CINXE.COM

Search results for: acid dyes

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: acid dyes</title> <meta name="description" content="Search results for: acid dyes"> <meta name="keywords" content="acid dyes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="acid dyes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="acid dyes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3549</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: acid dyes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3549</span> Synthesis, Characterization, and Application of Some Acid Dyes Derived from 1-Amino-4 Bromo-Anthraquine-2-Sulphonic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuradeen%20Abdullahi%20Nadabo">Nuradeen Abdullahi Nadabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Adewale%20Bello"> Kasali Adewale Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Istifanus%20Chindo"> Istifanus Chindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Ayeni"> Nurudeen Ayeni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ten acid dyes were synthesized from 1-amino-4-bromo anthraghinone-2 sulphuric acid by condensation with different substituted amilines. These dyes were characterized by IR Spectroscopy and the results revealed an incorporation of various substituents. Application of these dyes were carried out on Nylon and wool fabrics using standard procedure melting point, percentage yield, molar extinction coefficient, wash, light and staining of adjacent fibre, of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaustion" title=" exhaustion"> exhaustion</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction%20co-efficient" title=" extinction co-efficient "> extinction co-efficient </a> </p> <a href="https://publications.waset.org/abstracts/28845/synthesis-characterization-and-application-of-some-acid-dyes-derived-from-1-amino-4-bromo-anthraquine-2-sulphonic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3548</span> Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Hu">Can Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huixia%20Shi"> Huixia Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongcheng%20Mei"> Hongcheng Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhu"> Jun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongling%20Guo"> Hongling Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20electrophoresis" title=" capillary electrophoresis"> capillary electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20evidence" title=" fiber evidence"> fiber evidence</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20determination" title=" rapid determination"> rapid determination</a> </p> <a href="https://publications.waset.org/abstracts/103782/rapid-method-for-the-determination-of-acid-dyes-by-capillary-electrophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3547</span> Evaluation of Moringa oleifera in Decolourization of Dyes in Textile Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagia%20Ali">Nagia Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20R.%20El-Mohamedy"> R. S. R. El-Mohamedy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to irradiate the dyes biologically through the use of Moreinga oleifera. The study confirms the potential use of Moringa oleifera in decolourization of dyes and thus opens up a scope for future analysis pertaining to its performance in treatment of textile effluent. In this paper, the ability of natural products in removing dyes was tested using two reactive dyes and one acid dye. After a preliminary screening for dye removal capacity, a vegetal protein extract derived from Moeringa oleifera seed was fully studied. The influences of several parameters such as pH, temperature or initial dye concentration were tested and the behavior of coagulants was compared. It was found that dye removal decreased as pH increased. Temperature did not seem to have a considerable effect, while initial dye concentration appeared to be a very important variable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moreinga%20oleifera" title="Moreinga oleifera">Moreinga oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=decolourization" title=" decolourization"> decolourization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dyes" title=" reactive dyes"> reactive dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title=" acid dyes"> acid dyes</a> </p> <a href="https://publications.waset.org/abstracts/36561/evaluation-of-moringa-oleifera-in-decolourization-of-dyes-in-textile-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3546</span> Synthesis and Characterization of Some Mono Chloro-S-Triazine Vinyl Sulphone Reactive Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuradeen%20Abdullahi%20Nadabo">Nuradeen Abdullahi Nadabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Adewale%20Bello"> Kasali Adewale Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Chindo%20Istifanus"> Chindo Istifanus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of ten bi functional mono-chloro-s-triazine vinyl sulphone reactive dyes were synthesized based on H-acid with varied substituents coded as (BRD). These dyes were characterized by IR spectroscopy. The results revealed an incorporation of various substituents. The visible absorption spectra of these dyes were examined in various solvents and results shows positive and negative salvatochromism as the solvent polarity; changes, melting point, percentage yield and molar extinction co-efficient of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyeing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifunctional" title="bifunctional">bifunctional</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dyes" title=" reactive dyes"> reactive dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/18776/synthesis-and-characterization-of-some-mono-chloro-s-triazine-vinyl-sulphone-reactive-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3545</span> Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouslimani">N. Ouslimani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadlia"> M. T. Abadlia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentonite" title="Bentonite">Bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20of%20polluted%20water" title=" treatment of polluted water"> treatment of polluted water</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title=" acid dyes"> acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/24409/study-of-the-removal-of-a-red-dye-acid-and-sodium-bentonite-raw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3544</span> Dyeing Cotton with Dyes Extracted from Eucalyptus and Mango Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamrat%20Tesfaye">Tamrat Tesfaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Sithole"> Bruce Sithole</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shabaridharan"> K. Shabaridharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural dyes to replace synthetic dyes has been advocated for to circumvent the environmental problems associated with synthetic dyes. This paper is a preliminary study on the use of natural dyes extracted from eucalyptus and mango trees. Dyes extracted from eucalyptus bark gave more colourized material than the dyes extracted from eucalyptus leaves and mango pills and leaves. Additionally, the extracts exhibited a deeper colour shade. Cotton fiber dyed using the same dye but with different mordants resulted in fabric that exhibited different colours. It appears that natural dyes from these plants could be effective dyes for use on cotton fabrics especially considering that the dyes exhibited excellent colour fastness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title="natural dyes">natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=mango" title=" mango"> mango</a>, <a href="https://publications.waset.org/abstracts/search?q=eucalyptus" title=" eucalyptus"> eucalyptus</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a>, <a href="https://publications.waset.org/abstracts/search?q=colour%20fastness" title=" colour fastness"> colour fastness</a> </p> <a href="https://publications.waset.org/abstracts/65021/dyeing-cotton-with-dyes-extracted-from-eucalyptus-and-mango-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3543</span> Toxic Dyes Removal in Aqueous Solution Using Calcined and Uncalcined Anionic Clay Zn/Al+Fe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bessaha%20Hassiba">Bessaha Hassiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouraada%20Mohamed"> Bouraada Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Layered double hydroxide with Zn/(Al+Fe) molar ratio of 3:1 was synthesized by co-precipitation method and their calcined product was obtained by heating treatment of ZAF-HT at 500°C. The calcined and uncalcined materials were used to remove weak acid dyes: indigo carmine (IC) and green bezanyl-F2B (F2B) in aqueous solution. The synthesized materials were characterized by XRD, SEM, FTIR and TG/DTA analysis confirming the formation of pure layered structure of ZAF-HT, the destruction of the original structure after calcination and the intercalation of the dyes molecules. Moreover, the interlayer distance increases from 7.645 Å in ZAF-HT to 19.102 Å after the dyes sorption. The dose of the adsorbents was chosen 0.5 g/l while the initial concentrations were 250 and 750 mg/l for indigo carmine and green bezanyl-F2B respectively. The sorption experiments were carried out at ambient temperature and without adjusting the initial solution pH (pHi = 6.10 for IC and pHi = 5.01 for F2B). In addition, the maximum adsorption capacities obtained by ZAF-HT and CZAF for both dyes followed the order: CZAF-F2B (1501.4 mg.g-1) > CZAF-IC (617.3 mg.g-1) > ZAF-HT-IC (41.4 mg.g-1) > ZAF-HT-F2B (28.9 mg.g-1). The removal of indigo carmine and green bezanyl-F2B by ZAF-HT was due to the anion exchange and/or the adsorption on the surface. By using the calcined material (CZAF), the removal of the dyes was based on a particular property, called ‘memory effect’. CZAF recover the pristine structure in the presence anionic molecules such as acid dyes where they occupy the interlayer space. The sorption process was spontaneous in nature and followed pseudo-second-order. The isotherms showed that the removal of IC and F2B by ZAF-HT and CZAF were consistent with Langmiur model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxides" title=" layered double hydroxides"> layered double hydroxides</a> </p> <a href="https://publications.waset.org/abstracts/43304/toxic-dyes-removal-in-aqueous-solution-using-calcined-and-uncalcined-anionic-clay-znalfe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3542</span> Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thian%20Khoon%20Tan">Thian Khoon Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Poi%20Sim%20Khiew"> Poi Sim Khiew</a>, <a href="https://publications.waset.org/abstracts/search?q=Wee%20Siong%20Chiu"> Wee Siong Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Hua%20Chia"> Chin Hua Chia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20enhanced" title=" magnetically enhanced"> magnetically enhanced</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20dyes" title=" synthetic dyes"> synthetic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title=" azo dyes"> azo dyes</a> </p> <a href="https://publications.waset.org/abstracts/193545/brief-inquisition-of-photocatalytic-degradation-of-azo-dyes-by-magnetically-enhanced-zinc-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3541</span> Allura Red, Sunset Yellow and Amaranth Azo Dyes for Corrosion Inhibition of Mild Steel in 0.5 H₂SO₄ Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar%20Singh">Ashish Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Tiwari"> Preeti Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Srivastava"> Shubham Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Prakash"> Rajiv Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Terryn"> Herman