CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 66 results for author: <span class="mathjax">Tang, Q</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Tang%2C+Q">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tang, Q"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tang%2C+Q&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tang, Q"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tang%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tang%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tang%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00968">arXiv:2503.00968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.00968">pdf</a>, <a href="https://arxiv.org/format/2503.00968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Simulation of the Background from $^{13}$C$(伪, n)^{16}$O Reaction in the JUNO Scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">Costas Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bessonov%2C+N">Nikita Bessonov</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">Daniel Bick</a>, <a href="/search/physics?searchtype=author&amp;query=Bieger%2C+L">Lukas Bieger</a>, <a href="/search/physics?searchtype=author&amp;query=Biktemerova%2C+S">Svetlana Biktemerova</a> , et al. (608 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00968v2-abstract-short" style="display: inline;"> Large-scale organic liquid scintillator detectors are highly efficient in the detection of MeV-scale electron antineutrinos. These signal events can be detected through inverse beta decay on protons, which produce a positron accompanied by a neutron. A noteworthy background for antineutrinos coming from nuclear power reactors and from the depths of the Earth (geoneutrinos) is generated by ($伪, n$)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00968v2-abstract-full').style.display = 'inline'; document.getElementById('2503.00968v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00968v2-abstract-full" style="display: none;"> Large-scale organic liquid scintillator detectors are highly efficient in the detection of MeV-scale electron antineutrinos. These signal events can be detected through inverse beta decay on protons, which produce a positron accompanied by a neutron. A noteworthy background for antineutrinos coming from nuclear power reactors and from the depths of the Earth (geoneutrinos) is generated by ($伪, n$) reactions. In organic liquid scintillator detectors, $伪$ particles emitted from intrinsic contaminants such as $^{238}$U, $^{232}$Th, and $^{210}$Pb/$^{210}$Po, can be captured on $^{13}$C nuclei, followed by the emission of a MeV-scale neutron. Three distinct interaction mechanisms can produce prompt energy depositions preceding the delayed neutron capture, leading to a pair of events correlated in space and time within the detector. Thus, ($伪, n$) reactions represent an indistinguishable background in liquid scintillator-based antineutrino detectors, where their expected rate and energy spectrum are typically evaluated via Monte Carlo simulations. This work presents results from the open-source SaG4n software, used to calculate the expected energy depositions from the neutron and any associated de-excitation products. Also simulated is a detailed detector response to these interactions, using a dedicated Geant4-based simulation software from the JUNO experiment. An expected measurable $^{13}$C$(伪, n)^{16}$O event rate and reconstructed prompt energy spectrum with associated uncertainties, are presented in the context of JUNO, however, the methods and results are applicable and relevant to other organic liquid scintillator neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00968v2-abstract-full').style.display = 'none'; document.getElementById('2503.00968v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11942">arXiv:2412.11942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11942">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> DRUM: Diffusion-based runoff model for probabilistic flood forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ou%2C+Z">Zhigang Ou</a>, <a href="/search/physics?searchtype=author&amp;query=Nai%2C+C">Congyi Nai</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+B">Baoxiang Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+M">Ming Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chaopeng Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+P">Peishi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xingcai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qiuhong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenqing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11942v1-abstract-short" style="display: inline;"> Reliable flood forecasting remains a critical challenge due to persistent underestimation of peak flows and inadequate uncertainty quantification in current approaches. We present DRUM (Diffusion-based Runoff Model), a generative AI solution for probabilistic runoff prediction. DRUM builds up an iterative refinement process that generates ensemble runoff estimates from noise, guided by past meteor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11942v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11942v1-abstract-full" style="display: none;"> Reliable flood forecasting remains a critical challenge due to persistent underestimation of peak flows and inadequate uncertainty quantification in current approaches. We present DRUM (Diffusion-based Runoff Model), a generative AI solution for probabilistic runoff prediction. DRUM builds up an iterative refinement process that generates ensemble runoff estimates from noise, guided by past meteorological conditions, present meteorological forecasts, and static catchment attributes. This framework allows learning complex hydrological behaviors without imposing explicit distributional assumptions, particularly benefiting extreme event prediction and uncertainty quantification. Using data from 531 representative basins across the contiguous United States, DRUM outperforms state-of-the-art deep learning methods in runoff forecasting regarding both deterministic and probabilistic skills, with particular advantages in extreme flow (0.1%) predictions. DRUM demonstrates superior flood early warning skill across all magnitudes and lead times (1-7 days), achieving F1 scores near 0.4 for extreme events under perfect forecasts and maintaining robust performance with operational forecasts, especially for longer lead times and high-magnitude floods. When applied to climate projections through the 21st century, DRUM reveals increasing flood vulnerability in 47.8-57.1% of basins across emission scenarios, with particularly elevated risks along the West Coast and Southeast regions. These advances demonstrate significant potential for improving both operational flood forecasting and long-term risk assessment in a changing climate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11942v1-abstract-full').style.display = 'none'; document.getElementById('2412.11942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04480">arXiv:2412.04480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04480">pdf</a>, <a href="https://arxiv.org/ps/2412.04480">ps</a>, <a href="https://arxiv.org/format/2412.04480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Learning Generalized Diffusions using an Energetic Variational Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yubin Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaofan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yiwei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04480v1-abstract-short" style="display: inline;"> Extracting governing physical laws from computational or experimental data is crucial across various fields such as fluid dynamics and plasma physics. Many of those physical laws are dissipative due to fluid viscosity or plasma collisions. For such a dissipative physical system, we propose two distinct methods to learn the corresponding laws of the systems based on their energy-dissipation laws, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04480v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04480v1-abstract-full" style="display: none;"> Extracting governing physical laws from computational or experimental data is crucial across various fields such as fluid dynamics and plasma physics. Many of those physical laws are dissipative due to fluid viscosity or plasma collisions. For such a dissipative physical system, we propose two distinct methods to learn the corresponding laws of the systems based on their energy-dissipation laws, assuming either continuous data (probability density) or discrete data (particles) are available. Our methods offer several key advantages, including their robustness to corrupted observations, their easy extension to more complex physical systems, and the potential to address higher-dimensional systems. We validate our approach through representative numerical examples and carefully investigate the impacts of data quantity and data property on the model discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04480v1-abstract-full').style.display = 'none'; document.getElementById('2412.04480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05981">arXiv:2410.05981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05981">pdf</a>, <a href="https://arxiv.org/format/2410.05981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable Topological Dissipative Light Bullets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qian Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiqi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Kartashov%2C+Y+V">Yaroslav V. Kartashov</a>, <a href="/search/physics?searchtype=author&amp;query=Mili%C3%A1n%2C+C">Carles Mili谩n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05981v1-abstract-short" style="display: inline;"> We discover a novel class of dissipative light bullets whose spatial profiles may be drastically reshaped along the bulk, edges and corners of the Su-Schrieffer-Heeger lattice owing to the dissipative and topological nature of the system. These light bullets appear due to resonances with different modes in lattice spectrum and may have very rich shapes that can be adiabatically controlled by varyi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05981v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05981v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05981v1-abstract-full" style="display: none;"> We discover a novel class of dissipative light bullets whose spatial profiles may be drastically reshaped along the bulk, edges and corners of the Su-Schrieffer-Heeger lattice owing to the dissipative and topological nature of the system. These light bullets appear due to resonances with different modes in lattice spectrum and may have very rich shapes that can be adiabatically controlled by varying the frequency of the external laser source. We report on robust stationary bullets and breathers which are understood from the corresponding bifurcation analysis. Our results provide a new route to realisation of reconfigurable and robust 3D light forms in topologically nontrivial systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05981v1-abstract-full').style.display = 'none'; document.getElementById('2410.05981v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19661">arXiv:2409.19661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19661">pdf</a>, <a href="https://arxiv.org/ps/2409.19661">ps</a>, <a href="https://arxiv.org/format/2409.19661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Helicity-selected near-circularly polarized attosecond pulses generated from mixed He-Ne gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+C">Chunyang Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xiaosong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yingbin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qingbin Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+B">Benhai Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+P">Pengfei Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+P">Peixiang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19661v1-abstract-short" style="display: inline;"> We present and theoretically demonstrate a method for generating helicity-selected near-circularly polarized attosecond pulses in mixed He-Ne gases using bichromatic counter-rotating circularly polarized (BCCP) fields. High-order harmonics driven by BCCP fields exhibit circular polarization for individual orders in the frequency domain, but adjacent orders have opposite helicities. By utilizing th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19661v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19661v1-abstract-full" style="display: none;"> We present and theoretically demonstrate a method for generating helicity-selected near-circularly polarized attosecond pulses in mixed He-Ne gases using bichromatic counter-rotating circularly polarized (BCCP) fields. High-order harmonics driven by BCCP fields exhibit circular polarization for individual orders in the frequency domain, but adjacent orders have opposite helicities. By utilizing the He-Ne mixture, we select only one helical component of the harmonics, resulting in the generation of highly elliptically polarized attosecond pulses in the time domain. Our analyses based on the quantum-orbit theory and the strong field approximation further clarify that the polarization of attosecond pulses is governed by the interference mechanism of high-order harmonics emitted by He and Ne. This combination of BCCP fields and an atomic mixture which requires no alignment in experiments, significantly simplifies the generation of elliptically polarized harmonics dominated by one helical component, thereby paving the way for an efficient and robust method to generate bright attosecond pulses with large ellipticity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19661v1-abstract-full').style.display = 'none'; document.getElementById('2409.19661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15830">arXiv:2409.15830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15830">pdf</a>, <a