CINXE.COM
Search results for: coal seam gas (CSG)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: coal seam gas (CSG)</title> <meta name="description" content="Search results for: coal seam gas (CSG)"> <meta name="keywords" content="coal seam gas (CSG)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="coal seam gas (CSG)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="coal seam gas (CSG)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 380</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: coal seam gas (CSG)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Exploration on Extraction of Coalbed Seam in Water Sensitive Reservoir by Combustion of Coal Seams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Yinga">Liu Yinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Bai%20Xingjiab"> Bai Xingjiab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional way to exploit coalbed methane is to drop reservoirs pressure through drainage, which means that reducing pressure through water drainage for coalbed methane desorption. However, it has many limitations. In this paper, the recovery by conventional way is low, in order to exploit water-sensitive reservoir, combustion of coal seam is proposed to increase recovery ratio, and then theoretical feasibility is elaborated through four aspects: temperature, pressure, superficial area, competitive adsorption, then given an example of water sensitive reservoir, results can be obtained that recovery is effectively improved through combustion of coal seam. At the same time, the suitability and efficiency of combustion of coal seam determine that it can be widely applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coalbed%20methane" title="coalbed methane">coalbed methane</a>, <a href="https://publications.waset.org/abstracts/search?q=drainage%20decompression" title=" drainage decompression"> drainage decompression</a>, <a href="https://publications.waset.org/abstracts/search?q=water-sensitive" title=" water-sensitive"> water-sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20of%20coal%20seams" title=" combustion of coal seams"> combustion of coal seams</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20adsorption" title=" competitive adsorption"> competitive adsorption</a> </p> <a href="https://publications.waset.org/abstracts/46149/exploration-on-extraction-of-coalbed-seam-in-water-sensitive-reservoir-by-combustion-of-coal-seams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> A Case Study on Management of Coal Seam Gas by-Product Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojibul%20Sajjad">Mojibul Sajjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20G.%20Rasul"> Mohammad G. Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Sharif%20Imam%20Ibne%20Amir"> Md. Sharif Imam Ibne Amir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland Coal Seam Gas industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully Mine field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29" title="coal seam gas (CSG)">coal seam gas (CSG)</a>, <a href="https://publications.waset.org/abstracts/search?q=cleat%20water" title=" cleat water"> cleat water</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-fracking" title=" hydro-fracking"> hydro-fracking</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20water" title=" product water"> product water</a> </p> <a href="https://publications.waset.org/abstracts/20512/a-case-study-on-management-of-coal-seam-gas-by-product-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Shawky">Mona Shawky</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Elsheikh"> Khaled M. Elsheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Darwish"> Heba M. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Abd%20El%20Elsamea"> Eman Abd El Elsamea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=needle%20size" title="needle size">needle size</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20equation" title=" regression equation"> regression equation</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20allowance" title=" seam allowance"> seam allowance</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20slippage" title=" seam slippage"> seam slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=stitch%20density" title=" stitch density"> stitch density</a> </p> <a href="https://publications.waset.org/abstracts/128316/seam-slippage-of-light-woven-fabrics-with-regards-to-sewing-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Study on the Prediction of Serviceability of Garments Based on the Seam Efficiency and Selection of the Right Seam to Ensure Better Serviceability of Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Azizul%20Islam">Md Azizul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seam is the line of joining two separate fabric layers for functional or aesthetic purposes. Different kinds of seams are used for assembling the different areas or parts of the garment to increase serviceability. To empirically support the importance of seam efficiency on serviceability of garments, this study is focused on choosing the right type of seams for particular sewing parts of the garments based on the seam efficiency to ensure better serviceability. Seam efficiency is the ratio of seam strength and fabric strength. Single jersey knitted finished fabrics of four different