CINXE.COM

Search results for: energy dissipation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: energy dissipation</title> <meta name="description" content="Search results for: energy dissipation"> <meta name="keywords" content="energy dissipation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy dissipation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy dissipation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8521</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy dissipation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8521</span> Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard&#039;s Empirical Relation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ahmadu">M. A. Ahmadu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Rabia"> S. S. Rabia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ostgaard%27s" title="Ostgaard&#039;s">Ostgaard&#039;s</a>, <a href="https://publications.waset.org/abstracts/search?q=ionospheric%20dissipation" title=" ionospheric dissipation"> ionospheric dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=joule%20heating" title=" joule heating"> joule heating</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20precipitation" title=" electron precipitation"> electron precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=geomagnetic%20indices" title=" geomagnetic indices"> geomagnetic indices</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20relation" title=" empirical relation"> empirical relation</a> </p> <a href="https://publications.waset.org/abstracts/49162/statistical-estimation-of-ionospheric-energy-dissipation-using-ostgaards-empirical-relation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8520</span> Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirmozafar%20Benshams">Amirmozafar Benshams</a>, <a href="https://publications.waset.org/abstracts/search?q=Khatere%20Kashmari"> Khatere Kashmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Hatami"> Farzad Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbah%20Saybani"> Mesbah Saybani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title="shape memory alloys">shape memory alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title=" shape memory effect"> shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20elastic%20effect" title=" super elastic effect"> super elastic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nitinol" title=" nitinol"> nitinol</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/55075/study-of-energy-dissipation-in-shape-memory-alloys-a-comparison-between-austenite-and-martensite-phase-of-smas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8519</span> Seismic Performance of Various Grades of Steel Columns Through Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asal%20Pournaghshband">Asal Pournaghshband</a>, <a href="https://publications.waset.org/abstracts/search?q=Roham%20Maher"> Roham Maher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation, and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20dissipation" title="Energy dissipation">Energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=H-shaped%20columns" title=" H-shaped columns"> H-shaped columns</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20grades" title=" stainless steel grades"> stainless steel grades</a> </p> <a href="https://publications.waset.org/abstracts/191066/seismic-performance-of-various-grades-of-steel-columns-through-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8518</span> Numerical Analysis of the Effect of Height and Rate of Fluid Flow on a Stepped Spillway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Abbas%20Kamanbedast">Amir Abbas Kamanbedast</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Saki"> Abbas Saki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped spillways are composed of several steps, which start from around the spillway crest and continue to the downstream heel. Recently, such spillways have been receiving increasing attention due to the significant effect of the associated stairs on the flow’s rate of energy dissipation. Energy dissipation in the stepped spillways across the overflow can be explained by the watercourse contact with the stairs (i.e., large, harsh surfaces). In this context, less energy must be dissipated at the end of the spillway, and, hence, a smaller (less expensive) energy-dissipating structure is required. In this study, a stepped spillway was simulated using the model Fluent 3, and a standard model was used to model the flow disturbance. For this purpose, the energy dissipation from the stepped spillway was investigated in terms of the different numbers of stairs involved. Using k-ε, the disturbances of the numerical method for velocity and of flow depth at the downstream overflow were obtained, and, then, the energy that was dissipated throughout the spillway was calculated. Our results showed that an increase in the number of stairs can considerably increase the amount of energy dissipation for the fixed, upstream energy. In addition, the results of the numerical analyses were provided as isobar and velocity curves so points that were sensitive to cavitation could be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20spillway" title="stepped spillway">stepped spillway</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent%20software" title=" fluent software"> fluent software</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model%20of%20k-%CE%B5" title=" turbulence model of k-ε"> turbulence model of k-ε</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20model" title=" VOF model"> VOF model</a> </p> <a href="https://publications.waset.org/abstracts/45509/numerical-analysis-of-the-effect-of-height-and-rate-of-fluid-flow-on-a-stepped-spillway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8517</span> Numerical Investigation of Al2O3/Water Nanofluid Heat