Terryn</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopal%20Ji"> Gopal Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion inhibition potential of azo dyes namely Allura red (AR), Sunset Yellow (SY) and Amaranth (AN) have been investigated in 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy (EIS), Tafel polarization curves, linear polarization curves, open circuit potential (ocp) curves, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Amaranth dye is found to provide highest corrosion inhibition (90 %) against mild steel corrosion in sulfuric acid solutions among all the tested dyes; while SY and AR dye shows 80% and 78% corrosion inhibition efficiency respectively. The electrochemical measurements and surface morphology analysis reveal that molecular adsorption of dyes at metal acid interface is accountable for inhibition of mild steel corrosion in H2SO4 solutions. The adsorption behavior of dyes has been investigated by various isotherms models, which verifies that it is in accordance with Langmuir isotherm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title="mild steel">mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Azo%20dye" title=" Azo dye"> Azo dye</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20isotherm" title=" Langmuir isotherm"> Langmuir isotherm</a> </p> <a href="https://publications.waset.org/abstracts/55946/allura-red-sunset-yellow-and-amaranth-azo-dyes-for-corrosion-inhibition-of-mild-steel-in-05-h2so4-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3540</span> A Study of Anthraquinone Dye Removal by Using Chitosan Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyar%20S.%20Jassal">Pyar S. Jassal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonal%20Gupta"> Sonal Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Neema%20Chand"> Neema Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Johar"> Rajni Johar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present study, Low molecular weight chitosan naoparticles (LMWCNP) were synthesized by using low molecular weight chitosan (LMWC) and sodium tripolyphosphate for the adsorption of anthraquinone dyes from waste water. The ionic-gel technique was used for this purpose. Size of nanoparticles was determined by “Scherrer equation”. The absorbance was carried out with UV-visible spectrophotometer for Acid Green 25 (AG25) and Reactive Blue 4 (RB4) dyes solutions at λmax 644 and λmax 598 nm respectively. The removal of dyes was dependent on the pH and the optimum adsorption was between pH 2 to 9. The extraction of dyes was linearly dependent on temperature. The equilibrium parameters, RL was calculated by using the Langmuir isotherm and shows that adsorption of dyes is favorable on the LMWCNP. The XRD images of LMWC show a crystalline nature whereas LMWCNP is amorphous one. The thermo gravimetric analysis (TGA) shows that LMWCNP thermally more stable than LMWC. As the contact time increases, percentage removal of Acid Green 25 and Reactive Blue 4 dyes also increases. TEM images reveal the size of the LMWCNP were in the range of 45-50 nm. The capacity of AG25 dye on LMWC was 5.23 mg/g, it compared with LMWCNP capacity which was 6.83 mg/g respectively. The capacity of RB4 dye on LMWC was 2.30 mg/g and 2.34 mg/g was on LMWCNP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20weight%20chitosan%20nanoparticles" title="low molecular weight chitosan nanoparticles">low molecular weight chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=anthraquinone%20dye" title=" anthraquinone dye"> anthraquinone dye</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm" title=" adsorption isotherm"> adsorption isotherm</a> </p> <a href="https://publications.waset.org/abstracts/108974/a-study-of-anthraquinone-dye-removal-by-using-chitosan-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3539</span> Polypropylene Fibres Dyeable with Acid Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Wang">H. M. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Chang"> C. J. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature" title=" low-temperature"> low-temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fiber" title=" polypropylene fiber"> polypropylene fiber</a> </p> <a href="https://publications.waset.org/abstracts/165653/polypropylene-fibres-dyeable-with-acid-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3538</span> Synthesis and Photophysical Studies of BOPIDY Dyes Conjugated with 4-Benzyloxystyryl Substituents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bokolombe%20Pitchou%20Ngoy">Bokolombe Pitchou Ngoy</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Mack"> John Mack</a>, <a href="https://publications.waset.org/abstracts/search?q=Tebello%20Nyokong"> Tebello Nyokong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis and photochemical studies of BODIPY dyes have been investigated in this work in order to have a broad benchmark of this functionalized photosensitizer for biological applications such as photodynamic therapy or antimicrobial activity. The common acid catalyzed synthetic method was used, and BODIPY dyes were obtained in quite a good yield (25 %) followed by bromination and Knoevenagel condensation to afford the BODIPY dyes conjugated with maximum absorbance in the near-infrared region of the electromagnetic spectrum. The fluorescence lifetimes, fluorescence quantum yield, and Singlet oxygen quantum yield of the conjugated BODIPY dyes were determined in different solvents by using Time Correlation Single Photon Counting (TCSPC), fluorimeter, and Laser Flash Photolysis respectively. It was clearly shown that the singlet oxygen quantum yield was higher in THF followed by DMSO compared to another solvent. The same trend was observed for the fluorescence lifetimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BODIPY" title="BODIPY">BODIPY</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitizer" title=" photosensitizer"> photosensitizer</a>, <a