href="https://arxiv.org/format/2409.15830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-mediation of runaway electrons via self-excited wave-wave and wave-particle interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qile Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yanzeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xian-Zhu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15830v1-abstract-short" style="display: inline;"> Nonlinear dynamics of runaway electron induced wave instabilities can significantly modify the runaway distribution critical to tokamak operations. Here we present the first-ever fully kinetic simulations of runaway-driven instabilities towards nonlinear saturation in a warm plasma as in tokamak start up. It is found that the slow-X modes grow an order of magnitude faster than the whistler modes,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15830v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15830v1-abstract-full" style="display: none;"> Nonlinear dynamics of runaway electron induced wave instabilities can significantly modify the runaway distribution critical to tokamak operations. Here we present the first-ever fully kinetic simulations of runaway-driven instabilities towards nonlinear saturation in a warm plasma as in tokamak start up. It is found that the slow-X modes grow an order of magnitude faster than the whistler modes, and they parametrically decay to produce whistlers much faster than those directly driven by runaways. These parent-daughter waves, as well as secondary and tertiary wave instabilities, initiate a chain of wave-particle resonances that strongly diffuse runaways to the backward direction. This reduces almost half of the current carried by high-energy runaways, over a time scale orders of magnitude faster than experimental shot duration. These results beyond quasilinear analysis may impact anisotropic energetic electrons broadly in laboratory, space and astrophysics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15830v1-abstract-full').style.display = 'none'; document.getElementById('2409.15830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05893">arXiv:2409.05893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05893">pdf</a>, <a href="https://arxiv.org/format/2409.05893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Latent Space Dynamics Learning for Stiff Collisional-radiative Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X">Xuping Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xianzhu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05893v2-abstract-short" style="display: inline;"> In this work, we propose a data-driven method to discover the latent space and learn the corresponding latent dynamics for a collisional-radiative (CR) model in radiative plasma simulations. The CR model, consisting of high-dimensional stiff ordinary differential equations (ODEs), must be solved at each grid point in the configuration space, leading to significant computational costs in plasma sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05893v2-abstract-full').style.display = 'inline'; document.getElementById('2409.05893v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05893v2-abstract-full" style="display: none;"> In this work, we propose a data-driven method to discover the latent space and learn the corresponding latent dynamics for a collisional-radiative (CR) model in radiative plasma simulations. The CR model, consisting of high-dimensional stiff ordinary differential equations (ODEs), must be solved at each grid point in the configuration space, leading to significant computational costs in plasma simulations. Our method employs a physics-assisted autoencoder to extract a low-dimensional latent representation of the original CR system. A flow map neural network is then used to learn the latent dynamics. Once trained, the reduced surrogate model predicts the entire latent dynamics given only the initial condition by iteratively applying the flow map. The radiative power loss is then reconstructed using a decoder. Numerical experiments demonstrate that the proposed architecture can accurately predict both the full-order CR dynamics and the radiative power loss rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05893v2-abstract-full').style.display = 'none'; document.getElementById('2409.05893v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-24-26289 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05121">arXiv:2409.05121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05121">pdf</a>, <a href="https://arxiv.org/format/2409.05121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Giant enhancement of the transverse magneto-optical Kerr effect in etchless bismuth-substituted yttrium iron garnet empowered by quasi-bound states in the continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qin Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dandan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Shuyuan Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+M">Meibao Qin</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jizhou He</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tingting Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+Q">Qinghua Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+T">Tianbao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05121v1-abstract-short" style="display: inline;"> Here, we propose an etchless bismuth-substituted yttrium iron garnet layer assisted by a one-dimensional resonant grating waveguide to enhance transverse magneto-optical Kerr effect (TMOKE) via the excitation of quasi-bound state in the continuum. The TMOKE amplitude can be tailored by manipulating the perturbation parameter, and it can reach as high as 1.978, approaching the theoretical maximum v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05121v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05121v1-abstract-full" style="display: none;"> Here, we propose an etchless bismuth-substituted yttrium iron garnet layer assisted by a one-dimensional resonant grating waveguide to enhance transverse magneto-optical Kerr effect (TMOKE) via the excitation of quasi-bound state in the continuum. The TMOKE amplitude can be tailored by manipulating the perturbation parameter, and it can reach as high as 1.978, approaching the theoretical maximum value of 2. Additionally, a single-mode temporal coupled-mode theory is employed to further reveal the underlying physical mechanism. It is found that TMOKE is strongly related to the line width of the quasi-BIC resonance and local field enhancement, which are pivotal factors in the design and optimization of photonic devices. As a potential application, we design and numerically demonstrate a refractive index sensor based on the resonantly enhanced TMOKE, with the optimal sensitivity of 110.66 nm/RIU and the corresponding maximum figure of merit of 299.3 RIU$^{-1}$. Our work provides a simple and efficient approach for enhancing TMOKE based on an easy-to-fabricate platform, laying the groundwork for exploring and developing magneto-optical devices such as sensors, magnetic storage devices, and nonreciprocal photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05121v1-abstract-full').style.display = 'none'; document.getElementById('2409.05121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05097">arXiv:2407.05097</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05097">pdf</a>, <a href="https://arxiv.org/format/2407.05097">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.530600">10.1364/OL.530600 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\mathcal{PT}$-symmetric photonic lattices with type-II Dirac cones </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qian Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Beli%C4%87%2C+M+R">Milivoj R. Beli膰</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Hua Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+M">Meng Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongdong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiqi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05097v1-abstract-short" style="display: inline;"> The type-II Dirac cone is a special feature of the band structure, whose Fermi level is represented by a pair of crossing lines. It has been demonstrated that such a structure is useful for investigating topological edge solitons, and more specifically, for mimicking the Kline tunneling. However, it is still not clear what the interplay between type-II Dirac cones and the non-Hermiticity mechanism&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05097v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05097v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05097v1-abstract-full" style="display: none;"> The type-II Dirac cone is a special feature of the band structure, whose Fermi level is represented by a pair of crossing lines. It has been demonstrated that such a structure is useful for investigating topological edge solitons, and more specifically, for mimicking the Kline tunneling. However, it is still not clear what the interplay between type-II Dirac cones and the non-Hermiticity mechanism will result in. Here, this question is addressed; in particular, we report the $\mathcal{PT}$-symmetric photonic lattices with type-II Dirac cones for the first time. We identify a slope-exceptional ring and name it the type-II exceptional ring. We display the restoration of the $\mathcal{PT}$ symmetry of the lattice by reducing the separation between the sites in the unit cell. Curiously, the amplitude of the beam during propagation in the non-Hermitian lattice with $\mathcal{PT}$ symmetry only decays because of diffraction, whereas in the $\mathcal{PT}$ symmetry-broken lattice it will be amplified, even though the beam still diffracts. This work establishes the link between the non-Hermiticity mechanism and the violation of Lorentz invariance in these physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05097v1-abstract-full').style.display = 'none'; document.getElementById('2407.05097v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, to appear in Optics Letters. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Letters 49, 4110-4113 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17860">arXiv:2405.17860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17860">pdf</a>, <a href="https://arxiv.org/format/2405.17860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad83aa">10.1088/1674-1137/ad83aa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Energy Resolution in the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">Daniel Bick</a> , et al. (629 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17860v2-abstract-short" style="display: inline;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17860v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17860v2-abstract-full" style="display: none;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of the liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The results of study reveal an energy resolution of 2.95\% at 1~MeV. Furthermore, this study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data collection. Moreover, it provides a guideline for comprehending the energy resolution characteristics of liquid scintillator-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'none'; document.getElementById('2405.17860v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. C 49 013003 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11826">arXiv:2405.11826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11826">pdf</a>, <a href="https://arxiv.org/format/2405.11826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Data quality control system and long-term performance monitor of the LHAASO-KM2A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+W">W. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bukevich%2C+A+V">A. V. Bukevich</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+X">H. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">S. Chen</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11826v3-abstract-short" style="display: inline;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'inline'; document.getElementById('2405.11826v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11826v3-abstract-full" style="display: none;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'none'; document.getElementById('2405.11826v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12414">arXiv:2403.12414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12414">pdf</a>, <a href="https://arxiv.org/format/2403.12414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of low-radon ultra-pure water for the Jiangmen Underground Neutrino Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guan%2C+T+Y">T. Y. Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">B. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">C. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+G">C. G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">C. