CINXE.COM
Search results for: plate load test
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plate load test</title> <meta name="description" content="Search results for: plate load test"> <meta name="keywords" content="plate load test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plate load test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plate load test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11986</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plate load test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11986</span> Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nazeri">A. Nazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ghiasinejad"> H. Ghiasinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 to 132 , 224 , and 396 in presence of 15 cm, 20 cm, and 30 cm base course, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20subgrade%20reaction" title="modulus of subgrade reaction">modulus of subgrade reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20course" title=" base course"> base course</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20subgrade" title=" sandy subgrade"> sandy subgrade</a> </p> <a href="https://publications.waset.org/abstracts/80835/effect-of-base-coarse-layer-on-load-settlement-characteristics-of-sandy-subgrade-using-plate-load-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11985</span> Three Dimensional Model of Full Scale Plate Load Test on Stone Column in Sabkha Deposit: Case Study from Jubail Industrial City - Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan.%20A.%20Abas">Hassan. A. Abas</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20A.%20Aiban"> Saad A. Aiban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil improvement by means of stone column method is used to improve sabkha soils in order to limit total and differential settlement and to achieve the required bearing capacity. Full-scale plate test was performed on site to confirm the achievement of required bearing capacity at the specified settlement. Despite the fact that this technique is widely used to improve sabkha soils, there are no studies focusing on the behavior of stone columns in such problematic soils. Sabkha soils are known for its high compressibility, low strength and water sensitivity due to loss of salt cementation upon flooding during installation of stone columns. Numerical modeling of plate load test assist to understand complicated behavior of sabkha – stone column interaction. This paper presents a three-dimensional Finite element model, using PLAXIS 3D software, to simulate vertical plate load tests on a stone column installed in sabkha. The predicted settlement values are in reasonable agreement with the field measure values and the field load - settlement curve can be predicted with good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title="soil improvement">soil improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title=" stone column"> stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=sabkha" title=" sabkha"> sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%203D" title=" PLAXIS 3D "> PLAXIS 3D </a> </p> <a href="https://publications.waset.org/abstracts/31027/three-dimensional-model-of-full-scale-plate-load-test-on-stone-column-in-sabkha-deposit-case-study-from-jubail-industrial-city-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11984</span> Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jixiao%20Tao">Jixiao Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoqiao%20He"> Xiaoqiao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bistable" title="Bistable">Bistable</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20nonlinearity" title=" geometrical nonlinearity"> geometrical nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrilateral%20plate%20elements" title=" quadrilateral plate elements"> quadrilateral plate elements</a> </p> <a href="https://publications.waset.org/abstracts/124454/finite-element-analysis-of-thermally-induced-bistable-plate-using-four-plate-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11983</span> A Review of Deformation and Settlement Monitoring on the Field: Types and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ali">Hassan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Hamid"> Abdulrahman Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses using of instruments to monitor deformation and settlement. Specifically, it concentrates on field instruments such as inclinometer and plate load test and their applications in the field. Inclinometer has been used effectively to monitor lateral earth movements and settlement in landslide areas, embankments and foundations. They are also used to monitor the deflection of retaining walls and piles under load. This paper is reviewing types of inclinometer systems, comparison between systems, applications, field accuracy and correction. The paper also will present a case study of using inclinometer to monitor the creep movements within the ancient landslide on The Washington Park Station. Furthermore, the application of deformation and settlement instruments in Saudi Arabia will be discussed in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclinometer" title="inclinometer">inclinometer</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=backfills" title=" backfills"> backfills</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20and%20settlement" title=" deformation and settlement"> deformation and settlement</a> </p> <a href="https://publications.waset.org/abstracts/41331/a-review-of-deformation-and-settlement-monitoring-on-the-field-types-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11982</span> Stability of Square Plate with Concentric Cutout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Jayashankarbabu">B. S. Jayashankarbabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karisiddappa"> Karisiddappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The