CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;16 of 16 results for author: <span class="mathjax">Pomponi, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Pomponi%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pomponi, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pomponi%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pomponi, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19587">arXiv:2412.19587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19587">pdf</a>, <a href="https://arxiv.org/format/2412.19587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Goal-oriented Communications based on Recursive Early Exit Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Merluzzi%2C+M">Mattia Merluzzi</a>, <a href="/search/cs?searchtype=author&amp;query=Devoto%2C+A">Alessio Devoto</a>, <a href="/search/cs?searchtype=author&amp;query=Mota%2C+M+P">Mateus Pontes Mota</a>, <a href="/search/cs?searchtype=author&amp;query=Di+Lorenzo%2C+P">Paolo Di Lorenzo</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19587v1-abstract-short" style="display: inline;"> This paper presents a novel framework for goal-oriented semantic communications leveraging recursive early exit models. The proposed approach is built on two key components. First, we introduce an innovative early exit strategy that dynamically partitions computations, enabling samples to be offloaded to a server based on layer-wise recursive prediction dynamics that detect samples for which the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19587v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19587v1-abstract-full" style="display: none;"> This paper presents a novel framework for goal-oriented semantic communications leveraging recursive early exit models. The proposed approach is built on two key components. First, we introduce an innovative early exit strategy that dynamically partitions computations, enabling samples to be offloaded to a server based on layer-wise recursive prediction dynamics that detect samples for which the confidence is not increasing fast enough over layers. Second, we develop a Reinforcement Learning-based online optimization framework that jointly determines early exit points, computation splitting, and offloading strategies, while accounting for wireless conditions, inference accuracy, and resource costs. Numerical evaluations in an edge inference scenario demonstrate the method&#39;s adaptability and effectiveness in striking an excellent trade-off between performance, latency, and resource efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19587v1-abstract-full').style.display = 'none'; document.getElementById('2412.19587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08670">arXiv:2408.08670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08670">pdf</a>, <a href="https://arxiv.org/format/2408.08670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Layer Selection for Efficient Vision Transformer Fine-Tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Devoto%2C+A">Alessio Devoto</a>, <a href="/search/cs?searchtype=author&amp;query=Alvetreti%2C+F">Federico Alvetreti</a>, <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Di+Lorenzo%2C+P">Paolo Di Lorenzo</a>, <a href="/search/cs?searchtype=author&amp;query=Minervini%2C+P">Pasquale Minervini</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08670v1-abstract-short" style="display: inline;"> Recently, foundation models based on Vision Transformers (ViTs) have become widely available. However, their fine-tuning process is highly resource-intensive, and it hinders their adoption in several edge or low-energy applications. To this end, in this paper we introduce an efficient fine-tuning method for ViTs called $\textbf{ALaST}$ (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08670v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08670v1-abstract-full" style="display: none;"> Recently, foundation models based on Vision Transformers (ViTs) have become widely available. However, their fine-tuning process is highly resource-intensive, and it hinders their adoption in several edge or low-energy applications. To this end, in this paper we introduce an efficient fine-tuning method for ViTs called $\textbf{ALaST}$ ($\textit{Adaptive Layer Selection Fine-Tuning for Vision Transformers}$) to speed up the fine-tuning process while reducing computational cost, memory load, and training time. Our approach is based on the observation that not all layers are equally critical during fine-tuning, and their importance varies depending on the current mini-batch. Therefore, at each fine-tuning step, we adaptively estimate the importance of all layers and we assign what we call ``compute budgets&#39;&#39; accordingly. Layers that were allocated lower budgets are either trained with a reduced number of input tokens or kept frozen. Freezing a layer reduces the computational cost and memory usage by preventing updates to its weights, while discarding tokens removes redundant data, speeding up processing and reducing memory requirements. We show that this adaptive compute allocation enables a nearly-optimal schedule for distributing computational resources across layers, resulting in substantial reductions in training time (up to 1.5x), FLOPs (up to 2x), and memory load (up to 2x) compared to traditional full fine-tuning approaches. Additionally, it can be successfully combined with