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12414v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory(JUNO) is a state-of-the-art liquid scintillator-based neutrino physics experiment under construction in South China. To reduce the background from external radioactivities, a water Cherenkov detector composed of 35~kton ultra-pure water and 2,400 20-inch photomultiplier tubes is developed. Even after specialized treatment, ultra-pure water still contai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12414v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12414v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory(JUNO) is a state-of-the-art liquid scintillator-based neutrino physics experiment under construction in South China. To reduce the background from external radioactivities, a water Cherenkov detector composed of 35~kton ultra-pure water and 2,400 20-inch photomultiplier tubes is developed. Even after specialized treatment, ultra-pure water still contains trace levels of radioactive elements that can contribute to the detector background. Among which $^{222}$Rn is particularly significant. To address this, an online radon removal system based on the JUNO prototype has been developed. By integrating micro-bubble generators to enhance degasser&#39;s radon removal efficiency, the radon concentration in water can be reduced to 1~mBq/m$^{3}$ level, meeting the stringent requirements of JUNO. Additionally, a highly sensitive online radon concentration measurement system capable of detecting concentrations $\sim$1~mBq/m$^3$ has been developed to monitor the radon concentration in water. In this paper, the details regarding both systems will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12414v1-abstract-full').style.display = 'none'; document.getElementById('2403.12414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15839">arXiv:2402.15839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15839">pdf</a>, <a href="https://arxiv.org/format/2402.15839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Intelligent Attractors for Singularly Perturbed Dynamical Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Serino%2C+D+A">Daniel A. Serino</a>, <a href="/search/physics?searchtype=author&amp;query=Loya%2C+A+A">Allen Alvarez Loya</a>, <a href="/search/physics?searchtype=author&amp;query=Burby%2C+J+W">Joshua W. Burby</a>, <a href="/search/physics?searchtype=author&amp;query=Kevrekidis%2C+I+G">Ioannis G. Kevrekidis</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15839v2-abstract-short" style="display: inline;"> Singularly perturbed dynamical systems, commonly known as fast-slow systems, play a crucial role in various applications such as plasma physics. They are closely related to reduced order modeling, closures, and structure-preserving numerical algorithms for multiscale modeling. A powerful and well-known tool to address these systems is the Fenichel normal form, which significantly simplifies fast d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15839v2-abstract-full').style.display = 'inline'; document.getElementById('2402.15839v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15839v2-abstract-full" style="display: none;"> Singularly perturbed dynamical systems, commonly known as fast-slow systems, play a crucial role in various applications such as plasma physics. They are closely related to reduced order modeling, closures, and structure-preserving numerical algorithms for multiscale modeling. A powerful and well-known tool to address these systems is the Fenichel normal form, which significantly simplifies fast dynamics near slow manifolds through a transformation. However, the Fenichel normal form is difficult to realize in conventional numerical algorithms. In this work, we explore an alternative way of realizing it through structure-preserving machine learning. Specifically, a fast-slow neural network (FSNN) is proposed for learning data-driven models of singularly perturbed dynamical systems with dissipative fast timescale dynamics. Our method enforces the existence of a trainable, attracting invariant slow manifold as a hard constraint. Closed-form representation of the slow manifold enables efficient integration on the slow time scale and significantly improves prediction accuracy beyond the training data. We demonstrate the FSNN on several examples that exhibit multiple timescales, including the Grad moment system from hydrodynamics, two-scale Lorentz96 equations for modeling atmospheric dynamics, and Abraham-Lorentz dynamics modeling radiation reaction of electrons in a magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15839v2-abstract-full').style.display = 'none'; document.getElementById('2402.15839v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13614">arXiv:2402.13614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13614">pdf</a>, <a href="https://arxiv.org/format/2402.13614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Developing a $渭$Bq/m$^{3}$ level $^{226}$Ra concentration in water measurement system for the Jiangmen Underground Neutrino Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">B. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">C. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+T+Y">T. Y. Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+G">C. G. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13614v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20~kton multi-purpose low background Liquid Scintillator (LS) detector, was proposed primarily to determine the neutrino mass ordering. To suppress the radioactivity from the surrounding rocks and tag cosmic muons, the JUNO central detector is submerged in a Water Cherenkov Detector (WCD). In addition to being used in the WCD, ultrapure water&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13614v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13614v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20~kton multi-purpose low background Liquid Scintillator (LS) detector, was proposed primarily to determine the neutrino mass ordering. To suppress the radioactivity from the surrounding rocks and tag cosmic muons, the JUNO central detector is submerged in a Water Cherenkov Detector (WCD). In addition to being used in the WCD, ultrapure water is used in LS filling, for which the $^{226}$Ra concentration in water needs to be less than 50~$渭$Bq/m$^3$. To precisely measure the $^{226}$Ra concentration in water, a 6.0~$渭$Bq/m$^3$ $^{226}$Ra concentration in water measurement system has been developed. In this paper, the detail of the measurement system as well as the $^{226}$Ra concentration measurement result in regular EWII ultrapure water will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13614v1-abstract-full').style.display = 'none'; document.getElementById('2402.13614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14524">arXiv:2310.14524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14524">pdf</a>, <a href="https://arxiv.org/format/2310.14524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Study on the radon adsorption capability of low-background activated carbon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yongpeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+L">Lidan Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jinchang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">Cong Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Changgen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+T">Tingyu Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+Y">Yu Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Quan Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14524v1-abstract-short" style="display: inline;"> Radon is a significant background source in rare event detection experiments. Activated Carbon (AC) adsorption is widely used for effective radon removal. The selection of AC considers its adsorption capacity and radioactive background. In this study, using self-developed devices, we screened and identified a new kind of low-background AC from Qingdao Inaf Technology Company that has very high Rad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14524v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14524v1-abstract-full" style="display: none;"> Radon is a significant background source in rare event detection experiments. Activated Carbon (AC) adsorption is widely used for effective radon removal. The selection of AC considers its adsorption capacity and radioactive background. In this study, using self-developed devices, we screened and identified a new kind of low-background AC from Qingdao Inaf Technology Company that has very high Radon adsorption capacity. By adjusting the average pore size to 2.3 nm, this AC demonstrates a radon adsorption capacity of 2.6 or 4.7 times higher than Saratech or Carboact activated carbon under the same conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14524v1-abstract-full').style.display = 'none'; document.getElementById('2310.14524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14768">arXiv:2308.14768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14768">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> Sedenion algebra for three lepton/quark generations and its relations to SU(5) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qiang Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jau Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14768v2-abstract-short" style="display: inline;"> In this work, we analyze two models beyond the Standard Models descriptions that make ad hoc hypotheses of three point-like lepton and quark generations without explanations of their physical origins. Instead of using the same Dirac equation involving four anti-commutative matrices for all such structure-less elementary particles, we consider in the first model the use of sixteen direct-product ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14768v2-abstract-full').style.display = 'inline'; document.getElementById('2308.14768v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14768v2-abstract-full" style="display: none;"> In this work, we analyze two models beyond the Standard Models descriptions that make ad hoc hypotheses of three point-like lepton and quark generations without explanations of their physical origins. Instead of using the same Dirac equation involving four anti-commutative matrices for all such structure-less elementary particles, we consider in the first model the use of sixteen direct-product matrices of quaternions that are related to Diracs gamma matrices. This associative direct-product matrix model could not generate three fermion generations satisfying Einsteins mass-energy relation. We show that sedenion algebra contains five distinct quaternion sub-algebras and three octonion sub-algebras but with a common intersecting quaternion algebra. This model naturally leads to precisely three generations as each of the non-associative octonion sub-algebra leads to one fermion generation. Moreover, we demonstrate the use of basic sedenion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14768v2-abstract-full').style.display = 'none'; document.getElementById('2308.14768v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02505">arXiv:2307.02505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02505">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> A unified sedenion model for the origins of three generations of charged and neutral leptons, flavor mixing, mass oscillations and small masses of neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qiang Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jau Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02505v2-abstract-short" style="display: inline;"> We present a unified model without the need for an ad hoc Standard Model hypothesis; we explain why there are three generations of charged and neutral leptons, why neutrinos have a vanishingly small mass, and why flavor-mixing emerges and mass oscillations occur. We show that the sedenion algebra contains three types of non-associative octonion algebra, with each corresponding to a generation of l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02505v2-abstract-full').style.display = 'inline'; document.getElementById('2307.02505v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02505v2-abstract-full" style="display: none;"> We present a unified model without the need for an ad hoc Standard Model hypothesis; we explain why there are three generations of charged and neutral leptons, why neutrinos have a vanishingly small mass, and why flavor-mixing emerges and mass oscillations occur. We show that the sedenion algebra contains three types of non-associative octonion algebra, with each corresponding to a generation of leptons. By incorporating extra degrees of freedom, the generalized higher dimensional Dirac equation accounts for the internal structural dynamics. This study sheds light on the intrinsic physical properties of three generations of charged leptons and neutrinos and their distinctive spacetime structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02505v2-abstract-full').style.display = 'none'; document.getElementById('2307.02505v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04459">arXiv:2304.04459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.04459">pdf</a>, <a href="https://arxiv.org/format/2304.04459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.492913">10.1364/OL.492913 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing Faraday and Kerr rotations based on toroidal dipole mode in an all-dielectric magneto-optical metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qin Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dandan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tingting Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wenxing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+Q">Qinghua Liao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jizhou He</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Shuyuan Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+T">Tianbao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04459v1-abstract-short" style="display: inline;"> The magneto-optical Faraday and Kerr effects are widely used in modern optical devices. In this letter, we propose an all-dielectric metasurface composed of perforated magneto-optical thin films, which can support the highly confined toroidal dipole resonance and provide full overlap between the localized electromagnetic field and the thin film, and consequently enhance the magneto-optical effects&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04459v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04459v1-abstract-full" style="display: none;"> The magneto-optical Faraday and Kerr effects are widely used in modern optical devices. In this letter, we propose an all-dielectric metasurface composed of perforated magneto-optical