)">transition region</a>. In active regions the energy flux is about 10<sup>7</sup> erg cm<sup>−2</sup>sec<sup>−1</sup>, in the quiet Sun it is roughly 8 [x] 10<sup>5</sup> - 10<sup>6</sup> erg cm<sup>−2</sup>sec<sup>−1</sup>, and in coronal holes 5 [x] 10<sup>5</sup> - 8 [x] 10<sup>5</sup> erg cm<sup>−2</sup>sec<sup>−1</sup>, including the losses due to the solar wind.<sup id="cite_ref-Withbroe_26-0" class="reference"><a href="#cite_note-Withbroe-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> The required power is a small fraction of the total flux irradiated from the Sun, but this energy is enough to maintain the plasma at the temperature of million degrees, since the density is very low and the processes of radiation are different from those occurring in the photosphere".<sup id="cite_ref-CoronalRadiativeLosses_25-1" class="reference"><a href="#cite_note-CoronalRadiativeLosses-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>Whether local magnetohydrodynamic instabilities are generating a dynamo or not, these outer layers are radiative and some form of radiative dynamo may be operating. </p><p>"Many coronal heating theories have been proposed,<sup id="cite_ref-Ulmshneider_27-0" class="reference"><a href="#cite_note-Ulmshneider-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> but two theories have remained as the <i>most likely</i> candidates, <i>wave heating</i> and <i>magnetic reconnection</i> (or <i>nanoflares</i>).<sup id="cite_ref-Malara_28-0" class="reference"><a href="#cite_note-Malara-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> Through most of the past 50 years, neither theory has been able to account for the extreme coronal temperatures."<sup id="cite_ref-Corona_29-0" class="reference"><a href="#cite_note-Corona-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Convective_dynamos">Convective dynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=12" title="Edit section: Convective dynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=12" title="Edit section's source code: Convective dynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>"[T]he solar cycle, generally considered as the classical case of a convective dynamo process, is probably not driven by convective turbulence at all."<sup id="cite_ref-Spruit_30-0" class="reference"><a href="#cite_note-Spruit-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Radiative_α–Ω_dynamos"><span id="Radiative_.CE.B1.E2.80.93.CE.A9_dynamos"></span>Radiative α–Ω dynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=13" title="Edit section: Radiative α–Ω dynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=13" title="Edit section's source code: Radiative α–Ω dynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>"Models of rotationally–driven dynamos in stellar radiative zones have suggested that magnetohydrodynamic transport of angular momentum and chemical composition can dominate over the otherwise purely hydrodynamic processes."<sup id="cite_ref-Potter_9-1" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>A "number of magnetic O and B stars have been discovered [...]. Combined with this, a number of chemically peculiar A and B stars (known as Ap and Bp stars respectively) with surface field strengths up to 20kG have been identified [...]. These large–scale fields tend to have simple geometries and there is debate over whether they arise from fossil fields present during a star’s formation [...] or from a rotationally–driven dynamo operating in the radiative zone of the star [...]."<sup id="cite_ref-Potter_9-2" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>"In low–mass stars, where the outer region is convective, magnetic fields are expected to be formed in a strong shear layer at the base of the convection zone and then transported to the surface by convection and magnetic buoyancy [...]. In radiative zones there is no strong bulk motion to redistribute magnetic energy. In most dynamo models, magnetic flux is redistributed by magnetorotational turbulence [...]. This turbulence is also responsible for driving the generation of large–scale magnetic flux. This is the α-effect [...] which applies to both poloidal and toroidal components, although in rotating systems shear is generally more effective at producing toroidal field from the poloidal component and so the α–effect is needed for the poloidal field only. The toroidal field is instead maintained by the conversion of poloidal field into toroidal field by differential rotation. This is commonly referred to as an α–Ω dynamo"<sup id="cite_ref-Potter_9-3" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>Magnetic "fields [may be able to] produce turbulent instabilities which dominate the transport of angular momentum. [...] The evolution of the angular momentum distribution and magnetic field strength have a significant effect on the final fate of a star and its ejecta. Apart from causing chemical mixing, sufficiently strong magnetic fields are expected to cause magnetic braking that results in the rapid spin down of rotating magnetic stars"<sup id="cite_ref-Potter_9-4" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The radiative α–Ω dynamo is "a magnetic model where the poloidal and toroidal components are evolved via advection–diffusion equations derived from the induction equation. [...] The magnetic field and angular momentum evolution are coupled by turbulent diffusivities, magnetic stresses and conversion of poloidal field into toroidal field by differential rotation. The dynamo is completed by regeneration of magnetic flux by a simple α–Ω dynamo."<sup id="cite_ref-Potter_9-5" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The "magnetic turbulence from the Tayler–instability [redistributes] angular momentum in radiative zones [... By solving] for the magnetic field and hence the Alfvén velocity independently [the associated turbulent diffusion coefficients are also derived] instead of treating [them] as a function of the rotation rate. [... The] magnetic diffusivity [is] η = Pr<sub>m</sub> <i>D</i><sub>mag</sub> where Pr<sub>m</sub> is the turbulent magnetic Prandtl number."<sup id="cite_ref-Potter_9-6" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The "dynamo efficiency is given by"<sup id="cite_ref-Potter_9-7" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\gamma {\frac {r\omega _{A}\Omega q}{N}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>r</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mi>q</mi> </mrow> <mi>N</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =\gamma {\frac {r\omega _{A}\Omega q}{N}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01494950e0c58a49942bd5fe5d0db2afa8b414aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.038ex; height:5.343ex;" alt="{\displaystyle \alpha =\gamma {\frac {r\omega _{A}\Omega q}{N}},}"></span></dd></dl> <p>where <i>N</i> is the relevant buoyancy frequency, ω<sup>2</sup> is the Alfvén frequency, γ is an efficiency parameter, <i>q</i> = ∂(log Ω)/∂(log r), and Ω(r) is the differential rotation as a function of radius.<sup id="cite_ref-Potter_9-8" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>"Strongly magnetic intermediate–mass stars typically have rotation rates much slower than other stars in their parent population (Mathys 2004). If the Alfvén radius, the radius at which the magnetic energy density is the same as the kinetic energy density in the stellar wind, is larger than the stellar radius then magnetic braking allows additional angular momentum to be carried away by the stellar wind."<sup id="cite_ref-Potter_9-9" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>"Owing to the strong magnetically–induced turbulence, the toroidal field behaves roughly as <i>B</i><sub>Φ</sub> ∝ r<sup>−3</sup> and the poloidal field behaves as <i>A</i> ∝ r<sup>−2</sup> so both are much stronger towards the core than at the surface of the star [...]. The toroidal field falls to zero within a very narrow region near the surface of the star to meet the boundary conditions. The strength of the toroidal field predicted is around nine orders of magnitude larger than the poloidal field. This is because the Ω–effect, the conversion of poloidal field into toroidal field by differential rotation, is much stronger than the α–effect which regenerates the poloidal field."<sup id="cite_ref-Potter_9-10" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The "surface value of the field [is taken] to be the strength of the toroidal field just below the boundary layer. [Taking] the poloidal field [as the surface field means] a larger value of γ to produce a stronger field. In this case the toroidal field is around six orders of magnitude larger than the poloidal field. So a surface poloidal field of 10<sup>3</sup> G would correspond to a toroidal field of 10<sup>9</sup> G just below the surface. The fields then increase by several orders of magnitude towards the core. Not only do these field strengths seem unreasonably energetic but also the magnetic stresses result in cores that are spinning near or above break–up velocity. However, spectropolarimetric observations have concluded that the large–scale structure of the external magnetic fields of massive stars are largely dipolar so there must be some mechanism for converting the toroidal field into poloidal field at the surface. It is likely that the stellar wind stretches the field lines in the radial direction, changing the toroidal field to a radial geometry as material is ejected from the stellar surface".<sup id="cite_ref-Potter_9-11" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>"The transition between a strong [...] field and no field is sharpest in rapid rotators. This transition is caused by the interaction between hydrodynamic and magnetic turbulence. If [the kinetic Prandtl number] exceeds [the magnetic Prandtl number] for a sufficiently large region of the radiative envelope, the magnetic field decays exponentially and cannot be sustained by the dynamo."<sup id="cite_ref-Potter_9-12" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Tayler-Spruit_dynamos">Tayler-Spruit dynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=14" title="Edit section: Tayler-Spruit dynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=14" title="Edit section's source code: Tayler-Spruit dynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The "[Tayler–Spruit dynamo mechanism (Spruit 2002)] asserts that pinch–type instabilities (Tayler 1973; Spruit 1999) arise in toroidal fields that drive magnetic turbulence that enforces solid–body rotation. The growth of instabilities is controlled by magnetic diffusion which ultimately determines the equilibrium strength of the field."<sup id="cite_ref-Potter_9-13" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>"For stars more massive than around 15M<sub>⊙</sub> the Kelvin–Helmholtz turbulence dominates over the magnetic turbulence and a stable field cannot be sustained by the dynamo."<sup id="cite_ref-Potter_9-14" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Differential_rotations">Differential rotations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=15" title="Edit section: Differential rotations" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=15" title="Edit section's source code: Differential rotations"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Tachocline.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Tachocline.svg/200px-Tachocline.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Tachocline.svg/300px-Tachocline.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Tachocline.svg/400px-Tachocline.svg.png 2x" data-file-width="300" data-file-height="300" /></a><figcaption>This computer generated diagram of internal rotation in the Sun shows differential rotation in the outer convective region and almost uniform rotation in the central radiative region. Credit: Global Oscillation Network Group (GONG).</figcaption></figure> <p>"Both the core and the radiative zone dynamo models involve a significant amount of differential rotation for the generation of a large-scale toroidal field."<sup id="cite_ref-Petit_1-2" class="reference"><a href="#cite_note-Petit-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> But, "the buoyant rise time [for a magnetic field generated by a core dynamo] from the core can become much longer than the age of [OBA type stars] for weakly magnetized flux-tubes".<sup id="cite_ref-Petit_1-3" class="reference"><a href="#cite_note-Petit-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>"Magnetic fields can be created in stably stratified (non-convective) layers in a differentially rotating star. A magnetic instability in the toroidal field (wound up by differential rotation) replaces the role of convection in closing the field amplification loop."<sup id="cite_ref-Spruit_30-1" class="reference"><a href="#cite_note-Spruit-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p>At right is a diagram of the internal rotation in the Sun, showing differential rotation in the outer convective region and almost uniform rotation in the central radiative region. The transition between these regions is called the tachocline. </p><p>"Until the advent of helioseismology, the study of wave oscillations in the Sun, very little was known about the internal rotation of the Sun. The differential profile of the surface was thought to extend into the solar interior as rotating cylinders of constant angular momentum.<sup id="cite_ref-Glatzmaler_31-0" class="reference"><a href="#cite_note-Glatzmaler-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> Through helioseismology this is now known not to be the case and the rotation profile of the Sun has been found. On the surface the Sun rotates slowly at the poles and quickly at the equator. This profile extends on roughly radial lines through the solar convection zone to the interior. At the tachocline the rotation abruptly changes to solid body rotation in the solar radiation zone.<sup id="cite_ref-Christensen_7-1" class="reference"><a href="#cite_note-Christensen-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup>"<sup id="cite_ref-SolarRotation_8-1" class="reference"><a href="#cite_note-SolarRotation-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Electromagnetics">Electromagnetics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=16" title="Edit section: Electromagnetics" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=16" title="Edit section's source code: Electromagnetics"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/wiki/Charges/Interactions/Electromagnetics" title="Charges/Interactions/Electromagnetics">Charges/Interactions/Electromagnetics</a> and <a href="/w/index.php?title=Radiation_astronomy/Electromagnetics&action=edit&redlink=1" class="new" title="Radiation astronomy/Electromagnetics (page does not exist)">Radiation astronomy/Electromagnetics</a></div> <p>Albert "Einstein believed that there might be an asymmetry between the charges of the electron and proton so that the Earth's magnetic field would be produced by the entire Earth."<sup id="cite_ref-DynamoTheory_19-4" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p>"In the case of the Earth, the magnetic field is induced and constantly maintained by the convection of liquid iron in the outer core. A requirement for the induction of field is a rotating fluid. Rotation in the outer core is supplied by the Coriolis effect caused by the rotation of the Earth. The Coriolis force tends to organize fluid motions and electric currents into columns [...] aligned with the rotation axis. Induction or creation of magnetic field is described by the induction equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\eta \nabla ^{2}\mathbf {B} +\nabla \times (\mathbf {u} \times \mathbf {B} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>η<!-- η --></mi> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>+</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\eta \nabla ^{2}\mathbf {B} +\nabla \times (\mathbf {u} \times \mathbf {B} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f3a1294285c5cfc391c41dfc2ffe97520180644" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.514ex; height:5.509ex;" alt="{\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\eta \nabla ^{2}\mathbf {B} +\nabla \times (\mathbf {u} \times \mathbf {B} ),}"></span></dd></dl> <p>where <b>u</b> is a velocity, <b>B</b> is the magnetic field, <i>t</i> is time, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta =1/\sigma \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>σ<!-- σ --></mi> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta =1/\sigma \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/281a143d6f498e1fc4b6092ff0ad598823b5b8a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.324ex; height:2.843ex;" alt="{\displaystyle \eta =1/\sigma \mu }"></span> is the magnetic diffusivity with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> electrical conductivity and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> permeability. The ratio of the second term on the right hand side to the first term gives the Magnetic Reynolds number, a dimensionless ratio of advection of a magnetic field to diffusion."<sup id="cite_ref-DynamoTheory_19-5" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Magnetohydrodynamic_dynamos">Magnetohydrodynamic dynamos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=17" title="Edit section: Magnetohydrodynamic dynamos" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=17" title="Edit section's source code: Magnetohydrodynamic dynamos"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A "magnetohydrodynamic dynamo in a rapidly rotating spherical shell [is modeled with] changing electrical resistivity. When resistivity is sufficiently small, total magnetic energy can grow more than ten times larger than total kinetic energy of convection motion which is driven by an unlimited external energy source. When resistivity is relatively large and magnetic energy is comparable or smaller than kinetic energy, the convection motion maintains its well‐organized structure. [...] when resistivity is small and magnetic energy becomes larger than kinetic energy, the well‐organized convection motion is highly irregular. The magnetic field is organized in two ways. One is the concentration of component parallel to the rotation axis and the other is the concentration of perpendicular component. The parallel component tends to be confined inside anticyclonic columnar convection cells, while the perpendicular component is confined outside convection cells."<sup id="cite_ref-Kageyama_32-0" class="reference"><a href="#cite_note-Kageyama-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="X-rays">X-rays</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=18" title="Edit section: X-rays" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=18" title="Edit section's source code: X-rays"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/w/index.php?title=Radiation_astronomy/X-rays&action=edit&redlink=1" class="new" title="Radiation astronomy/X-rays (page does not exist)">Radiation astronomy/X-rays</a> and <a href="/w/index.php?title=X-ray_astronomy&action=edit&redlink=1" class="new" title="X-ray astronomy (page does not exist)">X-ray astronomy</a></div> <p>"A "saturation" limit in stellar activity marked by a maximum in X-ray surface flux is observed in the very rapidly rotating stars such as the young Pleiades dK stars and the very active RS CVn systems [... This] activity saturation cannot in itself explain why the active stars do not appear to show much long-term variability because such stars as the Hyades dwarfs [...] are not at the saturation limit. The lack of substantial long-term variability must set in at activity levels below the saturation level, or, in evolutionary terms, it must persist well beyond the point at which a young, rapidly rotating star spins down to below its saturated state."<sup id="cite_ref-Drake_33-0" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Visuals">Visuals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=19" title="Edit section: Visuals" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=19" title="Edit section's source code: Visuals"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/w/index.php?title=Radiation_astronomy/Visuals&action=edit&redlink=1" class="new" title="Radiation astronomy/Visuals (page does not exist)">Radiation astronomy/Visuals</a> and <a href="/w/index.php?title=Visual_astronomy&action=edit&redlink=1" class="new" title="Visual astronomy (page does not exist)">Visual astronomy</a></div> <p>A <b>shell dynamo</b> is a dynamo of near-surface circulation (the shell) with the resulting shear-induced conversion of mechanical energy into electrical energy and associated magnetic fields. For example, meridional flow that is poleward near the surface of a photosphere is complemented with an equatorward super-flow deeper in the photosphere as a countercurrent. </p><p>Regarding "the stability of the dynamical behaviour of axisymmetric <b>α<sup>2</sup>ω dynamo</b> models in rotating spherical shells as well as spheres [...] the spherical dynamo models are more stable in the following senses: </p> <ol><li>[minimize] chaotic behaviour and</li> <li>are robust with respect to changes in the functional form of α. [Yet]</li> <li>are capable of producing chaotic behaviour for certain ranges of parameter values and</li> <li>possess, in the combined "space" of parameters and boundary conditions, regions of complicated behaviours, [...] regimes in which small changes in either the dynamo parameters or the boundary conditions can drastically change the qualitative behaviour of the model."<sup id="cite_ref-Tavakol_34-0" class="reference"><a href="#cite_note-Tavakol-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li></ol> <p>For an <b>axisymmetric mean field dynamo</b>, the "standard mean field dynamo equation [...] is of the form" </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\nabla \times (\mathbf {u} \times \mathbf {B} +\alpha \mathbf {B} )-\nabla \times (\eta _{t}\nabla \times \mathbf {B} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>+</mo> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\nabla \times (\mathbf {u} \times \mathbf {B} +\alpha \mathbf {B} )-\nabla \times (\eta _{t}\nabla \times \mathbf {B} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed6f07158cd457435bdefcadfd41378fe5c43557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:44.927ex; height:5.509ex;" alt="{\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\nabla \times (\mathbf {u} \times \mathbf {B} +\alpha \mathbf {B} )-\nabla \times (\eta _{t}\nabla \times \mathbf {B} ),}"></span></dd></dl> <p>where <b>u</b> is the mean velocity, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb0ef39b0f5ffa23c170aa7f7b4e718327c4d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.901ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} }"></span> is the mean magnetic field, <i>t</i> is time. "The quantities α (giving rise to the α effect) and η<sub>t</sub> (the turbulent magnetic diffusivity) appear in the process of parameterization of the second order correlations 〈u' x B'〉 between the fluctuations u' and B' by"<sup id="cite_ref-Tavakol_34-1" class="reference"><a href="#cite_note-Tavakol-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {u} '\times \mathbf {B} '\rangle =\alpha \mathbf {B} -\eta _{t}\nabla \times \mathbf {B} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>′</mo> </msup> <mo>×<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>′</mo> </msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>−<!-- − --></mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {u} '\times \mathbf {B} '\rangle =\alpha \mathbf {B} -\eta _{t}\nabla \times \mathbf {B} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad793612f5bb38cf73a5479460b5f17c2158f4a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.039ex; height:3.009ex;" alt="{\displaystyle \langle \mathbf {u} '\times \mathbf {B} '\rangle =\alpha \mathbf {B} -\eta _{t}\nabla \times \mathbf {B} .}"></span></dd></dl> <p>A "functional form for α [may be] given by"<sup id="cite_ref-Tavakol_34-2" class="reference"><a href="#cite_note-Tavakol-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ={\frac {\alpha _{0}cos(\theta )}{1+\mathbf {B} ^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ={\frac {\alpha _{0}cos(\theta )}{1+\mathbf {B} ^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/077eca25cebd0f295b2ec4d3afc88508e2dc8f98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.736ex; height:6.343ex;" alt="{\displaystyle \alpha ={\frac {\alpha _{0}cos(\theta )}{1+\mathbf {B} ^{2}}},}"></span></dd></dl> <p>where "the exact functional (and in general precise tensorial) forms of α, and in principle also of η<sub>t</sub>, are complicated and not well understood in the solar and stellar settings."<sup id="cite_ref-Tavakol_34-3" class="reference"><a href="#cite_note-Tavakol-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>The images at the top right of this lecture show the magnetic field lines of the poloidal field <i>B</i><sub>p</sub> and contours of the toroidal field <i>B</i><sub>t</sub> for a solution showing temporal chaos in an axisymmetric spherical shell dynamo.<sup id="cite_ref-Tavakol_34-4" class="reference"><a href="#cite_note-Tavakol-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p><b>Shell dynamo</b> models "for the solar convection zone with <i>positive</i> α - effect in the northern hemisphere [include] a meridional circulation which is directed equatorward at the bottom and poleward at the top of the convection zone [may have two] different rotation patterns" </p> <ol><li>a simple variation of the rotation rate with depth and</li> <li>the rotation law as derived by helioseismology.<sup id="cite_ref-Kuker_35-0" class="reference"><a href="#cite_note-Kuker-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup></li></ol> <p>"Dynamos in differentially rotating stars differ from those in stars that rotate rigidly because rotational shear generates a strong toroidal field and enforces an axisymmetric field geometry."<sup id="cite_ref-Kuker_35-1" class="reference"><a href="#cite_note-Kuker-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p>"Helioseismology gives us detailed information about the internal rotation profiles apart from the well-known surface phenomenon of the equatorial acceleration of δΩ ≃ 0.06 per day. One finds super-rotation beneath the equator and sub-rotation beneath the poles. Close to the equatorial plane, the rotation rate is essentially constant on cylindrical surfaces, while close to the poles the surfaces of isorotation are rather disk-shaped."<sup id="cite_ref-Kuker_35-2" class="reference"><a href="#cite_note-Kuker-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p>The "differential rotation [and] the meridional flow [...] influence the <b>mean-field dynamo</b> [...] This influence can be expected to be just a modification if its characteristic time-scale τ<sub>drift</sub> exceeds the (half-)cycle time τ<sub>cyc</sub> of about 11 yr."<sup id="cite_ref-Kuker_35-3" class="reference"><a href="#cite_note-Kuker-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> Bold added. </p><p>If "the drift is poleward at the bottom of the convection zone, the dynamo might fail to maintain a solar-type magnetic cycle. On the other hand, an equatorward directed meridional flow can produce the observed solar-type butterfly diagram even in the case that a circulation-free dynamo would produce an antisolar-type butterfly diagram. [The] phase relation between the toroidal and the radial field components [is] negative in the solar photosphere [...] It is almost impossible to explain this observation by virtue of an αΩ-dynamo and a rotation law with positive shear [This] situation is changed if meridional circulation is taken into account.".