other parameter-efficient fine-tuning methods, such as LoRA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08670v1-abstract-full').style.display = 'none'; document.getElementById('2408.08670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14320">arXiv:2407.14320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14320">pdf</a>, <a href="https://arxiv.org/format/2407.14320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Joint or Disjoint: Mixing Training Regimes for Early-Exit Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Krzepkowski%2C+B">Bart艂omiej Krzepkowski</a>, <a href="/search/cs?searchtype=author&amp;query=Michaluk%2C+M">Monika Michaluk</a>, <a href="/search/cs?searchtype=author&amp;query=Szarwacki%2C+F">Franciszek Szarwacki</a>, <a href="/search/cs?searchtype=author&amp;query=Kubaty%2C+P">Piotr Kubaty</a>, <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Trzci%C5%84ski%2C+T">Tomasz Trzci艅ski</a>, <a href="/search/cs?searchtype=author&amp;query=W%C3%B3jcik%2C+B">Bartosz W贸jcik</a>, <a href="/search/cs?searchtype=author&amp;query=Adamczewski%2C+K">Kamil Adamczewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14320v1-abstract-short" style="display: inline;"> Early exits are an important efficiency mechanism integrated into deep neural networks that allows for the termination of the network&#39;s forward pass before processing through all its layers. By allowing early halting of the inference process for less complex inputs that reached high confidence, early exits significantly reduce the amount of computation required. Early exit methods add trainable in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14320v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14320v1-abstract-full" style="display: none;"> Early exits are an important efficiency mechanism integrated into deep neural networks that allows for the termination of the network&#39;s forward pass before processing through all its layers. By allowing early halting of the inference process for less complex inputs that reached high confidence, early exits significantly reduce the amount of computation required. Early exit methods add trainable internal classifiers which leads to more intricacy in the training process. However, there is no consistent verification of the approaches of training of early exit methods, and no unified scheme of training such models. Most early exit methods employ a training strategy that either simultaneously trains the backbone network and the exit heads or trains the exit heads separately. We propose a training approach where the backbone is initially trained on its own, followed by a phase where both the backbone and the exit heads are trained together. Thus, we advocate for organizing early-exit training strategies into three distinct categories, and then validate them for their performance and efficiency. In this benchmark, we perform both theoretical and empirical analysis of early-exit training regimes. We study the methods in terms of information flow, loss landscape and numerical rank of activations and gauge the suitability of regimes for various architectures and datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14320v1-abstract-full').style.display = 'none'; document.getElementById('2407.14320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02330">arXiv:2405.02330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02330">pdf</a>, <a href="https://arxiv.org/format/2405.02330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Semantic Token Selection for AI-native Goal-oriented Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Devoto%2C+A">Alessio Devoto</a>, <a href="/search/cs?searchtype=author&amp;query=Petruzzi%2C+S">Simone Petruzzi</a>, <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Di+Lorenzo%2C+P">Paolo Di Lorenzo</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02330v1-abstract-short" style="display: inline;"> In this paper, we propose a novel design for AI-native goal-oriented communications, exploiting transformer neural networks under dynamic inference constraints on bandwidth and computation. Transformers have become the standard architecture for pretraining large-scale vision and text models, and preliminary results have shown promising performance also in deep joint source-channel coding (JSCC). H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02330v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02330v1-abstract-full" style="display: none;"> In this paper, we propose a novel design for AI-native goal-oriented communications, exploiting transformer neural networks under dynamic inference constraints on bandwidth and computation. Transformers have become the standard architecture for pretraining large-scale vision and text models, and preliminary results have shown promising performance also in deep joint source-channel coding (JSCC). Here, we consider a dynamic model where communication happens over a channel with variable latency and bandwidth constraints. Leveraging recent works on conditional computation, we exploit the structure of the transformer blocks and the multihead attention operator to design a trainable semantic token selection mechanism that learns to select relevant tokens (e.g., image patches) from the input signal. This is done dynamically, on a per-input basis, with a rate that can be chosen as an additional input by the user. We show that our model