thin films, which can support the highly confined toroidal dipole resonance and provide full overlap between the localized electromagnetic field and the thin film, and consequently enhance the magneto-optical effects to an unprecedented degree. The numerical results based on finite element method show that the Faraday and Kerr rotations can reach -13.59$掳$ and 8.19$掳$ in the vicinity of toroidal dipole resonance, which are 21.2 and 32.8 times stronger than those in the equivalent thickness of thin films, respectively. In addition, we design an environment refractive index sensor based on the resonantly enhanced Faraday and Kerr rotations, with sensitivities of 62.96 nm/RIU and 73.16 nm/RIU, and the corresponding maximum figures of merit 132.22$掳$/RIU and 429.45$掳$/RIU, respectively. This work provides a new strategy for enhancing the magneto-optical effects at nanoscale, and paves the way for the research and development of magneto-optical metadevices such as sensors, memories, and circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04459v1-abstract-full').style.display = 'none'; document.getElementById('2304.04459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Letters 48 (13), 3451-3454 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17019">arXiv:2303.17019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17019">pdf</a>, <a href="https://arxiv.org/format/2303.17019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Scalable Implicit Solvers with Dynamic Mesh Adaptation for a Relativistic Drift-Kinetic Fokker-Planck-Boltzmann Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rudi%2C+J">Johann Rudi</a>, <a href="/search/physics?searchtype=author&amp;query=Heldman%2C+M">Max Heldman</a>, <a href="/search/physics?searchtype=author&amp;query=Constantinescu%2C+E+M">Emil M. Constantinescu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xian-Zhu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17019v2-abstract-short" style="display: inline;"> In this work we consider a relativistic drift-kinetic model for runaway electrons along with a Fokker-Planck operator for small-angle Coulomb collisions, a radiation damping operator, and a secondary knock-on (Boltzmann) collision source. We develop a new scalable fully implicit solver utilizing finite volume and conservative finite difference schemes and dynamic mesh adaptivity. A new data manage&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17019v2-abstract-full').style.display = 'inline'; document.getElementById('2303.17019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17019v2-abstract-full" style="display: none;"> In this work we consider a relativistic drift-kinetic model for runaway electrons along with a Fokker-Planck operator for small-angle Coulomb collisions, a radiation damping operator, and a secondary knock-on (Boltzmann) collision source. We develop a new scalable fully implicit solver utilizing finite volume and conservative finite difference schemes and dynamic mesh adaptivity. A new data management framework in the PETSc library based on the p4est library is developed to enable simulations with dynamic adaptive mesh refinement (AMR), distributed memory parallelization, and dynamic load balancing of computational work. This framework and the runaway electron solver building on the framework are able to dynamically capture both bulk Maxwellian at the low-energy region and a runaway tail at the high-energy region. To effectively capture features via the AMR algorithm, a new AMR indicator prediction strategy is proposed that is performed alongside the implicit time evolution of the solution. This strategy is complemented by the introduction of computationally cheap feature-based AMR indicators that are analyzed theoretically. Numerical results quantify the advantages of the prediction strategy in better capturing features compared with nonpredictive strategies; and we demonstrate trade-offs regarding computational costs. The robustness with respect to model parameters, algorithmic scalability, and parallel scalability are demonstrated through several benchmark problems including manufactured solutions and solutions of different physics models. We focus on demonstrating the advantages of using implicit time stepping and AMR for runaway electron simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17019v2-abstract-full').style.display = 'none'; document.getElementById('2303.17019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08337">arXiv:2303.08337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08337">pdf</a>, <a href="https://arxiv.org/format/2303.08337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A mimetic finite difference based quasi-static magnetohydrodynamic solver for force-free plasmas in tokamak disruptions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jorti%2C+Z">Zakariae Jorti</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Lipnikov%2C+K">Konstantin Lipnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xian-Zhu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08337v2-abstract-short" style="display: inline;"> Force-free plasmas are a good approximation where the plasma pressure is tiny compared with the magnetic pressure, which is the case during the cold vertical displacement event (VDE) of a major disruption in a tokamak. On time scales long compared with the transit time of Alfven waves, the evolution of a force-free plasma is most efficiently described by the quasi-static magnetohydrodynamic (MHD)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08337v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08337v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08337v2-abstract-full" style="display: none;"> Force-free plasmas are a good approximation where the plasma pressure is tiny compared with the magnetic pressure, which is the case during the cold vertical displacement event (VDE) of a major disruption in a tokamak. On time scales long compared with the transit time of Alfven waves, the evolution of a force-free plasma is most efficiently described by the quasi-static magnetohydrodynamic (MHD) model, which ignores the plasma inertia. Here we consider a regularized quasi-static MHD model for force-free plasmas in tokamak disruptions and propose a mimetic finite difference (MFD) algorithm. The full geometry of an ITER-like tokamak reactor is treated, with a blanket module region, a vacuum vessel region, and the plasma region. Specifically, we develop a parallel, fully implicit, and scalable MFD solver based on PETSc and its DMStag data structure for the discretization of the five-field quasi-static perpendicular plasma dynamics model on a 3D structured mesh. The MFD spatial discretization is coupled with a fully implicit DIRK scheme. The algorithm exactly preserves the divergence-free condition of the magnetic field under the resistive Ohm&#39;s law. The preconditioner employed is a four-level fieldsplit preconditioner, which is created by combining separate preconditioners for individual fields, that calls multigrid or direct solvers for sub-blocks or exact factorization on the separate fields. The numerical results confirm the divergence-free constraint is strongly satisfied and demonstrate the performance of the fieldsplit preconditioner and overall algorithm. The simulation of ITER VDE cases over the actual plasma current diffusion time is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08337v2-abstract-full').style.display = 'none'; document.getElementById('2303.08337v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-23-22627 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06982">arXiv:2301.06982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06982">pdf</a>, <a href="https://arxiv.org/format/2301.06982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/04/P04006">10.1088/1748-0221/18/04/P04006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Research of radon diffusion behavior in liquid scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z+F">Z. F. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">C. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+G">C. G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+T+Y">T. Y. Guan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06982v2-abstract-short" style="display: inline;"> The background caused by radon and its daughters is an important background in the low background liquid scintillator (LS) detectors. The study of the diffusion behaviour of radon in the LS contributes to the analysis of the related background caused by radon. Methodologies and devices for measuring the diffusion coefficient and solubility of radon in materials are developed and described. The rad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06982v2-abstract-full').style.display = 'inline'; document.getElementById('2301.06982v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06982v2-abstract-full" style="display: none;"> The background caused by radon and its daughters is an important background in the low background liquid scintillator (LS) detectors. The study of the diffusion behaviour of radon in the LS contributes to the analysis of the related background caused by radon. Methodologies and devices for measuring the diffusion coefficient and solubility of radon in materials are developed and described. The radon diffusion coefficient of the LS was measured for the first time and in addition the solubility coefficient was also obtained. In addition, the radon diffusion coefficient of the polyolefine film which is consistent with data in the literature was measured to verify the reliability of the diffusion device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06982v2-abstract-full').style.display = 'none'; document.getElementById('2301.06982v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00959">arXiv:2301.00959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00959">pdf</a>, <a href="https://arxiv.org/ps/2301.00959">ps</a>, <a href="https://arxiv.org/format/2301.00959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> System upgrade for $渭$Bq/m$^3$ level $^{222}$Rn concentration measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">C. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C+G+Y+P">C. G. Yang. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z+F">Z. F. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+T+Y">T. Y. Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+B">S. B. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00959v2-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multipurpose underground liquid scintillator detector, was proposed for the determination of the neutrino mass hierarchy as primary physics goal. The central detector will be submerged in a water Cherenkov detector to lower the background from the environment and cosmic muons. Radon is one of the primary background sources. Nitrogen w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00959v2-abstract-full').style.display = 'inline'; document.getElementById('2301.00959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00959v2-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multipurpose underground liquid scintillator detector, was proposed for the determination of the neutrino mass hierarchy as primary physics goal. The central detector will be submerged in a water Cherenkov detector to lower the background from the environment and cosmic muons. Radon is one of the primary background sources. Nitrogen will be used in several sub-systems, and a highly sensitive radon detector has to be developed to measure its radon concentration. A system has been developed based on $^{222}$Rn enrichment of activated carbon and $^{222}$Rn detection based on the electrostatic collection. This paper presents the detail of a $渭$Bq/m$^3$ level $^{222}$Rn concentration measurement system and gives detailed information about how the adsorption coefficient was measured and how the temperature, flow rate, and $^{222}$Rn concentration affect the adsorption coefficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00959v2-abstract-full').style.display = 'none'; document.getElementById('2301.00959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01441">arXiv:2209.01441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01441">pdf</a>, <a href="https://arxiv.org/format/2209.01441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.442338">10.1364/OE.442338 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Valley Hall edge solitons in a photonic graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qian Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+B">Boquan Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Kompanets%2C+V+O">Victor O. Kompanets</a>, <a href="/search/physics?searchtype=author&amp;query=Kartashov%2C+Y+V">Yaroslav V. Kartashov</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongdong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiqi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01441v1-abstract-short" style="display: inline;"> We predict the existence and study properties of the valley Hall edge solitons in a composite photonic graphene with a domain wall between two honeycomb lattices with broken inversion symmetry. Inversion symmetry in our system is broken due to detuning introduced into constituent sublattices of the honeycomb structure. We show that nonlinear valley Hall edge states with sufficiently high amplitude&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01441v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01441v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01441v1-abstract-full" style="display: none;"> We predict the existence and study properties of the valley Hall edge solitons in a composite photonic graphene with a domain wall between two honeycomb lattices with broken inversion symmetry. Inversion symmetry in our system is broken due to detuning introduced into constituent sublattices of the honeycomb structure. We show that nonlinear valley Hall edge states with sufficiently high amplitude bifurcating from the linear valley Hall edge state supported by the domain wall, can split into sets of bright spots due to development of the modulational instability, and that such an instability is a precursor for the formation of topological bright valley Hall edge solitons localized due to nonlinear self-action and travelling along the domain wall over large distances. Topological protection of the valley Hall edge solitons is demonstrated by modeling their passage through sharp corners of the $惟$-shaped domain wall. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01441v1-abstract-full').style.display = 'none'; document.getElementById('2209.01441v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 29, 39755-39765 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11765">arXiv:2206.11765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.11765">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Cataloguing MoSi$_2$N$_4$ and WSi$_2$N$_4$ van der Waals Heterostructures: An Exceptional Material Platform for Excitonic Solar Cell Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tho%2C+C+C">Che Chen Tho</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chenjiang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qin Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qianqian Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+T">Tong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Z">Zhuoer Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Q">Qingyun Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+C+V">C. V. Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Ong%2C+W">Wee-Liat Ong</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+S">Shi-Jun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+S">San-Dong Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">Liemao Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shengli Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ang%2C+L+K">Lay Kee Ang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guangzhao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ang%2C+Y+S">Yee Sin Ang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11765v2-abstract-short" style="display: inline;"> Two-dimensional (2D) materials van der Waals heterostructures (vdWHs) provides a revolutionary route towards high-performance solar energy conversion devices beyond the conventional silicon-based pn junction solar cells. Despite tremendous research progress accomplished in recent years, the searches of vdWHs with exceptional excitonic solar cell conversion efficiency and optical properties remain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11765v2-abstract-full').style.display = 'inline'; document.getElementById('2206.11765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11765v2-abstract-full" style="display: none;"> Two-dimensional (2D) materials van der Waals heterostructures (vdWHs) provides a revolutionary route towards high-performance solar energy conversion devices beyond the conventional silicon-based pn junction solar cells. Despite tremendous research progress accomplished in recent years, the searches of vdWHs with exceptional excitonic solar cell conversion efficiency and optical properties remain an open theoretical and experimental quest. Here we show that the vdWH family composed of MoSi$_2$N$_4$ and WSi$_2$N$_4$ monolayers provides a compelling material platform for developing high-performance ultrathin excitonic solar cells and photonics devices. Using first-principle calculations, we construct and classify 51 types of MoSi$_2$N$_4$ and WSi$_2$N$_4$-based [(Mo,W)Si$_2$N$_4$] vdWHs composed of various metallic, semimetallic, semiconducting, insulating and topological 2D materials. Intriguingly, MoSi$_2$N$_4$/(InSe, WSe$_2$) are identified as Type-II vdWHs with exceptional excitonic solar cell power conversion efficiency reaching well over 20%, which are competitive to state-of-art silicon solar cells. The (Mo,W)Si$_2$N$_4$ vdWH family exhibits strong optical absorption in both the visible and ultraviolet regimes. Exceedingly large peak ultraviolet absorptions over 40%, approaching the maximum absorption limit of a free-standing 2D material, can be achieved in (Mo,W)Si$_2$N$_4$/$伪_2$-(Mo,W)Ge$_2$P$_4$ vdWHs. Our findings unravel the enormous potential of (Mo,W)Si$_2$N$_4$ vdWHs in designing ultimately compact excitonic solar cell device technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11765v2-abstract-full').style.display = 'none'; document.getElementById('2206.11765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07982">arXiv:2206.07982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07982">pdf</a>, <a href="https://arxiv.org/format/2206.07982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2022.112364">10.1016/j.chaos.2022.112364 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vector valley Hall edge solitons in superhoneycomb lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qian Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiqi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Kartashov%2C+Y+V">Yaroslav V. Kartashov</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongdong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Konotop%2C+V+V">Vladimir V. Konotop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07982v1-abstract-short" style="display: inline;"> Topological edge solitons that bifurcate and inherit topological protection from linear edge states and, therefore, demonstrate immunity to disorder and defects upon propagation, attract considerable attention in a rapidly growing field of topological photonics. Valley Hall systems are especially interesting from the point of view of realization of topological edge solitons because they do not req&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07982v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07982v1-abstract-full" style="display: none;"> Topological edge solitons that bifurcate and inherit topological protection from linear edge states and, therefore, demonstrate immunity to disorder and defects upon propagation, attract considerable attention in a rapidly growing field of topological photonics. Valley Hall systems are especially interesting from the point of view of realization of topological edge solitons because they do not require external or artificial magnetic fields or longitudinal modulations of the underlying potential for the emergence of the topological phases. Here we report on the diverse types of vector valley Hall edge solitons forming at the domain walls between superhoneycomb lattices, including bright-dipole, bright-tripole, dark-bright, and dark-dipole solitons. In contrast to conventional scalar topological solitons, such vector states can be constructed as envelope solitons on the edge states from different branches and with different Bloch momenta. Such vector solitons can be remarkably robust, they show stable long-distance propagation and can bypass sharp bends of the domain wall. The existence of the counter-propagating valley Hall edge solitons at the same domain wall allows us to study their structural robustness upon collisions that can be nearly elastic. Our results illustrate richness of soliton families in the valley Hall systems and open new prospects for the light field manipulation and design of the nonlinear topological functional devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07982v1-abstract-full').style.display = 'none'; document.getElementById('2206.07982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures. To appear in Chaos,Solitons and Fractals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos, Solitons and Fractals 161, 112364 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08830">arXiv:2205.08830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08830">pdf</a>, <a href="https://arxiv.org/format/2205.08830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/10/033">10.1088/1475-7516/2022/10/033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (577 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08830v2-abstract-short" style="display: inline;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08830v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08830v2-abstract-full" style="display: none;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced neutral current (NC) background turns out to be the most critical background, whose uncertainty is carefully evaluated from both the spread of model predictions and an envisaged \textit{in situ} measurement. We also make a careful study on the background suppression with the pulse shape discrimination (PSD) and triple coincidence (TC) cuts. With latest DSNB signal predictions, more realistic background evaluation and PSD efficiency optimization, and additional TC cut, JUNO can reach the significance of 3$蟽$ for 3 years of data taking, and achieve better than 5$蟽$ after 10 years for a reference DSNB model. In the pessimistic scenario of non-observation, JUNO would strongly improve the limits and exclude a significant region of the model parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'none'; document.getElementById('2205.08830v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures, final published version in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2022) 033 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08629">arXiv:2205.08629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08629">pdf</a>, <a href="https://arxiv.org/format/2205.08629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-11002-8">10.1140/epjc/s10052-022-11002-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass Testing and Characterization of 20-inch PMTs for JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andre%2C+J+P+A+M">Joao Pedro Athayde Marcondes de Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a> , et al. (541 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08629v2-abstract-short" style="display: inline;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08629v2-abstract-full" style="display: none;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'none'; document.getElementById('2205.08629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.13011">arXiv:2201.13011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.13011">pdf</a>, <a href="https://arxiv.org/format/2201.13011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> On the Power-Law Hessian Spectrums in Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zeke Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qian-Yuan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Y">Yunfeng Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+M">Mingming Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Ping Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.13011v2-abstract-short" style="display: inline;"> It is well-known that the Hessian of deep loss landscape matters to optimization, generalization, and even robustness of deep learning. Recent works empirically discovered that the Hessian spectrum in deep learning has a two-component structure that consists of a small number of large eigenvalues and a large number of nearly-zero eigenvalues. However, the theoretical mechanism or the mathematical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13011v2-abstract-full').style.display = 'inline'; document.getElementById('2201.13011v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.13011v2-abstract-full" style="display: none;"> It is well-known that the Hessian of deep loss landscape matters to optimization, generalization, and even robustness of deep learning. Recent works empirically discovered that the Hessian spectrum in deep learning has a two-component structure that consists of a small number of large eigenvalues and a large number of nearly-zero eigenvalues. However, the theoretical mechanism or the mathematical behind the Hessian spectrum is still largely under-explored. To the best of our knowledge, we are the first to demonstrate that the Hessian spectrums of well-trained deep neural networks exhibit simple power-law structures. Inspired by the statistical physical theories and the spectral analysis of natural proteins, we provide a maximum-entropy theoretical interpretation for explaining why the power-law structure exist and suggest a spectral parallel between protein evolution and training of deep neural networks. By conducing extensive experiments, we further use the power-law spectral framework as a useful tool to explore multiple novel behaviors of deep learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13011v2-abstract-full').style.display = 'none'; document.getElementById('2201.13011v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 Pages, 21 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09059">arXiv:2201.09059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09059">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yaowei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+T">Tian Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qingli Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">Mingxu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ying%2C+T">Tao Ying</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+H">Hong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xiaoqin Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09059v1-abstract-short" style="display: inline;"> Magnesium (Mg) alloys have shown great prospects as both structural and biomedical materials, while poor corrosion resistance limits their further application. In this work, to avoid the time-consuming and laborious experiment trial, a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics, fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09059v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09059v1-abstract-full" style="display: none;"> Magnesium (Mg) alloys have shown great prospects as both structural and biomedical materials, while poor corrosion resistance limits their further application. In this work, to avoid the time-consuming and laborious experiment