<sup id="cite_ref-Kuker_35-4" class="reference"><a href="#cite_note-Kuker-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p>"For sufficiently small eddy magnetic diffusivity [...] the meridional flow [is] very powerful to change the properties of α<sup>2</sup>Ω-dynamos working in the convection zone rather than in the solar tachocline. For positive but uniform ∂Ω/∂r [...] the migration of the toroidal magnetic activity belts is strongly correlated with the amplitude of the circulation. If the circulation is equatorward at the bottom of the convection zone and its amplitude is sufficient then it can indeed turn a poleward drift into an equatorward drift [...] The resulting cycle times are always between 10 and 100 years [...] Another striking property of the circulation-dominated models is that they produce the observed opposite signs of the magnetic field components".<sup id="cite_ref-Kuker_35-5" class="reference"><a href="#cite_note-Kuker-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p>If "the real internal rotation law from helioseismology is applied. The large negative slope ∂Ω/∂r in the polar regions unavoidably produces strong toroidal field belts at high latitudes. For these models stationary solutions are found much more frequently than those with cyclic behavior. An equatorward migration of the toroidal field belts (ca. 1 m/s at the bottom of the convective zone, [...] is only achieved in a very narrow range of flow amplitudes. That solution shows the correct cycle time and also the negativity of [the toroidal and poloidal fields]."<sup id="cite_ref-Kuker_35-6" class="reference"><a href="#cite_note-Kuker-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Oranges">Oranges</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=20" title="Edit section: Oranges" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=20" title="Edit section's source code: Oranges"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/w/index.php?title=Radiation_astronomy/Oranges&action=edit&redlink=1" class="new" title="Radiation astronomy/Oranges (page does not exist)">Radiation astronomy/Oranges</a> and <a href="/w/index.php?title=Orange_astronomy&action=edit&redlink=1" class="new" title="Orange astronomy (page does not exist)">Orange astronomy</a></div> <p>"The Hyades dwarfs [...] <i>do</i> possess radiative cores, and based on the solar analogy, are presumably capable of generating solar-like large-scale fields."<sup id="cite_ref-Drake_33-1" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Reds">Reds</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=21" title="Edit section: Reds" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=21" title="Edit section's source code: Reds"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/w/index.php?title=Radiation_astronomy/Reds&action=edit&redlink=1" class="new" title="Radiation astronomy/Reds (page does not exist)">Radiation astronomy/Reds</a> and <a href="/w/index.php?title=Red_astronomy&action=edit&redlink=1" class="new" title="Red astronomy (page does not exist)">Red astronomy</a></div> <p>Small-scale "magnetic fields can be generated in the solar convection zone, for example, by a turbulently driven dynamo. This "turbulent field" does not require rotation, although the generation rate increases with increasing rotation. [The] total energy stored in the turbulent field could be higher than that in the large-scale field. [... Low-mass] stars, which under conventioal dynamo theory are probably unable to generate a large-scale field due to the absence of the radiative core, should only have turbulent fields. The turbulent field theory (or the "distributive" dynamo [...]) is also particularly appealing since it might explain two important observational clues:"<sup id="cite_ref-Drake_33-2" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <ol><li>"the apparent lack of a change in coronal heating efficiency going from stars which have radiative cores to the fully convective M dwarfs [...]; and</li> <li>an absence of long-term stellar cyclic X-ray variability by more than a factor of ~2 in <i>all</i> of the Hyades late-type dwarfs (including those with radiative cores) uncovered in the study of <i>Einstein</i> and <i>ROSAT</i> observations [...]."<sup id="cite_ref-Drake_33-3" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup></li></ol> <p>"Further support for the turbulently driven dynamo comes from the very recent <i>ROSAT</i> study of M dwarfs [...], the modeling of which suggests that the coronal geometry for low-mass dwarfs is dominated by relative compact loop configurations, and that the emission contribution of structures with large-scale dipolar or quadrapolar geometry is negligible."<sup id="cite_ref-Drake_33-4" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>"The <i>ROSAT</i>, <i>EUVE</i>, and Ca II observations could all be explained if turbulent magnetic activity dominated over any large-scale field activity at the rotation rates typical of active dwarfs."<sup id="cite_ref-Drake_33-5" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>The "most active M dwarfs should not exhibit cyclic activity."<sup id="cite_ref-Drake_33-6" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>The "very low mass, fully convective stars do not have radiative cores, and the large-scale field dynamo does not operate. The magnetic activity of these stars is generated by a turbulently driven dynamo process [...] More massive stars with radiative cores generate solar-like large-scale magnetic fields through the operation of an αω type shell dynamo. [...] they also generate small-scale magnetic fields through the operation of a turbulently driven dynamo. In stars with radiative cores which have relatively high rotation rates, such as the fairly young Hyades dwarfs [...] the turbulent dynamo dominates, and well-defined activity cycles are not observed. As stars evolve and spin down from young, rapid rotators, their magnetic activity changes from a regime in which the turbulent dynamo dominates to one characterized by a solar-like large-scale field shell dynamo."<sup id="cite_ref-Drake_33-7" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Liquid_objects">Liquid objects</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=22" title="Edit section: Liquid objects" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=22" title="Edit section's source code: Liquid objects"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/wiki/Liquids/Liquid_objects" title="Liquids/Liquid objects">Liquids/Liquid objects</a> and <a href="/wiki/Liquid_objects" class="mw-redirect" title="Liquid objects">Liquid objects</a></div> <p>"Tidal forces between celestial orbiting bodies causes friction that heats up the interiors of these orbiting bodies. This is known as tidal heating, and it helps create the liquid interior criteria, providing that this interior is conductive, that is required to produce a dynamo."<sup id="cite_ref-DynamoTheory_19-6" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Nitrogens">Nitrogens</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=23" title="Edit section: Nitrogens" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=23" title="Edit section's source code: Nitrogens"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Chemicals/Nitrogens" title="Chemicals/Nitrogens">Chemicals/Nitrogens</a></div> <p>There "exists a class of stars that are slowly rotating (v < 60 km s<sup>−1</sup>) but exhibit significant nitrogen enrichment. It was suggested that these stars are, or once were, magnetic stars. [...] those stars [...] with nitrogen enrichment 6.8 < log<sub>10</sub>[<i>N</i>/<i>H</i>] < 7.1 and 0 < v/km s<sup>−1</sup> < 150 cannot easily be categorized into either group of stars. They may be low–mass, fast rotators that have been partially spun down by magnetic braking, low–mass stars that are born with slow rotation or high–mass stars that are born with slow rotation."<sup id="cite_ref-Potter_9-15" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>"The [VLT–FLAMES] survey [of massive stars] observed two distinct populations of stars. The first shows increasing nitrogen enrichment with rotation rate, the second is a class of slow–rotating stars that exhibit unusually high nitrogen abundances compared to the rest of the population. This distribution of stars is well reproduced by the magnetic model."<sup id="cite_ref-Potter_9-16" class="reference"><a href="#cite_note-Potter-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Calciums">Calciums</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=24" title="Edit section: Calciums" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=24" title="Edit section's source code: Calciums"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The "evidence from long-term Ca II emission core monitoring [...] shows that smooth solar-like cyclic variability is not generally observed in young (less than 1 Gyr) active dwarfs [...]. On shorter timescales, [...] no differences in EUV luminosity more than a factor of 2 in a sample of active stars when comparing <i>EUVE</i> survey fluxes to those derived from the <i>ROSAT</i> Wide Field Camera survey performed 2 yr earlier."<sup id="cite_ref-Drake_33-8" class="reference"><a href="#cite_note-Drake-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Sun">Sun</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=25" title="Edit section: Sun" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=25" title="Edit section's source code: Sun"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resources: <a href="/wiki/Stars/Sun" title="Stars/Sun">Stars/Sun</a> and <a href="/wiki/Sun_(star)" class="mw-redirect" title="Sun (star)">Sun (star)</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Figure3_sun_aufbau.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Figure3_sun_aufbau.gif/200px-Figure3_sun_aufbau.gif" decoding="async" width="200" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Figure3_sun_aufbau.gif/300px-Figure3_sun_aufbau.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Figure3_sun_aufbau.gif/400px-Figure3_sun_aufbau.gif 2x" data-file-width="420" data-file-height="324" /></a><figcaption>This image is a theory for the interior of the Sun. Credit: NASA.</figcaption></figure> <p>In the model shown at right the Sun and regions around it are labeled. </p><p>The Sun which is a rotating body may become a magnet due to a dynamo.<sup id="cite_ref-Larmor1919_36-0" class="reference"><a href="#cite_note-Larmor1919-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>"The <b>core of the Sun</b> is considered to extend from the center to about 0.2 to 0.25 solar radius.<sup id="cite_ref-Garcia_37-0" class="reference"><a href="#cite_note-Garcia-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> It is the hottest part of the Sun and of the <a href="https://en.wikipedia.org/wiki/Solar_System" class="extiw" title="w:Solar System">Solar System</a>. It has a density of up to 150 g/cm³ (150 times the density of liquid <a href="https://en.wikipedia.org/wiki/water" class="extiw" title="w:water">water</a>) and a temperature of close to 15,000,000 <a href="https://en.wikipedia.org/wiki/kelvin" class="extiw" title="w:kelvin">kelvin</a> [15 MK] ... The core is made of hot, dense gas in the plasmic state. The core, inside 0.24 solar radius, generates 99% of the fusion power of the Sun."<sup id="cite_ref-SolarCore_38-0" class="reference"><a href="#cite_note-SolarCore-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> It is in the core region that solar neutrinos may be produced. </p><p>"The <b>radiation zone</b> or <b>radiative zone</b> is a layer of a star's interior where energy is primarily transported toward the exterior by means of <a href="/wiki/Radiation" title="Radiation">radiative diffusion</a>, rather than by <a href="https://en.wikipedia.org/wiki/convection" class="extiw" title="w:convection">convection</a>.<sup id="cite_ref-ryan_norton2010_39-0" class="reference"><a href="#cite_note-ryan_norton2010-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> Energy travels through the radiation zone in the form of <a href="/w/index.php?title=Electromagnetic_radiation&action=edit&redlink=1" class="new" title="Electromagnetic radiation (page does not exist)">electromagnetic radiation</a> as <a href="https://en.wikipedia.org/wiki/photon" class="extiw" title="w:photon">photons</a>. Within the Sun, the radiation zone is located in the intermediate zone between the solar core at .2 of the Sun's radius and the outer convection zone at .71 of the Sun's radius.<sup id="cite_ref-ryan_norton2010_39-1" class="reference"><a href="#cite_note-ryan_norton2010-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup>"<sup id="cite_ref-RadiationZone_40-0" class="reference"><a href="#cite_note-RadiationZone-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>"Matter in a radiation zone is so dense that photons can travel only a short distance before they are absorbed or scattered by another particle, gradually shifting to longer wavelength as they do so. For this reason, it takes an average of 171,000 years for gamma rays from the core of the Sun to leave the radiation zone. Over this range, the temperature of the plasma drops from 15 million K near the core down to 1.5 million K at the base of the convection zone.<sup id="cite_ref-elkins_tanton2006_41-0" class="reference"><a href="#cite_note-elkins_tanton2006-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup>"<sup id="cite_ref-RadiationZone_40-1" class="reference"><a href="#cite_note-RadiationZone-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>"Within a radiative zone, the temperature gradient—the change in temperature (<i>T</i>) as a function of radius (<i>r</i>)—is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\text{d}}T(r)}{{\text{d}}r}}\ =\ -{\frac {3\kappa (r)\rho (r)L(r)}{(4\pi r^{2})(16\sigma )T^{3}(r)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>=</mo> <mtext> </mtext> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>κ<!-- κ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi>L</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>4</mn> <mi>π<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>16</mn> <mi>σ<!-- σ --></mi> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\text{d}}T(r)}{{\text{d}}r}}\ =\ -{\frac {3\kappa (r)\rho (r)L(r)}{(4\pi r^{2})(16\sigma )T^{3}(r)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83860020f8a9f4722a7a63ed98ecf2c8e48ad0f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:32.062ex; height:6.509ex;" alt="{\displaystyle {\frac {{\text{d}}T(r)}{{\text{d}}r}}\ =\ -{\frac {3\kappa (r)\rho (r)L(r)}{(4\pi r^{2})(16\sigma )T^{3}(r)}}}"></span></dd></dl> <p>where <i>κ</i>(<i>r</i>) is the <a href="https://en.wikipedia.org/wiki/Opacity_(optics)" class="extiw" title="w:Opacity (optics)">opacity</a>, <i>ρ</i>(<i>r</i>) is the matter density, <i>L</i>(<i>r</i>) is the luminosity, and <i>σ</i> is the <a href="https://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_constant" class="extiw" title="w:Stefan–Boltzmann constant">Stefan–Boltzmann constant</a>.<sup id="cite_ref-ryan_norton2010_39-2" class="reference"><a href="#cite_note-ryan_norton2010-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> Hence the opacity (<i>κ</i>) and radiation flux (<i>L</i>) within a given layer of a star are important factors in determining how effective radiative diffusion is at transporting energy. A high opacity or high luminosity can cause a high temperature gradient, which results from a slow flow of energy. Those layers where convection is more effective than radiative diffusion at transporting energy, thereby creating a lower temperature gradient, will become convection zones.<sup id="cite_ref-leblanc2011_42-0" class="reference"><a href="#cite_note-leblanc2011-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup>"<sup id="cite_ref-RadiationZone_40-2" class="reference"><a href="#cite_note-RadiationZone-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>"The <b>convection zone</b> of a <a href="https://en.wikipedia.org/wiki/star" class="extiw" title="w:star">star</a> is the range of radii in which energy is transported primarily by <a href="https://en.wikipedia.org/wiki/convection" class="extiw" title="w:convection">convection</a>. ... Stellar convection consists of mass movement of plasma within the star which usually forms a circular convection current with the heated plasma ascending and the cooled plasma descending."<sup id="cite_ref-ConvectionZone_43-0" class="reference"><a href="#cite_note-ConvectionZone-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> This is the granular zone in the outer layer of a star. </p><p>"The <b>solar dynamo</b> is the physical process that generates the Sun's <a href="https://en.wikipedia.org/wiki/magnetic_field" class="extiw" title="w:magnetic field">magnetic field</a>. The Sun is permeated by an overall <a href="https://en.wikipedia.org/wiki/dipole" class="extiw" title="w:dipole">dipole</a> magnetic field, as are many other celestial bodies such as the <a href="/wiki/Earth" title="Earth">Earth</a>. The dipole field is produced by a circular <a href="https://en.wikipedia.org/wiki/electric_current" class="extiw" title="w:electric current">electric current</a> flowing deep within the star, following <a href="https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_law" class="extiw" title="w:Ampère's law">Ampère's law</a>. The current is produced by <a href="https://en.wikipedia.org/wiki/Shear_(fluid)" class="extiw" title="w:Shear (fluid)">shear</a> (stretching of material) between different parts of the Sun that <a href="https://en.wikipedia.org/wiki/rotate" class="extiw" title="w:rotate">rotate</a> at different rates, and the fact that the Sun itself is a very good <a href="https://en.wikipedia.org/wiki/electrical_conduction" class="extiw" title="w:electrical conduction">electrical conductor</a> (and therefore governed by the laws of <a href="/wiki/Plasmas/Magnetohydrodynamics" title="Plasmas/Magnetohydrodynamics">magnetohydrodynamics</a>)."<sup id="cite_ref-SolarDynamo_44-0" class="reference"><a href="#cite_note-SolarDynamo-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p><p>"The tachocline ... is a thin layer of the solar interior, straddling the convection zone and the radiative interior. It is widely believed that a toroidal magnetic field of at least 10<sup>5</sup> G permeates this layer ... The tachocline naturally divides into two sublayers: an inner "radiative" layer and an outer "overshoot" layer. By current estimates, the radiative layer is twice as thick as the overshoot layer."<sup id="cite_ref-Schecter_45-0" class="reference"><a href="#cite_note-Schecter-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p><p>The "radiative" layer of the tachocline may be a source for a radiative dynamo. </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Mercury">Mercury</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=26" title="Edit section: Mercury" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=26" title="Edit section's source code: Mercury"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Liquids/Liquid_objects/Mercury" title="Liquids/Liquid objects/Mercury">Liquids/Liquid objects/Mercury</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Mercury_Magnetic_Field_NASA.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Mercury_Magnetic_Field_NASA.jpg/200px-Mercury_Magnetic_Field_NASA.jpg" decoding="async" width="200" height="141" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Mercury_Magnetic_Field_NASA.jpg/300px-Mercury_Magnetic_Field_NASA.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/29/Mercury_Magnetic_Field_NASA.jpg/400px-Mercury_Magnetic_Field_NASA.jpg 2x" data-file-width="2432" data-file-height="1716" /></a><figcaption>This image is a plot showing the magnitude of the magnetic field of Mercury. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.</figcaption></figure> <p>"This plot [at right] shows the measured magnitude of the magnetic field of Mercury as MESSENGER executed its first flyby of that planet. MESSENGER's Magnetometer (MAG) provided definitive identification of all boundaries of the Mercury magnetosphere system, consistent with the observations made with the Fast Imaging Plasma Spectrometer (FIPS) on the Energetic Particle and Plasma Spectrometer (EPPS) instrument, and revealed a much more quiescent system than was seen during the first Mariner 10 flyby. This state of the system was also consistent with the absence of energetic particles as documented by the Energetic Particle Spectrometer (EPS) portion of MESSENGER's EPPS instrument. Mercury lacks radiations belts similar to the Van Allen belts at the Earth discovered by James Van Allen with a simple particle experiment on Explorer I launched 50 years ago."<sup id="cite_ref-JHUAPL_46-0" class="reference"><a href="#cite_note-JHUAPL-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>Mercury, despite its small size, has a magnetic field [see image and plot at right], because it has a conductive liquid core created by its iron composition and friction resulting from its highly elliptical orbit.<sup id="cite_ref-DynamoTheory_19-7" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p>"Mercury’s core, already suspected to occupy a greater fraction of the planet's interior than do the cores of Earth, Venus, or Mars, is even larger than anticipated."<sup id="cite_ref-Solomon_47-0" class="reference"><a href="#cite_note-Solomon-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>The "elevation ranges on Mercury are much smaller than on Mars or the Moon and documents evidence that there have been large-scale changes to Mercury’s topography since the earliest phases of the planet’s geological history."<sup id="cite_ref-Solomon_47-1" class="reference"><a href="#cite_note-Solomon-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>“From Mercury’s extraordinarily dynamic magnetosphere and exosphere to the unexpectedly volatile-rich composition of its surface and interior, our inner planetary neighbor is now seen to be very different from what we imagined just a few years ago."<sup id="cite_ref-Solomon_47-2" class="reference"><a href="#cite_note-Solomon-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>"MESSENGER’s radio tracking has allowed the scientific team to develop the first precise model of Mercury’s gravity field which, when combined with topographic data and the planet’s spin state, sheds light on the planet’s internal structure, the thickness of its crust, the size and state of its core, and its tectonic and thermal history."<sup id="cite_ref-Solomon_47-3" class="reference"><a href="#cite_note-Solomon-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>"Mercury’s core occupies a large fraction of the planet, about 85% of the planetary radius, even larger than previous estimates. Because of the planet’s small size, at one time many scientists thought the interior should have cooled to the point that the core would be solid. However, subtle dynamical motions measured from Earth-based radar, combined with MESSENGER’s newly measured parameters of the gravity field and the characteristics of Mercury’s internal magnetic field that signify an active core dynamo, indicate that the planet’s core is at least partially liquid."<sup id="cite_ref-Solomon_47-4" class="reference"><a href="#cite_note-Solomon-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>"Mercury’s core is different from any other planetary core in the Solar System. Earth has a metallic, liquid outer core sitting above a solid inner core. Mercury appears to have a solid silicate crust and mantle overlying a solid, iron sulfide outer core layer, a deeper liquid core layer, and possibly a solid inner core. These results have implications for how Mercury’s magnetic field is generated and for understanding how the planet evolved thermally."<sup id="cite_ref-Solomon_47-5" class="reference"><a href="#cite_note-Solomon-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>"Energetic and magnetostrophic balance arguments show that a dynamo source for Mercury's observed magnetic field is problematic if one expects an Earth-like partitioning of toroidal and poloidal fields."<sup id="cite_ref-Stanley_48-0" class="reference"><a href="#cite_note-Stanley-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p><p>But, a thin shell dynamo model is consistent with the observed weak magnetic field.<sup id="cite_ref-Stanley_48-1" class="reference"><a href="#cite_note-Stanley-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p><p>From "the ratio of the dipole field at the core-mantle boundary to the toroidal field in the core for various shell thicknesses and Rayleigh numbers[...] some thin shell dynamos can produce magnetic fields with Mercury-like dipolar field intensities. In these dynamos, the toroidal field is produced more efficiently through differential rotation than the poloidal field is produced through upwellings interacting with the toroidal field. The poloidal field is also dominated by smaller-scale structure which was not observable by the Mariner 10 mission, compared to the dipole field."<sup id="cite_ref-Stanley_48-2" class="reference"><a href="#cite_note-Stanley-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Venus">Venus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=27" title="Edit section: Venus" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=27" title="Edit section's source code: Venus"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Gases/Gaseous_objects/Venus" title="Gases/Gaseous objects/Venus">Gases/Gaseous objects/Venus</a></div> <p>"Venus and the Earth have similar radii and estimated bulk compositions, and both possess an iron core that is at least partially liquid. However, despite these similarities, Venus lacks an appreciable dipolar magnetic field."<sup id="cite_ref-Nimmo2002_49-0" class="reference"><a href="#cite_note-Nimmo2002-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>This "absence is due to Venus’s also lacking plate tectonics for the past 0.5 b.y. (1 b.y.=10<sup>9</sup> yr). The generation of a global magnetic field requires core convection, which in turn requires extraction of heat from the core into the overlying mantle. Plate tectonics cools the Earth’s mantle; on the basis of elastic thickness estimates and convection models, [...] the mantle temperature on Venus is currently increasing. This heating will reduce the heat flux out of the core to zero over ~1 b.y., halting core convection and magnetic field generation. If plate tectonics was operating on Venus prior to ca. 0.5 Ga, a magnetic field may also have existed. On Earth, the geodynamo may be a consequence of plate tectonics; this connection between near-surface processes and core magnetism may also be relevant to the generation of magnetic fields on Mars, Mercury and Ganymede."<sup id="cite_ref-Nimmo2002_49-1" class="reference"><a href="#cite_note-Nimmo2002-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>The lack of an appreciable Earth-like dipolar magnetic field "cannot be explained by the planet's slow rotation".<sup id="cite_ref-Nimmo2002_49-2" class="reference"><a href="#cite_note-Nimmo2002-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>In "the absence of plate tectonics, the mantle on Venus cannot cool rapidly enough to drive core convection and a geodynamo."<sup id="cite_ref-Nimmo2002_49-3" class="reference"><a href="#cite_note-Nimmo2002-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>"Planetary magnetic fields are produced by motion in a conductor, usually the planet’s iron core. Such motion may be due to either thermal convection or compositional convection, driven by core solidification".<sup id="cite_ref-Nimmo2002_49-4" class="reference"><a href="#cite_note-Nimmo2002-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>"The maximum heat flux that can be extracted from the core without thermal convection is given by"<sup id="cite_ref-Nimmo2002_49-5" class="reference"><a href="#cite_note-Nimmo2002-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{c}=k\alpha gT/C_{p},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mi>α<!-- α --></mi> <mi>g</mi> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{c}=k\alpha gT/C_{p},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f244fa687d05eea6cc7b2847adc808f256471c3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.519ex; height:3.009ex;" alt="{\displaystyle F_{c}=k\alpha gT/C_{p},}"></span></dd></dl> <p>"where <i>k</i> and <i>α</i> are the thermal conductivity and expansivity, <i>g</i> is the acceleration due to gravity, <i>T</i> is the core temperature, and <i>C</i><sub>p</sub> is the specific hear capacity. [...] <i>F</i><sub>c</sub> is in the range 11-30 mW·m<sup>-2</sup>. Thermal convection will cease if the heat being extracted from the core is less than <i>F</i><sub>c</sub>; in the absence of core solidification, the geodynamo will halt. Compositional convection may continue [...], but will certainly halt if the heat flux out of the core drops to zero or below (i.e., the core starts heating up). The rate at which the core loses heat is controlled by the temperature difference between core and mantle and, thus, on the rate at which the mantle is cooling".