CINXE.COM
A Trainable Neural Network Ensemble for ECG Beat Classification
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>A Trainable Neural Network Ensemble for ECG Beat Classification</title> <meta name="description" content="A Trainable Neural Network Ensemble for ECG Beat Classification"> <meta name="keywords" content="ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <meta name="citation_title" content="A Trainable Neural Network Ensemble for ECG Beat Classification"> <meta name="citation_author" content="Atena Sajedin"> <meta name="citation_author" content="Shokoufeh Zakernejad"> <meta name="citation_author" content="Soheil Faridi"> <meta name="citation_author" content="Mehrdad Javadi"> <meta name="citation_author" content="Reza Ebrahimpour"> <meta name="citation_publication_date" content="2010/09/24"> <meta name="citation_journal_title" content="International Journal of Biomedical and Biological Engineering"> <meta name="citation_volume" content="4"> <meta name="citation_issue" content="9"> <meta name="citation_firstpage" content="479"> <meta name="citation_lastpage" content="485"> <meta name="citation_pdf_url" content="https://publications.waset.org/915/pdf"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value=""> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33093</div> </div> </div> </div> <div class="card publication-listing mt-3 mb-3"> <h5 class="card-header" style="font-size:.9rem">A Trainable Neural Network Ensemble for ECG Beat Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Atena%20Sajedin">Atena Sajedin</a>, <a href="https://publications.waset.org/search?q=Shokoufeh%20Zakernejad"> Shokoufeh Zakernejad</a>, <a href="https://publications.waset.org/search?q=Soheil%20Faridi"> Soheil Faridi</a>, <a href="https://publications.waset.org/search?q=Mehrdad%20Javadi"> Mehrdad Javadi</a>, <a href="https://publications.waset.org/search?q=Reza%20Ebrahimpour"> Reza Ebrahimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. <iframe src="https://publications.waset.org/915.pdf" style="width:100%; height:400px;" frameborder="0"></iframe> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ECG%20beat%20Classification%3B%20Combining%20Classifiers%3BPremature%20Ventricular%20Contraction%20%28PVC%29%3B%20Multi%20Layer%20Perceptrons%3BWavelet%20Transform" title="ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform">ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform</a> </p> <p class="card-text"><strong>Digital Object Identifier (DOI):</strong> <a href="https://doi.org/10.5281/zenodo.1329306" target="_blank">doi.org/10.5281/zenodo.1329306</a> </p> <a href="https://publications.waset.org/915/a-trainable-neural-network-ensemble-for-ecg-beat-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/915/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/915/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/915/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/915/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/915/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/915/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/915/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/915/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/915/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/915/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2216</span> </span> <p class="card-text"><strong>References:</strong></p> <br>[1] R. Acharya, P.S. Bhat, S.S. Iyengar, A. Roo and S. Dua, Classification of heart rate data using artificial neural network and fuzzy equivalence relation, Pattern Recognition, vol. 36, no. 1, pp. 61-68, 2003. <br>[2] S. Osowski and T.H. Linh, ECG beat recognition using fuzzy hybrid neural network, IEEE Trans. Biomed. Eng., vol. 48, no. 11, pp. 1265- 1271, 2001. <br>[3] O. Pichler, A. Teuner and B.J. Hosticka, A comparison of texture feature extraction using adaptive Gabor filtering, pyramidal and tree structured wavelet transforms, Pattern Recognition, vol. 29, no. 5, pp. 733-742, 1996. <br>[4] Z. Dokur, T. 鈹溍籰mez and E. Yazgan, Comparison of discrete wavelet and Fourier transforms for ECG beat classification, Electron. Lett., vol. 35, no. 18, 1999. <br>[5] K. Sternickel, Automatic pattern recognition in ECG timeseries, Comput. Meth. Prog. Biomed. 