href="https://publications.waset.org/abstracts/search?q=singlet%20oxygen" title=" singlet oxygen"> singlet oxygen</a> </p> <a href="https://publications.waset.org/abstracts/72430/synthesis-and-photophysical-studies-of-bopidy-dyes-conjugated-with-4-benzyloxystyryl-substituents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3537</span> Spectrophotometric Determination of 5-Aminosalicylic Acid in Pharmaceutical Samples </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chand%20Pasha">Chand Pasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Simple, accurate and precise spectrophotometric method for the quantitative analysis of determination of 5-aminosalicylic acid is described. This method is based on the reaction of 5-aminosalicylic acid with nitrite in acid medium to form diazonium ion, which is coupled with acetylacetone in basic medium to form azo dyes, which shows absorption maxima at 470 nm. The method obeys Beer’s law in the concentration range of 0.5-11.2 gml-1 of 5-aminosalicylic acid with acetylacetone. The molar absorptivity and Sandell’s sensitivity of 5-aminosalicylic acid -acetylacetone azo dye is 2.672 ×104 lmol-1cm-1, 5.731 × 10-3 gcm-2 respectively. The dye formed is stable for 10 hrs. The optimum reaction conditions and other analytical parameters are evaluated. Interference due to foreign organic compounds have been investigated. The method has been successfully applied to the determination of 5-aminosalicylic acid in pharmaceutical samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrophotometry" title="spectrophotometry">spectrophotometry</a>, <a href="https://publications.waset.org/abstracts/search?q=diazotization" title=" diazotization"> diazotization</a>, <a href="https://publications.waset.org/abstracts/search?q=mesalazine" title=" mesalazine"> mesalazine</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite"> nitrite</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylacetone" title=" acetylacetone"> acetylacetone</a> </p> <a href="https://publications.waset.org/abstracts/88694/spectrophotometric-determination-of-5-aminosalicylic-acid-in-pharmaceutical-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3536</span> Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archna%20Mall">Archna Mall</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Agrawal"> Neelam Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20O.%20Saxena"> Hari O. Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavana%20Sharma"> Bhavana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Butea%20monosperma" title="Butea monosperma">Butea monosperma</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a> </p> <a href="https://publications.waset.org/abstracts/57950/eco-friendly-natural-dyes-from-butea-monosperma-and-their-application-on-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3535</span> Dyeing Properties of Natural Dyes on Silk Treated with ß-Cyclodextrin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samera%20Salimpour%20Abkenar">Samera Salimpour Abkenar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, silk yarns were treated using &szlig;-cyclodextrin (&szlig;-CD) and cross-linked with citric acid (CA) via pad-dry-cure method. Elemental and FESEM analyses confirmed the presence of &szlig;-CD on the treated silk samples even after five washing cycles. Then, the treated samples were dyed using natural dyes (carrot, orange and tomato). Results showed that the color strength (<em>K/S</em>) of the treated samples had been markedly enhanced compared with the control sample (after treatment with metal mordant). Finally, the color strength (<em>K/S</em> value) and color fastness (fading, staining and light fastness) of the treated samples with &szlig;-CD were investigated and compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%9F-cyclodextrin" title="ß-cyclodextrin">ß-cyclodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20yarn" title=" silk yarn"> silk yarn</a> </p> <a href="https://publications.waset.org/abstracts/116487/dyeing-properties-of-natural-dyes-on-silk-treated-with-ss-cyclodextrin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3534</span> Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Chanajaree">R. Chanajaree</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Luanwiset"> D. Luanwiset</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Pongpratea"> K. Pongpratea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes%20removal" title="dyes removal">dyes removal</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20free%20energies" title=" binding free energies"> binding free energies</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20calculation" title=" quantum calculation"> quantum calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a> </p> <a href="https://publications.waset.org/abstracts/115037/prediction-of-binding-free-energies-for-dyes-removal-using-computational-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3533</span> Multifunctional β-Cyclodextrin-EDTA-Chitosan Polymer Adsorbent Synthesis for Simultaneous Removal of Heavy Metals and Organic Dyes from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monu%20Verma">Monu Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunook%20Kim"> Hyunook Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals and organic dyes are the major sources of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area, and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg²⁺) and cadmium (Cd²⁺), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV), and safranin O (SO), were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows a monolayer adsorption capacity of 346.30 ± 14.0 and 202.90 ± 13.90 mg g−¹ for Hg²⁺ and Cd²⁺, respectively, and a heterogeneous adsorption capacity of 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−¹ for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−¹ min−¹) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the four heavy metals, Hg²⁺, Cd²⁺, Ni²⁺, and Cu²⁺, and three dyes MB, CV, and SO in secondary treated wastewater. The findings of this study indicate that β-CD-EDTA-CS is simple and easy to synthesize and can be used in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherms" title="adsorption isotherms">adsorption isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title=" adsorption mechanism"> adsorption mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=amino-%CE%B2-cyclodextrin" title=" amino-β-cyclodextrin"> amino-β-cyclodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20dyes" title=" organic dyes"> organic dyes</a> </p> <a href="https://publications.waset.org/abstracts/155478/multifunctional-v-cyclodextrin-edta-chitosan-polymer-adsorbent-synthesis-for-simultaneous-removal-of-heavy-metals-and-organic-dyes-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3532</span> Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouslimani">N. Ouslimani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadlia"> M. T. Abadlia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater "> wastewater </a> </p> <a href="https://publications.waset.org/abstracts/43865/recovery-of-waste-acrylic-fibers-for-the-elimination-of-basic-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3531</span> Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%A2d%20Oukkass">Saâd Oukkass</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20Bouftou"> Abderrahim Bouftou</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Ouchn"> Rachid Ouchn</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lebrun"> L. Lebrun</a>, <a href="https://publications.waset.org/abstracts/search?q=Miloudi%20Hlaibi"> Miloudi Hlaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/174792/utilization-of-activated-carbon-for-the-extraction-and-separation-of-methylene-blue-in-the-presence-of-acid-yellow-61-using-an-inclusion-polymer-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3530</span> Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hosseinnezhad">M. Hosseinnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gharanjig"> K. Gharanjig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm<sup>-2</sup>, Voc= 0.55 V, FF= 0.52, &eta;=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm<sup>-2</sup>, Voc= 0.54 V, FF= 0.57, &eta;=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cells" title=" dye-sensitized solar cells"> dye-sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a> </p> <a href="https://publications.waset.org/abstracts/58409/investigation-of-green-dye-sensitized-solar-cells-based-on-natural-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3529</span> Isolation and Screening of Laccase Producing Basidiomycetes via Submerged Fermentations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mun%20Yee%20Chan">Mun Yee Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin%20Ming%20Goh"> Sin Ming Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Gaik%20Ai%20Ong"> Lisa Gaik Ai Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approximately 10,000 different types of dyes and pigments are being used in various industrial applications yearly, which include the textile and printing industries. However, these dyes are difficult to degrade naturally once they enter the aquatic system. Their high persistency in natural environment poses a potential health hazard to all form of life. Hence, there is a need for alternative dye removal strategy in the environment via bioremediation. In this study, fungi laccase is investigated via commercial agar dyes plates and submerged fermentation to explore the application of fungi laccase in textile dye wastewater treatment. Two locally isolated basidiomycetes were screened for laccase activity using media added with commercial dyes such as 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), guaiacol and Remazol Brillant Blue R (RBBR). Isolate TBB3 (1.70&plusmn;0.06) and EL2 (1.78&plusmn;0.08) gave the highest results for ABTS plates with the appearance of greenish halo on around the isolates. Submerged fermentation performed on Isolate TBB3 with the productivity 3.9067 U/ml/day, whereas the laccase activity for Isolate EL2 was much lower (0.2097 U/ml/day). As isolate TBB3 showed higher laccase production, it was subjected to molecular characterization by DNA isolation, PCR amplification and sequencing of ITS region of nuclear ribosomal DNA. After being compared with other sequences in National Center for Biotechnology Information (NCBI database), isolate TBB3 is probably from species Trametes hirsutei. Further research work can be performed on this isolate by upscale the production of laccase in order to meet the demands of the requirement for higher enzyme titer for the bioremediation of textile dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=laccase" title=" laccase"> laccase</a> </p> <a href="https://publications.waset.org/abstracts/41736/isolation-and-screening-of-laccase-producing-basidiomycetes-via-submerged-fermentations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3528</span> Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid-ul-Islam">Shahid-ul-Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Faqeer%20Mohammad"> Faqeer Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annatto" title="annatto">annatto</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agents" title=" antimicrobial agents"> antimicrobial agents</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20textiles" title=" green textiles "> green textiles </a> </p> <a href="https://publications.waset.org/abstracts/42793/colorful-textiles-with-antimicrobial-property-using-natural-dyes-as-effective-green-finishing-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3527</span> Eco-Friendly Textiles: The Power of Natural Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bushra">Bushra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the