<sup id="cite_ref-Nimmo2002_49-6" class="reference"><a href="#cite_note-Nimmo2002-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Earth">Earth</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=28" title="Edit section: Earth" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=28" title="Edit section's source code: Earth"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Earth" title="Earth">Earth</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Outer_core_convection_rolls.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Outer_core_convection_rolls.jpg/200px-Outer_core_convection_rolls.jpg" decoding="async" width="200" height="202" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/b/b4/Outer_core_convection_rolls.jpg 1.5x" data-file-width="262" data-file-height="264" /></a><figcaption>Illustration of the dynamo mechanism that creates the Earth's magnetic field. Credit: USGS.</figcaption></figure> <p>The illustration at right is of the dynamo mechanism that creates the Earth's magnetic field: convection currents of magma in the Earth's outer core, driven by heat flow from the inner core, organized into rolls by the Coriolis force, creates circulating electric currents, which generate the magnetic field.<sup id="cite_ref-USGS_50-0" class="reference"><a href="#cite_note-USGS-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> </p><p>As "the result of radioactive heating and chemical differentiation, the Earth's outer core is in a state of turbulent convection. This sets up a process that is a bit like a naturally occurring electrical generator, where the convective kinetic energy is converted to electrical and magnetic energy. Basically, the motion of the electrically conducting iron in the presence of the Earth's magnetic field induces electric currents. Those electric currents generate their own magnetic field, and as the result of this internal feedback, the process is self-sustaining so long as there is an energy source sufficient to maintain convection."<sup id="cite_ref-USGS_50-1" class="reference"><a href="#cite_note-USGS-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> </p><p>The Earth's "magnetic field resulted from electric currents induced in the fluid outer core of the Earth."<sup id="cite_ref-DynamoTheory_19-8" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p>The Earth is magnetic and a dynamo may be generating the field.<sup id="cite_ref-Larmor_51-0" class="reference"><a href="#cite_note-Larmor-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> </p><p>"The use of more realistic parameters in numerical geodynamo simulations tends to generate less Earth-like magnetic fields. This paradox could be resolved by considering uniform heat flux instead of uniform temperature at the core's surface."<sup id="cite_ref-Buffett2009_52-0" class="reference"><a href="#cite_note-Buffett2009-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p>"Electrical currents produced by motions in the Earth's fluid outer core are thought to be responsible for the planet's magnetic field."<sup id="cite_ref-Buffett2009_52-1" class="reference"><a href="#cite_note-Buffett2009-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p>"The Earth's main magnetic field is thought to be generated by motions in the planet's fluid outer core, which lead to an effect similar to that of a dynamo. Recent high-resolution numerical simulations produce only a non-dipolar or a dipolar but comparatively weak magnetic field unlike that of the Earth. Older models that did generate a strong, Earth-like field needed to use unrealistically high viscosities for the core fluid. Common to most of the models is the assumption of a laterally uniform core-surface temperature."<sup id="cite_ref-Sakuraba_53-0" class="reference"><a href="#cite_note-Sakuraba-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p><p>A "low-viscosity geodynamo model [used] to evaluate the effect of a different and more realistic boundary condition-a uniform heat flux at the surface of the core-on the simulation of an Earth-like magnetic field [shows] that when the surface temperature is laterally uniform, only a weak magnetic field is generated because planetary-scale fluid circulations are suppressed. In contrast, a laterally uniform heat flux at the core's surface leads to large-scale convective flows, and a comparatively strong dipole-type magnetic field."<sup id="cite_ref-Sakuraba_53-1" class="reference"><a href="#cite_note-Sakuraba-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p><p>The "dipole, which comprises much of the Earth's magnetic field and is misaligned along the rotation axis by 11.3 degrees, was caused by permanent magnetization of the materials in the earth. This means that dynamo theory was originally used to explain the Sun's magnetic field in its relationship with that of the Earth."<sup id="cite_ref-DynamoTheory_19-9" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Moon">Moon</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=29" title="Edit section: Moon" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=29" title="Edit section's source code: Moon"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Liquids/Liquid_objects/Moon" title="Liquids/Liquid objects/Moon">Liquids/Liquid objects/Moon</a></div> <p>"The "geodynamo" that generates Earth's magnetic field is powered by heat from the inner core, which drives complex fluid motions in the molten iron of the outer core. But the moon is too small to support that type of dynamo."<sup id="cite_ref-Stephens_54-0" class="reference"><a href="#cite_note-Stephens-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p>"This is a very different way of powering a dynamo that involves physical stirring, like stirring a bowl with a giant spoon."<sup id="cite_ref-Dwyer_55-0" class="reference"><a href="#cite_note-Dwyer-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>"Early in its history, the moon orbited the Earth at a much closer distance than it does today, and it continues to gradually recede from the Earth. At close distances, tidal interactions between the Earth and the moon caused the moon's mantle to rotate slightly differently than the core. This differential motion of the mantle relative to the core stirred the liquid core, creating fluid motions that, in theory, could give rise to a magnetic dynamo."<sup id="cite_ref-Stephens_54-1" class="reference"><a href="#cite_note-Stephens-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p>"The moon wobbles a bit as it spins--that's called precession--but the core is liquid, and it doesn't do exactly the same precession. So the mantle is moving back and forth across the core, and that stirs up the core."<sup id="cite_ref-Nimmo_56-0" class="reference"><a href="#cite_note-Nimmo-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p><p>A "lunar dynamo could have operated in this way for at least a billion years. Eventually, however, it would have stopped working as the moon got farther away from the Earth."<sup id="cite_ref-Stephens_54-2" class="reference"><a href="#cite_note-Stephens-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p>"The further out the moon moves, the slower the stirring, and at a certain point the lunar dynamo shuts off."<sup id="cite_ref-Dwyer_55-1" class="reference"><a href="#cite_note-Dwyer-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>"Rocks can become magnetized from the shock of an impact, a mechanism some scientists have proposed to explain the magnetization of lunar samples. But recent paleomagnetic analyses of moon rocks, as well as orbital measurements of the magnetization of the lunar crust, suggest that there was a strong, long-lived magnetic field on the moon early in its history."<sup id="cite_ref-Stephens_54-3" class="reference"><a href="#cite_note-Stephens-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p>"One of the nice things about our model is that it explains how a lunar dynamo could have lasted for a billion years."<sup id="cite_ref-Nimmo_56-1" class="reference"><a href="#cite_note-Nimmo-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p><p>"It also makes predictions about how the strength of the field should have changed over the years, and that's potentially testable with enough paleomagnetic observations."<sup id="cite_ref-Nimmo_56-2" class="reference"><a href="#cite_note-Nimmo-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p><p>"Only certain types of fluid motions give rise to magnetic dynamos."<sup id="cite_ref-Dwyer_55-2" class="reference"><a href="#cite_note-Dwyer-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>"We calculated the power that's available to drive the dynamo and the magnetic field strengths that could be generated. But we really need the dynamo experts to take this model to the next level of detail and see if it works."<sup id="cite_ref-Dwyer_55-3" class="reference"><a href="#cite_note-Dwyer-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Mars">Mars</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=30" title="Edit section: Mars" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=30" title="Edit section's source code: Mars"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Liquids/Liquid_objects/Mars" title="Liquids/Liquid objects/Mars">Liquids/Liquid objects/Mars</a></div> <figure class="mw-halign-right" typeof="mw:Error mw:File/Thumb"><a href="/w/index.php?title=Special:Upload&wpDestFile=Mars_crustal_magnetism.gif" class="new" title="File:Mars crustal magnetism.gif"><span class="mw-file-element mw-broken-media" data-width="200">File:Mars crustal magnetism.gif</span></a><figcaption>This image shows stripes of crustal magnetism on Mars. Credit: NASA.</figcaption></figure> <p>"Mars once underwent plate tectonics, slow movement of the planet's crust, like the present-day Earth. A new map of Mars' magnetic field [at the right] made by the Mars Global Surveyor spacecraft reveals a world whose history was shaped by great crustal plates being pulled apart or smashed together."<sup id="cite_ref-Jones_57-0" class="reference"><a href="#cite_note-Jones-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p><p>Initial "observations [in 1999], also done with the Mars Global Surveyor’s magnetometer, covered only one region in the Southern Hemisphere. The data was taken while the spacecraft performed an aerobraking maneuver, and so came from differing heights above the crust."<sup id="cite_ref-Jones_57-1" class="reference"><a href="#cite_note-Jones-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p><p>"This high resolution magnetic field map, the first of its kind, covers the entire surface of Mars. The new map is based on four years of data taken in a constant orbit. Each region on the surface has been sampled many times."<sup id="cite_ref-Jones_57-2" class="reference"><a href="#cite_note-Jones-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p><p>“The more measurements we obtain, the more accuracy, and spatial resolution, we achieve."<sup id="cite_ref-Connerney_58-0" class="reference"><a href="#cite_note-Connerney-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </p><p>"This map lends support to and expands on the 1999 results."<sup id="cite_ref-Ness_59-0" class="reference"><a href="#cite_note-Ness-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> </p><p>“Where the earlier data showed a "striping" of the magnetic field in one region, the new map finds striping elsewhere. More importantly, the new map shows evidence of features, transform faults, that are a "tell-tale" of plate tectonics on Earth."<sup id="cite_ref-Ness_59-1" class="reference"><a href="#cite_note-Ness-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> </p><p>On "Mars the direction of the magnetic field changes dramatically from place to place."<sup id="cite_ref-Jones_57-3" class="reference"><a href="#cite_note-Jones-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p><p>Similar "stripes in the crustal magnetic field on Earth. Stripes form whenever two plates are being pushed apart by molten rock coming up from the mantle, such as along the Mid-Atlantic Ridge. As the plate spreads and cools, it becomes magnetized in the direction of the Earth’s strong global field. Since Earth’s global field changes direction a few times every million years, on average, a flow that cools in one period will be magnetized in a different direction than a later flow. As the new crust is pushed out and away from the ridge, stripes of alternating magnetic fields aligned with the ridge axis develop. Transform faults, identified by “shifts” in the magnetic pattern, occur only in association with spreading centers."<sup id="cite_ref-Jones_57-4" class="reference"><a href="#cite_note-Jones-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p><p>"Plate tectonics provides a unifying framework to explain several Martian features. First, there is the magnetic pattern itself. Second, the Tharsis volcanoes lie along a straight line. These formations could have formed from the motion of a crustal plate over a fixed “hotspot” in the mantle below, just as the Hawaiian islands on Earth are thought to have formed. Third, the Valles Marineris, a large canyon six times as long as the Grand Canyon and eight times as deep, looks just like a rift formed on Earth by a plate being pulled apart. Even more, it is oriented just as one would expect from plate motions implied by the magnetic map."<sup id="cite_ref-Connerney_58-1" class="reference"><a href="#cite_note-Connerney-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </p><p>Plate "tectonics does give us a consistent explanation of some of the most prominent features on Mars.”<sup id="cite_ref-Acuna_60-0" class="reference"><a href="#cite_note-Acuna-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Jupiter">Jupiter</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=31" title="Edit section: Jupiter" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=31" title="Edit section's source code: Jupiter"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a></div> <figure class="mw-halign-right" typeof="mw:Error mw:File/Thumb"><a href="/w/index.php?title=Special:Upload&wpDestFile=Jupiter_Dynamo.jpg" class="new" title="File:Jupiter Dynamo.jpg"><span class="mw-file-element mw-broken-media" data-width="200">File:Jupiter Dynamo.jpg</span></a><figcaption>This is a diagram of the dynamo within Jupiter producing its axisymmetric dipole magnetic field. Credit: Robert MacDowall, Planetary Magnetospheres Laboratory, Code 695, GSFC, NASA.</figcaption></figure> <p>"The interior of Jupiter is the seat of a strong dynamo that produces a surface magnetic field in the equatorial region with an intensity of ~ 4 Gauss. This strong magnetic field and Jupiter’s fast rotation (rotation period ~ 9 h 55 min) create a unique magnetosphere in the solar system which is known for its immense size (average subsolar magnetopause distance 45-100 R<sub>J</sub> where 1 R<sub>J</sub> = 71492 km is the radius of Jupiter) and fast rotation [...]. Jupiter’s magnetosphere differs from most other magnetospheres in the fact that it derives much of its plasma internally from Jupiter’s moon <a href="/w/index.php?title=Io&action=edit&redlink=1" class="new" title="Io (page does not exist)">Io</a>. The heavy plasma, consisting principally of various charge states of S and O, inflates the magnetosphere from the combined actions of centrifugal force and thermal pressure."<sup id="cite_ref-Khurana_61-0" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>In "the absence of an internal heavy plasma, the dipole field would balance the average dynamic pressure of the solar wind (0.08 nPa) at a distance of ~ 42 R<sub>J</sub> in the subsolar region [...] the observed average magnetopause location of ~ 75 R<sub>J</sub> [...] The heavy plasma is also responsible for generating an azimuthal current exceeding 160 MA in the equatorial region of Jupiter’s magnetosphere where it is confined to a thin current sheet (half thickness ~ 2 R<sub>J</sub> in the dawn sector)."<sup id="cite_ref-Khurana_61-1" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>"The energization of plasma by various electrical fields as it diffuses inwards is responsible for the creation of radiation belts in the inner magnetosphere of Jupiter. It is believed that the radial diffusion is driven by the ionospheric dynamo fields produced by winds in Jupiter’s atmosphere"<sup id="cite_ref-Khurana_61-2" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>"In situ and remote observations of Io and its surroundings from <i>Voyager</i> showed that Io is the main source of plasma in Jupiter’s magnetosphere [...] "<sup id="cite_ref-Khurana_61-3" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>"It is estimated that upward of 6 × 10<sup>29</sup> amu/s (~ 1 ton/s) of plasma mass is added to the magnetosphere by Io. The picked-up plasma consists mostly of various charged states of S and O and populates a torus region extending from a radial distance of ~ 5.2 R<sub>J</sub> to ~ 10 R<sub>J</sub>."<sup id="cite_ref-Khurana_61-4" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>"The next most important source of plasma in Jupiter’s magnetosphere is the solar wind whose source strength can be estimated by a consideration of the solar wind mass flux incident on Jupiter’s magnetopause and the fractional amount that makes it into the magnetosphere (< 1%). Such a calculation suggests that the solar wind source strength is < 100 kg/s (Hill et al. 1983) considerably lower than the Io source. Nevertheless, the number density of protons (as opposed to the mass density) may be comparable to the iogenic plasma number density in the middle and outer magnetospheres where the solar wind may be able to gain access to the magnetosphere."<sup id="cite_ref-Khurana_61-5" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>"The escape of ions (mainly H<sup>+</sup> and H<sub>2</sub><sup>+</sup> ) from the ionosphere of Jupiter provides the next significant source of plasma in Jupiter’s magnetosphere. The ionospheric plasma escapes along field lines when the gravity of Jupiter is not able to contain the hot plasma (~ 10 eV and above). The escape however is not uniform and depends on the local photoelectron density, the temperature variations of the ionosphere with the solar zenith angle, other factors such as the auroral precipitation of ions and electrons and the ionospheric heating from Pedersen currents. In situ measurements show that in Io’s torus, protons contribute to less than 20% of total ion number density and constitute < 1% of mass suggesting that the ionosphere is not a major source of plasma in Jupiter’s magnetosphere. [The] ionospheric source strength [is] in the range of ~ 20 kg/s."<sup id="cite_ref-Khurana_61-6" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>The "surface sputtering of the three icy satellites by jovian plasma provides the last significant source of plasma in Jupiter’s magnetosphere. Because the icy moons lack extended atmospheres and the fluxes of the incident plasma are low at the locations of these moons, the total pickup of plasma from these satellites is estimated to be less than 20 kg/s based on the plasma sputtering rates provided".<sup id="cite_ref-Khurana_61-7" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>"Other minor constituents found in the torus [...] were Na<sup>+</sup> (with an abundance of < 5%) and molecular ions SO<sup>+</sup> and SO<sub>2</sub><sup>+</sup> (both with abundances of < 1% of the total). The average mass of a torus ion is ~ 20 and the average fractional charge on an ion is ~ 1.2 [...]. The bulk velocity of the plasma was found to be ~ 75 km/s, close to the corotational value."<sup id="cite_ref-Khurana_61-8" class="reference"><a href="#cite_note-Khurana-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Io">Io</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=32" title="Edit section: Io" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=32" title="Edit section's source code: Io"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Liquids/Liquid_objects/Io" title="Liquids/Liquid objects/Io">Liquids/Liquid objects/Io</a></div> <p>Io has enough tidal heating to liquify its inner core, even if the moon is not conductive enough to support a dynamo.<sup id="cite_ref-DynamoTheory_19-10" class="reference"><a href="#cite_note-DynamoTheory-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p>The "orbital and gravitational relationships between Io, its sister moons Europa and Ganymede, and Jupiter cause massive, rapid flexing of its rocky crust. These tidal flexures generate tremendous heat within Io’s interior, which is released through the many surface volcanoes observed."<sup id="cite_ref-Cassis_62-0" class="reference"><a href="#cite_note-Cassis-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </p><p>“Io has no impact craters; it is the only object in the Solar System where we have not seen any impact craters, testifying to Io’s very active volcanic resurfacing.”<sup id="cite_ref-Williams_63-0" class="reference"><a href="#cite_note-Williams-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p><p>"Io is extremely active, with literally hundreds of volcanic sources on its surface. Interestingly, although Io is so volcanically active, more than 25 times more volcanically active than Earth, most of the long-term surface changes resulting from volcanism are restricted to less than 15 percent of the surface, mostly in the form of changes in lava flow fields or within paterae."<sup id="cite_ref-Cassis_62-1" class="reference"><a href="#cite_note-Cassis-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </p><p>“Our mapping has determined that most of the active hot spots occur in paterae, which cover less than 3 percent of Io’s surface. Lava flow fields cover approximately 28 percent of the surface, but contain only 31 percent of hot spots.”<sup id="cite_ref-Williams_63-1" class="reference"><a href="#cite_note-Williams-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p><p>“Understanding the geographical distribution of these features and hot spots, as identified through this map, are enabling better models of Io’s interior processes to be developed.”<sup id="cite_ref-Williams_63-2" class="reference"><a href="#cite_note-Williams-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Enceladus">Enceladus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=33" title="Edit section: Enceladus" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=33" title="Edit section's source code: Enceladus"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With "a diameter only slightly more than 300 miles, Enceladus just doesn’t have the bulk needed for its interior to stay warm enough to maintain liquid water underground."<sup id="cite_ref-Steigerwald_64-0" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"With temperatures around 324 degrees below zero Fahrenheit, the surface of Enceladus is indeed frozen. However, in 2005 NASA's Cassini spacecraft discovered a giant plume of water gushing from cracks in the surface over the moon's south pole, indicating that there was a reservoir of water beneath the ice. Analysis of the plume by Cassini revealed that the water is salty, indicating the reservoir is large, perhaps even a global subsurface ocean. Scientists estimate from the Cassini data that the south polar heating is equivalent to a continuous release of about 13 billion watts of energy."<sup id="cite_ref-Steigerwald_64-1" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"To explain this mysterious warmth, some scientists invoke radiation coupled with tidal heating. As it formed, Enceladus (like all solar system objects) incorporated matter from the cloud of gas and dust left over from our sun’s formation. In the outer solar system, as Enceladus formed it grew as ice and rock coalesced. If Enceladus was able to gather greater amounts of rock, which contained radioactive elements, enough heat could have been generated by the decay of the radioactive elements in its interior to melt the body."<sup id="cite_ref-Steigerwald_64-2" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"Enceladus' orbit around Saturn is slightly oval-shaped. As it travels around Saturn, Enceladus moves closer in and then farther away. When Enceladus is closer to Saturn, it feels a stronger gravitational pull from the planet than when it is farther away. Like gently squeezing a rubber ball slightly deforms its shape, the fluctuating gravitational tug on Enceladus causes it to flex slightly. The flexing, called gravitational tidal forcing, generates heat from friction deep within Enceladus."<sup id="cite_ref-Steigerwald_64-3" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"The gravitational tides also produce stress that cracks the surface ice in certain regions, like the south pole, and may be reworking those cracks daily. Tidal stress can pull these cracks open and closed while shearing them back and forth. As they open and close, the sides of the south polar cracks move as much as a few feet, and they slide against each other by up to a few feet as well. This movement also generates friction, which (like vigorously rubbing your hands together) releases extra heat at the surface at locations that should be predictable with our understanding of tidal stress."<sup id="cite_ref-Steigerwald_64-4" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"To test the tidal heating theory, scientists with the Cassini team created a map of the gravitational tidal stress on the moon's icy crust and compared it to a map of the warm zones created using Cassini's composite infrared spectrometer instrument (CIRS). Assuming the greatest stress is where the most friction occurs, and therefore where the most heat is released, areas with the most stress should overlap the warmest zones on the CIRS map."<sup id="cite_ref-Steigerwald_64-5" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"However, they don't exactly match."<sup id="cite_ref-Hurford_65-0" class="reference"><a href="#cite_note-Hurford-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p>"For example, in the fissure called the Damascus Sulcus, the area experiencing the greatest amount of shearing is about 50 kilometers (about 31 miles) from the zone of greatest heat."<sup id="cite_ref-Hurford_65-1" class="reference"><a href="#cite_note-Hurford-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p>"Enceladus' wobble, technically called "libration," is barely noticeable."<sup id="cite_ref-Steigerwald_64-6" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"Cassini observations have ruled out a wobble greater than about 2 degrees with respect to Enceladus' uniform rotation rate."<sup id="cite_ref-Hurford_65-2" class="reference"><a href="#cite_note-Hurford-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p>A "computer simulation [...] made maps of the surface stress on Enceladus for various wobbles, and found a range where the areas of greatest stress line up better with the observed warmest zones."<sup id="cite_ref-Steigerwald_64-7" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"Depending on whether the wobble moves with or against the movement of Saturn in Enceladus' sky, a wobble ranging from 2 degrees down to 0.75 degrees produces the best fit to the observed warmest zones,"<sup id="cite_ref-Hurford_65-3" class="reference"><a href="#cite_note-Hurford-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p>"The wobble also helps with the heating conundrum by generating about five times more heat in Enceladus’ interior than tidal stress alone, and the extra heat makes it likely that Enceladus' ocean could be long-lived, according to Hurford. This is significant in the search for life, because life requires a stable environment to develop."<sup id="cite_ref-Steigerwald_64-8" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"The wobble is probably caused by Enceladus' uneven shape."