Transfer in a Microtube with Viscous Dissipation Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misagh%20Irandoost%20Shahrestani">Misagh Irandoost Shahrestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Shokouhmand"> Hossein Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Kalteh"> Mohammad Kalteh</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrang%20Hasanpour"> Behrang Hasanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, nanofluid conjugate heat transfer through a microtube with viscous dissipation effect is investigated numerically. The fluid flow is considered as a laminar regime. A constant heat flux is applied on the microtube outer wall and the two ends of its wall are considered adiabatic. Conjugate heat transfer problem is solved and investigated for this geometry. It is shown that viscous dissipation effect which is induced by shear stresses can not be neglected in microtubes. Viscous heating behaves as an energy source in the fluid and affects the temperature distribution. The effect of Reynolds number, particle volume fraction and the nanoparticles diameter on the energy source are investigated and an attempt on establishing suitable equations for assessing the value of the energy source based on Re, Dp and Φ is performed and they are depicted as 3D diagrams. Finally, the significance of viscous dissipation and the influence of these parameters on convective heat transfer coefficient are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer%20coefficient" title="convective heat transfer coefficient">convective heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=microtube" title=" microtube"> microtube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/15475/numerical-investigation-of-al2o3water-nanofluid-heat-transfer-in-a-microtube-with-viscous-dissipation-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8516</span> Comprehensive Experimental Study to Determine Energy Dissipation of Nappe Flows on Stepped Chutes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Ghasempour">Abdollah Ghasempour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Kavianpour"> Mohammad Reza Kavianpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Galoie"> Majid Galoie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has investigated the fundamental parameters which have effective role on energy dissipation of nappe flows on stepped chutes in order to estimate an empirical relationship using dimensional analysis. To gain this goal, comprehensive experimental study on some large-scale physical models with various step geometries, slopes, discharges, etc. were carried out. For all models, hydraulic parameters such as velocity, pressure, water depth, flow regime and etc. were measured precisely. The effective parameters, then, could be determined by analysis of experimental data. Finally, a dimensional analysis was done in order to estimate an empirical relationship for evaluation of energy dissipation of nappe flows on stepped chutes. Because of using the large-scale physical models in this study, the empirical relationship is in very good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nappe%20flow" title="nappe flow">nappe flow</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20chute" title=" stepped chute"> stepped chute</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20analysis" title=" dimensional analysis "> dimensional analysis </a> </p> <a href="https://publications.waset.org/abstracts/20115/comprehensive-experimental-study-to-determine-energy-dissipation-of-nappe-flows-on-stepped-chutes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8515</span> Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20spillway" title="stepped spillway">stepped spillway</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent%20model" title=" fluent model"> fluent model</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20model" title=" VOF model"> VOF model</a>, <a href="https://publications.waset.org/abstracts/search?q=K-%CE%B5%20model" title=" K-ε model"> K-ε model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20distribution" title=" energy distribution"> energy distribution</a> </p> <a href="https://publications.waset.org/abstracts/26972/surveying-energy-dissipation-in-stepped-spillway-using-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8514</span> Performance Evaluation of Reinforced Concrete Framed Structure with Steel Bracing and Supplemental Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swanand%20Patil">Swanand Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Agarwal"> Pankaj Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In past few decades, seismic performance objectives have shifted from earthquake resistance to earthquake resilience of the structures, especially for the lifeline buildings. Features such as negligible post-earthquake damage and replaceable damaged components, makes energy dissipating systems a valid choice for a seismically resilient building. In this study, various energy dissipation devices are applied on an eight-storey moment resisting RC building model. The energy dissipating devices include both hysteresis-based and viscous type of devices. The seismic response of the building is obtained for different positioning and mechanical properties of the devices. The investigation is carried forward to the deficiently ductile RC frame also. The performance assessment is done on the basis of drift ratio, mode shapes and displacement response of the model structures. Nonlinear dynamic analysis shows largely improved displacement response. The damping devices improve displacement response more efficiently in the deficient ductile frames than that in the perfectly moment resisting frames. This finding is important considering the number of deficient buildings in India and the world. The placement and mechanical properties of the dampers prove