improves over state-of-the-art token selection mechanisms, exhibiting high accuracy for a wide range of latency and bandwidth constraints, without the need for deploying multiple architectures tailored to each constraint. Last, but not least, the proposed token selection mechanism helps extract powerful semantics that are easy to understand and explain, paving the way for interpretable-by-design models for the next generation of AI-native communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02330v1-abstract-full').style.display = 'none'; document.getElementById('2405.02330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 94A40 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07965">arXiv:2403.07965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07965">pdf</a>, <a href="https://arxiv.org/format/2403.07965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3233/IA-240035">10.3233/IA-240035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conditional computation in neural networks: principles and research trends </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Baiocchi%2C+A">Alessandro Baiocchi</a>, <a href="/search/cs?searchtype=author&amp;query=Devoto%2C+A">Alessio Devoto</a>, <a href="/search/cs?searchtype=author&amp;query=Marsocci%2C+V">Valerio Marsocci</a>, <a href="/search/cs?searchtype=author&amp;query=Minervini%2C+P">Pasquale Minervini</a>, <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07965v2-abstract-short" style="display: inline;"> This article summarizes principles and ideas from the emerging area of applying \textit{conditional computation} methods to the design of neural networks. In particular, we focus on neural networks that can dynamically activate or de-activate parts of their computational graph conditionally on their input. Examples include the dynamic selection of, e.g., input tokens, layers (or sets of layers), a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07965v2-abstract-full').style.display = 'inline'; document.getElementById('2403.07965v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07965v2-abstract-full" style="display: none;"> This article summarizes principles and ideas from the emerging area of applying \textit{conditional computation} methods to the design of neural networks. In particular, we focus on neural networks that can dynamically activate or de-activate parts of their computational graph conditionally on their input. Examples include the dynamic selection of, e.g., input tokens, layers (or sets of layers), and sub-modules inside each layer (e.g., channels in a convolutional filter). We first provide a general formalism to describe these techniques in an uniform way. Then, we introduce three notable implementations of these principles: mixture-of-experts (MoEs) networks, token selection mechanisms, and early-exit neural networks. The paper aims to provide a tutorial-like introduction to this growing field. To this end, we analyze the benefits of these modular designs in terms of efficiency, explainability, and transfer learning, with a focus on emerging applicative areas ranging from automated scientific discovery to semantic communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07965v2-abstract-full').style.display = 'none'; document.getElementById('2403.07965v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Intelligenza Artificiale, vol. Pre-press, pp. 1-16, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01262">arXiv:2402.01262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.01262">pdf</a>, <a href="https://arxiv.org/format/2402.01262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Class incremental learning with probability dampening and cascaded gated classifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Devoto%2C+A">Alessio Devoto</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01262v3-abstract-short" style="display: inline;"> Humans are capable of acquiring new knowledge and transferring learned knowledge into different domains, incurring a small forgetting. The same ability, called Continual Learning, is challenging to achieve when operating with neural networks due to the forgetting affecting past learned tasks when learning new ones. This forgetting can be mitigated by replaying stored samples from past tasks, but a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01262v3-abstract-full').style.display = 'inline'; document.getElementById('2402.01262v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01262v3-abstract-full" style="display: none;"> Humans are capable of acquiring new knowledge and transferring learned knowledge into different domains, incurring a small forgetting. The same ability, called Continual Learning, is challenging to achieve when operating with neural networks due to the forgetting affecting past learned tasks when learning new ones. This forgetting can be mitigated by replaying stored samples from past tasks, but a large memory size may be needed for long sequences of tasks; moreover, this could lead to overfitting on saved samples. In this paper, we propose a novel regularisation approach and a novel incremental classifier called, respectively, Margin Dampening and Cascaded Scaling Classifier. The first combines a soft constraint and a knowledge distillation approach to preserve past learned knowledge while allowing the model to learn new patterns effectively. The latter is a gated incremental