<sup id="cite_ref-Steigerwald_64-9" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>"Enceladus is not completely spherical, so as it moves in its orbit, the pull of Saturn's gravity generates a net torque that forces the moon to wobble." <sup id="cite_ref-Hurford_65-4" class="reference"><a href="#cite_note-Hurford-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p>"Enceladus' orbit is kept oval-shaped, maintaining the tidal stress, because of the gravitational tug from a neighboring larger moon Dione. Dione is farther away from Saturn than Enceladus, so it takes longer to complete its orbit. For every orbit Dione completes, Enceladus finishes two orbits, producing a regular alignment that pulls Enceladus' orbit into an oval shape."<sup id="cite_ref-Steigerwald_64-10" class="reference"><a href="#cite_note-Steigerwald-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Uranus">Uranus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=34" title="Edit section: Uranus" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=34" title="Edit section's source code: Uranus"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Gases/Gaseous_objects/Uranus" title="Gases/Gaseous objects/Uranus">Gases/Gaseous objects/Uranus</a></div> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Uranian_Magnetic_field.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Uranian_Magnetic_field.gif/200px-Uranian_Magnetic_field.gif" decoding="async" width="200" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Uranian_Magnetic_field.gif/300px-Uranian_Magnetic_field.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Uranian_Magnetic_field.gif/400px-Uranian_Magnetic_field.gif 2x" data-file-width="900" data-file-height="658" /></a><figcaption>The magnetic field of Uranus as observed by <i>Voyager 2</i> in 1986. S and N are magnetic south and north poles. Credit: <a href="https://en.wikipedia.org/wiki/User:Ruslik0" class="extiw" title="w:User:Ruslik0">Ruslik0</a>.{{<a href="/wiki/Template:Free_media" title="Template:Free media">free media</a>}}</figcaption></figure> <p>"The discovery of [Uranus]'s non-dipolar, non-axisymmetric magnetic [field at the right] destroyed the picture-established by Earth, Jupiter and Saturn-that planetary magnetic fields are dominated by axial dipoles."<sup id="cite_ref-StanleyUranus_66-0" class="reference"><a href="#cite_note-StanleyUranus-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>"Planetary magnetic fields are generated by complex fluid motions in electrically conducting regions of the planets (a process known as dynamo action), and so are intimately linked to the structure and evolution of planetary interiors."<sup id="cite_ref-StanleyUranus_66-1" class="reference"><a href="#cite_note-StanleyUranus-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>Three-dimensional "numerical dynamo simulations [...] model the dynamo source region as a convecting thin shell surrounding a stably stratified fluid interior."<sup id="cite_ref-StanleyUranus_66-2" class="reference"><a href="#cite_note-StanleyUranus-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>This "convective-region geometry produces magnetic fields similar in morphology to [that] of Uranus [The field is] non-dipolar and non-axisymmetric, and [results] from a combination of the stable fluid's response to electromagnetic stress and the small length scales imposed by the thin shell."<sup id="cite_ref-StanleyUranus_66-3" class="reference"><a href="#cite_note-StanleyUranus-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>The planet had "a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar magnetotail [and a] detached bow shock wave [which] was observed upstream at 23.7 Uranus radii (1 R<sub>U</sub> = 25,600 km) and the magnetopause boundary at 18.0 R<sub>U</sub>. [The] maximum magnetic field of 413 nanotesla was observed at 4.19 R<sub>U</sub> [The] planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R<sub>U</sub>. The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. [The] field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R<sup>3</sup><sub>U</sub>, combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1-1.1 gauss. The rotation period of the magnetic field and [that] of the interior of the planet is estimated to be 17.29±0.10 [hr]."<sup id="cite_ref-Ness1986_67-0" class="reference"><a href="#cite_note-Ness1986-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Neptune">Neptune</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=35" title="Edit section: Neptune" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=35" title="Edit section's source code: Neptune"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Gases/Gaseous_objects/Neptune" title="Gases/Gaseous objects/Neptune">Gases/Gaseous objects/Neptune</a></div> <p>"The discovery of [Neptune]'s non-dipolar, non-axisymmetric magnetic [field contributes to destroying] the picture-established by Earth, Jupiter and Saturn-that planetary magnetic fields are dominated by axial dipoles."<sup id="cite_ref-StanleyUranus_66-4" class="reference"><a href="#cite_note-StanleyUranus-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>The "convective-region geometry produces magnetic fields similar in morphology to [that of] Neptune. [The field is] non-dipolar and non-axisymmetric, and [results] from a combination of the stable fluid's response to electromagnetic stress and the small length scales imposed by the thin shell."<sup id="cite_ref-StanleyUranus_66-5" class="reference"><a href="#cite_note-StanleyUranus-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>The "rotation axis of [Neptune] is inclined by only 29° to the orbital plane [...] The magnetic dipole axis of Neptune is tilted at an angle of 47° to the spin axis of the planet. The extrapolated near-equatorial surface field is 1.42 µT, corresponding to a magnetic moment (equatorial surface field times radius cubed) of 2.16 x 10<sup>17</sup> Tm<sup>3</sup> close to 27 times greater than the terrestrial magnetic moment. The quadrupole moment if Neptune is quite large and makes a greater contribution to the surface magnetic field than at any other planet. The most forward portion of the magnetopause is estimated to lie on average at about 26 Neptunian radii in front of the planet, and of the bow shock at about 34 Neptune radii."<sup id="cite_ref-Russell_68-0" class="reference"><a href="#cite_note-Russell-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Brown_dwarfs">Brown dwarfs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=36" title="Edit section: Brown dwarfs" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=36" title="Edit section's source code: Brown dwarfs"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Stars/Dwarfs" title="Stars/Dwarfs">Stars/Dwarfs</a></div> <p>"Stars with masses <i>M</i> > 0.3 <i>M</i><sub>⊙</sub> have an outer convective zone and an interior radiative region that need not be rotating at the same rate. A poloidal magnetic field in the convective layers will be stretched and amplified into strong toroidal fields when it is dragged by convective overshoot ... into the radial shear in rotation that resides at the boundary (in and near the so-called "tachocline" ... For less massive stars and young brown dwarfs, the energy is transported throughout the star by convection; no radiative core is present. For this reason, it has been supposed that the activity and its dependence on rotation might change near the spectral type where the radiative layer disappears (about M5.5)"<sup id="cite_ref-Rutledge_69-0" class="reference"><a href="#cite_note-Rutledge-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Giant_stars">Giant stars</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=37" title="Edit section: Giant stars" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=37" title="Edit section's source code: Giant stars"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Stellar_evolutionary_tracks-en.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Stellar_evolutionary_tracks-en.svg/250px-Stellar_evolutionary_tracks-en.svg.png" decoding="async" width="250" height="217" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Stellar_evolutionary_tracks-en.svg/375px-Stellar_evolutionary_tracks-en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Stellar_evolutionary_tracks-en.svg/500px-Stellar_evolutionary_tracks-en.svg.png 2x" data-file-width="840" data-file-height="730" /></a><figcaption>This image shows sample stellar evolutionary tracks for single stars, zero initial rotational velocity, and solar metallicity. Credit: <a href="https://commons.wikimedia.org/wiki/User:Rursus" class="extiw" title="commons:User:Rursus">Rursus</a>.</figcaption></figure> <p><b>Notation</b>: let the symbol <b>AGB</b> indicate an <b>asymptotic giant branch</b> star with a hydrogen-exhausted core. </p><p><b>Notation</b>: let the symbol <b>E-AGB</b> indicate an AGB star with a hydrogen-exhausted core. </p><p>For a 7 <i>M</i><sub>⊙</sub> AGB model sequence, "[o]n the E-AGB, the convective envelope appears clearly separated from the stellar core by a radiative layer ... Density and temperature drop significantly within this layer".<sup id="cite_ref-Bloecker_70-0" class="reference"><a href="#cite_note-Bloecker-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> "As evolution proceeds luminosity and radiation pressure increase ... The base of the convective envelope moves inwards into deeper and hotter parts of the interior until nuclear reactions become important ... just before the first thermal pulse ..., the radiative "buffer" layer disappears, and the convection cuts into the hydrogen-burning shell. ... high lithium abundances ... in ... oxygen rich, luminous (<i>M</i><sub>bol</sub> = -6.2... -6.8) AGB stars [are produced at the base of the convective envelope which] has a base temperature of 75 ˑ 10<sup>6</sup>K, sufficient to reduce the duration of the Li-rich phase well below 10<sup>4</sup>yrs".<sup id="cite_ref-Bloecker_70-1" class="reference"><a href="#cite_note-Bloecker-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;"></div> <div class="mw-heading mw-heading2"><h2 id="Hypotheses">Hypotheses</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=38" title="Edit section: Hypotheses" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=38" title="Edit section's source code: Hypotheses"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2661592"><div role="note" class="hatnote navigation-not-searchable">Main resource: <a href="/wiki/Hypotheses" class="mw-redirect" title="Hypotheses">Hypotheses</a></div> <ol><li>The magnetic field of the solar surface is being generated by direct electron incidence.</li></ol> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=39" title="Edit section: See also" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=39" title="Edit section's source code: See also"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r2670040">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Astrophysics" title="Astrophysics">Astrophysics</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Coronal_clouds" title="Plasmas/Plasma objects/Coronal clouds">Coronal cloud</a></li> <li><a href="/wiki/Dominant_group/Planetary_science" title="Dominant group/Planetary science">Dominant group/Planetary science</a></li> <li><a href="/wiki/Dominant_group/Physics" title="Dominant group/Physics">Dominant group/Physics</a></li> <li><a href="https://en.wikipedia.org/wiki/Dynamo" class="extiw" title="w:Dynamo">Dynamo</a></li> <li><a href="https://en.wikipedia.org/wiki/Coronal_radiative_losses#Optically-thin_plasma_emission" class="extiw" title="w:Coronal radiative losses">Optically-thin plasma emission</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Plasmas&action=edit&redlink=1" class="new" title="Radiation astronomy/Plasmas (page does not exist)">Plasmas</a></li> <li><a href="/wiki/Stars/Sun" title="Stars/Sun">Sun</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=40" title="Edit section: References" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=40" title="Edit section's source code: References"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r2661605">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-Petit-1"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Petit_1-0">1.0</a></sup> <sup><a href="#cite_ref-Petit_1-1">1.1</a></sup> <sup><a href="#cite_ref-Petit_1-2">1.2</a></sup> <sup><a href="#cite_ref-Petit_1-3">1.3</a></sup></span> <span class="reference-text"><span class="citation Journal">P. Petit; F. Lignières; G.A. Wade; M. Aurière; T. Böhm; S. Bagnulo; B. Dintrans; A. Fumel <i>et al</i>. (November-December 2010). <a rel="nofollow" class="external text" href="http://arxiv.org/pdf/1006.5868">"The rapid rotation and complex magnetic field geometry of Vega"</a>. <i>Astronomy and Astrophysics</i> <b>523</b> (11): A41-9. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201015307">10.1051/0004-6361/201015307</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://arxiv.org/pdf/1006.5868">http://arxiv.org/pdf/1006.5868</a></span><span class="reference-accessdate">. Retrieved 2011-12-19</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+rapid+rotation+and+complex+magnetic+field+geometry+of+Vega&rft.jtitle=Astronomy+and+Astrophysics&rft.aulast=P.+Petit&rft.au=P.+Petit&rft.au=F.+Ligni%C3%A8res&rft.au=G.A.+Wade&rft.au=M.+Auri%C3%A8re&rft.au=T.+B%C3%B6hm&rft.au=S.+Bagnulo&rft.au=B.+Dintrans&rft.au=A.+Fumel&rft.au=J.+Grunhut&rft.date=November-December+2010&rft.volume=523&rft.issue=11&rft.pages=A41-9&rft_id=info:doi/10.1051%2F0004-6361%2F201015307&rft_id=http%3A%2F%2Farxiv.org%2Fpdf%2F1006.5868&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-AntidynamoTheorem-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-AntidynamoTheorem_2-0">2.0</a></sup> <sup><a href="#cite_ref-AntidynamoTheorem_2-1">2.1</a></sup> <sup><a href="#cite_ref-AntidynamoTheorem_2-2">2.2</a></sup></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r2527938">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Antidynamo_theorem">"Antidynamo theorem title, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. 29 March 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Antidynamo+theorem+title%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2014-03-29&rft_id=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAntidynamo_theorem&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Cowling-3"><span class="mw-cite-backlink"><a href="#cite_ref-Cowling_3-0">↑</a></span> <span class="reference-text">{ {cite journal |title=The Magnetic Field of Sunspots |author=T. G. Cowling |journal=Monthly Notices of the Royal Astronomical Society |volume=94 |pages=39–48 |year=1934 }}</span> </li> <li id="cite_note-HomopolarGenerator-4"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-HomopolarGenerator_4-0">4.0</a></sup> <sup><a href="#cite_ref-HomopolarGenerator_4-1">4.1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Homopolar_generator">"Homopolar generator, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. December 27, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Homopolar+generator%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2013-12-27&rft_id=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHomopolar_generator&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Losty, H.H.W & Lewis, D.L. (1973) Homopolar Machines. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences. 275 (1248), 69-75</span> </li> <li id="cite_note-Alfven-6"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Alfven_6-0">6.0</a></sup> <sup><a href="#cite_ref-Alfven_6-1">6.1</a></sup></span> <span class="reference-text">Hannes Alfvén and Carl-Gunne Fälthammar, <i>Cosmical Electrodynamics</i> (1963) 2nd Edition, Oxford University Press. See sec. 1.3.1. Induced electric field in uniformly moving matter.</span> </li> <li id="cite_note-Christensen-7"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Christensen_7-0">7.0</a></sup> <sup><a href="#cite_ref-Christensen_7-1">7.1</a></sup></span> <span class="reference-text"><span class="citation book">Jørgen Christensen-Dalsgaard; M. J. Thompson (2007). <i>The Solar Tachocline:Observational results and issues concerning the tachocline</i>. Cambridge University Press. pp. 53–86.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Solar+Tachocline%3AObservational+results+and+issues+concerning+the+tachocline&rft.aulast=J%C3%B8rgen+Christensen-Dalsgaard&rft.au=J%C3%B8rgen+Christensen-Dalsgaard&rft.au=M.+J.+Thompson&rft.date=2007&rft.pages=pp.%26nbsp%3B53%E2%80%9386&rft.pub=Cambridge+University+Press&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-SolarRotation-8"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-SolarRotation_8-0">8.0</a></sup> <sup><a href="#cite_ref-SolarRotation_8-1">8.1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Solar_rotation">"Solar rotation, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. November 10, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Solar+rotation%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2012-11-10&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSolar_rotation&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Potter-9"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Potter_9-0">9.00</a></sup> <sup><a href="#cite_ref-Potter_9-1">9.01</a></sup> <sup><a href="#cite_ref-Potter_9-2">9.02</a></sup> <sup><a href="#cite_ref-Potter_9-3">9.03</a></sup> <sup><a href="#cite_ref-Potter_9-4">9.04</a></sup> <sup><a href="#cite_ref-Potter_9-5">9.05</a></sup> <sup><a href="#cite_ref-Potter_9-6">9.06</a></sup> <sup><a href="#cite_ref-Potter_9-7">9.07</a></sup> <sup><a href="#cite_ref-Potter_9-8">9.08</a></sup> <sup><a href="#cite_ref-Potter_9-9">9.09</a></sup> <sup><a href="#cite_ref-Potter_9-10">9.10</a></sup> <sup><a href="#cite_ref-Potter_9-11">9.11</a></sup> <sup><a href="#cite_ref-Potter_9-12">9.12</a></sup> <sup><a href="#cite_ref-Potter_9-13">9.13</a></sup> <sup><a href="#cite_ref-Potter_9-14">9.14</a></sup> <sup><a href="#cite_ref-Potter_9-15">9.15</a></sup> <sup><a href="#cite_ref-Potter_9-16">9.16</a></sup></span> <span class="reference-text"><span class="citation Journal">Adrian T. Potter; Shashikumar M. Chitre; Christopher A. Tout (August 11, 2012). <a rel="nofollow" class="external text" href="http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2012.21409.x/full">"Stellar evolution of massive stars with a radiative α–Ω dynamo"</a>. <i>Monthly Notices of the Royal Astronomical Society</i> <b>424</b> (3): 2358-70. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2012.21409.x">10.1111/j.1365-2966.2012.21409.x</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2012.21409.x/full">http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2012.21409.x/full</a></span><span class="reference-accessdate">. Retrieved 2014-03-27</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stellar+evolution+of+massive+stars+with+a+radiative+%CE%B1%E2%80%93%CE%A9+dynamo&rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&rft.aulast=Adrian+T.+Potter&rft.au=Adrian+T.+Potter&rft.au=Shashikumar+M.+Chitre&rft.au=Christopher+A.+Tout&rft.date=August+11%2C+2012&rft.volume=424&rft.issue=3&rft.pages=2358-70&rft_id=info:doi/10.1111%2Fj.1365-2966.2012.21409.x&rft_id=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1111%2Fj.1365-2966.2012.21409.x%2Ffull&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-fitzpatrick2006-10"><span class="mw-cite-backlink"><a href="#cite_ref-fitzpatrick2006_10-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFRichard_Fitzpatrick2006" class="citation web cs1">Richard Fitzpatrick (2006-02-16). <a rel="nofollow" class="external text" href="http://farside.ph.utexas.edu/teaching/plasma/lectures/node69.html">"MHD dynamo theory"</a>. NASA WMAP<span class="reference-accessdate">. Retrieved <span class="nowrap">2007-02-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=MHD+dynamo+theory&rft.pub=NASA+WMAP&rft.date=2006-02-16&rft.au=Richard+Fitzpatrick&rft_id=http%3A%2F%2Ffarside.ph.utexas.edu%2Fteaching%2Fplasma%2Flectures%2Fnode69.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-campbelwh-11"><span class="mw-cite-backlink"><a href="#cite_ref-campbelwh_11-0">↑</a></span> <span class="reference-text"><span class="citation book">Wallace Hall Campbell (2003). <i>Introduction to Geomagnetic Fields</i>. New York: Cambridge University Press. p. 57. ISBN <a href="/wiki/Special:BookSources/0-521-82206-8" title="Special:BookSources/0-521-82206-8">0-521-82206-8</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Geomagnetic+Fields&rft.aulast=Wallace+Hall+Campbell&rft.au=Wallace+Hall+Campbell&rft.date=2003&rft.pages=p.%26nbsp%3B57&rft.place=New+York&rft.pub=Cambridge+University+Press&rft.isbn=0-521-82206-8&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Earth-12"><span class="mw-cite-backlink"><a href="#cite_ref-Earth_12-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Earth">"Earth, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. July 24, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-07-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Earth%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2013-07-24&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEarth&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Sanders-13"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Sanders_13-0">13.00</a></sup> <sup><a href="#cite_ref-Sanders_13-1">13.01</a></sup> <sup><a href="#cite_ref-Sanders_13-2">13.02</a></sup> <sup><a href="#cite_ref-Sanders_13-3">13.03</a></sup> <sup><a href="#cite_ref-Sanders_13-4">13.04</a></sup> <sup><a href="#cite_ref-Sanders_13-5">13.05</a></sup> <sup><a href="#cite_ref-Sanders_13-6">13.06</a></sup> <sup><a href="#cite_ref-Sanders_13-7">13.07</a></sup> <sup><a href="#cite_ref-Sanders_13-8">13.08</a></sup> <sup><a href="#cite_ref-Sanders_13-9">13.09</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFRobert_Sanders2003" class="citation web cs1">Robert Sanders (December 10, 2003). <a rel="nofollow" class="external text" href="http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml">"Radioactive potassium may be major heat source in Earth's core"</a>. Berkeley, Californis USA: University of California Berkeley<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Radioactive+potassium+may+be+major+heat+source+in+Earth%27s+core&rft.place=Berkeley%2C+Californis+USA&rft.pub=University+of+California+Berkeley&rft.date=2003-12-10&rft.au=Robert+Sanders&rft_id=http%3A%2F%2Fwww.berkeley.edu%2Fnews%2Fmedia%2Freleases%2F2003%2F12%2F10_heat.shtml&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Lee-14"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Lee_14-0">14.0</a></sup> <sup><a href="#cite_ref-Lee_14-1">14.1</a></sup> <sup><a href="#cite_ref-Lee_14-2">14.2</a></sup> <sup><a href="#cite_ref-Lee_14-3">14.3</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFKanani_Lee2003" class="citation web cs1">Kanani Lee (December 10, 2003). <a rel="nofollow" class="external text" href="http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml">"Radioactive potassium may be major heat source in Earth's core"</a>. Berkeley, Californis USA: University of California Berkeley<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Radioactive+potassium+may+be+major+heat+source+in+Earth%27s+core&rft.place=Berkeley%2C+Californis+USA&rft.pub=University+of+California+Berkeley&rft.date=2003-12-10&rft.au=Kanani+Lee&rft_id=http%3A%2F%2Fwww.berkeley.edu%2Fnews%2Fmedia%2Freleases%2F2003%2F12%2F10_heat.shtml&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Bukowinski-15"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Bukowinski_15-0">15.0</a></sup> <sup><a href="#cite_ref-Bukowinski_15-1">15.1</a></sup> <sup><a href="#cite_ref-Bukowinski_15-2">15.2</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFMark_Bukowinski2003" class="citation web cs1">Mark Bukowinski (December 10, 2003). <a rel="nofollow" class="external text" href="http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml">"Radioactive potassium may be major heat source in Earth's core"</a>. Berkeley, Californis USA: University of California Berkeley<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Radioactive+potassium+may+be+major+heat+source+in+Earth%27s+core&rft.place=Berkeley%2C+Californis+USA&rft.pub=University+of+California+Berkeley&rft.date=2003-12-10&rft.au=Mark+Bukowinski&rft_id=http%3A%2F%2Fwww.berkeley.edu%2Fnews%2Fmedia%2Freleases%2F2003%2F12%2F10_heat.shtml&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Buffett-16"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Buffett_16-0">16.0</a></sup> <sup><a href="#cite_ref-Buffett_16-1">16.1</a></sup> <sup><a href="#cite_ref-Buffett_16-2">16.2</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFBruce_Buffett2003" class="citation web cs1">Bruce Buffett (December 10, 2003). <a rel="nofollow" class="external text" href="http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml">"Radioactive potassium may be major heat source in Earth's core"</a>. Berkeley, Californis USA: University of California Berkeley<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Radioactive+potassium+may+be+major+heat+source+in+Earth%27s+core&rft.place=Berkeley%2C+Californis+USA&rft.pub=University+of+California+Berkeley&rft.date=2003-12-10&rft.au=Bruce+Buffett&rft_id=http%3A%2F%2Fwww.berkeley.edu%2Fnews%2Fmedia%2Freleases%2F2003%2F12%2F10_heat.shtml&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Jeanloz-17"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Jeanloz_17-0">17.0</a></sup> <sup><a href="#cite_ref-Jeanloz_17-1">17.1</a></sup> <sup><a href="#cite_ref-Jeanloz_17-2">17.2</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFRaymond_Jeanloz2003" class="citation web cs1">Raymond Jeanloz (December 10, 2003). <a rel="nofollow" class="external text" href="http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml">"Radioactive potassium may be major heat source in Earth's core"</a>. Berkeley, Californis USA: University of California Berkeley<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Radioactive+potassium+may+be+major+heat+source+in+Earth%27s+core&rft.place=Berkeley%2C+Californis+USA&rft.pub=University+of+California+Berkeley&rft.date=2003-12-10&rft.au=Raymond+Jeanloz&rft_id=http%3A%2F%2Fwww.berkeley.edu%2Fnews%2Fmedia%2Freleases%2F2003%2F12%2F10_heat.shtml&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Brandenburg-18"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Brandenburg_18-0">18.0</a></sup> <sup><a href="#cite_ref-Brandenburg_18-1">18.1</a></sup></span> <span class="reference-text"><span class="citation Journal">Axel Brandenburg; Åke Nordlund; Robert F. Stein; Ulf Torkelsson (June 1995). "Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow". <i>The Astrophysical Journal</i> <b>446</b> (6): 741-54. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F175831">10.1086/175831</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamo-generated+Turbulence+and+Large-Scale+Magnetic+Fields+in+a+Keplerian+Shear+Flow&rft.jtitle=The+Astrophysical+Journal&rft.aulast=Axel+Brandenburg&rft.au=Axel+Brandenburg&rft.au=%C3%85ke+Nordlund&rft.au=Robert+F.+Stein&rft.au=Ulf+Torkelsson&rft.date=June+1995&rft.volume=446&rft.issue=6&rft.pages=741-54&rft_id=info:doi/10.1086%2F175831&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-DynamoTheory-19"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-DynamoTheory_19-0">19.00</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-1">19.01</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-2">19.02</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-3">19.03</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-4">19.04</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-5">19.05</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-6">19.06</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-7">19.07</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-8">19.08</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-9">19.09</a></sup> <sup><a href="#cite_ref-DynamoTheory_19-10">19.10</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Dynamo_theory">"Dynamo theory, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. July 18, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-07-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Dynamo+theory%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2013-07-18&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDynamo_theory&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Kono2002-20"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Kono2002_20-0">20.0</a></sup> <sup><a href="#cite_ref-Kono2002_20-1">20.1</a></sup> <sup><a href="#cite_ref-Kono2002_20-2">20.2</a></sup> <sup><a href="#cite_ref-Kono2002_20-3">20.3</a></sup> <sup><a href="#cite_ref-Kono2002_20-4">20.4</a></sup></span> <span class="reference-text"><span class="citation Journal">Masaru Kono; Paul H. Roberts (2002). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2002RvGeo..40.1013K">"Recent geodynamo simulations and observations of the geomagnetic field"</a>. <i>Reviews of Geophysics</i> <b>40</b> (4): 1–53. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2000RG000102">10.1029/2000RG000102</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/2002RvGeo..40.1013K">http://adsabs.harvard.edu/abs/2002RvGeo..40.1013K</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+geodynamo+simulations+and+observations+of+the+geomagnetic+field&rft.jtitle=Reviews+of+Geophysics&rft.aulast=Masaru+Kono&rft.au=Masaru+Kono&rft.au=Paul+H.+Roberts&rft.date=2002&rft.volume=40&rft.issue=4&rft.pages=1%E2%80%9353&rft_id=info:doi/10.1029%2F2000RG000102&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2002RvGeo..40.1013K&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Fontaine-21"><span class="mw-cite-backlink"><a href="#cite_ref-Fontaine_21-0">↑</a></span> <span class="reference-text"><span class="citation book">G. Fontaine, F. Wesemael (2001). "White dwarfs". In P. Murdin. <i>Encyclopedia of Astronomy and Astrophysics</i>. IOP Publishing/Nature Publishing Group. ISBN <a href="/wiki/Special:BookSources/0-333-75088-8" title="Special:BookSources/0-333-75088-8">0-333-75088-8</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=White+dwarfs&rft.atitle=Encyclopedia+of+Astronomy+and+Astrophysics&rft.aulast=G.+Fontaine%2C+F.+Wesemael&rft.au=G.+Fontaine%2C+F.+Wesemael&rft.date=2001&rft.pub=IOP+Publishing%2FNature+Publishing+Group&rft.isbn=0-333-75088-8&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Shipman-22"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Shipman_22-0">22.0</a></sup> <sup><a href="#cite_ref-Shipman_22-1">22.1</a></sup></span> <span class="reference-text"><span class="citation Journal">H. L. Shipman (April 1977). "Masses, radii, and model atmospheres for cool white-dwarf stars". <i>The Astrophysical Journal</i> <b>213</b> (4): 138-44. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F155138">10.1086/155138</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Masses%2C+radii%2C+and+model+atmospheres+for+cool+white-dwarf+stars&rft.jtitle=The+Astrophysical+Journal&rft.aulast=H.+L.+Shipman&rft.au=H.+L.+Shipman&rft.date=April+1977&rft.volume=213&rft.issue=4&rft.pages=138-44&rft_id=info:doi/10.1086%2F155138&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Jordan-23"><span class="mw-cite-backlink"><a href="#cite_ref-Jordan_23-0">↑</a></span> <span class="reference-text"><span class="citation Journal">S. Jordan; R. Aznar Cuadrado; R. Napiwotzki; H. M. Schmid; S. K. Solanki (2007). "The fraction of DA white dwarfs with kilo-Gauss magnetic fields". <i>Astronomy and Astrophysics</i> <b>462</b> (3): 1097. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A20066163">10.1051/0004-6361:20066163</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fraction+of+DA+white+dwarfs+with+kilo-Gauss+magnetic+fields&rft.jtitle=Astronomy+and+Astrophysics&rft.aulast=S.+Jordan&rft.au=S.+Jordan&rft.au=R.+Aznar+Cuadrado&rft.au=R.+Napiwotzki&rft.au=H.+M.+Schmid&rft.au=S.+K.+Solanki&rft.date=2007&rft.volume=462&rft.issue=3&rft.pages=1097&rft_id=info:doi/10.1051%2F0004-6361%3A20066163&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Liebert-24"><span class="mw-cite-backlink"><a href="#cite_ref-Liebert_24-0">↑</a></span> <span class="reference-text"><span class="citation Journal">James Liebert; P. Bergeron; J. B. Holberg (2003). "The True Incidence of Magnetism Among Field White Dwarfs". <i>The Astronomical Journal</i> <b>125</b>: 348. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F345573">10.1086/345573</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+True+Incidence+of+Magnetism+Among+Field+White+Dwarfs&rft.jtitle=The+Astronomical+Journal&rft.aulast=James+Liebert&rft.au=James+Liebert&rft.au=P.+Bergeron&rft.au=J.+B.+Holberg&rft.date=2003&rft.volume=125&rft.pages=348&rft_id=info:doi/10.1086%2F345573&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-CoronalRadiativeLosses-25"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-CoronalRadiativeLosses_25-0">25.0</a></sup> <sup><a href="#cite_ref-CoronalRadiativeLosses_25-1">25.1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Coronal_radiative_losses">"Coronal radiative losses, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. March 21, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-07-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Coronal+radiative+losses%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2013-03-21&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCoronal_radiative_losses&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Withbroe-26"><span class="mw-cite-backlink"><a href="#cite_ref-Withbroe_26-0">↑</a></span> <span class="reference-text"><span class="citation Journal">George L. Withbroe (1988). "The temperature structure, mass, and energy flow in the corona and inner solar wind". <i>The Astrophysical Journal</i> <b>325</b>: 442–67. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F166015">10.1086/166015</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+temperature+structure%2C+mass%2C+and+energy+flow+in+the+corona+and+inner+solar+wind&rft.jtitle=The+Astrophysical+Journal&rft.aulast=George+L.+Withbroe&rft.au=George+L.+Withbroe&rft.date=1988&rft.volume=325&rft.pages=442%E2%80%9367&rft_id=info:doi/10.1086%2F166015&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Ulmshneider-27"><span class="mw-cite-backlink"><a href="#cite_ref-Ulmshneider_27-0">↑</a></span> <span class="reference-text"><span class="citation book">Peter Ulmshneider (1997). <i>Heating of Chromospheres and Coronae in </i>Space Solar Physics<i>, Proceedings, Orsay, France, edited by J.C. Vial, K. Bocchialini and P. Boumier</i>. Springer. pp. 77–106. ISBN <a href="/wiki/Special:BookSources/3-540-64307-9" title="Special:BookSources/3-540-64307-9">3-540-64307-9</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Heating+of+Chromospheres+and+Coronae+in+%27%27Space+Solar+Physics%27%27%2C+Proceedings%2C+Orsay%2C+France%2C+edited+by+J.C.+Vial%2C+K.+Bocchialini+and+P.+Boumier&rft.aulast=Peter+Ulmshneider&rft.au=Peter+Ulmshneider&rft.date=1997&rft.pages=pp.%26nbsp%3B77%E2%80%93106&rft.pub=Springer&rft.isbn=3-540-64307-9&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Malara-28"><span class="mw-cite-backlink"><a href="#cite_ref-Malara_28-0">↑</a></span> <span class="reference-text"><span class="citation book">F. Malara, M. Velli (2001). <i>Observations and Models of Coronal Heating in </i>Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions<i>, Proceedings of IAU Symposium 203, edited by Pål Brekke, Bernhard Fleck, and Joseph B. Gurman</i>. Astronomical Society of the Pacific. pp. 456–66. ISBN <a href="/wiki/Special:BookSources/1-58381-069-2" title="Special:BookSources/1-58381-069-2">1-58381-069-2</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Observations+and+Models+of+Coronal+Heating+in+%27%27Recent+Insights+into+the+Physics+of+the+Sun+and+Heliosphere%3A+Highlights+from+SOHO+and+Other+Space+Missions%27%27%2C+Proceedings+of+IAU+Symposium+203%2C+edited+by+P%C3%A5l+Brekke%2C+Bernhard+Fleck%2C+and+Joseph+B.+Gurman&rft.aulast=F.+Malara%2C+M.+Velli&rft.au=F.+Malara%2C+M.+Velli&rft.date=2001&rft.pages=pp.%26nbsp%3B456%E2%80%9366&rft.pub=Astronomical+Society+of+the+Pacific&rft.isbn=1-58381-069-2&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Corona-29"><span class="mw-cite-backlink"><a href="#cite_ref-Corona_29-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Corona">"Corona, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. June 27, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-07-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Corona%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2013-06-27&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCorona&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Spruit-30"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Spruit_30-0">30.0</a></sup> <sup><a href="#cite_ref-Spruit_30-1">30.1</a></sup></span> <span class="reference-text"><span class="citation Journal">H. C. Spruit (January 2002). "Dynamo action by differential rotation in a stably stratified stellar interior". <i>Astronomy and Astrophysics</i> <b>381</b> (3): 923-32. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A20011465">10.1051/0004-6361:20011465</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamo+action+by+differential+rotation+in+a+stably+stratified+stellar+interior&rft.jtitle=Astronomy+and+Astrophysics&rft.aulast=H.+C.+Spruit&rft.au=H.+C.+Spruit&rft.date=January+2002&rft.volume=381&rft.issue=3&rft.pages=923-32&rft_id=info:doi/10.1051%2F0004-6361%3A20011465&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Glatzmaler-31"><span class="mw-cite-backlink"><a href="#cite_ref-Glatzmaler_31-0">↑</a></span> <span class="reference-text"><span class="citation Journal">Glatzmaler, G. A (1985). <a rel="nofollow" class="external text" href="http://www.springerlink.com/content/j443u72x13748853/">"Numerical simulations of stellar convective dynamos III. At the base of the convection zone"</a>. <i>Solar Physics</i> <b>125</b>: 1–12<span class="printonly">. <a rel="nofollow" class="external free" href="http://www.springerlink.com/content/j443u72x13748853/">http://www.springerlink.com/content/j443u72x13748853/</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+stellar+convective+dynamos+III.+At+the+base+of+the+convection+zone&rft.jtitle=Solar+Physics&rft.aulast=Glatzmaler%2C+G.+A&rft.au=Glatzmaler%2C+G.+A&rft.date=1985&rft.volume=125&rft.pages=1%E2%80%9312&rft_id=http%3A%2F%2Fwww.springerlink.com%2Fcontent%2Fj443u72x13748853%2F&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Kageyama-32"><span class="mw-cite-backlink"><a href="#cite_ref-Kageyama_32-0">↑</a></span> <span class="reference-text"><span class="citation Journal">Akira Kageyama; Tetsuya Sato; the Complexity Simulation Group (1995). <a rel="nofollow" class="external text" href="http://scitation.aip.org/content/aip/journal/pop/2/5/10.1063/1.871485">"Computer simulation of a magnetohydrodynamic dynamo. II"</a>. <i>Physics of Plasmas (1994-present)</i> <b>2</b> (5): 1421. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.871485">10.1063/1.871485</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://scitation.aip.org/content/aip/journal/pop/2/5/10.1063/1.871485">http://scitation.aip.org/content/aip/journal/pop/2/5/10.1063/1.871485</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+simulation+of+a+magnetohydrodynamic+dynamo.+II&rft.jtitle=Physics+of+Plasmas+%281994-present%29&rft.aulast=Akira+Kageyama&rft.au=Akira+Kageyama&rft.au=Tetsuya+Sato&rft.au=the+Complexity+Simulation+Group&rft.date=1995&rft.volume=2&rft.issue=5&rft.pages=1421&rft_id=info:doi/10.1063%2F1.871485&rft_id=http%3A%2F%2Fscitation.aip.org%2Fcontent%2Faip%2Fjournal%2Fpop%2F2%2F5%2F10.1063%2F1.871485&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Drake-33"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Drake_33-0">33.0</a></sup> <sup><a href="#cite_ref-Drake_33-1">33.1</a></sup> <sup><a href="#cite_ref-Drake_33-2">33.2</a></sup> <sup><a href="#cite_ref-Drake_33-3">33.3</a></sup> <sup><a href="#cite_ref-Drake_33-4">33.4</a></sup> <sup><a href="#cite_ref-Drake_33-5">33.5</a></sup> <sup><a href="#cite_ref-Drake_33-6">33.6</a></sup> <sup><a href="#cite_ref-Drake_33-7">33.7</a></sup> <sup><a href="#cite_ref-Drake_33-8">33.8</a></sup></span> <span class="reference-text"><span class="citation Journal">Jeremy J. Drake; Robert A. Stern; Guy S. Stringfellow; Mihalis Mathioudakis; J. Martin Laming; David L. Lambert (October 1, 1996). <a rel="nofollow" class="external text" href="http://articles.adsabs.harvard.edu/full/1996ApJ...469..828D">"Detection of Quiescent Extreme Ultraviolet Emission from the Very Low Mass Dwarf van Biesbroeck 8: Evidence for a Turbulent Field Dynamo"</a>. <i>The Astrophysical Journal</i> <b>469</b> (10): 828-33. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F177830">10.1086/177830</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://articles.adsabs.harvard.edu/full/1996ApJ...469..828D">http://articles.adsabs.harvard.edu/full/1996ApJ...469..828D</a></span><span class="reference-accessdate">. Retrieved 2014-03-28</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Quiescent+Extreme+Ultraviolet+Emission+from+the+Very+Low+Mass+Dwarf+van+Biesbroeck+8%3A+Evidence+for+a+Turbulent+Field+Dynamo&rft.jtitle=The+Astrophysical+Journal&rft.aulast=Jeremy+J.+Drake&rft.au=Jeremy+J.+Drake&rft.au=Robert+A.+Stern&rft.au=Guy+S.+Stringfellow&rft.au=Mihalis+Mathioudakis&rft.au=J.+Martin+Laming&rft.au=David+L.+Lambert&rft.date=October+1%2C+1996&rft.volume=469&rft.issue=10&rft.pages=828-33&rft_id=info:doi/10.1086%2F177830&rft_id=http%3A%2F%2Farticles.adsabs.harvard.edu%2Ffull%2F1996ApJ...469..828D&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Tavakol-34"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Tavakol_34-0">34.0</a></sup> <sup><a href="#cite_ref-Tavakol_34-1">34.1</a></sup> <sup><a href="#cite_ref-Tavakol_34-2">34.2</a></sup> <sup><a href="#cite_ref-Tavakol_34-3">34.3</a></sup> <sup><a href="#cite_ref-Tavakol_34-4">34.4</a></sup></span> <span class="reference-text"><span class="citation Journal">R. Tavakol; A. S. Tworkowski; A. Brandenburg; D. Moss; D. I. Tuominen (April 1995). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1995A%26A...296..269T">"Structural stability of axisymmetric dynamo models"</a>. <i>Astronomy and Astrophysics</i> <b>296</b> (4): 269-74<span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/1995A%26A...296..269T">http://adsabs.harvard.edu/abs/1995A%26A...296..269T</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+stability+of+axisymmetric+dynamo+models&rft.jtitle=Astronomy+and+Astrophysics&rft.aulast=R.+Tavakol&rft.au=R.+Tavakol&rft.au=A.+S.+Tworkowski&rft.au=A.+Brandenburg&rft.au=D.+Moss&rft.au=D.+I.+Tuominen&rft.date=April+1995&rft.volume=296&rft.issue=4&rft.pages=269-74&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F1995A%2526A...296..269T&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Kuker-35"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Kuker_35-0">35.0</a></sup> <sup><a href="#cite_ref-Kuker_35-1">35.1</a></sup> <sup><a href="#cite_ref-Kuker_35-2">35.2</a></sup> <sup><a href="#cite_ref-Kuker_35-3">35.3</a></sup> <sup><a href="#cite_ref-Kuker_35-4">35.4</a></sup> <sup><a href="#cite_ref-Kuker_35-5">35.5</a></sup> <sup><a href="#cite_ref-Kuker_35-6">35.6</a></sup></span> <span class="reference-text"><span class="citation Journal">M. Küker; G. Rüdiger; M. Schultz (July 2001). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2001A%26A...374..301K">"Circulation-dominated solar shell dynamo models with positive alpha-effect"</a>. <i>Astronomy and Astrophysics</i> <b>374</b> (07): 301-8. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%3A20010686">10.1051/0004-6361:20010686</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/2001A%26A...374..301K">http://adsabs.harvard.edu/abs/2001A%26A...374..301K</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulation-dominated+solar+shell+dynamo+models+with+positive+alpha-effect&rft.jtitle=Astronomy+and+Astrophysics&rft.aulast=M.+K%C3%BCker&rft.au=M.+K%C3%BCker&rft.au=G.+R%C3%BCdiger&rft.au=M.+Schultz&rft.date=July+2001&rft.volume=374&rft.issue=07&rft.pages=301-8&rft_id=info:doi/10.1051%2F0004-6361%3A20010686&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2001A%2526A...374..301K&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Larmor1919-36"><span class="mw-cite-backlink"><a href="#cite_ref-Larmor1919_36-0">↑</a></span> <span class="reference-text"><span class="citation Journal">Joseph Larmor (1919). "How could a rotating body such as the Sun become a magnet?". <i>Reports of the British Association</i> <b>87</b>: 159–160.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+could+a+rotating+body+such+as+the+Sun+become+a+magnet%3F&rft.jtitle=Reports+of+the+British+Association&rft.aulast=Joseph+Larmor&rft.au=Joseph+Larmor&rft.date=1919&rft.volume=87&rft.pages=159%E2%80%93160&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Garcia-37"><span class="mw-cite-backlink"><a href="#cite_ref-Garcia_37-0">↑</a></span> <span class="reference-text"><span class="citation Journal">García, Ra; Turck-Chièze, S; Jiménez-Reyes, Sj; Ballot, J; Pallé, Pl; Eff-Darwich, A; Mathur, S; Provost, J (June 2007). "Tracking solar gravity modes: the dynamics of the solar core". <i>Science</i> <b>316</b> (5831): 1591–3. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1140598">10.1126/science.1140598</a>. ISSN <a rel="nofollow" class="external text" href="http://www.worldcat.org/issn/0036-8075">0036-8075</a>. PMID <a rel="nofollow" class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17478682">17478682</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+solar+gravity+modes%3A+the+dynamics+of+the+solar+core&rft.jtitle=Science&rft.aulast=Garc%C3%ADa%2C+Ra&rft.au=Garc%C3%ADa%2C+Ra&rft.au=Turck-Chi%C3%A8ze%2C+S&rft.au=Jim%C3%A9nez-Reyes%2C+Sj&rft.au=Ballot%2C+J&rft.au=Pall%C3%A9%2C+Pl&rft.au=Eff-Darwich%2C+A&rft.au=Mathur%2C+S&rft.au=Provost%2C+J&rft.date=June+2007&rft.volume=316&rft.issue=5831&rft.pages=1591%E2%80%933&rft_id=info:doi/10.1126%2Fscience.1140598&rft_id=info:pmid/17478682&rft.issn=0036-8075&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-SolarCore-38"><span class="mw-cite-backlink"><a href="#cite_ref-SolarCore_38-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Solar_core">"Solar core, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. October 12, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Solar+core%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2012-10-12&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSolar_core&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-ryan_norton2010-39"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-ryan_norton2010_39-0">39.0</a></sup> <sup><a href="#cite_ref-ryan_norton2010_39-1">39.1</a></sup> <sup><a href="#cite_ref-ryan_norton2010_39-2">39.2</a></sup></span> <span class="reference-text"><span class="citation book">Ryan, Sean G.; Norton, Andrew J. (2010). <a rel="nofollow" class="external text" href="http://books.google.com/books?id=V8rBIudlniAC&pg=PA19"><i>Stellar Evolution and Nucleosynthesis</i></a>. Cambridge University Press. p. 19. ISBN <a href="/wiki/Special:BookSources/0-521-19609-4" title="Special:BookSources/0-521-19609-4">0-521-19609-4</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://books.google.com/books?id=V8rBIudlniAC&pg=PA19">http://books.google.com/books?id=V8rBIudlniAC&pg=PA19</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Stellar+Evolution+and+Nucleosynthesis&rft.aulast=Ryan&rft.aufirst=Sean+G.&rft.au=Ryan%2C%26%2332%3BSean+G.&rft.au=Norton%2C%26%2332%3BAndrew+J.&rft.date=2010&rft.pages=p.%26nbsp%3B19&rft.pub=Cambridge+University+Press&rft.isbn=0-521-19609-4&rft_id=http%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DV8rBIudlniAC%26pg%3DPA19&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-RadiationZone-40"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-RadiationZone_40-0">40.0</a></sup> <sup><a href="#cite_ref-RadiationZone_40-1">40.1</a></sup> <sup><a href="#cite_ref-RadiationZone_40-2">40.2</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Radiation_zone">"Radiation zone, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. November 9, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Radiation+zone%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2012-11-09&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRadiation_zone&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-elkins_tanton2006-41"><span class="mw-cite-backlink"><a href="#cite_ref-elkins_tanton2006_41-0">↑</a></span> <span class="reference-text"><span class="citation book">Elkins-Tanton, Linda T. (2006). <a rel="nofollow" class="external text" href="http://books.google.com/books?id=Kx6q_fyqIKYC&pg=PA24"><i>The Sun, Mercury, and Venus</i></a>. Infobase Publishing. p. 24. ISBN <a href="/wiki/Special:BookSources/0-8160-5193-3" title="Special:BookSources/0-8160-5193-3">0-8160-5193-3</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://books.google.com/books?id=Kx6q_fyqIKYC&pg=PA24">http://books.google.com/books?id=Kx6q_fyqIKYC&pg=PA24</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Sun%2C+Mercury%2C+and+Venus&rft.aulast=Elkins-Tanton&rft.aufirst=Linda+T.&rft.au=Elkins-Tanton%2C%26%2332%3BLinda+T.&rft.date=2006&rft.pages=p.%26nbsp%3B24&rft.pub=Infobase+Publishing&rft.isbn=0-8160-5193-3&rft_id=http%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKx6q_fyqIKYC%26pg%3DPA24&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-leblanc2011-42"><span class="mw-cite-backlink"><a href="#cite_ref-leblanc2011_42-0">↑</a></span> <span class="reference-text"><span class="citation book">LeBlanc, Francis (2011). <a rel="nofollow" class="external text" href="http://books.google.com/books?id=jAe4P3GIZRoC&pg=PA168"><i>An Introduction to Stellar Astrophysics</i></a> (2nd ed.). John Wiley and Sons. p. 168. ISBN <a href="/wiki/Special:BookSources/1-119-96497-0" title="Special:BookSources/1-119-96497-0">1-119-96497-0</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://books.google.com/books?id=jAe4P3GIZRoC&pg=PA168">http://books.google.com/books?id=jAe4P3GIZRoC&pg=PA168</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Stellar+Astrophysics&rft.aulast=LeBlanc&rft.aufirst=Francis&rft.au=LeBlanc%2C%26%2332%3BFrancis&rft.date=2011&rft.pages=p.%26nbsp%3B168&rft.edition=2nd&rft.pub=John+Wiley+and+Sons&rft.isbn=1-119-96497-0&rft_id=http%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjAe4P3GIZRoC%26pg%3DPA168&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-ConvectionZone-43"><span class="mw-cite-backlink"><a href="#cite_ref-ConvectionZone_43-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Convection_zone">"Convection zone, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. October 12, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Convection+zone%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2012-10-12&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConvection_zone&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-SolarDynamo-44"><span class="mw-cite-backlink"><a href="#cite_ref-SolarDynamo_44-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a class="external text" href="https://en.wikipedia.org/wiki/Solar_dynamo">"Solar dynamo, In: <i>Wikipedia</i>"</a>. San Francisco, California: Wikimedia Foundation, Inc. November 17, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Solar+dynamo%2C+In%3A+Wikipedia&rft.place=San+Francisco%2C+California&rft.pub=Wikimedia+Foundation%2C+Inc&rft.date=2012-11-17&rft_id=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSolar_dynamo&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Schecter-45"><span class="mw-cite-backlink"><a href="#cite_ref-Schecter_45-0">↑</a></span> <span class="reference-text"><span class="citation Journal">D. A. Schecter; J. F. Boyd; P. A. Gilman (April 20, 2001). <a rel="nofollow" class="external text" href="http://iopscience.iop.org/1538-4357/551/2/L185">""Shallow-Water" Magnetohydrodynamic Waves in the Solar Tachocline"</a>. <i>The Astrophysical Journal</i> <b>551</b> (2): L185-8. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F320027">10.1086/320027</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://iopscience.iop.org/1538-4357/551/2/L185">http://iopscience.iop.org/1538-4357/551/2/L185</a></span><span class="reference-accessdate">. Retrieved 2012-03-11</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Shallow-Water%22+Magnetohydrodynamic+Waves+in+the+Solar+Tachocline&rft.jtitle=The+Astrophysical+Journal&rft.aulast=D.+A.+Schecter&rft.au=D.+A.+Schecter&rft.au=J.+F.+Boyd&rft.au=P.+A.+Gilman&rft.date=April+20%2C+2001&rft.volume=551&rft.issue=2&rft.pages=L185-8&rft_id=info:doi/10.1086%2F320027&rft_id=http%3A%2F%2Fiopscience.iop.org%2F1538-4357%2F551%2F2%2FL185&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-JHUAPL-46"><span class="mw-cite-backlink"><a href="#cite_ref-JHUAPL_46-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFJHU/APL2008" class="citation web cs1">JHU/APL (January 30, 2008). <a rel="nofollow" class="external text" href="http://messenger.jhuapl.edu/gallery/sciencePhotos/image.php?page=1&gallery_id=2&image_id=146">"Mercury's Magnetic Field"</a>. Baltimore, Maryland USA: Johns Hopkins University<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mercury%27s+Magnetic+Field&rft.place=Baltimore%2C+Maryland+USA&rft.pub=Johns+Hopkins+University&rft.date=2008-01-30&rft.au=JHU%2FAPL&rft_id=http%3A%2F%2Fmessenger.jhuapl.edu%2Fgallery%2FsciencePhotos%2Fimage.php%3Fpage%3D1%26gallery_id%3D2%26image_id%3D146&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Solomon-47"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Solomon_47-0">47.0</a></sup> <sup><a href="#cite_ref-Solomon_47-1">47.1</a></sup> <sup><a href="#cite_ref-Solomon_47-2">47.2</a></sup> <sup><a href="#cite_ref-Solomon_47-3">47.3</a></sup> <sup><a href="#cite_ref-Solomon_47-4">47.4</a></sup> <sup><a href="#cite_ref-Solomon_47-5">47.5</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFSean_C._Solomon2011" class="citation web cs1">Sean C. Solomon (March 21, 2011). <a rel="nofollow" class="external text" href="http://carnegiescience.edu/news/mercury’s_surprising_core_and_landscape_curiosities">"Mercury's Surprising Core and Landscape Curiosities"</a>. Pittsburgh, Pennsylvania USA: Carnegie Institution for Science<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mercury%E2%80%99s+Surprising+Core+and+Landscape+Curiosities&rft.place=Pittsburgh%2C+Pennsylvania+USA&rft.pub=Carnegie+Institution+for+Science&rft.date=2011-03-21&rft.au=Sean+C.+Solomon&rft_id=http%3A%2F%2Fcarnegiescience.edu%2Fnews%2Fmercury%E2%80%99s_surprising_core_and_landscape_curiosities&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Stanley-48"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Stanley_48-0">48.0</a></sup> <sup><a href="#cite_ref-Stanley_48-1">48.1</a></sup> <sup><a href="#cite_ref-Stanley_48-2">48.2</a></sup></span> <span class="reference-text"><span class="citation Journal">Sabine Stanley; Jeremy Bloxham; William E. Hutchison; Maria T. Zuber (May 2005). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2005E%26PSL.234...27S">"Thin shell dynamo models consistent with Mercury's weak observed magnetic field"</a>. <i>Earth and Planetary Science Letters</i> <b>234</b> (1-2): 27-38. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.epsl.2005.02.040">10.1016/j.epsl.2005.02.040</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/2005E%26PSL.234...27S">http://adsabs.harvard.edu/abs/2005E%26PSL.234...27S</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thin+shell+dynamo+models+consistent+with+Mercury%27s+weak+observed+magnetic+field&rft.jtitle=Earth+and+Planetary+Science+Letters&rft.aulast=Sabine+Stanley&rft.au=Sabine+Stanley&rft.au=Jeremy+Bloxham&rft.au=William+E.+Hutchison&rft.au=Maria+T.+Zuber&rft.date=May+2005&rft.volume=234&rft.issue=1-2&rft.pages=27-38&rft_id=info:doi/10.1016%2Fj.epsl.2005.02.040&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2005E%2526PSL.234...27S&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Nimmo2002-49"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Nimmo2002_49-0">49.0</a></sup> <sup><a href="#cite_ref-Nimmo2002_49-1">49.1</a></sup> <sup><a href="#cite_ref-Nimmo2002_49-2">49.2</a></sup> <sup><a href="#cite_ref-Nimmo2002_49-3">49.3</a></sup> <sup><a href="#cite_ref-Nimmo2002_49-4">49.4</a></sup> <sup><a href="#cite_ref-Nimmo2002_49-5">49.5</a></sup> <sup><a href="#cite_ref-Nimmo2002_49-6">49.6</a></sup></span> <span class="reference-text"><span class="citation Journal">Francis Nimmo (November 2002). <a rel="nofollow" class="external text" href="http://www2.ess.ucla.edu/~nimmo/website/paper25.pdf">"Why does Venus lack a magnetic field?"