to be a crucial part in modelling, analyzing and designing of the structures with supplemental energy dissipation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resilient%20structures" title="earthquake resilient structures">earthquake resilient structures</a>, <a href="https://publications.waset.org/abstracts/search?q=lifeline%20buildings" title=" lifeline buildings"> lifeline buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitting%20of%20structures" title=" retrofitting of structures"> retrofitting of structures</a>, <a href="https://publications.waset.org/abstracts/search?q=supplemental%20energy%20dissipation" title=" supplemental energy dissipation"> supplemental energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/57617/performance-evaluation-of-reinforced-concrete-framed-structure-with-steel-bracing-and-supplemental-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8513</span> Wave Interaction with Single and Twin Vertical and Sloped Porous Walls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Alkhalidi">Mohamad Alkhalidi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Neelamani"> S. Neelamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Alanjari"> Noor Alanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of harbors and marinas is to create a calm and safe docking space for marine vessels. Standard rubble mound breakwaters, although widely used, occupy port space and require large amounts of stones or rocks. Kuwait does not have good quality stone, so they are imported at a very high cost. Therefore, there is a need for a new wave energy dissipating structure where stones and rocks are scarce. While permeable slotted vertical walls have been proved to be a suitable alternative to rubble mound breakwaters, the introduction of sloped slotted walls may be more efficient in dissipating wave energy. For example, two slotted barriers with 60degree inclination may be equivalent to three vertical slotted barriers from wave energy dissipation point of view. A detailed physical model study is carried out to determine the effects of slope angle, porosity, and a number of walls on wave energy dissipation for a wide range of random and regular waves. The results of this study can be used to improve and optimize energy dissipation and reduce construction cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porosity" title="porosity">porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20reflection" title=" wave reflection"> wave reflection</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20transmission" title=" wave transmission"> wave transmission</a> </p> <a href="https://publications.waset.org/abstracts/59353/wave-interaction-with-single-and-twin-vertical-and-sloped-porous-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8512</span> Bubbling in Gas Solids Fluidization at a Strouhal Number Tuned for Low Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chenxi%20Zhang">Chenxi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weizhong%20Qian"> Weizhong Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Wei"> Fei Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas solids multiphase flow is common in many engineering and environmental applications. Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics, and when combined they pose a formidable challenge, even in the dilute dispersed regime. Dimensionless numbers are important in mechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. In the fluid mechanics literature, the Strouhal number is usually associated with the dimensionless shedding frequency of a von Karman wake; here we introduce this dimensionless number to investigate bubbling in gas solids fluidization. St=fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). The bubble behavior in a large two-dimensional bubbling fluidized bed (500mm×30mm×6000mm) is investigated. Our result indicates that propulsive efficiency is high and energy dissipation is low over a narrow range of St and usually within the interval 0.2<St<0.4. Due to least-action principle, we expect it to constrain the range of St that bubbles use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbles" title="bubbles">bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=Strouhal%20number" title=" Strouhal number"> Strouhal number</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/45222/bubbling-in-gas-solids-fluidization-at-a-strouhal-number-tuned-for-low-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8511</span> Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhruv%20Mehta">Dhruv Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20van%20Zuijlen"> Alexander van Zuijlen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hester%20Bijl"> Hester Bijl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-conserving%20schemes" title="energy-conserving schemes">energy-conserving schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20turbulence" title=" modelling turbulence"> modelling turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=Large%20Eddy%20Simulation" title=" Large Eddy Simulation"> Large Eddy Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20boundary%20layer" title=" atmospheric boundary layer"> atmospheric boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/17675/large-eddy-simulation-with-energy-conserving-schemes-understanding-wind-farm-aerodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8510</span> Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Babaali">Hamidreza Babaali</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mojtahedi"> Alireza Mojtahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Soori"> Nasim Soori</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Soori"> Saba Soori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the &lrm;energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is &lrm;caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope &lrm;has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D &lrm;software. The numerical model is verified by experimental data of water depth in &lrm;stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air &lrm;entrainment and turbulent dissipation investigated for discharging 300 m<sup>3</sup>/s using K-Ɛ and Re-Normalization Group (RNG) turbulence &lrm;models. The results showed a good agreement between numerical and experimental model&lrm; as &lrm;numerical model can be used to optimize of stilling basins.