classifier, helping the model modify past predictions without directly interfering with them. This is achieved by modifying the output of the model with auxiliary scaling functions. We empirically show that our approach performs well on multiple benchmarks against well-established baselines, and we also study each component of our proposal and how the combinations of such components affect the final results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01262v3-abstract-full').style.display = 'none'; document.getElementById('2402.01262v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Previously called &#34;Cascaded Scaling Classifier: class incremental learning with probability scaling &#34;. The official code is available https://github.com/jaryP/CIL-Margin-Dampening-Gated-Classifier</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13330">arXiv:2401.13330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13330">pdf</a>, <a href="https://arxiv.org/format/2401.13330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gambella%2C+M">Matteo Gambella</a>, <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Roveri%2C+M">Manuel Roveri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13330v1-abstract-short" style="display: inline;"> Early Exit Neural Networks (EENNs) endow astandard Deep Neural Network (DNN) with Early Exit Classifiers (EECs), to provide predictions at intermediate points of the processing when enough confidence in classification is achieved. This leads to many benefits in terms of effectiveness and efficiency. Currently, the design of EENNs is carried out manually by experts, a complex and time-consuming tas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13330v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13330v1-abstract-full" style="display: none;"> Early Exit Neural Networks (EENNs) endow astandard Deep Neural Network (DNN) with Early Exit Classifiers (EECs), to provide predictions at intermediate points of the processing when enough confidence in classification is achieved. This leads to many benefits in terms of effectiveness and efficiency. Currently, the design of EENNs is carried out manually by experts, a complex and time-consuming task that requires accounting for many aspects, including the correct placement, the thresholding, and the computational overhead of the EECs. For this reason, the research is exploring the use of Neural Architecture Search (NAS) to automatize the design of EENNs. Currently, few comprehensive NAS solutions for EENNs have been proposed in the literature, and a fully automated, joint design strategy taking into consideration both the backbone and the EECs remains an open problem. To this end, this work presents Neural Architecture Search for Hardware Constrained Early Exit Neural Networks (NACHOS), the first NAS framework for the design of optimal EENNs satisfying constraints on the accuracy and the number of Multiply and Accumulate (MAC) operations performed by the EENNs at inference time. In particular, this provides the joint design of backbone and EECs to select a set of admissible (i.e., respecting the constraints) Pareto Optimal Solutions in terms of best tradeoff between the accuracy and number of MACs. The results show that the models designed by NACHOS are competitive with the state-of-the-art EENNs. Additionally, this work investigates the effectiveness of two novel regularization terms designed for the optimization of the auxiliary classifiers of the EENN <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13330v1-abstract-full').style.display = 'none'; document.getElementById('2401.13330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02048">arXiv:2208.02048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02048">pdf</a>, <a href="https://arxiv.org/format/2208.02048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Centroids Matching: an efficient Continual Learning approach operating in the embedding space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Uncini%2C+A">Aurelio Uncini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02048v2-abstract-short" style="display: inline;"> Catastrophic forgetting (CF) occurs when a neural network loses the information previously learned while training on a set of samples from a different distribution, i.e., a new task. Existing approaches have achieved remarkable results in mitigating CF, especially in a scenario called task incremental learning. However, this scenario is not realistic, and limited work has been done to achieve good&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02048v2-abstract-full').style.display = 'inline'; document.getElementById('2208.02048v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02048v2-abstract-full" style="display: none;"> Catastrophic forgetting (CF) occurs when a neural network loses the information previously learned while training on a set of samples from a different distribution, i.e., a new task. Existing approaches have achieved remarkable results in mitigating CF, especially in a scenario called task incremental learning. However, this scenario is not realistic, and limited work has been done to achieve good results on more realistic scenarios. In this paper, we propose a novel regularization method called Centroids Matching, that, inspired by meta-learning approaches, fights CF by operating in the feature space produced by the neural network, achieving