</a>. <i>Geology</i> <b>30</b> (11): 987-90. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1130%2F0091-7613%282002%29030%3C0987%3AWDVLAM%3E2.0.CO%3B2">10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://www2.ess.ucla.edu/~nimmo/website/paper25.pdf">http://www2.ess.ucla.edu/~nimmo/website/paper25.pdf</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+does+Venus+lack+a+magnetic+field%3F&rft.jtitle=Geology&rft.aulast=Francis+Nimmo&rft.au=Francis+Nimmo&rft.date=November+2002&rft.volume=30&rft.issue=11&rft.pages=987-90&rft_id=info:doi/10.1130%2F0091-7613%282002%29030%3C0987%3AWDVLAM%3E2.0.CO%3B2&rft_id=http%3A%2F%2Fwww2.ess.ucla.edu%2F%7Enimmo%2Fwebsite%2Fpaper25.pdf&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-USGS-50"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-USGS_50-0">50.0</a></sup> <sup><a href="#cite_ref-USGS_50-1">50.1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.usgs.gov/faq/?q=categories/9782/2738">"How does the Earth's core generate a magnetic field? In: <i>USGS FAQs</i>"</a>. United States Geological Survey<span class="reference-accessdate">. Retrieved <span class="nowrap">21 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=How+does+the+Earth%27s+core+generate+a+magnetic+field%3F+In%3A+USGS+FAQs&rft.pub=United+States+Geological+Survey&rft_id=http%3A%2F%2Fwww.usgs.gov%2Ffaq%2F%3Fq%3Dcategories%2F9782%2F2738&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Larmor-51"><span class="mw-cite-backlink"><a href="#cite_ref-Larmor_51-0">↑</a></span> <span class="reference-text"><span class="citation Journal">Joseph Larmor (1919). "Possible rotational origin of magnetic fields of sun and earth". <i>Electrical Review</i> <b>85</b>: 412ff.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possible+rotational+origin+of+magnetic+fields+of+sun+and+earth&rft.jtitle=Electrical+Review&rft.aulast=Joseph+Larmor&rft.au=Joseph+Larmor&rft.date=1919&rft.volume=85&rft.pages=412ff&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span> Reprinted in <i>Engineering</i>, vol. 108, pages 461ff (3 October 1919).</span> </li> <li id="cite_note-Buffett2009-52"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Buffett2009_52-0">52.0</a></sup> <sup><a href="#cite_ref-Buffett2009_52-1">52.1</a></sup></span> <span class="reference-text"><span class="citation Journal">Bruce Buffett (November 2009). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2009NatGe...2..741B">"Geodynamo: A matter of boundaries"</a>. <i>Nature Geoscience</i> <b>2</b> (11): 741-2. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fngeo673">10.1038/ngeo673</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/2009NatGe...2..741B">http://adsabs.harvard.edu/abs/2009NatGe...2..741B</a></span><span class="reference-accessdate">. Retrieved 2014-03-28</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geodynamo%3A+A+matter+of+boundaries&rft.jtitle=Nature+Geoscience&rft.aulast=Bruce+Buffett&rft.au=Bruce+Buffett&rft.date=November+2009&rft.volume=2&rft.issue=11&rft.pages=741-2&rft_id=info:doi/10.1038%2Fngeo673&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2009NatGe...2..741B&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Sakuraba-53"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Sakuraba_53-0">53.0</a></sup> <sup><a href="#cite_ref-Sakuraba_53-1">53.1</a></sup></span> <span class="reference-text"><span class="citation Journal">Ataru Sakuraba; Paul H. Roberts (November 2009). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2009NatGe...2..802S">"Generation of a strong magnetic field using uniform heat flux at the surface of the core"</a>. <i>Nature Geoscience</i> <b>2</b> (11): 802-5. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fngeo643">10.1038/ngeo643</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/2009NatGe...2..802S">http://adsabs.harvard.edu/abs/2009NatGe...2..802S</a></span><span class="reference-accessdate">. Retrieved 2014-03-28</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+a+strong+magnetic+field+using+uniform+heat+flux+at+the+surface+of+the+core&rft.jtitle=Nature+Geoscience&rft.aulast=Ataru+Sakuraba&rft.au=Ataru+Sakuraba&rft.au=Paul+H.+Roberts&rft.date=November+2009&rft.volume=2&rft.issue=11&rft.pages=802-5&rft_id=info:doi/10.1038%2Fngeo643&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2009NatGe...2..802S&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Stephens-54"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Stephens_54-0">54.0</a></sup> <sup><a href="#cite_ref-Stephens_54-1">54.1</a></sup> <sup><a href="#cite_ref-Stephens_54-2">54.2</a></sup> <sup><a href="#cite_ref-Stephens_54-3">54.3</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFTim_Stephens2011" class="citation web cs1">Tim Stephens (November 9, 2011). <a rel="nofollow" class="external text" href="http://news.ucsc.edu/2011/11/lunar-dynamo.html">"Ancient lunar dynamo may explain magnetized moon rocks"</a>. Santa Cruz, California USA: University of California Santa Cruz<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Ancient+lunar+dynamo+may+explain+magnetized+moon+rocks&rft.place=Santa+Cruz%2C+California+USA&rft.pub=University+of+California+Santa+Cruz&rft.date=2011-11-09&rft.au=Tim+Stephens&rft_id=http%3A%2F%2Fnews.ucsc.edu%2F2011%2F11%2Flunar-dynamo.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Dwyer-55"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Dwyer_55-0">55.0</a></sup> <sup><a href="#cite_ref-Dwyer_55-1">55.1</a></sup> <sup><a href="#cite_ref-Dwyer_55-2">55.2</a></sup> <sup><a href="#cite_ref-Dwyer_55-3">55.3</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFChristina_Dwyer2011" class="citation web cs1">Christina Dwyer (November 9, 2011). <a rel="nofollow" class="external text" href="http://news.ucsc.edu/2011/11/lunar-dynamo.html">"Ancient lunar dynamo may explain magnetized moon rocks"</a>. Santa Cruz, California USA: University of California Santa Cruz<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Ancient+lunar+dynamo+may+explain+magnetized+moon+rocks&rft.place=Santa+Cruz%2C+California+USA&rft.pub=University+of+California+Santa+Cruz&rft.date=2011-11-09&rft.au=Christina+Dwyer&rft_id=http%3A%2F%2Fnews.ucsc.edu%2F2011%2F11%2Flunar-dynamo.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Nimmo-56"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Nimmo_56-0">56.0</a></sup> <sup><a href="#cite_ref-Nimmo_56-1">56.1</a></sup> <sup><a href="#cite_ref-Nimmo_56-2">56.2</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFFrancis_Nimmo2011" class="citation web cs1">Francis Nimmo (November 9, 2011). <a rel="nofollow" class="external text" href="http://news.ucsc.edu/2011/11/lunar-dynamo.html">"Ancient lunar dynamo may explain magnetized moon rocks"</a>. Santa Cruz, California USA: University of California Santa Cruz<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Ancient+lunar+dynamo+may+explain+magnetized+moon+rocks&rft.place=Santa+Cruz%2C+California+USA&rft.pub=University+of+California+Santa+Cruz&rft.date=2011-11-09&rft.au=Francis+Nimmo&rft_id=http%3A%2F%2Fnews.ucsc.edu%2F2011%2F11%2Flunar-dynamo.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Jones-57"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Jones_57-0">57.0</a></sup> <sup><a href="#cite_ref-Jones_57-1">57.1</a></sup> <sup><a href="#cite_ref-Jones_57-2">57.2</a></sup> <sup><a href="#cite_ref-Jones_57-3">57.3</a></sup> <sup><a href="#cite_ref-Jones_57-4">57.4</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFNancy_Neal-JonesCynthia_O'Carroll2005" class="citation web cs1">Nancy Neal-Jones; Cynthia O'Carroll (October 12, 2005). <a rel="nofollow" class="external text" href="https://www.nasa.gov/centers/goddard/news/topstory/2005/mgs_plates.html">"New Map Provides More Evidence Mars Once Like Earth"</a>. Washington, DC USA: NASA<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+Map+Provides+More+Evidence+Mars+Once+Like+Earth&rft.place=Washington%2C+DC+USA&rft.pub=NASA&rft.date=2005-10-12&rft.au=Nancy+Neal-Jones&rft.au=Cynthia+O%27Carroll&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fcenters%2Fgoddard%2Fnews%2Ftopstory%2F2005%2Fmgs_plates.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Connerney-58"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Connerney_58-0">58.0</a></sup> <sup><a href="#cite_ref-Connerney_58-1">58.1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFJack_Connerney2005" class="citation web cs1">Jack Connerney (October 12, 2005). <a rel="nofollow" class="external text" href="https://www.nasa.gov/centers/goddard/news/topstory/2005/mgs_plates.html">"New Map Provides More Evidence Mars Once Like Earth"</a>. Washington, DC USA: NASA<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+Map+Provides+More+Evidence+Mars+Once+Like+Earth&rft.place=Washington%2C+DC+USA&rft.pub=NASA&rft.date=2005-10-12&rft.au=Jack+Connerney&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fcenters%2Fgoddard%2Fnews%2Ftopstory%2F2005%2Fmgs_plates.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Ness-59"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Ness_59-0">59.0</a></sup> <sup><a href="#cite_ref-Ness_59-1">59.1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFNorman_Ness2005" class="citation web cs1">Norman Ness (October 12, 2005). <a rel="nofollow" class="external text" href="https://www.nasa.gov/centers/goddard/news/topstory/2005/mgs_plates.html">"New Map Provides More Evidence Mars Once Like Earth"</a>. Washington, DC USA: NASA<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+Map+Provides+More+Evidence+Mars+Once+Like+Earth&rft.place=Washington%2C+DC+USA&rft.pub=NASA&rft.date=2005-10-12&rft.au=Norman+Ness&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fcenters%2Fgoddard%2Fnews%2Ftopstory%2F2005%2Fmgs_plates.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Acuna-60"><span class="mw-cite-backlink"><a href="#cite_ref-Acuna_60-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFMario_Acuña2005" class="citation web cs1">Mario Acuña (October 12, 2005). <a rel="nofollow" class="external text" href="https://www.nasa.gov/centers/goddard/news/topstory/2005/mgs_plates.html">"New Map Provides More Evidence Mars Once Like Earth"</a>. Washington, DC USA: NASA<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+Map+Provides+More+Evidence+Mars+Once+Like+Earth&rft.place=Washington%2C+DC+USA&rft.pub=NASA&rft.date=2005-10-12&rft.au=Mario+Acu%C3%B1a&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fcenters%2Fgoddard%2Fnews%2Ftopstory%2F2005%2Fmgs_plates.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Khurana-61"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Khurana_61-0">61.0</a></sup> <sup><a href="#cite_ref-Khurana_61-1">61.1</a></sup> <sup><a href="#cite_ref-Khurana_61-2">61.2</a></sup> <sup><a href="#cite_ref-Khurana_61-3">61.3</a></sup> <sup><a href="#cite_ref-Khurana_61-4">61.4</a></sup> <sup><a href="#cite_ref-Khurana_61-5">61.5</a></sup> <sup><a href="#cite_ref-Khurana_61-6">61.6</a></sup> <sup><a href="#cite_ref-Khurana_61-7">61.7</a></sup> <sup><a href="#cite_ref-Khurana_61-8">61.8</a></sup></span> <span class="reference-text"><span class="citation book">Krishan K. Khurana; Margaret G. Kivelson; Vytenis M. Vasyliunas; Norbert Krupp; Joachim Woch; Andreas Lagg; Barry H. Mauk; William S. Kurth (2004). Bagenal, F.. ed. <a rel="nofollow" class="external text" href="http://www.igpp.ucla.edu/people/mkivelson/Publications/279-Ch24.pdf"><i>The Configuration of Jupiter’s Magnetosphere, In: </i>Jupiter: The Planet, Satellites and Magnetosphere<i></i></a>. Cambridge University Press. pp. 24. ISBN <a href="/wiki/Special:BookSources/0-521-81808-7" title="Special:BookSources/0-521-81808-7">0-521-81808-7</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://www.igpp.ucla.edu/people/mkivelson/Publications/279-Ch24.pdf">http://www.igpp.ucla.edu/people/mkivelson/Publications/279-Ch24.pdf</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Configuration+of+Jupiter%E2%80%99s+Magnetosphere%2C+In%3A+%27%27Jupiter%3A+The+Planet%2C+Satellites+and+Magnetosphere%27%27&rft.aulast=Krishan+K.+Khurana&rft.au=Krishan+K.+Khurana&rft.au=Margaret+G.+Kivelson&rft.au=Vytenis+M.+Vasyliunas&rft.au=Norbert+Krupp&rft.au=Joachim+Woch&rft.au=Andreas+Lagg&rft.au=Barry+H.+Mauk&rft.au=William+S.+Kurth&rft.date=2004&rft.pages=pp.%26nbsp%3B24&rft.pub=Cambridge+University+Press&rft.isbn=0-521-81808-7&rft_id=http%3A%2F%2Fwww.igpp.ucla.edu%2Fpeople%2Fmkivelson%2FPublications%2F279-Ch24.pdf&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Cassis-62"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Cassis_62-0">62.0</a></sup> <sup><a href="#cite_ref-Cassis_62-1">62.1</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFNikki_Cassis2012" class="citation web cs1">Nikki Cassis (March 19, 2012). <a rel="nofollow" class="external text" href="https://asunews.asu.edu/20120319_iomap">"Geologic map of Jupiter's moon Io details an otherworldly volcanic surface"</a>. Tempe, Arizona USA: Arizona State University<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Geologic+map+of+Jupiter%E2%80%99s+moon+Io+details+an+otherworldly+volcanic+surface&rft.place=Tempe%2C+Arizona+USA&rft.pub=Arizona+State+University&rft.date=2012-03-19&rft.au=Nikki+Cassis&rft_id=https%3A%2F%2Fasunews.asu.edu%2F20120319_iomap&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Williams-63"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Williams_63-0">63.0</a></sup> <sup><a href="#cite_ref-Williams_63-1">63.1</a></sup> <sup><a href="#cite_ref-Williams_63-2">63.2</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFDavid_Williams2012" class="citation web cs1">David Williams (March 19, 2012). <a rel="nofollow" class="external text" href="https://asunews.asu.edu/20120319_iomap">"Geologic map of Jupiter's moon Io details an otherworldly volcanic surface"</a>. Tempe, Arizona USA: Arizona State University<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Geologic+map+of+Jupiter%E2%80%99s+moon+Io+details+an+otherworldly+volcanic+surface&rft.place=Tempe%2C+Arizona+USA&rft.pub=Arizona+State+University&rft.date=2012-03-19&rft.au=David+Williams&rft_id=https%3A%2F%2Fasunews.asu.edu%2F20120319_iomap&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Steigerwald-64"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Steigerwald_64-0">64.00</a></sup> <sup><a href="#cite_ref-Steigerwald_64-1">64.01</a></sup> <sup><a href="#cite_ref-Steigerwald_64-2">64.02</a></sup> <sup><a href="#cite_ref-Steigerwald_64-3">64.03</a></sup> <sup><a href="#cite_ref-Steigerwald_64-4">64.04</a></sup> <sup><a href="#cite_ref-Steigerwald_64-5">64.05</a></sup> <sup><a href="#cite_ref-Steigerwald_64-6">64.06</a></sup> <sup><a href="#cite_ref-Steigerwald_64-7">64.07</a></sup> <sup><a href="#cite_ref-Steigerwald_64-8">64.08</a></sup> <sup><a href="#cite_ref-Steigerwald_64-9">64.09</a></sup> <sup><a href="#cite_ref-Steigerwald_64-10">64.10</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFBill_Steigerwald2010" class="citation web cs1">Bill Steigerwald (October 6, 2010). <a rel="nofollow" class="external text" href="https://www.nasa.gov/mission_pages/cassini/whycassini/cassini20100708-b.html">"Saturn's Icy Moon May Keep Oceans Liquid with Wobble"</a>. Greenbelt, Maryland USA: NASA Goddard Space Flight Center<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Saturn%27s+Icy+Moon+May+Keep+Oceans+Liquid+with+Wobble&rft.place=Greenbelt%2C+Maryland+USA&rft.pub=NASA+Goddard+Space+Flight+Center&rft.date=2010-10-06&rft.au=Bill+Steigerwald&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fmission_pages%2Fcassini%2Fwhycassini%2Fcassini20100708-b.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-Hurford-65"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Hurford_65-0">65.0</a></sup> <sup><a href="#cite_ref-Hurford_65-1">65.1</a></sup> <sup><a href="#cite_ref-Hurford_65-2">65.2</a></sup> <sup><a href="#cite_ref-Hurford_65-3">65.3</a></sup> <sup><a href="#cite_ref-Hurford_65-4">65.4</a></sup></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2527938"><cite id="CITEREFTerry_Hurford2010" class="citation web cs1">Terry Hurford (October 6, 2010). <a rel="nofollow" class="external text" href="https://www.nasa.gov/mission_pages/cassini/whycassini/cassini20100708-b.html">"Saturn's Icy Moon May Keep Oceans Liquid with Wobble"</a>. Greenbelt, Maryland USA: NASA Goddard Space Flight Center<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Saturn%27s+Icy+Moon+May+Keep+Oceans+Liquid+with+Wobble&rft.place=Greenbelt%2C+Maryland+USA&rft.pub=NASA+Goddard+Space+Flight+Center&rft.date=2010-10-06&rft.au=Terry+Hurford&rft_id=http%3A%2F%2Fwww.nasa.gov%2Fmission_pages%2Fcassini%2Fwhycassini%2Fcassini20100708-b.html&rfr_id=info%3Asid%2Fen.wikiversity.org%3AStars%2FRadiative+dynamo" class="Z3988"></span></span> </li> <li id="cite_note-StanleyUranus-66"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-StanleyUranus_66-0">66.0</a></sup> <sup><a href="#cite_ref-StanleyUranus_66-1">66.1</a></sup> <sup><a href="#cite_ref-StanleyUranus_66-2">66.2</a></sup> <sup><a href="#cite_ref-StanleyUranus_66-3">66.3</a></sup> <sup><a href="#cite_ref-StanleyUranus_66-4">66.4</a></sup> <sup><a href="#cite_ref-StanleyUranus_66-5">66.5</a></sup></span> <span class="reference-text"><span class="citation Journal">Sabine Stanley; Jeremy Bloxham (March 2004). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2004Natur.428..151S">"Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields"</a>. <i>Nature</i> <b>428</b> (6979): 151-3. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature02376">10.1038/nature02376</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/2004Natur.428..151S">http://adsabs.harvard.edu/abs/2004Natur.428..151S</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convective-region+geometry+as+the+cause+of+Uranus%27+and+Neptune%27s+unusual+magnetic+fields&rft.jtitle=Nature&rft.aulast=Sabine+Stanley&rft.au=Sabine+Stanley&rft.au=Jeremy+Bloxham&rft.date=March+2004&rft.volume=428&rft.issue=6979&rft.pages=151-3&rft_id=info:doi/10.1038%2Fnature02376&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2004Natur.428..151S&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Ness1986-67"><span class="mw-cite-backlink"><a href="#cite_ref-Ness1986_67-0">↑</a></span> <span class="reference-text"><span class="citation Journal">Norman F. Ness; Mario H. Acuña; Kenneth W. Behannon; Leonard F. Burlaga; John E. P. Connerney; Ronald P. Lepping; Fritz M. Neubauer (July 4, 1986). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1986Sci...233...85N">"Magnetic Fields at Uranus"</a>. <i>Science</i> <b>233</b> (4759): 85-9. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.233.4759.85">10.1126/science.233.4759.85</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://adsabs.harvard.edu/abs/1986Sci...233...85N">http://adsabs.harvard.edu/abs/1986Sci...233...85N</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Fields+at+Uranus&rft.jtitle=Science&rft.aulast=Norman+F.+Ness&rft.au=Norman+F.+Ness&rft.au=Mario+H.+Acu%C3%B1a&rft.au=Kenneth+W.+Behannon&rft.au=Leonard+F.+Burlaga&rft.au=John+E.+P.+Connerney&rft.au=Ronald+P.+Lepping&rft.au=Fritz+M.+Neubauer&rft.date=July+4%2C+1986&rft.volume=233&rft.issue=4759&rft.pages=85-9&rft_id=info:doi/10.1126%2Fscience.233.4759.85&rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F1986Sci...233...85N&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Russell-68"><span class="mw-cite-backlink"><a href="#cite_ref-Russell_68-0">↑</a></span> <span class="reference-text"><span class="citation book">C. T. Russell; J. G. Luhmann (1997). J. H. Shirley. ed. <a rel="nofollow" class="external text" href="http://www-ssc.igpp.ucla.edu/personnel/russell/papers/nep_mag.html"><i>Neptune: Magnetic Field and Magnetosphere, In: </i>Encyclopedia of Planetary Sciences<i></i></a>. <b>532</b>. New York: Chapman and Hall<span class="printonly">. <a rel="nofollow" class="external free" href="http://www-ssc.igpp.ucla.edu/personnel/russell/papers/nep_mag.html">http://www-ssc.igpp.ucla.edu/personnel/russell/papers/nep_mag.html</a></span><span class="reference-accessdate">. Retrieved 2014-03-29</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Neptune%3A+Magnetic+Field+and+Magnetosphere%2C+In%3A+%27%27Encyclopedia+of+Planetary+Sciences%27%27&rft.aulast=C.+T.+Russell&rft.au=C.+T.+Russell&rft.au=J.+G.+Luhmann&rft.date=1997&rft.volume=532&rft.place=New+York&rft.pub=Chapman+and+Hall&rft_id=http%3A%2F%2Fwww-ssc.igpp.ucla.edu%2Fpersonnel%2Frussell%2Fpapers%2Fnep_mag.html&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Rutledge-69"><span class="mw-cite-backlink"><a href="#cite_ref-Rutledge_69-0">↑</a></span> <span class="reference-text"><span class="citation Journal">Robert E. Rutledge; Gibor Basri; Lars Bildsten (August 1, 2000). <a rel="nofollow" class="external text" href="http://iopscience.iop.org/1538-4357/538/2/L141">"Chandra detection of an X-ray flare from the brown dwarf LP 944-20"</a>. <i>The Astrophysical Journal</i> <b>538</b> (2). doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F312817">10.1086/312817</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://iopscience.iop.org/1538-4357/538/2/L141">http://iopscience.iop.org/1538-4357/538/2/L141</a></span><span class="reference-accessdate">. Retrieved 2012-03-11</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chandra+detection+of+an+X-ray+flare+from+the+brown+dwarf+LP+944-20&rft.jtitle=The+Astrophysical+Journal&rft.aulast=Robert+E.+Rutledge&rft.au=Robert+E.+Rutledge&rft.au=Gibor+Basri&rft.au=Lars+Bildsten&rft.date=August+1%2C+2000&rft.volume=538&rft.issue=2&rft_id=info:doi/10.1086%2F312817&rft_id=http%3A%2F%2Fiopscience.iop.org%2F1538-4357%2F538%2F2%2FL141&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Bloecker-70"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Bloecker_70-0">70.0</a></sup> <sup><a href="#cite_ref-Bloecker_70-1">70.1</a></sup></span> <span class="reference-text"><span class="citation Journal">T. Blöcker; D. Schönberner (April 1991). "A 7 <i>M</i><sub>⊙</sub> AGB model sequence not complying with the core mass-luminosity relation". <i>Astronomy and Astrophysics</i> <b>244</b> (2): L43-6.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+7+%27%27M%27%27%3Csub%3E%E2%8A%99%3C%2Fsub%3E+AGB+model+sequence+not+complying+with+the+core+mass-luminosity+relation&rft.jtitle=Astronomy+and+Astrophysics&rft.aulast=T.+Bl%C3%B6cker&rft.au=T.+Bl%C3%B6cker&rft.au=D.+Sch%C3%B6nberner&rft.date=April+1991&rft.volume=244&rft.issue=2&rft.pages=L43-6&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=41" title="Edit section: Further reading" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=41" title="Edit section's source code: Further reading"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation Journal">P. Petit; F. Lignières; G.A. Wade; M. Aurière; T. Böhm; S. Bagnulo; B. Dintrans; A. Fumel <i>et al</i>. (November-December 2010). "The rapid rotation and complex magnetic field geometry of Vega". <i>Astronomy and Astrophysics</i> <b>523</b> (11): A41-9. doi:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F201015307">10.1051/0004-6361/201015307</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+rapid+rotation+and+complex+magnetic+field+geometry+of+Vega&rft.jtitle=Astronomy+and+Astrophysics&rft.aulast=P.+Petit&rft.au=P.+Petit&rft.au=F.+Ligni%C3%A8res&rft.au=G.A.+Wade&rft.au=M.+Auri%C3%A8re&rft.au=T.+B%C3%B6hm&rft.au=S.+Bagnulo&rft.au=B.+Dintrans&rft.au=A.+Fumel&rft.au=J.+Grunhut&rft.date=November-December+2010&rft.volume=523&rft.issue=11&rft.pages=A41-9&rft_id=info:doi/10.1051%2F0004-6361%2F201015307&rfr_id=info:sid/en.wikipedia.org:Stars/Radiative_dynamo"><span style="display: none;"> </span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stars/Radiative_dynamo&veaction=edit&section=42" title="Edit section: External links" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Stars/Radiative_dynamo&action=edit&section=42" title="Edit section's source code: External links"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.iau.org/">International Astronomical Union</a></li> <li><a rel="nofollow" class="external text" href="http://nedwww.ipac.caltech.edu/">NASA/IPAC Extragalactic Database - NED</a></li> <li><a rel="nofollow" class="external text" href="https://nssdc.gsfc.nasa.gov/">NASA's National Space Science Data Center</a></li> <li><a rel="nofollow" class="external text" href="http://www.adsabs.harvard.edu/">The SAO/NASA Astrophysics Data System</a></li> <li><a rel="nofollow" class="external text" href="http://www.scirus.com/srsapp/advanced/index.jsp?q1=">Scirus for scientific information only advanced search</a></li> <li><a rel="nofollow" class="external text" href="http://cas.sdss.org/astrodr6/en/tools/quicklook/quickobj.asp">SDSS Quick Look tool: SkyServer</a></li> <li><a rel="nofollow" class="external text" href="http://simbad.u-strasbg.fr/simbad/">SIMBAD Astronomical Database</a></li> <li><a rel="nofollow" class="external text" href="https://nssdc.gsfc.nasa.gov/nmc/SpacecraftQuery.jsp">Spacecraft Query at NASA.