&lrm; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20and%20numerical%20modelling" title="experimental and numerical modelling">experimental and numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20adverse%20slope" title=" end adverse slope"> end adverse slope</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20%E2%80%8Eparameters" title=" flow ‎parameters"> flow ‎parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=USBR%20II%20stilling%20basin" title=" USBR II stilling basin"> USBR II stilling basin</a> </p> <a href="https://publications.waset.org/abstracts/93364/numerical-modeling-of-flow-in-usbr-ii-stilling-basin-with-end-adverse-slope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8509</span> Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Rudas">J. S. Rudas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Guti%C3%A9rrez%20Cabeza"> J. M. Gutiérrez Cabeza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Corz%20Rodr%C3%ADguez"> A. Corz Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20G%C3%B3mez"> L. M. Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Toro"> A. O. Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20mechanism" title=" dissipative mechanism"> dissipative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sliding" title=" dry sliding"> dry sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear "> wear </a> </p> <a href="https://publications.waset.org/abstracts/22761/correlations-between-wear-rate-and-energy-dissipation-mechanisms-in-a-ti6al4v-wcco-sliding-pair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8508</span> Plasticity in Matrix Dominated Metal-Matrix Composite with One Active Slip Based Dislocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Takele%20Kasa">Temesgen Takele Kasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this paper is to suggest one active slip based continuum dislocation approach to matrix dominated MMC plasticity analysis. The approach centered the free energy principles through the continuum behavior of dislocations combined with small strain continuum kinematics. The analytical derivation of this method includes the formulation of one active slip system, the thermodynamic approach of dislocations, determination of free energy, and evolution of dislocations. In addition zero and non-zero energy dissipation analysis of dislocation evolution is also formulated by using varational energy minimization method. In general, this work shows its capability to analyze the plasticity of matrix dominated MMC with inclusions. The proposed method is also found to be capable of handling plasticity of MMC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20slip" title="active slip">active slip</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20dislocation" title=" continuum dislocation"> continuum dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=dominated" title=" dominated"> dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20dominated" title=" matrix dominated"> matrix dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/66664/plasticity-in-matrix-dominated-metal-matrix-composite-with-one-active-slip-based-dislocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8507</span> Boundary Motion by Curvature: Accessible Modeling of Oil Spill Evaporation/Dissipation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gary%20Miller">Gary Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Andriy%20Didenko"> Andriy Didenko</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Allison"> David Allison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary of a region in the plane shrinks according to its curvature. A simple algorithm based upon this motion by curvature performed by a spreadsheet simulates the evaporation/dissipation behavior of oil spill boundaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation" title=" dissipation"> dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary" title=" boundary"> boundary</a> </p> <a href="https://publications.waset.org/abstracts/13621/boundary-motion-by-curvature-accessible-modeling-of-oil-spill-evaporationdissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8506</span> Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Bi">Lei Bi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunpeng%20Jiao"> Yunpeng Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunjiang%20Liu"> Chunjiang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Chen"> Jianhua Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Ge"> Wei Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption%20statistic" title="energy consumption statistic">energy consumption statistic</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-solid%20fluidization" title=" gas-solid fluidization"> gas-solid fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD-DEM" title=" CFD-DEM"> CFD-DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=regime%20transition" title=" regime transition"> regime transition</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20mechanism" title=" heat transfer mechanism"> heat transfer mechanism</a> </p> <a href="https://publications.waset.org/abstracts/176312/energy-consumption-statistic-of-gas-solid-fluidized-beds-through-computational-fluid-dynamics-discrete-element-method-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8505</span> Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengxin%20Yu">Shengxin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partially%20self-centering%20behavior" title="partially