good results while requiring a small memory footprint. Specifically, the approach classifies the samples directly using the feature vectors produced by the neural network, by matching those vectors with the centroids representing the classes from the current task, or all the tasks up to that point. Centroids Matching is faster than competing baselines, and it can be exploited to efficiently mitigate CF, by preserving the distances between the embedding space produced by the model when past tasks were over, and the one currently produced, leading to a method that achieves high accuracy on all the tasks, without using an external memory when operating on easy scenarios, or using a small one for more realistic ones. Extensive experiments demonstrate that Centroids Matching achieves accuracy gains on multiple datasets and scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02048v2-abstract-full').style.display = 'none'; document.getElementById('2208.02048v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Transactions on Machine Learning Research (TMLR)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05694">arXiv:2202.05694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05694">pdf</a>, <a href="https://arxiv.org/format/2202.05694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Continual Learning with Invertible Generative Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Uncini%2C+A">Aurelio Uncini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05694v2-abstract-short" style="display: inline;"> Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while being trained on new tasks. Common techniques to handle CF include regularization of the weights (using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly re-trained on past data. Generative models have also been applied for the latter, in order to have endl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05694v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05694v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05694v2-abstract-full" style="display: none;"> Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while being trained on new tasks. Common techniques to handle CF include regularization of the weights (using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly re-trained on past data. Generative models have also been applied for the latter, in order to have endless sources of data. In this paper, we propose a novel method that combines the strengths of regularization and generative-based rehearsal approaches. Our generative model consists of a normalizing flow (NF), a probabilistic and invertible neural network, trained on the internal embeddings of the network. By keeping a single NF throughout the training process, we show that our memory overhead remains constant. In addition, exploiting the invertibility of the NF, we propose a simple approach to regularize the network&#39;s embeddings with respect to past tasks. We show that our method performs favorably with respect to state-of-the-art approaches in the literature, with bounded computational power and memory overheads. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05694v2-abstract-full').style.display = 'none'; document.getElementById('2202.05694v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2007.02443</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02236">arXiv:2202.02236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02236">pdf</a>, <a href="https://arxiv.org/format/2202.02236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/IJCNN55064.2022.9892966">10.1109/IJCNN55064.2022.9892966 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pixle: a fast and effective black-box attack based on rearranging pixels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Uncini%2C+A">Aurelio Uncini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02236v1-abstract-short" style="display: inline;"> Recent research has found that neural networks are vulnerable to several types of adversarial attacks, where the input samples are modified in such a way that the model produces a wrong prediction that misclassifies the adversarial sample. In this paper we focus on black-box adversarial attacks, that can be performed without knowing the inner structure of the attacked model, nor the training proce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02236v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02236v1-abstract-full" style="display: none;"> Recent research has found that neural networks are vulnerable to several types of adversarial attacks, where the input samples are modified in such a way that the model produces a wrong prediction that misclassifies the adversarial sample. In this paper we focus on black-box adversarial attacks, that can be performed without knowing the inner structure of the attacked model, nor the training procedure, and we propose a novel attack that is capable of correctly attacking a high percentage of samples by rearranging a small number of pixels within the attacked image. We demonstrate that our attack works on a large number of datasets and models, that it requires a small number of iterations, and that the distance between the original sample and the adversarial one is negligible to the human eye. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02236v1-abstract-full').style.display = 'none'; document.getElementById('2202.02236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02551">arXiv:2105.02551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02551">pdf</a>, <a href="https://arxiv.org/format/2105.02551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.neunet.2021.09.007">10.1016/j.neunet.2021.09.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structured Ensembles: an Approach to Reduce the Memory Footprint of Ensemble Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Uncini%2C+A">Aurelio Uncini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02551v2-abstract-short" style="display: inline;"> In this paper, we propose a novel ensembling technique for deep neural networks, which is able to drastically reduce the required memory compared to alternative approaches. In particular, we propose to extract multiple sub-networks from a single, untrained neural network by solving an end-to-end optimization task combining differentiable scaling over the original architecture, with multiple regula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02551v2-abstract-full').style.display = 'inline'; document.getElementById('2105.02551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02551v2-abstract-full" style="display: none;"> In this paper, we propose a novel ensembling technique for deep neural networks, which is able to drastically reduce the required memory compared to alternative approaches. In particular, we propose to extract multiple sub-networks from a single, untrained neural network by solving an end-to-end optimization task combining differentiable scaling over the original architecture, with multiple regularization terms favouring the diversity of the ensemble. Since our proposal aims to detect and extract sub-structures, we call it Structured Ensemble. On a large experimental evaluation, we show that our method can achieve higher or comparable accuracy to competing methods while requiring significantly less storage. In addition, we evaluate our ensembles in terms of predictive calibration and uncertainty, showing they compare favourably with the state-of-the-art. Finally, we draw a link with the continual learning literature, and we propose a modification of our framework to handle continuous streams of tasks with a sub-linear memory cost. We compare with a number of alternative strategies to mitigate catastrophic forgetting, highlighting advantages in terms of average accuracy and memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02551v2-abstract-full').style.display = 'none'; document.getElementById('2105.02551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Article accepted at Neural Networks</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00405">arXiv:2104.00405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00405">pdf</a>, <a href="https://arxiv.org/format/2104.00405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Avalanche: an End-to-End Library for Continual Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lomonaco%2C+V">Vincenzo Lomonaco</a>, <a href="/search/cs?searchtype=author&amp;query=Pellegrini%2C+L">Lorenzo Pellegrini</a>, <a href="/search/cs?searchtype=author&amp;query=Cossu%2C+A">Andrea Cossu</a>, <a href="/search/cs?searchtype=author&amp;query=Carta%2C+A">Antonio Carta</a>, <a href="/search/cs?searchtype=author&amp;query=Graffieti%2C+G">Gabriele Graffieti</a>, <a href="/search/cs?searchtype=author&amp;query=Hayes%2C+T+L">Tyler L. Hayes</a>, <a href="/search/cs?searchtype=author&amp;query=De+Lange%2C+M">Matthias De Lange</a>, <a href="/search/cs?searchtype=author&amp;query=Masana%2C+M">Marc Masana</a>, <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=van+de+Ven%2C+G">Gido van de Ven</a>, <a href="/search/cs?searchtype=author&amp;query=Mundt%2C+M">Martin Mundt</a>, <a href="/search/cs?searchtype=author&amp;query=She%2C+Q">Qi She</a>, <a href="/search/cs?searchtype=author&amp;query=Cooper%2C+K">Keiland Cooper</a>, <a href="/search/cs?searchtype=author&amp;query=Forest%2C+J">Jeremy Forest</a>, <a href="/search/cs?searchtype=author&amp;query=Belouadah%2C+E">Eden Belouadah</a>, <a href="/search/cs?searchtype=author&amp;query=Calderara%2C+S">Simone Calderara</a>, <a href="/search/cs?searchtype=author&amp;query=Parisi%2C+G+I">German I. Parisi</a>, <a href="/search/cs?searchtype=author&amp;query=Cuzzolin%2C+F">Fabio Cuzzolin</a>, <a href="/search/cs?searchtype=author&amp;query=Tolias%2C+A">Andreas Tolias</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Antiga%2C+L">Luca Antiga</a>, <a href="/search/cs?searchtype=author&amp;query=Amhad%2C+S">Subutai Amhad</a>, <a href="/search/cs?searchtype=author&amp;query=Popescu%2C+A">Adrian Popescu</a>, <a href="/search/cs?searchtype=author&amp;query=Kanan%2C+C">Christopher Kanan</a>, <a href="/search/cs?searchtype=author&amp;query=van+de+Weijer%2C+J">Joost van de Weijer</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00405v1-abstract-short" style="display: inline;"> Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00405v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00405v1-abstract-full" style="display: none;"> Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00405v1-abstract-full').style.display = 'none'; document.getElementById('2104.00405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Official Website: https://avalanche.continualai.org</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.02443">arXiv:2007.02443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.02443">pdf</a>, <a