</a></li> <li><a rel="nofollow" class="external text" href="https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/convcoord/convcoord.pl">Universal coordinate converter</a></li> <li><a rel="nofollow" class="external text" href="http://onlinelibrary.wiley.com/advanced/search">Wiley Online Library Advanced Search</a></li></ul> <div class="navbox-styles nomobile"><style data-mw-deduplicate="TemplateStyles:r2661604">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Stars_resources" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="background:#21ABCD;;background:#007FFF; color:#000000;"><style data-mw-deduplicate="TemplateStyles:r2577368">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r2670038">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Stars_resources" title="Template:Stars resources"><abbr title="View this template" style="background:#21ABCD;;background:#007FFF; color:#000000;;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Stars_resources&action=edit&redlink=1" class="new" title="Template talk:Stars resources (page does not exist)"><abbr title="Discuss this template" style="background:#21ABCD;;background:#007FFF; color:#000000;;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Stars_resources" title="Special:EditPage/Template:Stars resources"><abbr title="Edit this template" style="background:#21ABCD;;background:#007FFF; color:#000000;;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Stars_resources" style="font-size:114%;margin:0 4em">Stars resources</div></th></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Activities</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0;background:#ACE5EE;"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Analysis/Astronomy/Laboratory&action=edit&redlink=1" class="new" title="Analysis/Astronomy/Laboratory (page does not exist)">Analytical astronomy/Laboratory</a></li> <li><a href="/wiki/Astrognosy/Laboratory" title="Astrognosy/Laboratory">Astrognosy/Laboratory</a></li> <li><a href="/w/index.php?title=Activities/Astronomy&action=edit&redlink=1" class="new" title="Activities/Astronomy (page does not exist)">Activities/Astronomy</a></li> <li><a href="/w/index.php?title=Laboratories/Astronomy&action=edit&redlink=1" class="new" title="Laboratories/Astronomy (page does not exist)">Laboratories/Astronomy</a></li> <li><a href="/wiki/Alternative_ways_to_become_an_observer" title="Alternative ways to become an observer">Becoming an observer</a></li> <li><a href="/wiki/Binary_Stars_and_Extrasolar_Planets_Learning_Activity" class="mw-redirect" title="Binary Stars and Extrasolar Planets Learning Activity">Binary stars and extrasolar planets</a></li> <li><a href="/wiki/Activity:Cassiopeia_and_Ursa_Major" title="Activity:Cassiopeia and Ursa Major">Cassiopeia and Ursa Major</a></li> <li><a href="/wiki/Cosmogony/Laboratory" title="Cosmogony/Laboratory">Cosmogony laboratory</a></li> <li><a href="/w/index.php?title=Craters/Astronomy/Laboratory&action=edit&redlink=1" class="new" title="Craters/Astronomy/Laboratory (page does not exist)">Cratering laboratory</a></li> <li><a href="/wiki/Distance_to_the_Moon" title="Distance to the Moon">Distance to the Moon</a></li> <li><a href="/wiki/Electric_orbits" title="Electric orbits">Electric orbits</a></li> <li><a href="/wiki/Electron_beam_heating/Laboratory" title="Electron beam heating/Laboratory">Electron beam heating/Laboratory</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Empiricisms/Laboratory&action=edit&redlink=1" class="new" title="Radiation astronomy/Empiricisms/Laboratory (page does not exist)">Empirical radiation astronomy/Laboratory</a></li> <li><a href="/wiki/Stars/Galaxies/Laboratory" title="Stars/Galaxies/Laboratory">Galaxies/Laboratory</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Intergalactic_medium/Laboratory&action=edit&redlink=1" class="new" title="Radiation astronomy/Intergalactic medium/Laboratory (page does not exist)">Intergalactic medium/Laboratory</a></li> <li><a href="/wiki/International_Year_of_Astronomy" title="International Year of Astronomy">International Year of Astronomy</a></li> <li><a href="/wiki/Stars/Sun/Locating_the_Sun" title="Stars/Sun/Locating the Sun">Locating the Sun</a></li> <li><a href="/wiki/Stars/Sun/Neutrinos" title="Stars/Sun/Neutrinos">Neutrinos from the Sun</a></li> <li><a href="/wiki/Polar_reversals" title="Polar reversals">Polar reversals</a></li> <li><a href="/wiki/Stars/Vega/Spectrum" title="Stars/Vega/Spectrum">Spectrum of Vega</a></li> <li><a href="/wiki/Standard_candles/Laboratory" title="Standard candles/Laboratory">Standard candles/Laboratory</a></li> <li><a href="/w/index.php?title=Stellarium&action=edit&redlink=1" class="new" title="Stellarium (page does not exist)">Stellarium</a></li> <li><a href="/wiki/Stars/X-ray_classification/Laboratory" title="Stars/X-ray classification/Laboratory">X-ray classification of a star</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Articles</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0;background:#BCD4E6;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Globulars_in_M31" title="Globulars in M31">Globulars in M31</a></li> <li><a href="/wiki/Microquasar" title="Microquasar">Microquasar</a></li> <li><a href="/wiki/Skygazing" title="Skygazing">Skygazing</a></li> <li><a href="/wiki/Solar_System_and_Stellar_Astronomy" title="Solar System and Stellar Astronomy">Solar System and Stellar Astronomy</a></li> <li><a href="/wiki/Changes_in_the_properties_of_matter_(mass_spectrometer_and_spectral_analysis_of_stars)" class="mw-redirect" title="Changes in the properties of matter (mass spectrometer and spectral analysis of stars)">Spectral analysis of stars</a></li> <li><a href="/wiki/Stargazing" title="Stargazing">Stargazing</a></li> <li><a href="/wiki/The_visible_sky" title="The visible sky">The visible sky</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Categories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0;background:#ACE5EE;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Category:Astronomy/Laboratories" title="Category:Astronomy/Laboratories">Astronomy laboratories</a></li> <li><a href="/wiki/Category:Astrophysics" title="Category:Astrophysics">Astrophysics</a></li> <li><a href="/wiki/Category:Astrophysics/Resources" title="Category:Astrophysics/Resources">Astrophysics resources</a></li> <li><a href="/wiki/Category:Atmospheric_sciences" title="Category:Atmospheric sciences">Atmospheric sciences</a></li> <li><a href="/wiki/Category:Aurora_images" title="Category:Aurora images">Aurora images</a></li> <li><a href="/w/index.php?title=Category:Betelgeuse_images&action=edit&redlink=1" class="new" title="Category:Betelgeuse images (page does not exist)">Betelgeuse images</a></li> <li><a href="/wiki/Category:Coronal_cloud_images" title="Category:Coronal cloud images">Coronal cloud images</a></li> <li><a href="/wiki/Category:Cosmology" title="Category:Cosmology">Cosmology</a></li> <li><a href="/w/index.php?title=Category:Galactic_astronomy&action=edit&redlink=1" class="new" title="Category:Galactic astronomy (page does not exist)">Galactic astronomy</a></li> <li><a href="/wiki/Category:Galaxies" title="Category:Galaxies">Category:Galaxies</a></li> <li><a href="/wiki/Category:Galaxy_images" title="Category:Galaxy images">Galaxy images</a></li> <li><a href="/wiki/Category:Milky_Way_images" title="Category:Milky Way images">Milky Way images</a></li> <li><a href="/wiki/Category:Plasma_images" title="Category:Plasma images">Plasma images</a></li> <li><a href="/wiki/Category:Solar_System" title="Category:Solar System">Solar System</a></li> <li><a href="/wiki/Category:Solar_system_images" title="Category:Solar system images">Solar system images</a></li> <li><a href="/wiki/Category:Star-forming_regions" title="Category:Star-forming regions">Star-forming regions</a></li> <li><a href="/wiki/Category:Stars_images" title="Category:Stars images">Stars images</a></li> <li><a href="/wiki/Category:Sun_images" title="Category:Sun images">Sun images</a></li> <li><a href="/wiki/Category:Superluminal_images" title="Category:Superluminal images">Superluminal images</a></li> <li><a href="/w/index.php?title=Category:Supernova_Images&action=edit&redlink=1" class="new" title="Category:Supernova Images (page does not exist)">Supernova Images</a></li> <li><a href="/w/index.php?title=Category:Vega_images&action=edit&redlink=1" class="new" title="Category:Vega images (page does not exist)">Vega images</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Courses</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0;background:#BCD4E6;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_astrophysics" class="mw-redirect" title="Introduction to astrophysics">Introduction to astrophysics</a></li> <li><a href="/wiki/Astrochemistry" title="Astrochemistry">Introduction to Astrochemistry</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses (page does not exist)">Radiation astronomy/Courses</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles (page does not exist)">Principles of radiation astronomy</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Syllabus&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Syllabus (page does not exist)">Principles of radiation astronomy/Syllabus</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Syllabus/Fall&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Syllabus/Fall (page does not exist)">Principles of radiation astronomy/Syllabus/Fall</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Syllabus/Spring&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Syllabus/Spring (page does not exist)">Principles of radiation astronomy/Syllabus/Spring</a></li> <li><a href="/wiki/Stars/Sun/Astronomy/Course" title="Stars/Sun/Astronomy/Course">Solar astronomy</a></li> <li><a href="/wiki/Solar_System" class="mw-disambig" title="Solar System">Solar System</a></li> <li><a href="/wiki/Stars/Courses" title="Stars/Courses">Stars/Courses</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/X-rays/Course&action=edit&redlink=1" class="new" title="Radiation astronomy/X-rays/Course (page does not exist)">X-ray astronomy</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Glossaries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0;background:#ACE5EE;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cosmic_View:_Glossary_of_Terms" class="mw-redirect" title="Cosmic View: Glossary of Terms">Cosmic View: Glossary of Terms</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Lectures</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0;background:#BCD4E6;"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Radiation_astronomy/Active_galactic_nuclei&action=edit&redlink=1" class="new" title="Radiation astronomy/Active galactic nuclei (page does not exist)">Active galactic nuclei astronomy</a></li> <li><a href="/wiki/Astrophysics" title="Astrophysics">Astrophysics</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Auroras" title="Plasmas/Plasma objects/Auroras">Auroras</a></li> <li><a href="/w/index.php?title=Stars/Betelgeuse&action=edit&redlink=1" class="new" title="Stars/Betelgeuse (page does not exist)">Betelgeuse</a></li> <li><a href="/wiki/Stars/Binaries" title="Stars/Binaries">Binaries</a></li> <li><a href="/wiki/Stars/Blues" title="Stars/Blues">Blue stars</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Coronal_clouds" title="Plasmas/Plasma objects/Coronal clouds">Coronal clouds</a></li> <li><a href="/wiki/Radiation/Cosmic_rays" title="Radiation/Cosmic rays">Cosmic radiation astronomy</a></li> <li><a href="/wiki/Theory/Cosmogony" title="Theory/Cosmogony">Cosmogony</a></li> <li><a href="/wiki/Stars/Cyans" title="Stars/Cyans">Cyan stars</a></li> <li><a href="/wiki/Stars/Dwarfs" title="Stars/Dwarfs">Dwarf stars</a></li> <li><a href="/wiki/Stars/Flares" title="Stars/Flares">Flare stars</a></li> <li><a href="/wiki/Stars/Galaxies/Evolution" title="Stars/Galaxies/Evolution">Galactic evolution</a></li> <li><a href="/wiki/Stars/Galaxies" title="Stars/Galaxies">Galaxies</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Galaxies&action=edit&redlink=1" class="new" title="Radiation astronomy/Galaxies (page does not exist)">Galaxy astronomy</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Galaxy_clusters&action=edit&redlink=1" class="new" title="Radiation astronomy/Galaxy clusters (page does not exist)">Galaxy cluster astronomy</a></li> <li><a href="/w/index.php?title=Stars/Gamma_rays&action=edit&redlink=1" class="new" title="Stars/Gamma rays (page does not exist)">Gamma ray stars</a></li> <li><a href="/wiki/Gases/Gaseous_objects/Astronomy" title="Gases/Gaseous objects/Astronomy">Gaseous-object astronomy</a></li> <li><a href="/w/index.php?title=Stars/Giants&action=edit&redlink=1" class="new" title="Stars/Giants (page does not exist)">Giant stars</a></li> <li><a href="/wiki/Stars/Greens" title="Stars/Greens">Green stars</a></li> <li><a href="/wiki/Stars/Sun/Heliocentric_astronomy" title="Stars/Sun/Heliocentric astronomy">Heliocentric astronomy</a></li> <li><a href="/wiki/Stars/Sun/Heliognosy" title="Stars/Sun/Heliognosy">Heliognosy</a></li> <li><a href="/wiki/Stars/Sun/Heliogony" title="Stars/Sun/Heliogony">Heliogony</a></li> <li><a href="/wiki/Stars/Sun/Heliography" title="Stars/Sun/Heliography">Heliography</a></li> <li><a href="/wiki/Stars/Sun/Heliology" title="Stars/Sun/Heliology">Heliology</a></li> <li><a href="/wiki/Stars/Sun/Heliometry" title="Stars/Sun/Heliometry">Heliometry</a></li> <li><a href="/wiki/Stars/Sun/Heliophysics" title="Stars/Sun/Heliophysics">Heliophysics</a></li> <li><a href="/w/index.php?title=Stars/Sun/Helioseismology&action=edit&redlink=1" class="new" title="Stars/Sun/Helioseismology (page does not exist)">Helioseismology</a></li> <li><a href="/wiki/Stars/Sun/Heliospheres" title="Stars/Sun/Heliospheres">Heliospheres</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/High-velocity_galaxies&action=edit&redlink=1" class="new" title="Radiation astronomy/High-velocity galaxies (page does not exist)">High-velocity galaxy astronomy</a></li> <li><a href="/w/index.php?title=Stars/Hypergiants&action=edit&redlink=1" class="new" title="Stars/Hypergiants (page does not exist)">Hypergiant stars</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Hypervelocity_stars&action=edit&redlink=1" class="new" title="Radiation astronomy/Hypervelocity stars (page does not exist)">Hypervelocity stellar astronomy</a></li> <li><a href="/wiki/Stars/Infrareds" title="Stars/Infrareds">Infrared stars</a></li> <li><a href="/wiki/Intergalactic_medium" class="mw-redirect" title="Intergalactic medium">Intergalactic medium</a></li> <li><a href="/wiki/Interstellar_medium" class="mw-redirect" title="Interstellar medium">Interstellar medium</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Lightnings&action=edit&redlink=1" class="new" title="Radiation astronomy/Lightnings (page does not exist)">Lightning astronomy</a></li> <li><a href="/wiki/Plasmas/Magnetohydrodynamics" title="Plasmas/Magnetohydrodynamics">Magnetohydrodynamics</a></li> <li><a href="/w/index.php?title=Stars/Main-sequences&action=edit&redlink=1" class="new" title="Stars/Main-sequences (page does not exist)">Main-sequence stars</a></li> <li><a href="/wiki/Radiation/Meteors" title="Radiation/Meteors">Meteor astronomy</a></li> <li><a href="/wiki/Radiation/Meteors" title="Radiation/Meteors">Meteor radiation</a></li> <li><a href="/wiki/Stars/Galaxies/Milky_Way" title="Stars/Galaxies/Milky Way">Milky Way</a></li> <li><a href="/wiki/Stars/Nova-likes" title="Stars/Nova-likes">Nova-like stars</a></li> <li><a href="/wiki/Stars/Novas" title="Stars/Novas">Novas</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Nucleosynthesis" title="Plasmas/Plasma objects/Nucleosynthesis">Nucleosynthesis</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Oort_clouds&action=edit&redlink=1" class="new" title="Radiation astronomy/Oort clouds (page does not exist)">Oort cloud astronomy</a></li> <li><a href="/wiki/Stars/Oranges" title="Stars/Oranges">Orange stars</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Plasmas&action=edit&redlink=1" class="new" title="Radiation astronomy/Plasmas (page does not exist)">Plasma-meteor astronomy</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Astronomy" title="Plasmas/Plasma objects/Astronomy">Plasma-object astronomy</a></li> <li><a href="/wiki/Stars/Quasars" title="Stars/Quasars">Quasars</a></li> <li><a class="mw-selflink selflink">Radiative dynamo</a></li> <li><a href="/wiki/Stars/Reds" title="Stars/Reds">Red stars</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Scattered_disks&action=edit&redlink=1" class="new" title="Radiation astronomy/Scattered disks (page does not exist)">Scattered disk astronomy</a></li> <li><a href="/wiki/Stars/Sirius" title="Stars/Sirius">Sirius</a></li> <li><a href="/wiki/Stars/Sun/Astronomy" title="Stars/Sun/Astronomy">Solar astronomy</a></li> <li><a href="/wiki/Stars/Sun/Solar_binary" title="Stars/Sun/Solar binary">Solar binary</a></li> <li><a href="/wiki/Stars/Solar_systems" title="Stars/Solar systems">Solar systems</a></li> <li><a href="/wiki/Stars/Galaxies/Spirals" title="Stars/Galaxies/Spirals">Spiral galaxies</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Standard_candles&action=edit&redlink=1" class="new" title="Radiation astronomy/Standard candles (page does not exist)">Standard candle astronomy</a></li> <li><a href="/wiki/Stars/Sun/Standard_models" title="Stars/Sun/Standard models">Standard solar models</a></li> <li><a href="/wiki/Stars/Star_fissions" title="Stars/Star fissions">Star fission</a></li> <li><a href="/wiki/Stars/Star-forming_regions" title="Stars/Star-forming regions">Star-forming region</a></li> <li><a href="/wiki/Stars" title="Stars">Stars</a></li> <li><a href="/wiki/Stars/Active_regions" title="Stars/Active regions">Stellar active regions</a></li> <li><a href="/wiki/Stars/Astronomy" title="Stars/Astronomy">Stellar astronomy</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Stars&action=edit&redlink=1" class="new" title="Radiation astronomy/Stars (page does not exist)">Stellar radiation astronomy</a></li> <li><a href="/wiki/Stars/Evolutions" title="Stars/Evolutions">Stellar evolution</a></li> <li><a href="/wiki/Stars/Sciences" title="Stars/Sciences">Stellar science</a></li> <li><a href="/wiki/Stars/Surface_fusion" title="Stars/Surface fusion">Stellar surface fusion</a></li> <li><a href="/wiki/Stars/Sun/X-ray_sources" title="Stars/Sun/X-ray sources">Sun as an X-ray source</a></li> <li><a href="/wiki/Stars/Sun" title="Stars/Sun">Sun</a></li> <li><a href="/w/index.php?title=Sun-synchronous_astronomy&action=edit&redlink=1" class="new" title="Sun-synchronous astronomy (page does not exist)">Sun-synchronous astronomy</a></li> <li><a href="/w/index.php?title=Stars/Supergiants&action=edit&redlink=1" class="new" title="Stars/Supergiants (page does not exist)">Supergiant stars</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Superluminals&action=edit&redlink=1" class="new" title="Radiation astronomy/Superluminals (page does not exist)">Superluminal astronomy</a></li> <li><a href="/wiki/Stars/Supernovas" title="Stars/Supernovas">Supernovas</a></li> <li><a href="/w/index.php?title=Supernova_X-rays&action=edit&redlink=1" class="new" title="Supernova X-rays (page does not exist)">Supernova X-rays</a></li> <li><a href="/wiki/Stars/Ultraviolets" title="Stars/Ultraviolets">Ultraviolet stars</a></li> <li><a href="/wiki/Stars/Variables" title="Stars/Variables">Variable stars</a></li> <li><a href="/wiki/Stars/Vega" title="Stars/Vega">Vega</a></li> <li><a href="/wiki/Stars/Violets" title="Stars/Violets">Violet stars</a></li> <li><a href="/w/index.php?title=Wanderers&action=edit&redlink=1" class="new" title="Wanderers (page does not exist)">Wanderers</a></li> <li><a href="/wiki/Stars/X-ray_classification" title="Stars/X-ray classification">X-ray classification of stars</a></li> <li><a href="/wiki/Stars/X-rays" title="Stars/X-rays">X-ray stars</a></li> <li><a href="/wiki/Stars/Yellows" title="Stars/Yellows">Yellow stars</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Lessons</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0;background:#ACE5EE;"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Portal:Astronomy/Courses&action=edit&redlink=1" class="new" title="Portal:Astronomy/Courses (page does not exist)">Astronomy/Lessons</a></li> <li><a href="/w/index.php?title=First_blue_source_in_Andromeda&action=edit&redlink=1" class="new" title="First blue source in Andromeda (page does not exist)">First blue source in Andromeda</a></li> <li><a href="/wiki/First_blue_source_in_Bo%C3%B6tes" class="mw-redirect" title="First blue source in Boötes">First blue source in Boötes</a></li> <li><a href="/w/index.php?title=First_blue_source_in_Columba&action=edit&redlink=1" class="new" title="First blue source in Columba (page does not exist)">First blue source in Columba</a></li> <li><a href="/w/index.php?title=First_blue_source_in_Lynx&action=edit&redlink=1" class="new" title="First blue source in Lynx (page does not exist)">First blue source in Lynx</a></li> <li><a href="/w/index.php?title=First_blue_source_in_Sextans&action=edit&redlink=1" class="new" title="First blue source in Sextans (page does not exist)">First blue source in Sextans</a></li> <li><a href="/w/index.php?title=First_cosmic-ray_source_in_Coma_Berenices&action=edit&redlink=1" class="new" title="First cosmic-ray source in Coma Berenices (page does not exist)">First cosmic-ray source in Coma Berenices</a></li> <li><a href="/w/index.php?title=First_cosmic-ray_source_in_Lyra&action=edit&redlink=1" class="new" title="First cosmic-ray source in Lyra (page does not exist)">First cosmic-ray source in Lyra</a></li> <li><a href="/w/index.php?title=First_cosmic-ray_source_in_Scorpius&action=edit&redlink=1" class="new" title="First cosmic-ray source in Scorpius (page does not exist)">First cosmic-ray source in Scorpius</a></li> <li><a href="/w/index.php?title=First_cosmic-ray_source_in_Taurus&action=edit&redlink=1" class="new" title="First cosmic-ray source in Taurus (page does not exist)">First cosmic-ray source in Taurus</a></li> <li><a href="/w/index.php?title=First_cyan_source_in_Antlia&action=edit&redlink=1" class="new" title="First cyan source in Antlia (page does not exist)">First cyan source in Antlia</a></li> <li><a href="/wiki/First_cyan_source_in_Caelum" class="mw-redirect" title="First cyan source in Caelum">First cyan source in Caelum</a></li> <li><a href="/w/index.php?title=First_cyan_source_in_Corona_Australis&action=edit&redlink=1" class="new" title="First cyan source in Corona Australis (page does not exist)">First cyan source in Corona Australis</a></li> <li><a href="/w/index.php?title=First_cyan_source_in_Mensa&action=edit&redlink=1" class="new" title="First cyan source in Mensa (page does not exist)">First cyan source in Mensa</a></li> <li><a href="/w/index.php?title=First_cyan_source_in_Telescopium&action=edit&redlink=1" class="new" title="First cyan source in Telescopium (page does not exist)">First cyan source in Telescopium</a></li> <li><a href="/w/index.php?title=First_electron_source_in_Apus&action=edit&redlink=1" class="new" title="First electron source in Apus (page does not exist)">First electron source in Apus</a></li> <li><a href="/w/index.php?title=First_electron_source_in_Corona_Borealis&action=edit&redlink=1" class="new" title="First electron source in Corona Borealis (page does not exist)">First electron source in Corona Borealis</a></li> <li><a href="/w/index.php?title=First_electron_source_in_Microscopium&action=edit&redlink=1" class="new" title="First electron source in Microscopium (page does not exist)">First electron source in Microscopium</a></li> <li><a href="/w/index.php?title=First_electron_source_in_Triangulum&action=edit&redlink=1" class="new" title="First electron source in Triangulum (page does not exist)">First electron source in Triangulum</a></li> <li><a href="/w/index.php?title=First_gamma-ray_source_in_Aquarius&action=edit&redlink=1" class="new" title="First gamma-ray source in Aquarius (page does not exist)">First gamma-ray source in Aquarius</a></li> <li><a href="/w/index.php?title=First_gamma-ray_source_in_Aquarius&action=edit&redlink=1" class="new" title="First gamma-ray source in Aquarius (page does not exist)">First gamma-ray source in Aquarius</a></li> <li><a href="/w/index.php?title=First_gamma-ray_source_in_Corvus&action=edit&redlink=1" class="new" title="First gamma-ray source in Corvus (page does not exist)">First gamma-ray source in Corvus</a></li> <li><a href="/w/index.php?title=First_gamma-ray_source_in_Monoceros&action=edit&redlink=1" class="new" title="First gamma-ray source in Monoceros (page does not exist)">First gamma-ray source in Monoceros</a></li> <li><a href="/w/index.php?title=First_gamma-ray_source_in_Scutum&action=edit&redlink=1" class="new" title="First gamma-ray source in Scutum (page does not exist)">First gamma-ray source in Scutum</a></li> <li><a href="/w/index.php?title=First_gamma-ray_source_in_Triangulum_Australe&action=edit&redlink=1" class="new" title="First gamma-ray source in Triangulum Australe (page does not exist)">First gamma-ray source in Triangulum Australe</a></li> <li><a href="/w/index.php?title=First_green_source_in_Crater&action=edit&redlink=1" class="new" title="First green source in Crater (page does not exist)">First green source in Crater</a></li> <li><a href="/w/index.php?title=First_green_source_in_Musca&action=edit&redlink=1" class="new" title="First green source in Musca (page does not exist)">First green source in Musca</a></li> <li><a href="/w/index.php?title=First_green_source_in_Tucana&action=edit&redlink=1" class="new" title="First green source in Tucana (page does not exist)">First green source in Tucana</a></li> <li><a href="/w/index.php?title=First_infrared_source_in_Ara&action=edit&redlink=1" class="new" title="First infrared source in Ara (page does not exist)">First infrared source in Ara</a></li> <li><a href="/w/index.php?title=First_infrared_source_in_Crux&action=edit&redlink=1" class="new" title="First infrared source in Crux (page does not exist)">First infrared source in Crux</a></li> <li><a href="/w/index.php?title=First_infrared_source_in_Norma&action=edit&redlink=1" class="new" title="First infrared source in Norma (page does not exist)">First infrared source in Norma</a></li> <li><a href="/w/index.php?title=First_infrared_source_in_Ursa_Major&action=edit&redlink=1" class="new" title="First infrared source in Ursa Major (page does not exist)">First infrared source in Ursa Major</a></li> <li><a href="/w/index.php?title=First_meteor_source_in_Aries&action=edit&redlink=1" class="new" title="First meteor source in Aries (page does not exist)">First meteor source in Aries</a></li> <li><a href="/w/index.php?title=First_meteor_source_in_Cygnus&action=edit&redlink=1" class="new" title="First meteor source in Cygnus (page does not exist)">First meteor source in Cygnus</a></li> <li><a href="/w/index.php?title=First_meteor_source_in_Octans&action=edit&redlink=1" class="new" title="First meteor source in Octans (page does not exist)">First meteor source in Octans</a></li> <li><a href="/w/index.php?title=First_meteor_source_in_Ursa_Minor&action=edit&redlink=1" class="new" title="First meteor source in Ursa Minor (page does not exist)">First meteor source in Ursa Minor</a></li> <li><a href="/w/index.php?title=First_microwave_source_in_Canis_Major&action=edit&redlink=1" class="new" title="First microwave source in Canis Major (page does not exist)">First microwave source in Canis Major</a></li> <li><a href="/w/index.php?title=First_microwave_source_in_Cepheus&action=edit&redlink=1" class="new" title="First microwave source in Cepheus (page does not exist)">First microwave source in Cepheus</a></li> <li><a href="/w/index.php?title=First_microwave_source_in_Hercules&action=edit&redlink=1" class="new" title="First microwave source in Hercules (page does not exist)">First microwave source in Hercules</a></li> <li><a href="/w/index.php?title=First_microwave_source_in_Piscis_Austrinus&action=edit&redlink=1" class="new" title="First microwave source in Piscis Austrinus (page does not exist)">First microwave source in Piscis Austrinus</a></li> <li><a href="/w/index.php?title=First_muon_source_in_Auriga&action=edit&redlink=1" class="new" title="First muon source in Auriga (page does not exist)">First muon source in Auriga</a></li> <li><a href="/w/index.php?title=First_muon_source_in_Delphinus&action=edit&redlink=1" class="new" title="First muon source in Delphinus (page does not exist)">First muon source in Delphinus</a></li> <li><a href="/w/index.php?title=First_muon_source_in_Ophiuchus&action=edit&redlink=1" class="new" title="First muon source in Ophiuchus (page does not exist)">First muon source in Ophiuchus</a></li> <li><a href="/w/index.php?title=First_muon_source_in_Vela&action=edit&redlink=1" class="new" title="First muon source in Vela (page does not exist)">First muon source in Vela</a></li> <li><a href="/w/index.php?title=First_neutrino_source_in_Bo%C3%B6tes&action=edit&redlink=1" class="new" title="First neutrino source in Boötes (page does not exist)">First neutrino source in Boötes</a></li> <li><a href="/w/index.php?title=First_neutrino_source_in_Dorado&action=edit&redlink=1" class="new" title="First neutrino source in Dorado (page does not exist)">First neutrino source in Dorado</a></li> <li><a href="/w/index.php?title=First_neutrino_source_in_Orion&action=edit&redlink=1" class="new" title="First neutrino source in Orion (page does not exist)">First neutrino source in Orion</a></li> <li><a href="/w/index.php?title=First_neutrino_source_in_Virgo&action=edit&redlink=1" class="new" title="First neutrino source in Virgo (page does not exist)">First neutrino source in Virgo</a></li> <li><a href="/w/index.php?title=First_neutron_source_in_Caelum&action=edit&redlink=1" class="new" title="First neutron source in Caelum (page does not exist)">First neutron source in Caelum</a></li> <li><a href="/w/index.php?title=First_neutron_source_in_Draco&action=edit&redlink=1" class="new" title="First neutron source in Draco (page does not exist)">First neutron source in Draco</a></li> <li><a href="/w/index.php?title=First_neutron_source_in_Pavo&action=edit&redlink=1" class="new" title="First neutron source in Pavo (page does not exist)">First neutron source in Pavo</a></li> <li><a href="/w/index.php?title=First_neutron_source_in_Volans&action=edit&redlink=1" class="new" title="First neutron source in Volans (page does not exist)">First neutron source in Volans</a></li> <li><a href="/w/index.php?title=First_optical_source_in_Camelopardalis&action=edit&redlink=1" class="new" title="First optical source in Camelopardalis (page does not exist)">First optical source in Camelopardalis</a></li> <li><a href="/w/index.php?title=First_optical_source_in_Equuleus&action=edit&redlink=1" class="new" title="First optical source in Equuleus (page does not exist)">First optical source in Equuleus</a></li> <li><a href="/w/index.php?title=First_optical_source_in_Pegasus&action=edit&redlink=1" class="new" title="First optical source in Pegasus (page does not exist)">First optical source in Pegasus</a></li> <li><a href="/w/index.php?title=First_optical_source_in_Vulpecula&action=edit&redlink=1" class="new" title="First optical source in Vulpecula (page does not exist)">First optical source in Vulpecula</a></li> <li><a href="/wiki/First_orange_source_in_Cancer" class="mw-redirect" title="First orange source in Cancer">First orange source in Cancer</a></li> <li><a href="/w/index.php?title=First_orange_source_in_Eridanus&action=edit&redlink=1" class="new" title="First orange source in Eridanus (page does not exist)">First orange source in Eridanus</a></li> <li><a href="/w/index.php?title=First_orange_source_in_Perseus&action=edit&redlink=1" class="new" title="First orange source