finite element method is used to obtain the elastic buckling load factor for square isotropic plate containing circular, square and rectangular cutouts. ANSYS commercial finite element software had been used in the study. The applied inplane loads considered are uniaxial and biaxial compressions. In all the cases the load is distributed uniformly along the plate outer edges. The effects of the size and shape of concentric cutouts with different plate thickness ratios and the influence of plate edge condition, such as SSSS, CCCC and mixed boundary condition SCSC on the plate buckling strength have been considered in the analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentric%20cutout" title="concentric cutout">concentric cutout</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20buckling" title=" elastic buckling"> elastic buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=inplane%20loads" title=" inplane loads"> inplane loads</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness%20ratio" title=" thickness ratio"> thickness ratio</a> </p> <a href="https://publications.waset.org/abstracts/6297/stability-of-square-plate-with-concentric-cutout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11981</span> Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20H.%20Cuadra">Carlos H. Cuadra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiro%20Shimoi"> Nobuhiro Shimoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20sensor" title="piezoelectric sensor">piezoelectric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20cyclic%20test" title=" static cyclic test"> static cyclic test</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20damages" title=" seismic damages"> seismic damages</a> </p> <a href="https://publications.waset.org/abstracts/109713/structural-damage-detection-in-a-steel-column-beam-joint-using-piezoelectric-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11980</span> Determination of Antibiotic Residues in Carcasses of Cows Slaughtered in Amol City by Four-Plate-Test Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arezou%20Ghadi">Arezou Ghadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrollah%20Vahedi"> Nasrollah Vahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Sinkakarimi"> Azam Sinkakarimi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> For determination of antibiotic residues in slaughtered cow carcasses of Amol city in Iran, sampling has done from 100 heads of cow. For this purpose, the microbiological F.P.T (Four-Plate Test) method was used. Basis of this method, a clear zone is creating around the leachate on the plate that already has cultured a uniform layer of under test bacteria on agar plate. In this study from 100 heads of cow carcasses, at least 75 cases (75%) in one of the tested organs (muscle-liver-kidney) have been antibiotic residues. Also, it has been found that kidney have the most positive cases (60%) than other organs (liver and muscle), then the liver (58%) and finally are muscles (51%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20residues" title="antibiotic residues">antibiotic residues</a>, <a href="https://publications.waset.org/abstracts/search?q=agar%20plate%20test" title=" agar plate test"> agar plate test</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20carcass" title=" cow carcass"> cow carcass</a> </p> <a href="https://publications.waset.org/abstracts/17115/determination-of-antibiotic-residues-in-carcasses-of-cows-slaughtered-in-amol-city-by-four-plate-test-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11979</span> The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Rahmani"> H. R. Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossein%20Zade"> M. Hossein Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20soils" title=" layered soils"> layered soils</a> </p> <a href="https://publications.waset.org/abstracts/80995/the-influence-of-the-geogrid-layers-on-the-bearing-capacity-of-layered-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11978</span> An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zheng">Yang Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Sun"> Wei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending" title="bending">bending</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20plate" title=" thin plate"> thin plate</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/24023/an-inverse-approach-for-determining-creep-properties-from-a-miniature-thin-plate-specimen-under-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11977</span> Comparison of Modulus from Repeated Plate Load Test and Resonant Column Test for Compaction Control of Trackbed Foundation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JinWoog%20Lee">JinWoog Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=SeongHyeok%20Lee"> SeongHyeok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=ChanYong%20Choi"> ChanYong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Lim"> Yujin Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hojin%20Cho"> Hojin Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Primary function of the trackbed in a conventional railway track system is to decrease the stresses in the subgrade to be in an acceptable level. A properly designed trackbed layer performs this task adequately. Many design procedures have used assumed and/or are based on critical stiffness values of the layers obtained mostly in the field to calculate an appropriate thickness of the sublayers of the trackbed foundation. However, those stiffness values do not consider strain levels clearly and precisely in the layers. This study proposes a method of computation of stiffness that can handle with strain level in the layers of the trackbed foundation in order to provide properly selected