href="https://arxiv.org/format/2007.02443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Pseudo-Rehearsal for Continual Learning with Normalizing Flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Uncini%2C+A">Aurelio Uncini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.02443v4-abstract-short" style="display: inline;"> Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while being trained on new tasks. Common techniques to handle CF include regularization of the weights (using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly re-trained on past data. Generative models have also been applied for the latter, in order to have endl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02443v4-abstract-full').style.display = 'inline'; document.getElementById('2007.02443v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.02443v4-abstract-full" style="display: none;"> Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while being trained on new tasks. Common techniques to handle CF include regularization of the weights (using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly re-trained on past data. Generative models have also been applied for the latter, in order to have endless sources of data. In this paper, we propose a novel method that combines the strengths of regularization and generative-based rehearsal approaches. Our generative model consists of a normalizing flow (NF), a probabilistic and invertible neural network, trained on the internal embeddings of the network. By keeping a single NF conditioned on the task, we show that our memory overhead remains constant. In addition, exploiting the invertibility of the NF, we propose a simple approach to regularize the network&#39;s embeddings with respect to past tasks. We show that our method performs favorably with respect to state-of-the-art approaches in the literature, with bounded computational power and memory overheads. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02443v4-abstract-full').style.display = 'none'; document.getElementById('2007.02443v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A preliminary unpublished version of this work was presented in the LifelongML workshop, at ICML 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00952">arXiv:2003.00952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.00952">pdf</a>, <a href="https://arxiv.org/format/2003.00952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.neucom.2021.01.090">10.1016/j.neucom.2021.01.090 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bayesian Neural Networks With Maximum Mean Discrepancy Regularization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Uncini%2C+A">Aurelio Uncini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00952v2-abstract-short" style="display: inline;"> Bayesian Neural Networks (BNNs) are trained to optimize an entire distribution over their weights instead of a single set, having significant advantages in terms of, e.g., interpretability, multi-task learning, and calibration. Because of the intractability of the resulting optimization problem, most BNNs are either sampled through Monte Carlo methods, or trained by minimizing a suitable Evidence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00952v2-abstract-full').style.display = 'inline'; document.getElementById('2003.00952v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00952v2-abstract-full" style="display: none;"> Bayesian Neural Networks (BNNs) are trained to optimize an entire distribution over their weights instead of a single set, having significant advantages in terms of, e.g., interpretability, multi-task learning, and calibration. Because of the intractability of the resulting optimization problem, most BNNs are either sampled through Monte Carlo methods, or trained by minimizing a suitable Evidence Lower BOund (ELBO) on a variational approximation. In this paper, we propose a variant of the latter, wherein we replace the Kullback-Leibler divergence in the ELBO term with a Maximum Mean Discrepancy (MMD) estimator, inspired by recent work in variational inference. After motivating our proposal based on the properties of the MMD term, we proceed to show a number of empirical advantages of the proposed formulation over the state-of-the-art. In particular, our BNNs achieve higher accuracy on multiple benchmarks, including several image classification tasks. In addition, they are more robust to the selection of a prior over the weights, and they are better calibrated. As a second contribution, we provide a new formulation for estimating the uncertainty on a given prediction, showing it performs in a more robust fashion against adversarial attacks and the injection of noise over their inputs, compared to more classical criteria such as the differential entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00952v2-abstract-full').style.display = 'none'; document.getElementById('2003.00952v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11717">arXiv:1911.11717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.11717">pdf</a>, <a href="https://arxiv.org/format/1911.11717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/ab845a">10.1088/2632-2153/ab845a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DeepRICH: Learning Deeply Cherenkov Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Fanelli%2C+C">Cristiano