GSMs (gram per square meter) were used to make the test garments T-shirt. Three distinct types of the seam: superimposed, lapped and flat seam was applied to the side seams of T-shirt and sewn by lockstitch (stitch class- 301) in a flat-bed plain sewing machine (maximum sewing speed: 5000 rpm) to make (3x4) 12 T-shirts. For experimental purposes, needle thread count (50/3 Ne), bobbin thread count (50/2 Ne) and the stitch density (stitch per inch: 8-9), Needle size (16 in singer system), stitch length (31 cm), and seam allowance (2.5cm) were kept same for all specimens. The grab test (ASTM D5034-08) was done in the Universal tensile tester to measure the seam strength and fabric strength. The produced T-shirts were given to 12 soccer players who wore the shirts for 20 soccer matches (each match of 90 minutes duration). Serviceability of the shirt were measured by visual inspection of a 5 points scale based on the seam conditions. The study found that T-shirts produced with lapped seam show better serviceability and T-shirts made of flat seams perform the lowest score in serviceability score. From the calculated seam efficiency (seam strength/ fabric strength), it was obvious that the performance (in terms of strength) of the lapped and bound seam is higher than that of the superimposed seam and the performance of superimposed seam is far better than that of the flat seam. So it can be predicted that to get a garment of high serviceability, lapped seams could be used instead of superimposed or other types of the seam. In addition, less stressed garments can be assembled by others seems like superimposed seams or flat seams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seam" title="seam">seam</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20efficiency" title=" seam efficiency"> seam efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=T-shirt" title=" T-shirt"> T-shirt</a> </p> <a href="https://publications.waset.org/abstracts/111460/study-on-the-prediction-of-serviceability-of-garments-based-on-the-seam-efficiency-and-selection-of-the-right-seam-to-ensure-better-serviceability-of-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Managing the Effects of Wet Coal on Generation in Thermal Power Station: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20Gohane">Ravindra Gohane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Deshmukh"> S. V. Deshmukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coal acts as a fuel on a very large scale. Coal forms the basis of any thermal power plant. Different types of coal are available for utilization. The moisture content, volatile nature and ash content determines the type of the coal. Out of these moisture plays a very important part as it is present naturally within the coal and is added while handling the coal and is termed as wet coal. The problems of wet coal are many and more particularly during rainy season such as generation loss, jamming of crusher, reduction in calorific value, transportation of coal etc. Efforts are made to resolve the problems arising out of wet coal worldwide. This paper highlights the issue of resolving the problem due to wet coal with the help of a case study involving installation of V-type wiper on the conveyer belt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20handling%20plant" title="coal handling plant">coal handling plant</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20coal" title=" wet coal"> wet coal</a>, <a href="https://publications.waset.org/abstracts/search?q=v-type" title=" v-type"> v-type</a>, <a href="https://publications.waset.org/abstracts/search?q=generation" title=" generation"> generation</a> </p> <a href="https://publications.waset.org/abstracts/66146/managing-the-effects-of-wet-coal-on-generation-in-thermal-power-station-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arish%20Iqbal">Arish Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Singh"> Santosh Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBM%20%28coal%20bed%20methane%29" title="CBM (coal bed methane)">CBM (coal bed methane)</a>, <a href="https://publications.waset.org/abstracts/search?q=CCS%20%28carbon%20capture%20and%20storage%29" title=" CCS (carbon capture and storage)"> CCS (carbon capture and storage)</a>, <a href="https://publications.waset.org/abstracts/search?q=CCT%20%28clean%20coal%20technology%29" title=" CCT (clean coal technology)"> CCT (clean coal technology)</a>, <a href="https://publications.waset.org/abstracts/search?q=CMM%20%28coal%20mining%20methane%29" title=" CMM (coal mining methane)"> CMM (coal mining methane)</a> </p> <a href="https://publications.waset.org/abstracts/80218/clean-coal-using-coal-bed-methane-a-pollution-control-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacqui%20Robertson">Jacqui Robertson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=managed%20aquifer%20recharge" title="managed aquifer recharge">managed aquifer recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20regulation" title=" groundwater regulation"> groundwater regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=common-pool%20resources" title=" common-pool resources"> common-pool resources</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20water%20resource%20management" title=" integrated water resource management"> integrated