self-centering behavior">partially self-centering behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber%20bearing" title=" natural rubber bearing"> natural rubber bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=U-shaped%20damper" title=" U-shaped damper"> U-shaped damper</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title=" numerical investigation"> numerical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20ground%20motion" title=" near-fault ground motion"> near-fault ground motion</a> </p> <a href="https://publications.waset.org/abstracts/184070/seismic-performance-of-highway-bridges-with-partially-self-centering-isolation-bearings-against-near-fault-ground-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8504</span> Dissipation of Tebuconazole in Cropland Soils as Affected by Soil Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bipul%20Behari%20Saha">Bipul Behari Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Singh"> Sunil Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Padmaja"> P. Padmaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamlesh%20Vishwakarma"> Kamlesh Vishwakarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dissipation study of tebuconazole in alluvial, black and deep-black clayey soils collected from paddy, mango and peanut cropland of tropical agro-climatic zone of India at three concentration levels were carried out for monitoring the water contamination through persisted residual toxicity. The soil-slurry samples were analyzed by capillary GC-NPD methods followed by ultrasound-assisted extraction (UAE) technique and cleanup process. An excellent linear relationship between peak area and concentration obtained in the range 1 to 50 μgkg-1. The detection (S/N, 3 ± 0.5) and quantification (S/N, 7.5 ± 2.5) limits were 3 and 10 μgkg-1 respectively. Well spiked recoveries were achieved from 96.28 to 99.33 % at levels 5 and 20 μgkg-1 and method precision (% RSD) was ≤ 5%. The soils dissipation of tebuconazole was fitted in first order kinetic-model with half-life between 34.48 to 48.13 days. The soil organic-carbon (SOC) content correlated well with the dissipation rate constants (DRC) of the fungicide Tebuconazole. An increase in the SOC content resulted in faster dissipation. The results indicate that the soil organic carbon and tebuconazole concentrations plays dominant role in dissipation processes. The initial concentration illustrated that the degradation rate of tebuconazole in soils was concentration dependent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cropland%20soil" title="cropland soil">cropland soil</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation" title=" dissipation"> dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20incubation" title=" laboratory incubation"> laboratory incubation</a>, <a href="https://publications.waset.org/abstracts/search?q=tebuconazole" title=" tebuconazole"> tebuconazole</a> </p> <a href="https://publications.waset.org/abstracts/51929/dissipation-of-tebuconazole-in-cropland-soils-as-affected-by-soil-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8503</span> Contribution at Dimensioning of the Energy Dissipation Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Aouimeur">M. Aouimeur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental risks of a dam and particularly the security in the Valley downstream of it,, is a very complex problem. Integrated management and risk-sharing become more and more indispensable. The definition of "vulnerability “concept can provide assistance to controlling the efficiency of protective measures and the characterization of each valley relatively to the floods's risk. Security can be enhanced through the integrated land management. The social sciences may be associated to the operational systems of civil protection, in particular warning networks. The passage of extreme floods in the site of the dam causes the rupture of this structure and important damages downstream the dam. The river bed could be damaged by erosion if it is not well protected. Also, we may encounter some scouring and flooding problems in the downstream area of the dam. Therefore, the protection of the dam is crucial. It must have an energy dissipator in a specific place. The basin of dissipation plays a very important role for the security of the dam and the protection of the environment against floods downstream the dam. It allows to dissipate the potential energy created by the dam with the passage of the extreme flood on the weir and regularize in a natural manner and with more security the discharge or elevation of the water plan on the crest of the weir, also it permits to reduce the speed of the flow downstream the dam, in order to obtain an identical speed to the river bed. The problem of the dimensioning of a classic dissipation basin is in the determination of the necessary parameters for the dimensioning of this structure. This communication presents a simple graphical method, that is fast and complete, and a methodology which determines the main features of the hydraulic jump, necessary parameters for sizing the classic dissipation basin. This graphical method takes into account the constraints imposed by the reality of the terrain or the practice such as the one related to the topography of the site, the preservation of the environment equilibrium and the technical and economic side.This methodology is to impose the loss of head DH dissipated by the hydraulic jump as a hypothesis (free design) to determine all the others parameters of classical dissipation basin. We can impose the loss of head DH dissipated by the hydraulic jump that is equal to a selected value or to a certain percentage of the upstream total head created by