design values of the stiffness of the layers. The shear modulus values are dependent on shear strain level so that the strain levels generated in the subgrade in the trackbed under wheel loading and below plate of Repeated Plate Bearing Test (RPBT) are investigated by finite element analysis program ABAQUS and PLAXIS programs. The strain levels generated in the subgrade from RPBT are compared to those values from RC (Resonant Column) test after some consideration of strain levels and stress consideration. For comparison of shear modulus G obtained from RC test and stiffness moduli Ev2 obtained from RPBT in the field, many numbers of mid-size RC tests in laboratory and RPBT in field were performed extensively. It was found in this study that there is a big difference in stiffness modulus when the converted Ev2 values were compared to those values of RC test. It is verified in this study that it is necessary to use precise and increased loading steps to construct nonlinear curves from RPBT in order to get correct Ev2 values in proper strain levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulus" title="modulus">modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20column%20test" title=" resonant column test"> resonant column test</a>, <a href="https://publications.waset.org/abstracts/search?q=trackbed%20foundation" title=" trackbed foundation "> trackbed foundation </a> </p> <a href="https://publications.waset.org/abstracts/14392/comparison-of-modulus-from-repeated-plate-load-test-and-resonant-column-test-for-compaction-control-of-trackbed-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11976</span> The Dynamic Cone Penetration Test: A Review of Its Correlations and Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Hamid">Abdulrahman M. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic Cone Penetration Test (DCPT) is widely used for field quality assessment of soils. Its application to predict the engineering properties of soil is globally promoted by the fact that it is difficult to obtain undisturbed soil samples, especially when loose or submerged sandy soil is encountered. Detailed discussion will be presented on the current development of DCPT correlations with resilient modulus, relative density, California Bearing Ratio (CBR), unconfined compressive strength and shear strength that have been developed for different materials in both the laboratory and field, as well as on the usage of DCPT in quality control of compaction of earth fills and performance evaluation of pavement layers. In addition, the relationship of the DCPT with other instruments such as falling weight deflectometer, nuclear gauge, soil stiffens gauge, and plate load test will be reported. Lastely, the application of DCPT in Saudi Arabia in recent years will be addressed in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20cone%20penetration%20test" title="dynamic cone penetration test">dynamic cone penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=falling%20weight%20deflectometer" title=" falling weight deflectometer"> falling weight deflectometer</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20gauge" title=" nuclear gauge"> nuclear gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stiffens%20gauge" title=" soil stiffens gauge"> soil stiffens gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20dynamic%20cone%20penetration" title=" automated dynamic cone penetration"> automated dynamic cone penetration</a> </p> <a href="https://publications.waset.org/abstracts/30274/the-dynamic-cone-penetration-test-a-review-of-its-correlations-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11975</span> Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khodabakhshi">A. Khodabakhshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mortazavi"> A. Mortazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation%20modulus" title="deformation modulus">deformation modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20loading%20test" title=" plate loading test"> plate loading test</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mass" title=" rock mass"> rock mass</a> </p> <a href="https://publications.waset.org/abstracts/81800/numerical-modeling-of-determination-of-in-situ-rock-mass-deformation-modulus-using-the-plate-load-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11974</span> A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuo%20Xu">Nuo Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Hun%20Goh"> Kok Hun Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeyatharan%20Kumarasamy"> Jeyatharan Kumarasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus%20of%20pile%20under%20soil%20interaction" title="elastic modulus of pile under soil interaction">elastic modulus of pile under soil interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=jurong%20formation" title=" jurong formation"> jurong formation</a>, <a href="https://publications.waset.org/abstracts/search?q=kentledge%20test" title=" kentledge test"> kentledge test</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a> </p> <a href="https://publications.waset.org/abstracts/82593/a-statistical-approach-to-rationalise-the-number-of-working-load-test-for-quality-control-of-pile-installation-in-singapore-jurong-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11973</span> Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongyu%20Duo">Yongyu Duo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaogang%20Liu"> Xiaogang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingrui%20Yue"> Qingrui Yue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCA" title="PCA">PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20plate" title=" CFRP plate"> CFRP plate</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20treatment%20form" title=" interface treatment form"> interface treatment