water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=Australia" title=" Australia"> Australia</a> </p> <a href="https://publications.waset.org/abstracts/142859/the-sustainable-governance-of-aquifer-injection-using-treated-coal-seam-gas-water-in-queensland-australia-lessons-for-integrated-water-resource-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Modelling of Cavity Growth in Underground Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam">Preeti Aghalayam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Shah"> Jay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground coal gasification (UCG) is the in-situ gasification of unmineable coals to produce syngas. In UCG, gasifying agents are injected into the coal seam, and a reactive cavity is formed due to coal consumption. The cavity formed is typically hemispherical, and this report consists of the MATLAB model of the UCG cavity to predict the composition of the output gases. There are seven radial and two time-variant ODEs. A MATLAB solver (ode15s) is used to solve the radial ODEs from the above equations. Two for-loops are implemented in the model, i.e., one for time variations and another for radial variation. In the time loop, the radial odes are solved using the MATLAB solver. The radial loop is nested inside the time loop, and the density odes are numerically solved using the Euler method. The model is validated by comparing it with the literature results of laboratory-scale experiments. The model predicts the radial and time variation of the product gases inside the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification%20agent" title="gasification agent">gasification agent</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20model" title=" MATLAB model"> MATLAB model</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification%20%28UCG%29" title=" underground coal gasification (UCG)"> underground coal gasification (UCG)</a> </p> <a href="https://publications.waset.org/abstracts/142719/modelling-of-cavity-growth-in-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joyjit%20Dey">Joyjit Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Souvik%20Sen"> Souvik Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20analysis" title="core analysis">core analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20characterization" title=" coal characterization"> coal characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20log" title=" geophysical log"> geophysical log</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-mechanical%20moduli" title=" geo-mechanical moduli"> geo-mechanical moduli</a> </p> <a href="https://publications.waset.org/abstracts/79882/evaluation-of-coal-quality-and-geomechanical-moduli-using-core-and-geophysical-logs-study-from-middle-permian-barakar-formation-of-gondwana-coalfield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20L.%20Knott">David L. Knott</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Kingsland"> Robert Kingsland</a>, <a href="https://publications.waset.org/abstracts/search?q=Alistair%20Hitchon"> Alistair Hitchon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downhole%20investigation%20techniques" title="downhole investigation techniques">downhole investigation techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20subsidence" title=" mine subsidence"> mine subsidence</a>, <a href="https://publications.waset.org/abstracts/search?q=yard%20seam" title=" yard seam"> yard seam</a> </p> <a href="https://publications.waset.org/abstracts/88140/investigation-of-yard-seam-workings-for-the-proposed-newcastle-light-rail-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Merit Order of Indonesian Coal Mining Sources to Meet the Domestic Power Plants Demand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Siahaan">Victor Siahaan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal still become the most important energy source for electricity generation known for its contribution which take the biggest portion of energy mix that a country has, for example Indonesia. The low cost of electricity generation and quite a lot of resources make this energy still be the first choice to fill the portion of base load power. To realize its significance to produce electricity, it is necessary to know the amount of coal (volume) needed to ensure that all coal power plants (CPP) in a country can operate properly. To secure the volume of coal, in this study, discussion was carried out regarding the identification of coal mining sources in Indonesia, classification of coal typical from each coal mining sources, and determination of the port of loading. By using data above, the sources of coal mining are then selected to feed certain CPP based on the compatibility of the coal typical and the lowest transport cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=merit%20order" title="merit order">merit order</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesian%20coal%20mine" title=" Indonesian coal mine"> Indonesian coal mine</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a> </p> <a href="https://publications.waset.org/abstracts/144185/merit-order-of-indonesian-coal-mining-sources-to-meet-the-domestic-power-plants-demand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayasiler%20Kunasagaram">Jayasiler Kunasagaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20power" title="coal power">coal