the dam. With the parameter DH+ =(DH/k),(k: critical depth),the elaborate graphical representation allows to find the other parameters, the multiplication of these parameters by k gives the main characteristics of the hydraulic jump, necessary parameters for the dimensioning of classic dissipation basin.This solution is often preferred for sizing the dissipation basins of small concrete dams. The results verification and their comparison to practical data, confirm the validity and reliability of the elaborate graphical method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensioning" title="dimensioning">dimensioning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation%20basin" title=" energy dissipation basin"> energy dissipation basin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20jump" title=" hydraulic jump"> hydraulic jump</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20of%20the%20environment" title=" protection of the environment"> protection of the environment</a> </p> <a href="https://publications.waset.org/abstracts/29898/contribution-at-dimensioning-of-the-energy-dissipation-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8502</span> Improvement of Heat Dissipation Ability of Polyimide Composite Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Kim">Jinyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinuk%20Kwon"> Jinuk Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Haksoo%20Han"> Haksoo Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title=" heat dissipation"> heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20device" title=" electric device"> electric device</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a> </p> <a href="https://publications.waset.org/abstracts/23358/improvement-of-heat-dissipation-ability-of-polyimide-composite-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8501</span> Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Bijin">Liu Bijin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20breakwater" title="floating breakwater">floating breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dissipation%20performance" title=" wave dissipation performance"> wave dissipation performance</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance%20coefficient" title=" transmittance coefficient"> transmittance coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a> </p> <a href="https://publications.waset.org/abstracts/185260/study-on-the-wave-dissipation-performance-of-double-cylinder-and-double-plate-floating-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8500</span> Energy Budget Equation of Superfluid HVBK Model: LES Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhtaoui">M. Bakhtaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Merahi"> L. Merahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reliability of the filtered HVBK model is now investigated via some large eddy simulations of freely decaying isotropic superfluid turbulence. For homogeneous turbulence at very high Reynolds numbers, comparison of the terms in the spectral kinetic energy budget equation indicates, in the energy-containing range, that the production and energy transfer effects become significant except for dissipation. In the inertial range, where the two fluids are perfectly locked, the mutual friction maybe neglected with respect to other terms. Also the LES results for the other terms of the energy balance are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superfluid%20turbulence" title="superfluid turbulence">superfluid turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=HVBK" title=" HVBK"> HVBK</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20budget" title=" energy budget"> energy budget</a>, <a href="https://publications.waset.org/abstracts/search?q=Large%20Eddy%20Simulation" title=" Large Eddy Simulation"> Large Eddy Simulation</a> </p> <a href="https://publications.waset.org/abstracts/15607/energy-budget-equation-of-superfluid-hvbk-model-les-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8499</span> Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Rahman">H. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Donchev"> T. Donchev</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Petkova"> D. Petkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20walls" title="shear walls">shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20fibre%20reinforced%20polymer%20reinforcement" title=" internal fibre reinforced polymer reinforcement"> internal fibre reinforced polymer reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20behaviour" title=" seismic behaviour"> seismic behaviour</a> </p> <a href="https://publications.waset.org/abstracts/123148/comparing-the-behaviour-of-the-frp-and-steel-reinforced-shear-walls-under-cyclic-seismic-loading-in-aspect-of-the-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8498</span> Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Yavari">Farzad Yavari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Chegini"> Hamid Chegini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Lotfi"> Saeed Lotfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VPI" title="VPI">VPI</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20rich" title=" resin rich"> resin rich</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20bar" title=" stator bar"> stator bar</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20factor" title=" dissipation factor"> dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20endurance" title=" voltage endurance"> voltage endurance</a> </p> <a href="https://publications.waset.org/abstracts/104741/influence-of-insulation-system-methods-on-dissipation-factor-and-voltage-endurance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8497</span> Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sijeong%20Jeong"> Sijeong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EBFs" title="EBFs">EBFs</a>, <a