form</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20pressure" title=" normal pressure"> normal pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20action" title=" coupling action"> coupling action</a> </p> <a href="https://publications.waset.org/abstracts/164507/experimental-investigation-on-the-anchor-behavior-of-planar-clamping-anchor-for-carbon-fiber-reinforced-polymer-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11972</span> Analysis of Shallow Foundation Using Conventional and Finite Element Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Al%20Shafian">Sultan Al Shafian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mozaher%20Ul%20Kabir"> Mozaher Ul Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Khondoker%20Istiak%20Ahmad"> Khondoker Istiak Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Masnun%20Abrar"> Masnun Abrar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfuza%20Khanum"> Mahfuza Khanum</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossain%20M.%20Shahin"> Hossain M. Shahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For structural evaluation of shallow foundation, the modulus of subgrade reaction is one of the most widely used and accepted parameter for its ease of calculations. To determine this parameter, one of the most common field method is Plate Load test method. In this field test method, the subgrade modulus is considered for a specific location and according to its application, it is assumed that the displacement occurred in one place does not affect other adjacent locations. For this kind of assumptions, the modulus of subgrade reaction sometimes forced the engineers to overdesign the underground structure, which eventually results in increasing the cost of the construction and sometimes failure of the structure. In the present study, the settlement of a shallow foundation has been analyzed using both conventional and numerical analysis. Around 25 plate load tests were conducted on a sand fill site in Bangladesh to determine the Modulus of Subgrade reaction of ground which is later used to design a shallow foundation considering different depth. After the collection of the field data, the field condition was appropriately simulated in a finite element software. Finally results obtained from both the conventional and numerical approach has been compared. A significant difference has been observed in the case of settlement while comparing the results. A proper correlation has also been proposed at the end of this research work between the two methods of in order to provide the most efficient way to calculate the subgrade modulus of the ground for designing the shallow foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20subgrade%20reaction" title="modulus of subgrade reaction">modulus of subgrade reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title=" shallow foundation"> shallow foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a> </p> <a href="https://publications.waset.org/abstracts/95678/analysis-of-shallow-foundation-using-conventional-and-finite-element-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11971</span> Stress Concentration around Countersunk Hole in Isotropic Plate under Transverse Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parveen%20K.%20Saini">Parveen K. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarun%20Agarwal"> Tarun Agarwal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation into the effect of countersunk depth, plate thickness, countersunk angle and plate width on the stress concentration around countersunk hole is carried out with the help of finite element analysis. The variation of stress concentration with respect to these parameters is studied for three types of loading viz. uniformly distributed load, uniformly varying load and functionally distributed load. The results of the finite element analysis are interpreted and some conclusions are drawn. The distribution of stress concentration around countersunk hole in isotropic plates simply supported at all the edges is found similar and is independent of loading. The maximum stress concentration also occurs at a particular point irrespective of the loading conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor" title="stress concentration factor">stress concentration factor</a>, <a href="https://publications.waset.org/abstracts/search?q=countersunk%20hole" title=" countersunk hole"> countersunk hole</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/15005/stress-concentration-around-countersunk-hole-in-isotropic-plate-under-transverse-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11970</span> An Experimental Investigation of Rehabilitation and Strengthening of Reinforced Concrete T-Beams Under Static Monotonic Increasing Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20Alsanusi">Salem Alsanusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulla%20Alakad"> Abdulla Alakad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation to study the behaviour of under flexure reinforced concrete T-Beams. Those Beams were loaded to pre-designated stress levels as percentage of calculated collapse loads. Repairing these beans by either reinforced concrete jacket, or by externally bolted steel plates were utilized. Twelve full scale beams were tested in this experimental program scheme. Eight out of the twelve beams were loaded under different loading levels. Tests were performed for the beams before and after repair with Reinforced Concrete Jacket (RCJ). The applied Load levels were 60%, 77% and 100% of the calculated collapse loads. The remaining four beams were tested before and after repair with Bolted Steel Plate (BSP). Furthermore, out previously mentioned four beams two beams were loaded to the calculated failure load 100% and the remaining two beams were not subjected to any load. The eight beams recorded for the RCJ test were repaired using