power</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=isokinetic%20sampling" title=" isokinetic sampling"> isokinetic sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/33677/measurement-of-coal-fineness-air-fuel-ratio-and-fuel-weight-distribution-in-a-vertical-spindle-mills-pulverized-fuel-pipes-at-classifier-vane-40" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 ºC using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodesulfurization" title="biodesulfurization">biodesulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite "> pyrite </a> </p> <a href="https://publications.waset.org/abstracts/13312/effect-of-pulp-density-on-biodesulfurization-of-mongolian-lignite-coal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Eli-Twist Spun Yarn: An Alternative to Conventional Sewing Thread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujit%20Kumar%20Sinha">Sujit Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Madan%20Lal%20Regar"> Madan Lal Regar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sewing thread plays an important role in the transformation of a two-dimensional fabric into a three-dimensional garment. The interaction of the sewing thread with the fabric at the seam not only influences the appearance of a garment but also its performance. Careful selection of sewing thread and associated parameters can only help in improvement. Over the years, ring spinning has been dominating the yarn market. In the pursuit of improvement to challenge its dominance alternative technology has also been developed. But no real challenge has been posed by the any of the developed spinning systems. Eli-Twist spinning system can be a new method of yarn manufacture to provide a product with improved mechanical and physical properties with respect to the conventional ring spun yarn. The system, patented by Suessen has gained considerable attention in the recent times. The process of produces a two-ply compact yarn with improved fiber utilization. It produces a novel structure combining all advantages of condensing and doubling. In the present study, sewing threads of three different counts each from cotton, polyester and polyester/cotton (50/50) blend were produced on a ring and Eli-Twist systems. A twist multiplier of 4.2 was used to produce all the yarns. A comparison of hairiness, tensile strength and coefficient of friction with conventional ring yarn was made. Eli-Twist yarn has shown better frictional characteristics, better tensile strength and less hairiness. The performance of the Eli-Twist sewing thread has also been found to be better than the conventional 2-ply sewing thread. The performance was estimated through seam strength, seam elongation and seam efficiency of sewn fabric. Eli-Twist sewing thread has shown less friction, less hairiness, and higher tensile strength. Eli-Twist sewing thread resulted in better seam characteristics in comparison to conventional 2-ply sewing thread. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ring%20spun%20yarn" title="ring spun yarn">ring spun yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Eli-Twist%20yarn" title=" Eli-Twist yarn"> Eli-Twist yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=sewing%20thread" title=" sewing thread"> sewing thread</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20strength" title=" seam strength"> seam strength</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20elongation" title=" seam elongation"> seam elongation</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20efficiency" title=" seam efficiency"> seam efficiency</a> </p> <a href="https://publications.waset.org/abstracts/84534/eli-twist-spun-yarn-an-alternative-to-conventional-sewing-thread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Optimizing Coal Yard Management Using Discrete Event Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqbal%20Felani">Iqbal Felani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Coal-Fired Power Plant has some integrated facilities to handle coal from three separated coal yards to eight units power plant’s bunker. But nowadays the facilities are not reliable enough for supporting the system. Management planned to invest some facilities to increase the reliability. They also had a plan to make single spesification of coal used all of the units, called Single Quality Coal (SQC). This simulation would compare before and after improvement with two scenarios i.e First In First Out (FIFO) and Last In First Out (LIFO). Some parameters like stay time, reorder point and safety stock is determined by the simulation. Discrete event simulation based software, Flexsim 5.0, is used to help the simulation. Based on the simulation, Single Quality Coal with FIFO scenario has the shortest staytime with 8.38 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coal%20Yard%20Management" title="Coal Yard Management">Coal Yard Management</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20event%20simulation%20First%20In%20First%20Out" title=" Discrete event simulation First In First Out"> Discrete event simulation First In First Out</a>, <a href="https://publications.waset.org/abstracts/search?q=Last%20In%20First%20Out." title=" Last In First Out. "> Last In First Out. </a> </p> <a href="https://publications.waset.org/abstracts/20725/optimizing-coal-yard-management-using-discrete-event-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Hazardous Gas Detection Robot in Coal Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanchan%20J.