68 109-115,2002. <br>[6] Z. Dokur and T. Olmez, ECG beat classification by a novel hybrid neural network, Comput. Meth. Prog. Biomed., vol. 66, pp. 167-181, 2001. <br>[7] X. Wang and K. Paliwal, Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition, Pattern Recognition, vol. 36, pp. 2429-2439, 2003. <br>[8] Y. Ozbay, R. Ceylan and B. Karlik, A fuzzy clustering neural network architecture for classification of ECG arrhythmias, Computers in Biology and Medicine, vol. 36, pp. 376-388, 2006. <br>[9] A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 626-634, 1999. <br>[10] Z. Wang, Z. He and J. Z. Chen, Blind EGG separation using ICA neural networks, In Proceedings of the 19th annual international conference of the IEEE-EMBS, Chicago, IL. USA, vol. 3, pp. 1351-1354, 1997. <br>[11] Y. Ozbay and B. Karlik, A recognition of ECG arrhythmias using artificial neural network, Proceedings of the 23rd Annual Conference, IEEE/EMBS, Istanbul, Turkey, 2001. <br>[12] Y. Ozbay, Fast recognition of ECG arrhythmias, Ph.D. Thesis, Institute of Natural and Applied Science, Selcuk University, 1999. <br>[13] S.Y. Foo, G. Stuar and B. Harvey, A. Meyer-Baese, Neural networkbased ECG pattern recognition, Eng. Appl. Artif. Intell., vol. 15, pp. 253-260, 2002. <br>[14] R. Ebrahimpour, E. Kabir, H. Esteky and M. R. Yousefi, A mixture of multilayer perceptron experts network for modeling face/nonface recognition in cortical face processing regions, Intelligent Automation and Soft Computing, vol. 14, no. 2, pp. 145-156, 2008. <br>[15] R. Ebrahimpour, E.Kabir, H. Esteky, M. R. Yousefi, View-independent face recognition with mixture of experts, Neurocomputing, vol. 71, no. 4-6, pp. 1103-1107, 2008. <br>[16] L.Kuncheva, Combining pattern classifiers: Methods and algorithms. New York: Wiley, 2004. <br>[17] V. Pilla and H.S. Lopes, Evolutionary training of a neuro-fuzzy network for detection of P wave of the ECG, Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, New Delhi, India, pp. 102-106, 1999. <br>[18] M. Engin and S. Demira鈺γ縢, Fuzzy-hybrid neural network based ECG beat recognition using three different types of feature set, Cardiovasc. Eng. Int. J., vol. 3, no. 2, pp. 71-80, 2003. <br>[19] I. Guler, and E. D. Ubeyli, A mixture of experts network structure for modelling Doppler ultrasound blood flow signals, Computers in Biology and Medicine, vol. 35, no. 7, pp. 565-582, 2005. <br>[20] I. Guler, and E. D. Ubeyli, ECG beat classifier designed by combined neural network model, Pattern Recognition, vol. 38, no. 2, pp. 199-208, 2005. <br>[21] E.D. Ubeyli, Support vector machines for detection of electrocardiographic changes in partial epileptic patients, Engineering Applications of Artificial Intelligence, vol. 21, pp. 1196-1203, 2008. <br>[22] D.H. Wolpert, Stacked generalization, Neural Networks, vol. 5, pp. 241- 259, 1992. <br>[23] D. Donoho and I. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, Journal of the American Statistical Association, vol. 90, no. 432, pp. 1200-1223, 1995. <br>[24] D.Donoho, De-noising by soft-thresholding, in: IEEE Transactions on Information Theory, vol. 41, pp. 613-627, 1995. <br>[25] Daubechies, I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. <br>[26] Amara Grap, An Introduction to Wavelets, IEEE Comp.Sc. And Eng., Vol. 2, No. 2, 1995. <br>[27] M.A. Al-Alaoui, A unified analog and digital design to peak and valley detector window peak and valley detectors and zero crossing detectors, IEEE Trans. Instrum. Meas., vol. 35, pp. 304-307, 1986. <br>[28] S. Haykin, Neural networks: A comprehensive foundation, USA: Prentice Hall, 1999. <br>[29] K. Woods, W.P. Kegelmeyer and K. Bowyer, Combination of multiple classifiers using local accuracy estimates, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 405-410, 1997. <br>[30] L. A. Rastrigin and R. H. Erenstein, Method of collective recognition. Moscow: Energoizdat (in Russian), 1982. <br>[31] R. A. Jacobs, M. I. Jordan, S. E. Nowlan and G. E. Hinton, Adaptive mixture of experts, Neural Computing, vol. 3, pp. 79-87, 1991. <br>[32] E. Alpaydin and M. I. Jordan, Local linear perceptrons for classification, IEEE Transactions on Neural Networks, vol. 7, no. 3, pp. 788-792, 1996. <br>[33] L. Xu, A. Krzyzak and C. Suen, Methods of combining multiple classifiers and their application to handwriting recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, pp. 418-435, 1992. <br>[34] K. C. Ng, and B. Abramson, Consensus diagnosis: A simulation study, IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, pp. 916- 928, 1992. <br>[35] R. Pektatli,Y. Ozbay,M. Ceylan and B. Karlik, Classification of ECG signals using fuzzy clustering neural networks (FCNN), Proceedings of the International XII, TAINN-03, vol.1, no. 1, Canakkale, Turkey, pp. 105-108, 2003. <br>[36] H. Nikoo, M. Azarpeikan, M. R. Yousefi, R. Ebrahimpour and A. Shahrabadi, Using a trainable neural network ensemble for trend prediction of Tehran stock exchange, International Journal of Computer Science and Network Security, vol. 12, pp. 287-293, 2007. <br>[37] R.G. Mark and G.B. Moody, MIT-BIH Arrhythmia Database 1997. Available from: <http://www.ecg.mit.edu/dbinfo.html>. <br>[38] G.B. Moody and R.G. Mark, The impact of the MIT/BIH arrhythmia database, IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45-50, 2001. </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>