historical significance, ecological benefits, and contemporary applications of natural dyes in textile dyeing, aiming to provide a comprehensive overview of their potential to contribute to a sustainable fashion industry while minimizing ecological footprints. This research explores the potential of natural dyes as a sustainable alternative to synthetic dyes in the textile industry, examining their historical context, sources, and environmental benefits. Natural dyes come from plants, animals, and minerals, including roots, leaves, bark, fruits, flowers, insects, and metal salts, used as mordants to fix dyes to fabrics. Natural dyeing involves extraction, mordanting, and dyeing techniques. Optimizing these processes can enhance the performance of natural dyes, making them viable for contemporary textile applications based on experimental research. Natural dyes offer eco-friendly benefits like biodegradability, non-toxicity, and resource renewables, reducing pollution, promoting biodiversity, and reducing reliance on petrochemicals. Natural dyes offer benefits but face challenges in color consistency, scalability, and performance, requiring industrial production to meet modern consumer standards for durability and colorfastness. Contemporary initiatives in the textile industry include fashion brands like Eileen Fisher and Patagonia incorporating natural dyes, artisans like India Flint's Botanical Alchemy promoting traditional dyeing techniques, and research projects like the European Union's Horizon 2020 program. Natural dyes offer a sustainable textile industry solution, reducing environmental impact and promoting harmony with nature. Research and innovation are paving the way for widespread adoption, transforming textile dyeing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historical%20significance" title="historical significance">historical significance</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20industry" title=" textile industry"> textile industry</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/186606/eco-friendly-textiles-the-power-of-natural-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3526</span> Preparation of New Organoclays and Applications for Adsorption of Telon Dyes in Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benamar%20Makhoukhi">Benamar Makhoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clay ion-exchange using bismidazolium salts (MBIM) could provide organophilic clays materials that allow effective retention of polluting dyes. The present investigations deal with bentonite (Bt) modification using (ortho, meta and para) bisimidazolium cations and attempts to remove a synthetic textile dyes, such as (Telon-Orange, Telon-Red and Telon-Blue) by adsorption, from aqueous solutions. The surface modification of MBIM–Bt was examined using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption tests applied to Telon dyes revealed a significant increase of the maximum adsorption capacity from ca. 21-28 to 88-108 mg.g-1 after intercalation. The highest adsorption level was noticed for Telon-Orange dye on the p-MBIM–Bt, presumably due higher interlayer space and better diffusion. The pseudo-first order rate equation was able to provide the best description of adsorption kinetics data for all three dyestuffs. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The results show that MBIM–Bt could be employed as low-cost material for the removal of Telon dyes from effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentonite" title="Bentonite">Bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Organoclay" title=" Organoclay"> Organoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bisimidazolium" title=" Bisimidazolium"> Bisimidazolium</a>, <a href="https://publications.waset.org/abstracts/search?q=Dyes" title=" Dyes"> Dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Isotherms" title=" Isotherms"> Isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=Adsorption" title=" Adsorption"> Adsorption</a> </p> <a href="https://publications.waset.org/abstracts/21447/preparation-of-new-organoclays-and-applications-for-adsorption-of-telon-dyes-in-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3525</span> Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Prabavathy">N. Prabavathy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Balasundaraprabhu"> R. Balasundaraprabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shalini"> S. Shalini</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhayalan%20Velauthapillai"> Dhayalan Velauthapillai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Prasanna"> S. Prasanna</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Muthukumarasamy"> N. Muthukumarasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caesalpinia%20pulcherrima" title="Caesalpinia pulcherrima">Caesalpinia pulcherrima</a>, <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title=" citric acid"> citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20sensitized%20solar%20cells" title=" dye sensitized solar cells"> dye sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82%20nanorods" title=" TiO₂ nanorods"> TiO₂ nanorods</a> </p> <a href="https://publications.waset.org/abstracts/71483/effect-of-solvents-in-the-extraction-and-stability-of-anthocyanin-from-the-petals-of-caesalpinia-pulcherrima-for-natural-dye-sensitized-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3524</span> Sustainability and Awareness with Natural Dyes in Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Karadag">Recep Karadag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyeing had started since pre-historical times for dyeing of textile materials. The natural dyeing had continued to beginning of 20th century. At the end of 19th century some synthetic dyes were synthesized. Although development of dyeing technologies and methods, natural dyeing was not developed in recent years. Despite