reinforced concrete jacket. The four beams recorded for the BSP test were all repaired using steel plate at the bottom. All the strengthened beams were gradually loaded until failure occurs. However, in each loading case, the beams behaviour, before and after strengthening, were studied through close inspection of the cracking propagation, and by carrying out an extensive measurement of deformations and strength. The stress-strain curve for reinforcing steel and the failure strains measured in the tests were utilized in the calculation of failure load for the beams before and after strengthening. As a result, the calculated failure loads were close to the actual failure tests in case of beams before repair, ranging from 85% to 90% and also in case of beams repaired by reinforced concrete jacket ranging from 70% to 85%. The results were in case of beams repaired by bolted steel plates ranging from (50% to 85%). It was observed that both jacketing and bolted steel plate methods could effectively restore the full flexure capacity of the damaged beams. However, the reinforced jacket has increased the failure load by about 67%, whereas the bolted steel plates recovered the failure load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title="rehabilitation">rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beams%20deflection" title=" beams deflection"> beams deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20stresses" title=" bending stresses"> bending stresses</a> </p> <a href="https://publications.waset.org/abstracts/30290/an-experimental-investigation-of-rehabilitation-and-strengthening-of-reinforced-concrete-t-beams-under-static-monotonic-increasing-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11969</span> Load Carrying Capacity of Soils Reinforced with Encased Stone Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran">S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Govind"> G. Govind</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone columns are effectively used to improve bearing strength of soils and also for many geotechnical applications. In soft soils when stone columns are loaded they undergo large settlements due to insufficient lateral confinement. Use of geosynthetics encasement has proved to be a solution for this problem. In this paper, results of a laboratory experimental study carried out with model stone columns with and without encasement. Sand was used for making test beds, and grain size of soil varies from 0.075mm to 4.75mm. Woven geotextiles produced by Gareware ropes India with mass per unit area of 240gm/M2 and having tensile strength of 52KN/m is used for the present investigation. Tests were performed with large scale direct shear box and also using scaled laboratory plate load tests. Stone column of 50mm and 75mm is used for the present investigation. Diameter of stone column, size of stones used for making stone columns is varied in making stone column in the present study. Two types of stone were used namely small and bigger in size. Results indicate that there is an increase in angle of internal friction and also an increase in the shear strength of soil when stone columns are encased. With stone columns with 50mm dia, an average increase of 7% in shear strength and 4.6 % in angle of internal friction was achieved. When large stones were used increase in the shear strength was 12.2%, and angle of internal friction was increased to 5.4%. When the stone column diameter has increased to 75mm increase in shear strength and angle of internal friction was increased with smaller size of stones to 7.9 and 7.5%, and with large size stones, it was 7.7 and 5.48% respectively. Similar results are obtained in plate load tests, also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title="stone columns">stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=encasement" title=" encasement"> encasement</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a> </p> <a href="https://publications.waset.org/abstracts/76343/load-carrying-capacity-of-soils-reinforced-with-encased-stone-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11968</span> Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Murakami">Shingo Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=patch" title=" patch"> patch</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-plane%20deformation" title=" out-of-plane deformation"> out-of-plane deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a> </p> <a href="https://publications.waset.org/abstracts/17377/effect-of-out-of-plane-deformation-on-relaxation-method-of-stress-concentration-in-a-plate-with-a-circular-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11967</span> Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Mukherjee">Sanjeev Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20Mittal"> Satyendra Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental investigations on the behaviour of a group of single, double and triple helical screw anchors embedded vertically at the same level in sand. The tests were carried out on one, two, three and four numbers of anchors in sand for different depths of embedment keeping shallow and deep mode of behaviour in mind. The testing program included 48 tests conducted on three model anchors installed in sand whose density kept constant throughout the tests. It was observed that the ultimate pullout load varied significantly with the installation depth of the anchor and the number of anchors. The apparent coefficient of friction (f*) between anchor and soil was also calculated based on the test results. It was found that the apparent coefficient of friction varies between 1.02 and 4.76 for 1, 2, 3, and 4 numbers of single, double and triple helical screw anchors. Plate load tests conducted on model soil showed that the value of ф increases from 35o for virgin soil to 48o for soil with four