trial, a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics, from both the thermodynamic and kinetic perspectives. The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified. Then, the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated, and the corrosion exchange current density is further calculated by a hydrogen evolution reaction (HER) kinetic model. Several intermetallics, e.g. Y3Mg, Y2Mg and La5Mg, are identified to be promising intermetallics which might effectively hinder the cathodic HER. Furthermore, machine learning (ML) models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function (W_f) and weighted first ionization energy (WFIE). The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error (RMSE) of 0.11 eV. This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion, but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy, which can be extended to ternary Mg alloys or other alloy systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09059v1-abstract-full').style.display = 'none'; document.getElementById('2201.09059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 Pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05325">arXiv:2112.05325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05325">pdf</a>, <a href="https://arxiv.org/format/2112.05325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient training of artificial neural network surrogates for a collisional-radiative model through adaptive parameter space sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Garland%2C+N+A">Nathan A. Garland</a>, <a href="/search/physics?searchtype=author&amp;query=Maulik%2C+R">Romit Maulik</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xian-Zhu Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Balaprakash%2C+P">Prasanna Balaprakash</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05325v3-abstract-short" style="display: inline;"> Reliable plasma transport modeling for magnetic confinement fusion depends on accurately resolving the ion charge state distribution and radiative power losses of the plasma. These quantities can be obtained from solutions of a collisional-radiative (CR) model at each time step within a plasma transport simulation. However, even compact, approximate CR models can be computationally onerous to eval&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05325v3-abstract-full').style.display = 'inline'; document.getElementById('2112.05325v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05325v3-abstract-full" style="display: none;"> Reliable plasma transport modeling for magnetic confinement fusion depends on accurately resolving the ion charge state distribution and radiative power losses of the plasma. These quantities can be obtained from solutions of a collisional-radiative (CR) model at each time step within a plasma transport simulation. However, even compact, approximate CR models can be computationally onerous to evaluate, and in-situ evaluations of these models within a coupled plasma transport code can lead to a rigid bottleneck. A way to bypass this bottleneck is to deploy artificial neural network surrogates for rapid evaluations of the necessary plasma quantities. However, one issue with training an accurate artificial neural network surrogate is the reliance on a sufficiently large and representative data set for both training and validation, which can be time-consuming to generate. In this study we further explore a data-driven active learning and training scheme to allow autonomous adaptive sampling of the problem parameter space that ensures a sufficiently large and meaningful set of training data assembled for the surrogate training. Our numerical experiments show that in order to produce a comparably accurate CR surrogate, the proposed approach requires a total number of data samples that is an order-of-magnitude smaller than a conventional approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05325v3-abstract-full').style.display = 'none'; document.getElementById('2112.05325v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-21-31682. Approved for public release; distribution is unlimited </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.07358">arXiv:2111.07358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.07358">pdf</a>, <a href="https://arxiv.org/ps/2111.07358">ps</a>, <a href="https://arxiv.org/format/2111.07358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/02/P02003">10.1088/1748-0221/17/02/P02003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Study on the radon removal performance of low background activated carbon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+Y">Y. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">C. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+S+K">S. K. Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+G">C. G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.07358v4-abstract-short" style="display: inline;"> Radon and radon daughters pose significant backgrounds to rare-event searching experiments. Activated carbon, which has very strong adsorption capacity for radon, can be used for radon removal and radon enrichment. The internal $^{226}$Ra concentration ultimately limits its radon enrichment ability. In order to measure the intrinsic background and study the radon adsorption capability of Saratech&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07358v4-abstract-full').style.display = 'inline'; document.getElementById('2111.07358v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.07358v4-abstract-full" style="display: none;"> Radon and radon daughters pose significant backgrounds to rare-event searching experiments. Activated carbon, which has very strong adsorption capacity for radon, can be used for radon removal and radon enrichment. The internal $^{226}$Ra concentration ultimately limits its radon enrichment ability. In order to measure the intrinsic background and study the radon adsorption capability of Saratech activated carbon at various temperatures, a radon-emanation measurement system with a high-sensitivity radon detector and an adsorption-performance research-system have been developed. In this paper, a 0.71~mBq/m$^3$ high-sensitivity radon detector and measurement details of the radon-adsorption capability of Saratech activated carbon at low temperature will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07358v4-abstract-full').style.display = 'none'; document.getElementById('2111.07358v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,11figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.07668">arXiv:2109.07668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.07668">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.437624">10.1364/OE.437624 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interference fringes in a nonlinear Michelson interferometer based on spontaneous parametric down-conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhi-Yuan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Liu-Long Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shi-Kai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Zheng Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiao-Chun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qing Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.07668v2-abstract-short" style="display: inline;"> Quantum nonlinear interferometers (QNIs) can measure the infrared physical quantities of a sample by detecting visible photons. A QNI with Michelson geometry based on the spontaneous parametric down-conversion in a second-order nonlinear crystal is studied systematically. A simplified theoretical model of the QNI is presented. The interference visibility, coherence length, equal-inclination interf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07668v2-abstract-full').style.display = 'inline'; document.getElementById('2109.07668v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.07668v2-abstract-full" style="display: none;"> Quantum nonlinear interferometers (QNIs) can measure the infrared physical quantities of a sample by detecting visible photons. A QNI with Michelson geometry based on the spontaneous parametric down-conversion in a second-order nonlinear crystal is studied systematically. A simplified theoretical model of the QNI is presented. The interference visibility, coherence length, equal-inclination interference, and equal-thickness interference for the QNI are demonstrated theoretically and experimentally. As an application example of the QNI, the refractive index and the angle between two surfaces of a BBO crystal are measured using equal-inclination interference and equal-thickness interference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07668v2-abstract-full').style.display = 'none'; document.getElementById('2109.07668v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05571">arXiv:2107.05571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.05571">pdf</a>, <a href="https://arxiv.org/format/2107.05571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.17.034008">10.1103/PhysRevApplied.17.034008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Connection between antennas, beam steering, and the moir茅 effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=McGuyer%2C+B+H">B. H. McGuyer</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05571v3-abstract-short" style="display: inline;"> The moir茅 effect provides an interpretation for the steering of antennas that form beams through internal spatial interferences. We make an explicit connection between such antennas and the moir茅 effect, and use it to model six planar antennas that steer by scaling, rotating, or translating operations. Three of the antennas illustrate how to use moir茅 patterns to generate antenna designs. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05571v3-abstract-full" style="display: none;"> The moir茅 effect provides an interpretation for the steering of antennas that form beams through internal spatial interferences. We make an explicit connection between such antennas and the moir茅 effect, and use it to model six planar antennas that steer by scaling, rotating, or translating operations. Three of the antennas illustrate how to use moir茅 patterns to generate antenna designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05571v3-abstract-full').style.display = 'none'; document.getElementById('2107.05571v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 17, 034008 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03669">arXiv:2107.03669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03669">pdf</a>, <a href="https://arxiv.org/format/2107.03669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2021)102">10.1007/JHEP11(2021)102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radioactivity control strategy for the JUNO detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (578 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03669v2-abstract-short" style="display: inline;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'inline'; document.getElementById('2107.03669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03669v2-abstract-full" style="display: none;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz in the default fiducial volume, above an energy threshold of 0.7 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'none'; document.getElementById('2107.03669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00260">arXiv:2106.00260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00260">pdf</a>, <a href="https://arxiv.org/format/2106.00260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2022.110967">10.1016/j.jcp.2022.110967 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Chacon%2C+L">Luis Chacon</a>, <a href="/search/physics?searchtype=author&amp;query=Kolev%2C+T+V">Tzanio V. Kolev</a>, <a href="/search/physics?searchtype=author&amp;query=Shadid%2C+J+N">John N. Shadid</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xian-Zhu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00260v2-abstract-short" style="display: inline;"> The magnetohydrodynamics (MHD) equations are continuum models used in the study of a wide range of plasma physics systems, including the evolution of complex plasma dynamics in tokamak disruptions. However, efficient numerical solution methods for MHD are extremely challenging due to disparate time and length scales, strong hyperbolic phenomena, and nonlinearity. Therefore the development of scala&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00260v2-abstract-full').style.display = 'inline'; document.getElementById('2106.00260v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00260v2-abstract-full" style="display: none;"> The magnetohydrodynamics (MHD) equations are continuum models used in the study of a wide range of plasma physics systems, including the evolution of complex plasma dynamics in tokamak disruptions. However, efficient numerical solution methods for MHD are extremely challenging due to disparate time and length scales, strong hyperbolic phenomena, and nonlinearity. Therefore the development of scalable, implicit MHD algorithms and high-resolution adaptive mesh refinement strategies is of considerable importance. In this work, we develop a high-order stabilized finite-element algorithm for the reduced visco-resistive MHD equations based on the MFEM finite element library (mfem.org). The scheme is fully implicit, solved with the Jacobian-free Newton-Krylov (JFNK) method with a physics-based preconditioning strategy. Our preconditioning strategy is a generalization of the physics-based preconditioning methods in [Chacon, et al, JCP 2002] to adaptive, stabilized finite elements. Algebraic multigrid methods are used to invert sub-block operators to achieve scalability. A parallel adaptive mesh refinement scheme with dynamic load-balancing is implemented to efficiently resolve the multi-scale spatial features of the system. Our implementation uses the MFEM framework, which provides arbitrary-order polynomials and flexible adaptive conforming