rapid advances of synthetic dyestuff industries, natural dye processes have not developed. Therefore natural dyeing was not competed against synthetic dyes. At the same time, it was very difficult that large quantities of coloured textile was dyed with natural dyes And it was very difficult to get reproducible results in the natural dyeing using classical and traditional processes. However, natural dyeing has used slightly in the textile handicraft up to now. It is very important view that re-using of natural dyes to create awareness in textiles in recent years. Natural dyes have got many awareness and sustainability properties. Natural dyes are more eco-friendly than synthetic dyes. A lot of natural dyes have got antioxidant, antibacterial, antimicrobial, antifungal and anti –UV properties. It had been known that were obtained limited numbers colours with natural dyes in the past. On the contrary, colour scale is too wide with natural dyes. Except fluorescent colours, numerous colours can be obtained with natural dyes. Fastnesses of dyed textiles with natural dyes are good that there are light, washing, rubbing, etc. The fastness values can be improved depend on dyeing processes. Thanks to these properties mass production can be made with natural dyes in textiles. Therefore fabric dyeing machine was designed. This machine is too suitable for natural dyeing and mass production. Also any dyeing machine can be modified for natural dyeing. Although dye extraction and dyeing are made separately in the traditional natural dyeing processes and these procedures are become by designed this machine. Firstly, colouring compounds are extracted from natural dye resources, then dyeing is made with extracted colouring compounds. The colouring compounds are moderately dissolved in water. Less water is used in the extraction of colouring compounds from dye resources and dyeing with this new technique on the contrary much quantity water needs to use for dissolve of the colouring compounds in the traditional dyeing. This dyeing technique is very useful method for mass productions with natural dyes in traditional natural dyeing that use less energy, less dye materials, less water, etc. than traditional natural dyeing techniques. In this work, cotton, silk, linen and wool fabrics were dyed with some natural dye plants by the technique. According to the analysis very good results were obtained by this new technique. These results are shown sustainability and awareness of natural dyes for textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/24420/sustainability-and-awareness-with-natural-dyes-in-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3523</span> Production, Optimization, Characterization, and Kinetics of a Partially Purified Laccase from Pleurotus citrinopileatus and Its Application in Swift Bioremediation of Azo Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Kushwaha">Ankita Kushwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Singh"> M. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In the present investigation the efficiency of laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) from Pleurotus citrinopileatus was assessed for the decolorization of azo dyes. Aim: Enzyme production, characterization and kinetics of a partially purified laccase from Pleurotus citrinopileatus were determined for its application in bioremediation of azo dyes. Methods & Results: Laccase has been partially purified by using 80% ammonium sulphate solution. Total activity, total protein, specific activity and purification fold for partially purified laccase were found to be 40.38U, 293.33mg/100ml, 0.91U/mg and 2.84, respectively. The pH and temperature optima of laccase were 5.0 and 50ºC, respectively, while the enzyme was most stable at pH 4.0 and temperature 30ºC when exposed for one hour. The Km of the partially purified laccase for substrates guaiacol, DMP (2,6-dimethoxyphenol) and syringaldazine (3,5-dimethoxy-4-hydroxybenzaldehyde azine) were 60, 95 and 26, respectively. This laccase has been tested for the use in the bioremediation of azo dyes in the absence of mediator molecules. Two dyes namely congo red and bromophenol blue were tested. Discussion: It was observed that laccase enzyme was very effective in the decolorization of these two dyes. More than 80% decolorization was observed within half an hour even in the absence of mediator and their lower Km value indicates that efficiency of the enzyme is very high. The results were promising due to quicker decolorization in the absence of mediators showing that it can be used as a valuable biocatalyst for quick bioremediation of azo dyes. Conclusion: The enzymatic properties of laccase from P. citrinopileatus should be considered for a potential environmental (biodegradation and bioremediation) or industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title="azo dyes">azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=laccase" title=" laccase"> laccase</a>, <a href="https://publications.waset.org/abstracts/search?q=P.citrinopileatus" title=" P.citrinopileatus"> P.citrinopileatus</a> </p> <a href="https://publications.waset.org/abstracts/88221/production-optimization-characterization-and-kinetics-of-a-partially-purified-laccase-from-pleurotus-citrinopileatus-and-its-application-in-swift-bioremediation-of-azo-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3522</span> A Spectrophotometric Method for the Determination of Folic Acid - A Vitamin B9 in Pharmaceutical Dosage Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chand%20Pasha">Chand Pasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Turki%20Alharbi"> Yasser Turki Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasamira%20Stancheva"> Krasamira Stancheva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple spectrophotometric method for the determination of folic acid in pharmaceutical dosage samples was developed. The method is based on the diazotization reaction of