double screw helical anchors. The graphs of ultimate pullout capacity of a group of two, three and four no. of anchors with respect to one anchor were plotted and design equations have been proposed correlating them. Based on these findings, it has been concluded that the load-displacement relationships for all groups can be reduced to a common curve. A 3-D finite element model, PLAXIS, was used to confirm the results obtained from laboratory tests and the agreement is excellent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apparent%20coefficient%20of%20friction" title="apparent coefficient of friction">apparent coefficient of friction</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20screw%20anchor" title=" helical screw anchor"> helical screw anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=installation%20depth" title=" installation depth"> installation depth</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a> </p> <a href="https://publications.waset.org/abstracts/41298/vertical-uplift-capacity-of-a-group-of-equally-spaced-helical-screw-anchors-in-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11966</span> A Full-Scale Test of Coping-Girder Integrated Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heeyoung%20Lee">Heeyoung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Woosung%20Bin"> Woosung Bin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kangseog%20Seo"> Kangseog Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyojeong%20Yun"> Hyojeong Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuog%20An"> Zuog An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coping" title="coping">coping</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20bridge" title=" integrated bridge"> integrated bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20test" title=" full-scale test"> full-scale test</a> </p> <a href="https://publications.waset.org/abstracts/7461/a-full-scale-test-of-coping-girder-integrated-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11965</span> Performance of Bored Pile on Alluvial Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raja%20Rajan">K. Raja Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nagarajan"> D. Nagarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20bearing" title="end bearing">end bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20friction" title=" shaft friction"> shaft friction</a> </p> <a href="https://publications.waset.org/abstracts/74868/performance-of-bored-pile-on-alluvial-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11964</span> Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bahad%C4%B1r%20Y%C3%BCksel">S. Bahadır Yüksel</a>, <a href="https://publications.waset.org/abstracts/search?q=Alptu%C4%9F%20%C3%9Cnal"> Alptuğ Ünal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20wall" title="shear wall">shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20shear%20wall" title=" composite shear wall"> composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20reinforcement" title=" boundary reinforcement"> boundary reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structural%20design" title=" earthquake resistant structural design"> earthquake resistant structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=L%20section" title=" L section"> L section</a> </p> <a href="https://publications.waset.org/abstracts/31684/experimental-behavior-of-composite-shear-walls-having-l-shape-steel-sections-in-boundary-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11963</span> A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badr%20Alsulami">Badr Alsulami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Elamary"> Ahmed S. Elamary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to the welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglund’s theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglund’s theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglund’s theory, BS8118 design method, and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory proposed to predict theoretically the USR of aluminum plate girders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20resistance" title="shear resistance">shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=Cardiff%20theory" title=" Cardiff theory"> Cardiff theory</a>, <a href="https://publications.waset.org/abstracts/search?q=H%D3%A7glund%27s%20theory" title=" Hӧglund's theory"> Hӧglund's theory</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20girder" title=" plate girder"> plate girder</a> </p> <a href="https://publications.waset.org/abstracts/2896/a-new-developed-formula-to-determine-the-shear-buckling-stress-in-welded-aluminum-plate-girders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11962</span> Settlement Analysis of Axially Loaded Bored Piles: A Case History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mert">M. Mert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Ozkan"> M. T. Ozkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined. Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20and%20instrumentation" title=" monitoring and instrumentation"> monitoring and instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/103165/settlement-analysis-of-axially-loaded-bored-piles-a-case-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11961</span> Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Sanchidri%C3%A1n">Alberto Sanchidrián</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20A.%20Parra"> José A. Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20Alonso"> Jesús Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Juli%C3%A1n%20Pecharrom%C3%A1n"> Julián Pecharromán</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonia%20Pacios"> Antonia Pacios</a>, <a href="https://publications.waset.org/abstracts/search?q=Consuelo%20Huerta"> Consuelo Huerta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20plates" title="glass plates">glass plates</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20impact%20test" title=" human impact test"> human impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20test" title=" modal test"> modal test</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20boundary%20conditions" title=" plate boundary conditions"> plate boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/51418/influence-of-glass-plates-different-boundary-conditions-on-human-impact-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11960</span> Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Murakami">Shingo Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=patch" title=" patch"> patch</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-plane%20deformation" title=" out-of-plane deformation"> out-of-plane deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a> </p> <a href="https://publications.waset.org/abstracts/13151/effect-of-out-of-plane-deformation-on-relaxation-method-of-stress-concentration-in-a-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11959</span> Strengthening of Reinforced Concrete Beams Using Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghusen%20al-Kafri">Ghusen al-Kafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Abdallah%20Elsageer"> Mohammed Ali Abdallah Elsageer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohamed%20Hadya%20Alsdaai"> Ahmed Mohamed Hadya Alsdaai</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeimanam%20Salhien%20Salih%20Khalifa"> Abdeimanam Salhien Salih Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, external reinforcement to enhance a reinforced concrete structure performance has been done using externally bonded steel plate. This technique has been reported effective in enhancing the strength of reinforced concrete beam, a study to determine the effectiveness of steel plate as an external reinforcement was carried out. A total of two groups of beams and one group content five beams, each 750 mm long, 150 mm wide, and 150 mm deep were cast, strengthened and tested till failure under two point loads. One beam was act as a control beam without strengthening and other four beams were strengthened with steel plate at a different arrangement. Other group beams were strengthened with steel plate in shear zone and also strengthened at bottom as first group. The behaviours of the strengthened beams were studied through their load-deflection characteristic upon bending, cracking and mode of failure. The results confirmed that all steel plate arrangements enhanced the strength of the reinforced concrete beam, the positioning of the steel plate affect the moment carrying capacity of the beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=beflection" title=" beflection"> beflection</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plates" title=" steel plates"> steel plates</a> </p> <a href="https://publications.waset.org/abstracts/27830/strengthening-of-reinforced-concrete-beams-using-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11958</span> Classification Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Wattimanela">H. J. Wattimanela</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Passaribu"> U. S. Passaribu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20T.%20Puspito"> N. T. Puspito</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Indratno"> S. W. Indratno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Banda Sea collision zone (BSCZ) of is the result of the interaction and convergence of Indo-Australian plate, Eurasian plate and Pacific plate. This location in the eastern part of Indonesia. This zone has a very high seismic activity. In this research, we will be calculated rate (λ) and Mean Square Eror (MSE). By this result, we will identification of Poisson distribution of earthquakes in the BSCZ with the point process approach. Chi-square test approach and test Anscombe made in the process of identifying a Poisson distribution in the partition area. The data used are earthquakes with Magnitude ≥ 6 SR and its period 1964-2013 and sourced from BMKG Jakarta. This research is expected to contribute to the Moluccas Province and surrounding local governments in performing spatial plan document related to disaster management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molluca%20banda%20sea%20collision%20zone" title="molluca banda sea collision zone">molluca banda sea collision zone</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a>, <a href="https://publications.waset.org/abstracts/search?q=poisson%20distribution" title=" poisson distribution"> poisson distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=chi-square%20test" title=" chi-square test"> chi-square test</a>, <a href="https://publications.waset.org/abstracts/search?q=anscombe%20test" title=" anscombe test"> anscombe test</a> </p> <a href="https://publications.waset.org/abstracts/39817/classification-earthquake-distribution-in-the-banda-sea-collision-zone-with-point-process-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11957</span> Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Mohammadzadeh">Behzad Mohammadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Huyk%20Chun%20Noh"> Huyk Chun Noh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impulsive%20loaded%20plates" title="impulsive loaded plates">impulsive loaded plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title=" ABAQUS"> ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/28535/numerical-analysis-of-dynamic-responses-of-the-plate-subjected-to-impulsive-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=399">399</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=400">400</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plate%20load%20test&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>