Fanelli</a>, <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11717v2-abstract-short" style="display: inline;"> Imaging Cherenkov detectors are largely used for particle identification (PID) in nuclear and particle physics experiments, where developing fast reconstruction algorithms is becoming of paramount importance to allow for near real time calibration and data quality control, as well as to speed up offline analysis of large amount of data. In this paper we present DeepRICH, a novel deep learning algo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11717v2-abstract-full').style.display = 'inline'; document.getElementById('1911.11717v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11717v2-abstract-full" style="display: none;"> Imaging Cherenkov detectors are largely used for particle identification (PID) in nuclear and particle physics experiments, where developing fast reconstruction algorithms is becoming of paramount importance to allow for near real time calibration and data quality control, as well as to speed up offline analysis of large amount of data. In this paper we present DeepRICH, a novel deep learning algorithm for fast reconstruction which can be applied to different imaging Cherenkov detectors. The core of our architecture is a generative model which leverages on a custom Variational Auto-encoder (VAE) combined to Maximum Mean Discrepancy (MMD), with a Convolutional Neural Network (CNN) extracting features from the space of the latent variables for classification. A thorough comparison with the simulation/reconstruction package FastDIRC is discussed in the text. DeepRICH has the advantage to bypass low-level details needed to build a likelihood, allowing for a sensitive improvement in computation time at potentially the same reconstruction performance of other established reconstruction algorithms. In the conclusions, we address the implications and potentialities of this work, discussing possible future extensions and generalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11717v2-abstract-full').style.display = 'none'; document.getElementById('1911.11717v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, preprint</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-PHY-20-3179 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2020 Mach. Learn.: Sci. Technol. 1 015010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.03742">arXiv:1909.03742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.03742">pdf</a>, <a href="https://arxiv.org/format/1909.03742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.neucom.2020.01.093">10.1016/j.neucom.2020.01.093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Continual Learning in Neural Networks with Embedding Regularization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pomponi%2C+J">Jary Pomponi</a>, <a href="/search/cs?searchtype=author&amp;query=Scardapane%2C+S">Simone Scardapane</a>, <a href="/search/cs?searchtype=author&amp;query=Lomonaco%2C+V">Vincenzo Lomonaco</a>, <a href="/search/cs?searchtype=author&amp;query=Uncini%2C+A">Aurelio Uncini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.03742v2-abstract-short" style="display: inline;"> Continual learning of deep neural networks is a key requirement for scaling them up to more complex applicative scenarios and for achieving real lifelong learning of these architectures. Previous approaches to the problem have considered either the progressive increase in the size of the networks, or have tried to regularize the network behavior to equalize it with respect to previously observed t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03742v2-abstract-full').style.display = 'inline'; document.getElementById('1909.03742v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.03742v2-abstract-full" style="display: none;"> Continual learning of deep neural networks is a key requirement for scaling them up to more complex applicative scenarios and for achieving real lifelong learning of these architectures. Previous approaches to the problem have considered either the progressive increase in the size of the networks, or have tried to regularize the network behavior to equalize it with respect to previously observed tasks. In the latter case, it is essential to understand what type of information best represents this past behavior. Common techniques include regularizing the past outputs, gradients, or individual weights. In this work, we propose a new, relatively simple and efficient method to perform continual learning by regularizing instead the network internal embeddings. To make the approach scalable, we also propose a dynamic sampling strategy to reduce the memory footprint of the required external storage. We show that our method performs favorably with respect to state-of-the-art approaches in the literature, while requiring significantly less space in memory and computational time. In addition, inspired inspired by to recent works, we evaluate the impact of selecting a more flexible model for the activation functions inside the network, evaluating the impact of catastrophic forgetting on the activation functions themselves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03742v2-abstract-full').style.display = 'none'; document.getElementById('1909.03742v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Neurocomputing, 397, pp. 139-148, 2020 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10