thiourea with sodium nitrite in acidic medium yields diazonium compounds, which is then coupled with folic acid in basic medium yields yellow coloured azo dyes. Beer’s Lamberts law is observed in the range 0.5 – 16.2 μgmL-1 at a maximum wavelength of 416nm. The molar absorbtivity, sandells sensitivity, linear regression equation and detection limit and quantitation limit were found to be 5.695×104 L mol-1cm-1, 7.752×10-3 g cm-2, y= 0.092x - 0.018, 0.687 g mL-1 and 2.083 g mL-1. This method successfully determined Folate in Pharmaceutical formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=folic%20acid%20determination" title="folic acid determination">folic acid determination</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometry" title=" spectrophotometry"> spectrophotometry</a>, <a href="https://publications.waset.org/abstracts/search?q=diazotization" title=" diazotization"> diazotization</a>, <a href="https://publications.waset.org/abstracts/search?q=thiourea" title=" thiourea"> thiourea</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20dosage%20samples" title=" pharmaceutical dosage samples"> pharmaceutical dosage samples</a> </p> <a href="https://publications.waset.org/abstracts/179739/a-spectrophotometric-method-for-the-determination-of-folic-acid-a-vitamin-b9-in-pharmaceutical-dosage-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3521</span> Characterization of Poly(Hydroxyethyl Methacrylate-Glycidyl Methacrylate)-Imino Diacetic Acid Membrane to Adsorbing Leather Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Aslan">Ahmet Aslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Safiye%20Meric%20Acikel"> Safiye Meric Acikel</a>, <a href="https://publications.waset.org/abstracts/search?q=Raziye%20Hilal%20Senay"> Raziye Hilal Senay</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Akgol"> Sinan Akgol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different chemical substances and too much water are used during leather production. Therefore, the waste water load of the leather industry is harmful to the environment. One of the pollution sources is the production of leather coloring process is a further need to focus on the removal of dye waste waters subject. These water-soluble dyes have a small organic molecular size. Besides the environmental hazards, these dyes cannot be underestimated, they also have harmful effects on human health. In this study, poly(hydroxyethyl methacrylate-glycidyl methacrylate) p(HEMA-GMA) hydrogel membranes were synthesized by UV polymerization method. The hydrogel synthesized is modified with imino diacetic acid (IDA) and then chelated with Cr (III) ions. The chelating capacity of the membranes was determined according to the time, pH and concentration parameters. Dynamic swelling test, elemental analysis, ninhydrin analysis and adsorption, desorption and reusability performances of membranes were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=leather" title=" leather"> leather</a>, <a href="https://publications.waset.org/abstracts/search?q=p%28HEMA-GMA%29-IDA" title=" p(HEMA-GMA)-IDA"> p(HEMA-GMA)-IDA</a> </p> <a href="https://publications.waset.org/abstracts/80973/characterization-of-polyhydroxyethyl-methacrylate-glycidyl-methacrylate-imino-diacetic-acid-membrane-to-adsorbing-leather-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3520</span> Effects of Spent Dyebath Recycling on Pollution and Cost of Production in a Cotton Textile Industry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar%20Sharma">Dinesh Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Sharma"> Sanjay Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile manufacturing industry uses a substantial amount of chemicals not only in the production processes but also in manufacturing the raw materials. Dyes are the most significant raw material which provides colour to the fabric and yarn. Dyes are produced by using a large amount of chemicals both organic and inorganic in nature. Dyes are further classified as Reactive or Vat Dyes which are mostly used in cotton textiles. In the process of application of dyes to the cotton fiber, yarn or fabric, several auxiliary chemicals are also used in the solution called dyebath to improve the absorption of dyes. There is a very little absorption of dyes and auxiliary chemicals and a residual amount of all these substances is released as the spent dye bath effluent. Because of the wide variety of chemicals used in cotton textile dyes, there is always a risk of harmful effects which may not be apparent immediately but may have an irreversible impact in the long term. Colour imparted by the dyes to the water also has an adverse effect on its public acceptability and the potability. This study has been conducted with an objective to assess the feasibility of reuse of the spent dye bath. Studies have been conducted in two independent industries manufacturing dyed cotton yarn and dyed cotton fabric respectively. These have been referred as Unit-I and Unit-II. The studies included assessment of reduction in pollution levels and the economic benefits of such reuse. The study conclusively establishes that the reuse of spent dyebath results in prevention of pollution, reduction in pollution loads and cost of effluent treatment & production. This pollution prevention technique presents a good preposition for pollution prevention in cotton textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=dyebath" title=" dyebath"> dyebath</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic" title=" toxic"> toxic</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=costs" title=" costs"> costs</a> </p> <a href="https://publications.waset.org/abstracts/22655/effects-of-spent-dyebath-recycling-on-pollution-and-cost-of-production-in-a-cotton-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=118">118</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20dyes&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10