and non-conforming meshes capabilities. Results demonstrate the accuracy, efficiency, and scalability of the implicit scheme in the presence of large scale disparity. The potential of the AMR approach is demonstrated on an island coalescence problem in the high Lundquist-number regime ($\ge 10^7$) with the successful resolution of plasmoid instabilities and thin current sheets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00260v2-abstract-full').style.display = 'none'; document.getElementById('2106.00260v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.16900">arXiv:2103.16900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.16900">pdf</a>, <a href="https://arxiv.org/format/2103.16900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Design and Sensitivity of JUNO&#39;s scintillator radiopurity pre-detector OSIRIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (582 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.16900v1-abstract-short" style="display: inline;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'inline'; document.getElementById('2103.16900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.16900v1-abstract-full" style="display: none;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of $^{238}$U and $^{232}$Th requires a large ($\sim$20 m$^3$) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'none'; document.getElementById('2103.16900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.06015">arXiv:2012.06015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.06015">pdf</a>, <a href="https://arxiv.org/format/2012.06015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A parallel cut-cell algorithm for the free-boundary Grad-Shafranov problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xian-Zhu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.06015v2-abstract-short" style="display: inline;"> A parallel cut-cell algorithm is described to solve the free-boundary problem of the Grad-Shafranov equation. The algorithm reformulates the free-boundary problem in an irregular bounded domain and its important aspects include a searching algorithm for the magnetic axis and separatrix, a surface integral along the irregular boundary to determine the boundary values, an approach to optimize the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06015v2-abstract-full').style.display = 'inline'; document.getElementById('2012.06015v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.06015v2-abstract-full" style="display: none;"> A parallel cut-cell algorithm is described to solve the free-boundary problem of the Grad-Shafranov equation. The algorithm reformulates the free-boundary problem in an irregular bounded domain and its important aspects include a searching algorithm for the magnetic axis and separatrix, a surface integral along the irregular boundary to determine the boundary values, an approach to optimize the coil current based on a targeting plasma shape, Picard iterations with Aitken&#39;s acceleration for the resulting nonlinear problem, and a Cartesian grid embedded boundary method to handle the complex geometry. The algorithm is implemented in parallel using a standard domain-decomposition approach and a good parallel scaling is observed. Numerical results verify the accuracy and efficiency of the free-boundary Grad-Shafranov solver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06015v2-abstract-full').style.display = 'none'; document.getElementById('2012.06015v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures, SIAM Journal on Scientific Computing</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06405">arXiv:2011.06405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06405">pdf</a>, <a href="https://arxiv.org/format/2011.06405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)004">10.1007/JHEP03(2021)004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration Strategy of the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (571 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06405v3-abstract-short" style="display: inline;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'inline'; document.getElementById('2011.06405v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06405v3-abstract-full" style="display: none;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'none'; document.getElementById('2011.06405v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04496">arXiv:2007.04496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04496">pdf</a>, <a href="https://arxiv.org/format/2007.04496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/abcbaa">10.1088/1361-6587/abcbaa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast neural Poincar茅 maps for toroidal magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Burby%2C+J+W">J. W. Burby</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Maulik%2C+R">R. Maulik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04496v2-abstract-short" style="display: inline;"> Poincar茅 maps for toroidal magnetic fields are routinely employed to study gross confinement properties in devices built to contain hot plasmas. In most practical applications, evaluating a Poincar茅 map requires numerical integration of a magnetic field line, a process that can be slow and that cannot be easily accelerated using parallel computations. We show that a novel neural network architectu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04496v2-abstract-full').style.display = 'inline'; document.getElementById('2007.04496v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04496v2-abstract-full" style="display: none;"> Poincar茅 maps for toroidal magnetic fields are routinely employed to study gross confinement properties in devices built to contain hot plasmas. In most practical applications, evaluating a Poincar茅 map requires numerical integration of a magnetic field line, a process that can be slow and that cannot be easily accelerated using parallel computations. We show that a novel neural network architecture, the H茅nonNet, is capable of accurately learning realistic Poincar茅 maps from observations of a conventional field-line-following algorithm. After training, such learned Poincar茅 maps evaluate much faster than the field-line integration method. Moreover, the H茅nonNet architecture exactly reproduces the primary physics constraint imposed on field-line Poincar茅 maps: flux preservation. This structure-preserving property is the consequence of each layer in a H茅nonNet being a symplectic map. We demonstrate empirically that a H茅nonNet can learn to mock the confinement properties of a large magnetic island by using coiled hyperbolic invariant manifolds to produce a sticky chaotic region at the desired island location. This suggests a novel approach to designing magnetic fields with good confinement properties that may be more flexible than ensuring confinement using KAM tori. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04496v2-abstract-full').style.display = 'none'; document.getElementById('2007.04496v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 26 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00314">arXiv:2007.00314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00314">pdf</a>, <a href="https://arxiv.org/format/2007.00314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bay%2C+D">Daya Bay</a>, <a href="/search/physics?searchtype=author&amp;query=collaborations%2C+J">JUNO collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">A. Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">T. Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">S. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">M. Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">N. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G+P">G. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">G. Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">V. Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">T. Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">B. Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">J. P. A. M. de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">A. Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">W. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">M. Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">E. Baussan</a> , et al. (642 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00314v1-abstract-short" style="display: inline;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'inline'; document.getElementById('2007.00314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00314v1-abstract-full" style="display: none;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and &lt;0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'none'; document.getElementById('2007.00314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11760">arXiv:2006.11760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11760">pdf</a>, <a href="https://arxiv.org/format/2006.11760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11760v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11760v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid scintillator detectors. In this paper we present a comprehensive assessment of JUNO&#39;s potential for detecting $^8$B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2~MeV threshold on the recoil electron energy is found to be achievable assuming the intrinsic radioactive background $^{238}$U and $^{232}$Th in the liquid scintillator can be controlled to 10$^{-17}$~g/g. With ten years of data taking, about 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the tension between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If $螖m^{2}_{21}=4.8\times10^{-5}~(7.5\times10^{-5})$~eV$^{2}$, JUNO can provide evidence of neutrino oscillation in the Earth at the about 3$蟽$~(2$蟽$) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moveover, JUNO can simultaneously measure $螖m^2_{21}$ using $^8$B solar neutrinos to a precision of 20\% or better depending on the central value and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help elucidate the current tension between the value of $螖m^2_{21}$ reported by solar neutrino experiments and the KamLAND experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'none'; document.getElementById('2006.11760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 plots, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08745">arXiv:2005.08745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.08745">pdf</a>, <a href="https://arxiv.org/format/2005.08745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08745v1-abstract-short" style="display: inline;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'inline'; document.getElementById('2005.08745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08745v1-abstract-full" style="display: none;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future reactor neutrino experiments, and to provide a benchmark measurement to test nuclear databases. A spherical acrylic vessel containing 2.8 ton gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon Photomultipliers (SiPMs) of &gt;50% photon detection efficiency with almost full coverage. The photoelectron yield is about 4500 per MeV, an order higher than any existing large-scale liquid scintillator detectors. The detector operates at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The detector will measure about 2000 reactor antineutrinos per day, and is designed to be well shielded from cosmogenic backgrounds and ambient radioactivities to have about 10% background-to-signal ratio. The experiment is expected to start operation in 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'none'; document.getElementById('2005.08745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">134 pages, 114 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.07353">arXiv:2003.07353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.07353">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Calibrated Intervention and Containment of the COVID-19 Pandemic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+L">Liang Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xuefei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+F">Fei Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qian-Yuan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+V">Viola Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhiyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xingye Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xuanxuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yingchen Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Haiguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+L">Lei-Han Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.07353v6-abstract-short" style="display: inline;"> Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case studies, we construct an epidemiological model that focuses on transmission around the symptom onset. The model is calibrated against incubation period an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07353v6-abstract-full').style.display = 'inline'; document.getElementById('2003.07353v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.07353v6-abstract-full" style="display: none;"> Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case studies, we construct an epidemiological model that focuses on transmission around the symptom onset. The model is calibrated against incubation period and pairwise transmission statistics during the initial outbreaks of the pandemic outside Wuhan with minimal non-pharmaceutical interventions. Mathematical treatment of the model yields explicit expressions for the size of latent and pre-symptomatic subpopulations during the exponential growth phase, with the local epidemic growth rate as input. We then explore reduction of the basic reproduction number R_0 through specific disease control measures such as contact tracing, testing, social distancing, wearing masks and sheltering in place. When these measures are implemented in combination, their effects on