%20Kakade">Kanchan J. Kakade</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Annadate"> S. A. Annadate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zigbee%20communication" title="Zigbee communication">Zigbee communication</a>, <a href="https://publications.waset.org/abstracts/search?q=various%20sensors" title=" various sensors"> various sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20gases" title=" hazardous gases"> hazardous gases</a>, <a href="https://publications.waset.org/abstracts/search?q=mbed%20arm%20cortex%20M3%20core%20controller" title=" mbed arm cortex M3 core controller "> mbed arm cortex M3 core controller </a> </p> <a href="https://publications.waset.org/abstracts/32662/hazardous-gas-detection-robot-in-coal-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Evaluation of Biomass Introduction Methods in Coal Co-Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruwaida%20Abdul%20Rasid">Ruwaida Abdul Rasid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20J.%20Hughes"> Kevin J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Henggs"> Peter J. Henggs</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Pourkashanian"> Mohamed Pourkashanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (co-feeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modeled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspen%20HYSYS" title="aspen HYSYS">aspen HYSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=co-gasification%20modelling" title=" co-gasification modelling"> co-gasification modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/17080/evaluation-of-biomass-introduction-methods-in-coal-co-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Mini Coal Gasifier for Fulfilling Small-Scale Industries Energy Consumption in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ade%20Andriansyah%20Efendi">Muhammad Ade Andriansyah Efendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ika%20Monika"> Ika Monika </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mini coal gasifier (GasMin) is a small reactor that could convert coal into combustible gas or producer gas which is designed to fulfill energy needs of small-scale industries. The producer gas can be utilized for both external and internal combustion. The design of coal gasifier is suitable for community require because it is easy to handle, affordable and environmentally friendly. The feasibility study shows that the substitution of 12 kg LPG or specially 50 kg LPG into GasMin of 20 kg coal capacity per hour is very attractive. The estimation price of 20 kg coal per hour capacity GasMin is 40 million rupiahs. In the year 2016, the implementation of GasMin conducted at alumunium industry and batik industry at Yogyakarta, Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a> </p> <a href="https://publications.waset.org/abstracts/65805/mini-coal-gasifier-for-fulfilling-small-scale-industries-energy-consumption-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> CO2 Sequestration for Enhanced Coal Bed Methane Recovery: A New Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Sirvaiya">Abhinav Sirvaiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Karan%20Gupta"> Karan Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Garg"> Pankaj Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global warming due to the increased atmospheric carbon dioxide (CO2) concentration is the most prominent issue of environment that the world is facing today. To solve this problem at global level, sequestration of CO2 in deep and unmineable coal seams has come out as one of the attractive alternatives to reduce concentration in atmosphere. This sequestration technology is not only going to help in storage of CO2 beneath the sub-surface but is also playing a major role in enhancing the coal bed methane recovery (ECBM) by displacing the adsorbed methane. This paper provides the answers for the need of CO2 injection in coal seams and how recovery is enhanced. We have discussed the recent development in enhancing the coal bed methane recovery and the economic scenario of the same. The effect of injection on the coal reservoir has also been discussed. Coal is a good absorber of CO2. That is why the sequestration of CO2 is emerged out to be a great approach, not only for storage purpose but also for enhancing coal bed methane recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title="global warming">global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20%28CO2%29" title=" carbon dioxide (CO2)"> carbon dioxide (CO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20sequestration" title=" CO2 sequestration"> CO2 sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=enhance%20coal%20bed%20methane%20%28ECBM%29" title=" enhance coal bed methane (ECBM)"> enhance coal bed methane (ECBM)</a> </p> <a href="https://publications.waset.org/abstracts/17429/co2-sequestration-for-enhanced-coal-bed-methane-recovery-a-new-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Chemani">Bachir Chemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Chemani"> Halima Chemani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20to%20compression" title=" resistance to compression"> resistance to