href="https://publications.waset.org/abstracts/search?q=replaceable%20link" title=" replaceable link"> replaceable link</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster" title=" earthquake disaster"> earthquake disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20section" title=" reduced section"> reduced section</a> </p> <a href="https://publications.waset.org/abstracts/52320/analytical-investigation-of-replaceable-links-with-reduced-web-section-for-link-to-column-connections-in-eccentrically-braced-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8496</span> Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Ghodsi">S. S. Ghodsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Mehrabi"> M. H. Mehrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainah%20Ibrahim"> Zainah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Meldi%20Suhatril"> Meldi Suhatril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20damper" title=" hybrid damper"> hybrid damper</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control%20system" title=" passive control system"> passive control system</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20damper" title=" viscoelastic damper"> viscoelastic damper</a> </p> <a href="https://publications.waset.org/abstracts/78097/evaluation-of-hybrid-viscoelastic-damper-for-passive-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8495</span> Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruyang%20Ren">Ruyang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaohua%20Zhao"> Yaohua Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Diao"> Yanhua Diao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title="heat dissipation">heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery%20thermal%20management" title=" lithium-ion battery thermal management"> lithium-ion battery thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20heat%20pipe%20array" title=" micro heat pipe array"> micro heat pipe array</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20uniformity" title=" temperature uniformity"> temperature uniformity</a> </p> <a href="https://publications.waset.org/abstracts/148328/experimental-investigation-on-the-lithium-ion-battery-thermal-management-system-based-on-micro-heat-pipe-array-in-high-temperature-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8494</span> Seismic Performance of Micropiles in Sand with Predrilled Oversized Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cui%20Fu">Cui Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Zhou%20Zhuang"> Yi-Zhou Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Zhi%20Wang"> Sheng-Zhi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Full scale tests of six micropiles with different predrilled-hole parameters under low frequency cyclic lateral loading in-sand were carried out using the MTS hydraulic loading system to analyze the seismic performance of micropiles. Hysteresis curves, skeleton curves, energy dissipation capacity and ductility of micropiles were investigated. The experimental results show the hysteresis curves appear like plump bows in the elastic–plastic stage and failure stage which exhibit good hysteretic characteristics without pinching phenomena and good energy dissipating capacities. The ductility coefficient varies from 2.51 to 3.54 and the depth and loose backfill of oversized holes can improve ductility, but the diameter of predrilled-hole has a limited effect on enhancing its ductility. These findings and conclusions could make contribution to the practical application of the semi-integral abutment bridges and provide a reference for the predrilled oversized hole technology in integral abutment bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation%20capacity" title=" energy dissipation capacity"> energy dissipation capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=micropile%20with%20predrilled%20oversized%20hole" title=" micropile with predrilled oversized hole"> micropile with predrilled oversized hole</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-integral%20abutment%20bridge" title=" semi-integral abutment bridge"> semi-integral abutment bridge</a> </p> <a href="https://publications.waset.org/abstracts/47731/seismic-performance-of-micropiles-in-sand-with-predrilled-oversized-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8493</span> Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ras">A. Ras</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nait%20Zerrad"> I. Nait Zerrad</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benmouna"> N. Benmouna</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boumechra"> N. Boumechra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title="energy dissipation">energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=friction-pendulum%20system" title=" friction-pendulum system"> friction-pendulum system</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/54047/dissipation-capacity-of-steel-building-with-fiction-pendulum-base-isolation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8492</span> Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiya%20Mohammed">Jiya Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsadu%20Shuaib"> Tsadu Shuaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Abdulhakeem"> Yusuf Abdulhakeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=Adomian%20decomposition" title=" Adomian decomposition"> Adomian decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/27223/magnetohydrodynamics-mhd-boundary-layer-flow-past-a-stretching-plate-with-heat-transfer-and-viscous-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=284">284</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=285">285</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20dissipation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10