R_0 multiply. We also compare our model behaviour to the first wave of the COVID-19 spreading in various affected regions and highlight generic and less generic features of the pandemic development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07353v6-abstract-full').style.display = 'none'; document.getElementById('2003.07353v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 6 main text figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 1147 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.03127">arXiv:2002.03127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.03127">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/37/6/068101">10.1088/0256-307X/37/6/068101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for a new extended solid of nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lei%2C+L">Li Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qiqi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Feng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">Binbin Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">Chunyin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.03127v1-abstract-short" style="display: inline;"> A new extended solid nitrogen, referred to post-layered-polymeric nitrogen (PLP-N), was observed by further heating the layered-polymeric nitrogen (LP-N) to above 2300 K at 161 GPa. The new phase is found to be very transparent and exhibits ultra-large d-spacings ranging from 2.8 to 4.9 脜 at 172 GPa, suggesting a possible large-unit-cell 2D chain-like or 0D cluster-type structure with wide bandgap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03127v1-abstract-full').style.display = 'inline'; document.getElementById('2002.03127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.03127v1-abstract-full" style="display: none;"> A new extended solid nitrogen, referred to post-layered-polymeric nitrogen (PLP-N), was observed by further heating the layered-polymeric nitrogen (LP-N) to above 2300 K at 161 GPa. The new phase is found to be very transparent and exhibits ultra-large d-spacings ranging from 2.8 to 4.9 脜 at 172 GPa, suggesting a possible large-unit-cell 2D chain-like or 0D cluster-type structure with wide bandgap. However, the observed X-ray diffraction pattern and Raman scattering data cannot match any predicted structures in the published literature. This finding further complicates the phase diagram of nitrogen and also highlights the path dependence of the high-pressure dissociative transition in nitrogen. In addition, the forming boundary between cg-N and LP-N has been determined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03127v1-abstract-full').style.display = 'none'; document.getElementById('2002.03127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13933">arXiv:1910.13933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13933">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-pressure isostructural transition in nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Pu%2C+M">Meifang Pu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qiqi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Feng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">Binbin Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+L">Li Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13933v1-abstract-short" style="display: inline;"> Understanding high-pressure transitions in prototypical linear diatomic molecules, such as hydrogen, nitrogen, and oxygen, is an important objective in high-pressure physics. Recent ultrahigh-pressure study on hydrogen revealed that there exists a molecular-symmetry-breaking isostructural electronic transition in hydrogen. The pressure-induced symmetry breaking could also lead to a series of solid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13933v1-abstract-full').style.display = 'inline'; document.getElementById('1910.13933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13933v1-abstract-full" style="display: none;"> Understanding high-pressure transitions in prototypical linear diatomic molecules, such as hydrogen, nitrogen, and oxygen, is an important objective in high-pressure physics. Recent ultrahigh-pressure study on hydrogen revealed that there exists a molecular-symmetry-breaking isostructural electronic transition in hydrogen. The pressure-induced symmetry breaking could also lead to a series of solid molecular phases in nitrogen associated with the splitting of vibron, walking a path from fluid nitrogen to molecular solids and then to polymetric nitrogen phases. However, isostructural transition in nitrogen has not been reported so far, which may provide crucial information on the crystallographic nature of the pressure-induced dissociation transitions in nitrogen. Here we present a high-pressure Raman scattering and high-pressure angle dispersive X-ray diffraction study of the previously reported lambda-N2 and reveal an isostructural transition from the lambda-N2 to a new derivative phase, lambda-N2. Under compression, lambda-N2 remains in the monoclinic crystal lattice, accompanied by a monotonic increase in anisotropy. The pressure-dependent decrease of the unit cell parameters exhibits a discontinuity at the pressure of 54 GPa, accompany with sudden broadening and turnover of vibron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13933v1-abstract-full').style.display = 'none'; document.getElementById('1910.13933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07146">arXiv:1908.07146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.07146">pdf</a>, <a href="https://arxiv.org/format/1908.07146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02336-2">10.1007/s10909-020-02336-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic Layer Deposition Niobium Nitride Films for High-Q Resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sheagren%2C+C">Calder Sheagren</a>, <a href="/search/physics?searchtype=author&amp;query=Barry%2C+P">Peter Barry</a>, <a href="/search/physics?searchtype=author&amp;query=Shirokoff%2C+E">Erik Shirokoff</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q+Y">Qing Yang Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07146v3-abstract-short" style="display: inline;"> Niobium nitride (NbN) is a useful material for fabricating detectors because of its high critical temperature and relatively high kinetic inductance. In particular, NbN can be used to fabricate nanowire detectors and mm-wave transmission lines. When deposited, NbN is usually sputtered, leaving room for concern about uniformity at small thicknesses. We present atomic layer deposition niobium nitrid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07146v3-abstract-full').style.display = 'inline'; document.getElementById('1908.07146v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07146v3-abstract-full" style="display: none;"> Niobium nitride (NbN) is a useful material for fabricating detectors because of its high critical temperature and relatively high kinetic inductance. In particular, NbN can be used to fabricate nanowire detectors and mm-wave transmission lines. When deposited, NbN is usually sputtered, leaving room for concern about uniformity at small thicknesses. We present atomic layer deposition niobium nitride (ALD NbN) as an alternative technique that allows for precision control of deposition parameters such as film thickness, stage temperature, and nitrogen flow. Atomic-scale control over film thickness admits wafer-scale uniformity for films 4-30 nm thick; control over deposition temperature gives rise to growth rate changes, which can be used to optimize film thickness and critical temperature. In order to characterize ALD NbN in the radio-frequency regime, we construct single-layer microwave resonators and test their performance as a function of stage temperature and input power. ALD processes can admit high resonator quality factors, which in turn increase detector multiplexing capabilities. We present measurements of the critical temperature and internal quality factor of ALD NbN resonators under the variation of ALD parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07146v3-abstract-full').style.display = 'none'; document.getElementById('1908.07146v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JLTP, LTD18 special edition</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11025">arXiv:1904.11025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.11025">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.reactfunctpolym.2019.02.005">10.1016/j.reactfunctpolym.2019.02.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Templated synthesis of cyclic poly(ionic liquid)s </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qingquan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Weiyi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+J">Jiayin Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Q">Qiang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11025v1-abstract-short" style="display: inline;"> Charged cyclic polymers, e.g. cyclic DNAs and polypeptides, play enabling roles in organisms, but their synthesis was challenging due to the well known polyelectrolyte effect. To tackle the challenge, we developed a templated method to synthesize a library of imidazolium and pyridinium based cyclic poly(ionic liquid)s. Cyclic templates, cyclic polyimidazole and poly(2-pyridine), were synthesized f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11025v1-abstract-full').style.display = 'inline'; document.getElementById('1904.11025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11025v1-abstract-full" style="display: none;"> Charged cyclic polymers, e.g. cyclic DNAs and polypeptides, play enabling roles in organisms, but their synthesis was challenging due to the well known polyelectrolyte effect. To tackle the challenge, we developed a templated method to synthesize a library of imidazolium and pyridinium based cyclic poly(ionic liquid)s. Cyclic templates, cyclic polyimidazole and poly(2-pyridine), were synthesized first through ring-closure method by light-induced Diels-Alder click reaction. Through quaternization of cyclic templates followed by anion metathesis, the cyclic poly(ionic liquid)s were synthesized, which paired with varied counter anions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11025v1-abstract-full').style.display = 'none'; document.getElementById('1904.11025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Reactive and Functional Polymers, Volume 138, May 2019, Pages 1-8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.00991">arXiv:1809.00991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.00991">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> First Integrated Implosion Experiment of Three-Axis Cylindrical Hohlraum at the SGIII Laser Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kuang%2C+L">Longyu Kuang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+S">Shaoen Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+L">Longfei Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jianhua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liling Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zhiwei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yulong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiangming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xiaoshi Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Qi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+X">Xiayu Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhurong Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qiangqiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+B">Bo Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+K">Keli Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+L">Lifei Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+H">Huabing Du</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongjing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+D">Dong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jiamin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+L">Lin Gao</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.00991v1-abstract-short" style="display: inline;"> The first integrated implosion experiment of three-axis cylindrical hohlraum (TACH) was accomplished at the SGIII laser facility. 24 laser beams of the SGIII laser facility were carefully chosen and quasi-symmetrically injected into the TACH, in which a highly symmetric radiation filed was generated with a peak radiation temperature of ~190eV. Driven by the radiation field, the neutron yield of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00991v1-abstract-full').style.display = 'inline'; document.getElementById('1809.00991v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.00991v1-abstract-full" style="display: none;"> The first integrated implosion experiment of three-axis cylindrical hohlraum (TACH) was accomplished at the SGIII laser facility. 24 laser beams of the SGIII laser facility were carefully chosen and quasi-symmetrically injected into the TACH, in which a highly symmetric radiation filed was generated with a peak radiation temperature of ~190eV. Driven by the radiation field, the neutron yield of a deuterium gas filled capsule reached ~1e9, and the corresponding yield over clean (YOC) was ~40% for a convergence ratio (Cr) of ~17. The X-ray self-emission image of imploded capsule cores was nearly round, and the backscatter fraction of laser beams was less than 1.25%. This experiment preliminarily demonstrated the major performance of TACH, such as the robustness of symmetry, and a laser plasma instability (LPI) behavior similar to that of the outer ring of traditional cylindrical hohlraum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00991v1-abstract-full').style.display = 'none'; document.getElementById('1809.00991v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tang%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tang%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tang%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10