in Perseus (page does not exist)">First orange source in Perseus</a></li> <li><a href="/w/index.php?title=First_positron_source_in_Cancer&action=edit&redlink=1" class="new" title="First positron source in Cancer (page does not exist)">First positron source in Cancer</a></li> <li><a href="/w/index.php?title=First_positron_source_in_Fornax&action=edit&redlink=1" class="new" title="First positron source in Fornax (page does not exist)">First positron source in Fornax</a></li> <li><a href="/w/index.php?title=First_positron_source_in_Phoenix&action=edit&redlink=1" class="new" title="First positron source in Phoenix (page does not exist)">First positron source in Phoenix</a></li> <li><a href="/w/index.php?title=First_proton_source_in_Canes_Venatici&action=edit&redlink=1" class="new" title="First proton source in Canes Venatici (page does not exist)">First proton source in Canes Venatici</a></li> <li><a href="/w/index.php?title=First_proton_source_in_Gemini&action=edit&redlink=1" class="new" title="First proton source in Gemini (page does not exist)">First proton source in Gemini</a></li> <li><a href="/w/index.php?title=First_proton_source_in_Pictor&action=edit&redlink=1" class="new" title="First proton source in Pictor (page does not exist)">First proton source in Pictor</a></li> <li><a href="/w/index.php?title=First_radio_source_in_Canis_Minor&action=edit&redlink=1" class="new" title="First radio source in Canis Minor (page does not exist)">First radio source in Canis Minor</a></li> <li><a href="/w/index.php?title=First_radio_source_in_Grus&action=edit&redlink=1" class="new" title="First radio source in Grus (page does not exist)">First radio source in Grus</a></li> <li><a href="/w/index.php?title=First_radio_source_in_Pisces&action=edit&redlink=1" class="new" title="First radio source in Pisces (page does not exist)">First radio source in Pisces</a></li> <li><a href="/wiki/First_red_source_in_Canis_Major" class="mw-redirect" title="First red source in Canis Major">First red source in Canis Major</a></li> <li><a href="/w/index.php?title=First_red_source_in_Horologium&action=edit&redlink=1" class="new" title="First red source in Horologium (page does not exist)">First red source in Horologium</a></li> <li><a href="/w/index.php?title=First_red_source_in_Puppis&action=edit&redlink=1" class="new" title="First red source in Puppis (page does not exist)">First red source in Puppis</a></li> <li><a href="/w/index.php?title=First_source_in_Capricornus&action=edit&redlink=1" class="new" title="First source in Capricornus (page does not exist)">First source in Capricornus</a></li> <li><a href="/w/index.php?title=First_source_in_Hydra&action=edit&redlink=1" class="new" title="First source in Hydra (page does not exist)">First source in Hydra</a></li> <li><a href="/w/index.php?title=First_source_in_Pyxis&action=edit&redlink=1" class="new" title="First source in Pyxis (page does not exist)">First source in Pyxis</a></li> <li><a href="/wiki/First_submillimeter_source_in_Carina" class="mw-redirect" title="First submillimeter source in Carina">First submillimeter source in Carina</a></li> <li><a href="/w/index.php?title=First_submillimeter_source_in_Hydrus&action=edit&redlink=1" class="new" title="First submillimeter source in Hydrus (page does not exist)">First submillimeter source in Hydrus</a></li> <li><a href="/w/index.php?title=First_submillimeter_source_in_Reticulum&action=edit&redlink=1" class="new" title="First submillimeter source in Reticulum (page does not exist)">First submillimeter source in Reticulum</a></li> <li><a href="/w/index.php?title=First_superluminal_source_in_Cassiopeia&action=edit&redlink=1" class="new" title="First superluminal source in Cassiopeia (page does not exist)">First superluminal source in Cassiopeia</a></li> <li><a href="/wiki/First_superluminal_source_in_Indus" class="mw-redirect" title="First superluminal source in Indus">First superluminal source in Indus</a></li> <li><a href="/w/index.php?title=First_superluminal_source_in_Sagitta&action=edit&redlink=1" class="new" title="First superluminal source in Sagitta (page does not exist)">First superluminal source in Sagitta</a></li> <li><a href="/w/index.php?title=First_ultraviolet_source_in_Centaurus&action=edit&redlink=1" class="new" title="First ultraviolet source in Centaurus (page does not exist)">First ultraviolet source in Centaurus</a></li> <li><a href="/w/index.php?title=First_ultraviolet_source_in_Lacerta&action=edit&redlink=1" class="new" title="First ultraviolet source in Lacerta (page does not exist)">First ultraviolet source in Lacerta</a></li> <li><a href="/w/index.php?title=First_ultraviolet_source_in_Sagittarius&action=edit&redlink=1" class="new" title="First ultraviolet source in Sagittarius (page does not exist)">First ultraviolet source in Sagittarius</a></li> <li><a href="/w/index.php?title=First_violet_source_in_Cepheus&action=edit&redlink=1" class="new" title="First violet source in Cepheus (page does not exist)">First violet source in Cepheus</a></li> <li><a href="/w/index.php?title=First_violet_source_in_Leo&action=edit&redlink=1" class="new" title="First violet source in Leo (page does not exist)">First violet source in Leo</a></li> <li><a href="/w/index.php?title=First_violet_source_in_Sculptor&action=edit&redlink=1" class="new" title="First violet source in Sculptor (page does not exist)">First violet source in Sculptor</a></li> <li><a href="/w/index.php?title=First_visual_source_in_Cetus&action=edit&redlink=1" class="new" title="First visual source in Cetus (page does not exist)">First visual source in Cetus</a></li> <li><a href="/w/index.php?title=First_visual_source_in_Leo_Minor&action=edit&redlink=1" class="new" title="First visual source in Leo Minor (page does not exist)">First visual source in Leo Minor</a></li> <li><a href="/w/index.php?title=First_visual_source_in_Scutum&action=edit&redlink=1" class="new" title="First visual source in Scutum (page does not exist)">First visual source in Scutum</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Andromeda&action=edit&redlink=1" class="new" title="First X-ray source in Andromeda (page does not exist)">First X-ray source in Andromeda</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Antlia&action=edit&redlink=1" class="new" title="First X-ray source in Antlia (page does not exist)">First X-ray source in Antlia</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Apus&action=edit&redlink=1" class="new" title="First X-ray source in Apus (page does not exist)">First X-ray source in Apus</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Aquarius&action=edit&redlink=1" class="new" title="First X-ray source in Aquarius (page does not exist)">First X-ray source in Aquarius</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Centaurus&action=edit&redlink=1" class="new" title="First X-ray source in Centaurus (page does not exist)">First X-ray source in Centaurus</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Chamaeleon&action=edit&redlink=1" class="new" title="First X-ray source in Chamaeleon (page does not exist)">First X-ray source in Chamaeleon</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Lepus&action=edit&redlink=1" class="new" title="First X-ray source in Lepus (page does not exist)">First X-ray source in Lepus</a></li> <li><a href="/w/index.php?title=First_X-ray_source_in_Serpens_Caput&action=edit&redlink=1" class="new" title="First X-ray source in Serpens Caput (page does not exist)">First X-ray source in Serpens Caput</a></li> <li><a href="/w/index.php?title=First_yellow_source_in_Aquila&action=edit&redlink=1" class="new" title="First yellow source in Aquila (page does not exist)">First yellow source in Aquila</a></li> <li><a href="/w/index.php?title=First_yellow_source_in_Circinus&action=edit&redlink=1" class="new" title="First yellow source in Circinus (page does not exist)">First yellow source in Circinus</a></li> <li><a href="/w/index.php?title=First_yellow_source_in_Lupus&action=edit&redlink=1" class="new" title="First yellow source in Lupus (page does not exist)">First yellow source in Lupus</a></li> <li><a href="/w/index.php?title=First_yellow_source_in_Serpens_Cauda&action=edit&redlink=1" class="new" title="First yellow source in Serpens Cauda (page does not exist)">First yellow source in Serpens Cauda</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Radios/Lessons&action=edit&redlink=1" class="new" title="Radiation astronomy/Radios/Lessons (page does not exist)">Radio astronomy/Lessons</a></li> <li><a href="/w/index.php?title=X-ray_astronomy/Lessons&action=edit&redlink=1" class="new" title="X-ray astronomy/Lessons (page does not exist)">X-ray astronomy/Lessons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Lists</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0;background:#BCD4E6;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Asteroid_Surveys" title="Asteroid Surveys">Asteroid Surveys</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Portals</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0;background:#ACE5EE;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Portal:Astrophysics" title="Portal:Astrophysics">Astrophysics</a></li> <li><a href="/wiki/Portal:Cosmology" title="Portal:Cosmology">Cosmology</a></li> <li><a href="/wiki/Portal:General_relativity" title="Portal:General relativity">General relativity</a></li> <li><a href="/wiki/School:Geophysics" title="School:Geophysics">Geophysics</a></li> <li><a href="/wiki/Portal:Radiation_astronomy" title="Portal:Radiation astronomy">Radiation astronomy</a></li> <li><a href="/wiki/Portal:Special_relativity" title="Portal:Special relativity">Special relativity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Problem sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0;background:#BCD4E6;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Angular_momentum_and_energy" title="Angular momentum and energy">Angular momentum and energy</a></li> <li><a href="/wiki/Column_densities" title="Column densities">Column densities</a></li> <li><a href="/w/index.php?title=Cosmic_circuits&action=edit&redlink=1" class="new" title="Cosmic circuits (page does not exist)">Cosmic circuits</a></li> <li><a href="/wiki/Energy_phantoms" title="Energy phantoms">Energy phantoms</a></li> <li><a href="/wiki/Furlongs_per_fortnight" title="Furlongs per fortnight">Furlongs per fortnight</a></li> <li><a href="/wiki/Lenses_and_focal_length" title="Lenses and focal length">Lenses and focal length</a></li> <li><a href="/w/index.php?title=Neutrino_emissions&action=edit&redlink=1" class="new" title="Neutrino emissions (page does not exist)">Neutrino emissions</a></li> <li><a href="/wiki/Planck%27s_equation" title="Planck's equation">Planck's equation</a></li> <li><a href="/wiki/Spectrographs" title="Spectrographs">Spectrographs</a></li> <li><a href="/wiki/Star_jumping" title="Star jumping">Star jumping</a></li> <li><a href="/wiki/Synchrotron_radiation/Problem_set" title="Synchrotron radiation/Problem set">Synchrotron radiation</a></li> <li><a href="/wiki/Telescopes_and_cameras" title="Telescopes and cameras">Telescopes and cameras</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Projects</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0;background:#ACE5EE;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Neutrinos_from_the_Sun" class="mw-redirect" title="Neutrinos from the Sun">Neutrinos from the Sun</a></li> <li><a href="/wiki/Stars/Star_fissions" title="Stars/Star fissions">Stellar fission as a source of binary stars</a></li> <li><a href="/wiki/Stars/Sun/Solar_binary" title="Stars/Sun/Solar binary">The Sun as a binary star</a></li> <li><a href="/wiki/Stars/X-ray_classification" title="Stars/X-ray classification">X-ray classification of stars</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#21ABCD;;width:1%;background:#21ABCD; color:#000000;">Quizzes</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0;background:#BCD4E6;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Plasmas/Plasma_objects/Auroras/Quiz" title="Plasmas/Plasma objects/Auroras/Quiz">Auroras/Quiz</a></li> <li><a href="/wiki/Stars/Betelgeuse/Quiz" title="Stars/Betelgeuse/Quiz">Betelgeuse/Quiz</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Coronal_clouds/Quiz" title="Plasmas/Plasma objects/Coronal clouds/Quiz">Coronal cloud/Quiz</a></li> <li><a href="/wiki/Stars/Galaxies/Quiz" title="Stars/Galaxies/Quiz">Galaxies/Quiz</a></li> <li><a href="/wiki/Gases/Gaseous_objects/Astronomy/Quiz" title="Gases/Gaseous objects/Astronomy/Quiz">Gaseous-object astronomy/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliocentric_astronomy/Quiz" title="Stars/Sun/Heliocentric astronomy/Quiz">Heliocentric astronomy/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliognosy/Quiz" title="Stars/Sun/Heliognosy/Quiz">Heliognosy/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliogony/Quiz" title="Stars/Sun/Heliogony/Quiz">Heliogony/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliography/Quiz" title="Stars/Sun/Heliography/Quiz">Heliography/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliology/Quiz" title="Stars/Sun/Heliology/Quiz">Heliology/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliometry/Quiz" title="Stars/Sun/Heliometry/Quiz">Heliometry/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliophysics/Quiz" title="Stars/Sun/Heliophysics/Quiz">Heliophysics/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Heliospheres/Quiz" title="Stars/Sun/Heliospheres/Quiz">Heliospheres/Quiz</a></li> <li><a href="/wiki/Interstellar_medium/Quiz" title="Interstellar medium/Quiz">Interstellar medium/Quiz</a></li> <li><a href="/wiki/Plasmas/Magnetohydrodynamics/Quiz" title="Plasmas/Magnetohydrodynamics/Quiz">Magnetohydrodynamics/Quiz</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Meteors/Quiz&action=edit&redlink=1" class="new" title="Radiation astronomy/Meteors/Quiz (page does not exist)">Meteor astronomy/Quiz</a></li> <li><a href="/wiki/Radiation/Meteors/Quiz" title="Radiation/Meteors/Quiz">Meteor radiation/Quiz</a></li> <li><a href="/wiki/Stars/Galaxies/Milky_Way/Quiz" title="Stars/Galaxies/Milky Way/Quiz">Milky Way/Quiz</a></li> <li><a href="/wiki/Stars/Nova-likes/Quiz" title="Stars/Nova-likes/Quiz">Nova-like stars/Quiz</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Nucleosynthesis/Quiz" title="Plasmas/Plasma objects/Nucleosynthesis/Quiz">Nucleosynthesis/Quiz</a></li> <li><a href="/w/index.php?title=Oort_clouds/Quiz&action=edit&redlink=1" class="new" title="Oort clouds/Quiz (page does not exist)">Oort clouds/Quiz</a></li> <li><a href="/wiki/Plasmas/Plasma_objects/Astronomy/Quiz" title="Plasmas/Plasma objects/Astronomy/Quiz">Plasma-object astronomy/Quiz</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Hourly_1&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Hourly 1 (page does not exist)">Principles of radiation astronomy/Hourly 1</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Hourly_2&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Hourly 2 (page does not exist)">Principles of radiation astronomy/Hourly 2</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Hourly_3&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Hourly 3 (page does not exist)">Principles of radiation astronomy/Hourly 3</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Midterm_quiz&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Midterm quiz (page does not exist)">Principles of radiation astronomy/Midterm quiz</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Courses/Principles/Final_quiz&action=edit&redlink=1" class="new" title="Radiation astronomy/Courses/Principles/Final quiz (page does not exist)">Principles of radiation astronomy/Final quiz</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Detectors/Quiz&action=edit&redlink=1" class="new" title="Radiation astronomy/Detectors/Quiz (page does not exist)">Radiation detectors/Quiz</a></li> <li><a href="/wiki/Stars/Radiative_dynamo/Quiz" title="Stars/Radiative dynamo/Quiz">Radiative dynamo/Quiz</a></li> <li><a href="/w/index.php?title=Scattered_discs/Quiz&action=edit&redlink=1" class="new" title="Scattered discs/Quiz (page does not exist)">Scattered discs/Quiz</a></li> <li><a href="/wiki/Serpens_X-1/Quiz" title="Serpens X-1/Quiz">Serpens X-1/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Astronomy/Quiz" title="Stars/Sun/Astronomy/Quiz">Solar astronomy/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Solar_binary/Quiz" title="Stars/Sun/Solar binary/Quiz">Solar binary/Quiz</a></li> <li><a href="/wiki/Stars/Galaxies/Spirals/Quiz" title="Stars/Galaxies/Spirals/Quiz">Spiral galaxies/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Standard_models/Quiz" title="Stars/Sun/Standard models/Quiz">Standard solar model/Quiz</a></li> <li><a href="/wiki/Stars/Star_fissions/Quiz" title="Stars/Star fissions/Quiz">Star fission/Quiz</a></li> <li><a href="/wiki/Stars/Star-forming_regions/Quiz" title="Stars/Star-forming regions/Quiz">Star-forming region/Quiz</a></li> <li><a href="/wiki/Stars/Quiz" title="Stars/Quiz">Stars/Quiz</a></li> <li><a href="/wiki/Stars/Active_regions/Quiz" title="Stars/Active regions/Quiz">Stellar active region/Quiz</a></li> <li><a href="/wiki/Stars/Astronomy/Quiz" title="Stars/Astronomy/Quiz">Stellar astronomy/Quiz</a></li> <li><a href="/wiki/Stars/Sciences/Quiz" title="Stars/Sciences/Quiz">Stellar science/Quiz</a></li> <li><a href="/wiki/Stars/Surface_fusion/Quiz" title="Stars/Surface fusion/Quiz">Stellar surface fusion/Quiz</a></li> <li><a href="/wiki/Stars/Sun/X-ray_sources/Quiz" title="Stars/Sun/X-ray sources/Quiz">Sun as an X-ray source/Quiz</a></li> <li><a href="/wiki/Stars/Sun/Quiz" title="Stars/Sun/Quiz">Sun/Quiz</a></li> <li><a href="/w/index.php?title=Sun-synchronous_astronomy/Quiz&action=edit&redlink=1" class="new" title="Sun-synchronous astronomy/Quiz (page does not exist)">Sun-synchronous astronomy/Quiz</a></li> <li><a href="/w/index.php?title=Radiation_astronomy/Superluminals/Quiz&action=edit&redlink=1" class="new" title="Radiation astronomy/Superluminals/Quiz (page does not exist)">Superluminal astronomy/Quiz</a></li> <li><a href="/wiki/Stars/Supernovas" title="Stars/Supernovas">Supernovas/Quiz</a></li> <li><a href="/wiki/Supernova_X-rays/Quiz" title="Supernova X-rays/Quiz">Supernova X-rays/Quiz</a></li> <li><a href="/wiki/Stars/Vega/Quiz" title="Stars/Vega/Quiz">Vega/Quiz</a></li> <li><a href="/w/index.php?title=Vela_X-1/Quiz&action=edit&redlink=1" class="new" title="Vela X-1/Quiz (page does not exist)">Vela X-1/Quiz</a></li> <li><a href="/wiki/Stars/X-ray_classification/Quiz" title="Stars/X-ray classification/Quiz">X-ray classification of stars/Quiz</a></li></ul> </div></td></tr></tbody></table></div><p>{{<a href="/wiki/Template:Charge_ontology" title="Template:Charge ontology">Charge ontology</a>}}{{<a href="/wiki/Template:Physics_resources" title="Template:Physics resources">Physics resources</a>}}{{<a href="/wiki/Template:Principles_of_radiation_astronomy" title="Template:Principles of radiation astronomy">Principles of radiation astronomy</a>}}<style data-mw-deduplicate="TemplateStyles:r2415560"></style></p><table class="plainlinks metadata ambox ambox-notice" role="presentation" style="width:250px; float:right; clear:right; margin-left:10px; margin-right:0px;"><tbody><tr><td class="mbox-empty-cell"></td><td class="mbox-text"><div class="mbox-text-span"><div style="padding:0px 10px; white-space:nowrap"> <p><span typeof="mw:File"><a href="https://en.wikibooks.org/wiki/Special:Search/Radiative_dynamo" title="Wikibooks"><img alt="Wikibooks logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/36px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/48px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span>  <span typeof="mw:File"><a href="https://en.wikipedia.org/wiki/Special:Search/Radiative_dynamo" title="Wikipedia"><img alt="Wikipedia logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Wikipedia-logo-v2.svg/24px-Wikipedia-logo-v2.svg.png" decoding="async" width="24" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Wikipedia-logo-v2.svg/36px-Wikipedia-logo-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/Wikipedia-logo-v2.svg/48px-Wikipedia-logo-v2.svg.png 2x" data-file-width="103" data-file-height="94" /></a></span>  <span typeof="mw:File"><a href="https://en.wiktionary.org/wiki/Special:Search/Radiative_dynamo" title="Wiktionary"><img alt="Wiktionary logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/24px-Wiktionary-logo.svg.png" decoding="async" width="24" height="23" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/36px-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/48px-Wiktionary-logo.svg.png 2x" data-file-width="370" data-file-height="350" /></a></span>  <span typeof="mw:File"><a href="https://en.wikiquote.org/wiki/Special:Search/Radiative_dynamo" title="Wikiquote"><img alt="Wikiquote logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/20px-Wikiquote-logo.svg.png" decoding="async" width="20" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/30px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/40px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span>  <span typeof="mw:File"><a href="https://en.wikisource.org/wiki/Special:Search/Radiative_dynamo" title="Wikisource"><img alt="Wikisource logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/23px-Wikisource-logo.svg.png" decoding="async" width="23" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/34px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/46px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></a></span>  <span typeof="mw:File"><a href="https://commons.wikimedia.org/wiki/Special:Search/Radiative_dynamo" title="Wikimedia Commons"><img alt="Commons logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/27px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/36px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span>  <span typeof="mw:File"><a href="https://species.wikimedia.org/wiki/Special:Search/Radiative_dynamo" title="Wikispecies"><img alt="Wikispecies logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikispecies-logo.svg/20px-Wikispecies-logo.svg.png" decoding="async" width="20" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikispecies-logo.svg/31px-Wikispecies-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikispecies-logo.svg/41px-Wikispecies-logo.svg.png 2x" data-file-width="941" data-file-height="1103" /></a></span>  <span typeof="mw:File"><a href="https://www.wikidata.org/wiki/Special:Search/Radiative_dynamo" title="Wikidata"><img alt="Wikidata logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/24px-Wikidata-logo.svg.png" decoding="async" width="24" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/36px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/48px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span>  <span typeof="mw:File"><a href="https://en.wikivoyage.org/wiki/Special:Search/Radiative_dynamo" title="Wikivoyage"><img alt="Wikivoyage logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Wikivoyage-logo.svg/24px-Wikivoyage-logo.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Wikivoyage-logo.svg/36px-Wikivoyage-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Wikivoyage-logo.svg/48px-Wikivoyage-logo.svg.png 2x" data-file-width="193" data-file-height="193" /></a></span>  <span typeof="mw:File"><a href="https://en.wikinews.org/wiki/Special:Search/Radiative_dynamo" title="Wikinews"><img alt="Wikinews logo" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/24px-Wikinews-logo.svg.png" decoding="async" width="24" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/36px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/48px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></a></span> </p> </div> <div style="padding:0px 10px;">Learn more about <b>Radiative dynamo</b></div></div></td></tr></tbody></table> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7c54859c9b‐lhcb2 Cached time: 20241111205816 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.955 seconds Real time usage: 1.222 seconds Preprocessor visited node count: 28739/1000000 Post‐expand include size: 309996/2097152 bytes Template argument size: 58672/2097152 bytes Highest expansion depth: 24/100 Expensive parser function count: 32/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 199748/5000000 bytes Lua time usage: 0.302/10.000 seconds Lua memory usage: 4564238/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 843.628 1 -total 62.21% 524.808 1 Template:Reflist 27.62% 233.025 31 Template:Cite_web 24.42% 205.983 37 Template:Citation/core 20.45% 172.495 27 Template:Cite_journal 9.42% 79.453 23 Template:Main 9.36% 78.990 1 Template:Stars_resources 8.86% 74.772 1 Template:Navbox 6.14% 51.761 10 Template:Cite_book 2.41% 20.324 32 Template:Citation/identifier --> <!-- Saved in parser cache with key enwikiversity:pcache:idhash:123680-0!canonical and timestamp 20241111205816 and revision id 2450766. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikiversity.org/w/index.php?title=Stars/Radiative_dynamo&oldid=2450766">https://en.wikiversity.org/w/index.php?title=Stars/Radiative_dynamo&oldid=2450766</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:Categories" title="Special:Categories">Categories</a>: <ul><li><a href="/wiki/Category:Articles_with_hatnote_templates_targeting_a_nonexistent_page" title="Category:Articles with hatnote templates targeting a nonexistent page">Articles with hatnote templates targeting a nonexistent page</a></li><li><a href="/wiki/Category:Astrophysics/Lectures" title="Category:Astrophysics/Lectures">Astrophysics/Lectures</a></li><li><a href="/wiki/Category:Charges/Lectures" title="Category:Charges/Lectures">Charges/Lectures</a></li><li><a href="/wiki/Category:Stars/Lectures" title="Category:Stars/Lectures">Stars/Lectures</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden category: <ul><li><a href="/wiki/Category:Pages_with_broken_file_links" title="Category:Pages with broken file links">Pages with broken file links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 November 2022, at 22:56.</li> <li id="footer-info-copyright">Text is available under the <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike License</a>; additional terms may apply. By using this site, you agree to the <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a> and <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy Policy.</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikiversity:About">About Wikiversity</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikiversity:General_disclaimer">Disclaimers</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikiversity.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikiversity.org/w/index.php?title=Stars/Radiative_dynamo&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-kw492","wgBackendResponseTime":164,"wgPageParseReport":{"limitreport":{"cputime":"0.955","walltime":"1.222","ppvisitednodes":{"value":28739,"limit":1000000},"postexpandincludesize":{"value":309996,"limit":2097152},"templateargumentsize":{"value":58672,"limit":2097152},"expansiondepth":{"value":24,"limit":100},"expensivefunctioncount":{"value":32,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":199748,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 843.628 1 -total"," 62.21% 524.808 1 Template:Reflist"," 27.62% 233.025 31 Template:Cite_web"," 24.42% 205.983 37 Template:Citation/core"," 20.45% 172.495 27 Template:Cite_journal"," 9.42% 79.453 23 Template:Main"," 9.36% 78.990 1 Template:Stars_resources"," 8.86% 74.772 1 Template:Navbox"," 6.14% 51.761 10 Template:Cite_book"," 2.41% 20.324 32 Template:Citation/identifier"]},"scribunto":{"limitreport-timeusage":{"value":"0.302","limit":"10.000"},"limitreport-memusage":{"value":4564238,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-7c54859c9b-lhcb2","timestamp":"20241111205816","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Stars\/Radiative dynamo","url":"https:\/\/en.wikiversity.org\/wiki\/Stars\/Radiative_dynamo","sameAs":"http:\/\/www.wikidata.org\/entity\/Q27509358","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q27509358","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2011-12-19T18:24:05Z","dateModified":"2022-11-14T22:56:15Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/a0\/Latest_xrt_soft_x-ray.gif","headline":"dynamo taking place in the radiative layers of a star"}</script> </body> </html>