compression</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20bricks" title=" insulating bricks"> insulating bricks</a> </p> <a href="https://publications.waset.org/abstracts/10532/effect-of-coal-on-engineering-properties-in-building-materials-opportunity-to-manufacturing-insulating-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan"> Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8 L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.ferrooxidans" title="At.ferrooxidans">At.ferrooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20reactor" title=" batch reactor"> batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20desulfurization" title=" coal desulfurization"> coal desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a> </p> <a href="https://publications.waset.org/abstracts/1871/depyritization-of-us-coal-using-iron-oxidizing-bacteria-batch-stirred-reactor-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Laboratory Scale Experimental Studies on CO₂ Based Underground Coal Gasification in Context of Clean Coal Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Kumari">Geeta Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabu%20Vairakannu"> Prabu Vairakannu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal is the largest fossil fuel. In India, around 37 % of coal resources found at a depth of more than 300 meters. In India, more than 70% of electricity production depends on coal. Coal on combustion produces greenhouse and pollutant gases such as CO₂, SOₓ, NOₓ, and H₂S etc. Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts these unmineable coals into valuable calorific gases. The UCG syngas (mainly H₂, CO, CH₄ and some lighter hydrocarbons) which can utilized for the production of electricity and manufacturing of various useful chemical feedstock. It is an inherent clean coal technology as it avoids ash disposal, mining, transportation and storage problems. Gasification of underground coal using steam as a gasifying medium is not an easy process because sending superheated steam to deep underground coal leads to major transportation difficulties and cost effective. Therefore, for reducing this problem, we have used CO₂ as a gasifying medium, which is a major greenhouse gas. This paper focus laboratory scale underground coal gasification experiment on a coal block by using CO₂ as a gasifying medium. In the present experiment, first, we inject oxygen for combustion for 1 hour and when the temperature of the zones reached to more than 1000 ºC, and then we started supplying of CO₂ as a gasifying medium. The gasification experiment was performed at an atmospheric pressure of CO₂, and it was found that the amount of CO produced due to Boudouard reaction (C+CO₂ 2CO) is around 35%. The experiment conducted to almost 5 hours. The maximum gas composition observed, 35% CO, 22 % H₂, and 11% CH4 with LHV 248.1 kJ/mol at CO₂/O₂ ratio 0.4 by volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification" title="underground coal gasification">underground coal gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20coal%20technology" title=" clean coal technology"> clean coal technology</a>, <a href="https://publications.waset.org/abstracts/search?q=calorific%20value" title=" calorific value"> calorific value</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/73112/laboratory-scale-experimental-studies-on-co2-based-underground-coal-gasification-in-context-of-clean-coal-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Selvia%20Fardhyanti">Dewi Selvia Fardhyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Astrilia%20Damayanti"> Astrilia Damayanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kind of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. Nitrogen gas has been used to obtain the inert condition and to carry the gaseous pyrolysis products. The pyrolysis transformed organic materials into gaseous components, small quantities of liquid, and a solid residue (coke) containing fixed amount of carbon and ash. The composition of gas which is produced from the pyrolysis is carbon monoxide, hydrogen, methane, and other hydrocarbon compounds. The gas was condensed and the liquid containing oil/tar and water was obtained. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar is 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20tar" title="coal tar">coal tar</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectroscopy" title=" gas chromatography-mass spectroscopy"> gas chromatography-mass spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/28336/analysis-of-coal-tar-compositions-produced-from-sub-bituminous-kalimantan-coal-tar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Oxygen Enriched Co-Combustion of Sub-Bituminous Coal/Biomass Waste Fuel Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaouki%20Ghenai">Chaouki Ghenai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational Fluid Dynamic analysis of co-combustion of coal/biomass waste fuel blends is presented in this study. The main objective of this study is to investigate the effects of biomass portions (0%, 10%, 20%, 30%: weight percent) blended with coal and oxygen concentrations (21% for air, 35%, 50%, 75% and 100 % for pure oxygen) on the combustion performance and emissions. The goal is to reduce the air emissions from power plants coal combustion. Sub-bituminous Nigerian coal with calorific value of 32.51 MJ/kg and sawdust (biomass) with calorific value of 16.68 MJ/kg is used in this study. Coal/Biomass fuel blends co-combustion is modeled using mixture fraction/pdf approach for non-premixed combustion and Discrete Phase Modeling (DPM) to predict the trajectories and the heat/mass transfer of the fuel blend particles. The results show the effects of oxygen concentrations and biomass portions in the coal/biomass fuel blends on the gas and particles temperatures, the flow field, the devolitization and burnout rates inside the combustor and the CO2 and NOX emissions at the exit from the combustor. The results obtained in the course of this study show the benefits of enriching combustion air with oxygen and blending biomass waste with coal for reducing the harmful emissions from coal power plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-combustion" title="co-combustion">co-combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20blends" title=" fuel blends"> fuel blends</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20emissions" title=" air emissions"> air emissions</a> </p> <a href="https://publications.waset.org/abstracts/39208/oxygen-enriched-co-combustion-of-sub-bituminous-coalbiomass-waste-fuel-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Hydrogeological Appraisal of Karacahisar Coal Field (Western Turkey): Impacts of Mining on Groundwater Resources Utilized for Water Supply</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukran%20Acikel">Sukran Acikel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ekmekci"> Mehmet Ekmekci</a>, <a href="https://publications.waset.org/abstracts/search?q=Otgonbayar%20Namkhai"> Otgonbayar Namkhai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignite coal fields in western Turkey generally occurs in tensional Neogene basins bordered by major faults. Karacahisar coal field in Mugla province of western Turkey is a large Neogene basin filled with alternation of silisic and calcerous layers. The basement of the basin is composed of mainly karstified carbonate rocks of Mesozoic and schists of Paleozoic age. The basement rocks are exposed at highlands surrounding the basin. The basin fill deposits forms shallow, low yield and local aquifers whereas karstic carbonate rock masses forms the major aquifer in the region. The karstic aquifer discharges through a spring zone issuing at intersection of two major faults. Municipal water demand in Bodrum city, a touristic attraction area is almost totally supplied by boreholes tapping the karstic aquifer. A well field has been constructed on the eastern edge of the coal basin, which forms a ridge separating two Neogene basins. A major concern was raised about the plausible impact of mining activities on groundwater system in general and on water supply well field in particular. The hydrogeological studies carried out in the area revealed that the coal seam is located below the groundwater level. Mining operations will be affected by groundwater inflow to the pits, which will require dewatering measures. Dewatering activities in mine sites have two-sided effects: a) lowers the groundwater level at and around the pit for a safe and effective mining operation, b) continuous dewatering causes expansion of cone of depression to reach a spring, stream and/or well being utilized by local people, capturing their water. Plausible effect of mining operations on the flow of the spring zone was another issue of concern. Therefore, a detailed representative hydrogeological conceptual model of the site was developed on the basis of available data and field work. According to the hydrogeological conceptual model, dewatering of Neogene layers will not hydraulically affect the water supply wells, however, the ultimate perimeter of the open pit will expand to intersect the well field. According to the conceptual model, the coal seam is separated from the bottom by a thick impervious clay layer sitting on the carbonate basement. Therefore, the hydrostratigraphy does not allow a hydraulic interaction between the mine pit and the karstic carbonate rock aquifer. However, the structural setting in the basin suggests that deep faults intersecting the basement and the Neogene sequence will most probably carry the deep groundwater up to a level above the bottom of the pit. This will require taking necessary measure to lower the piezometric level of the carbonate rock aquifer along the faults. Dewatering the carbonate rock aquifer will reduce the flow to the spring zone. All findings were put together to recommend a strategy for safe and effective mining operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual%20model" title="conceptual model">conceptual model</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering" title=" dewatering"> dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20operation" title=" mining operation"> mining operation</a> </p> <a href="https://publications.waset.org/abstracts/69223/hydrogeological-appraisal-of-karacahisar-coal-field-western-turkey-impacts-of-mining-on-groundwater-resources-utilized-for-water-supply" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Abandoned Mine Methane Mitigation in the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerome%20Blackman">Jerome Blackman</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Franklin"> Pamela Franklin</a>, <a href="https://publications.waset.org/abstracts/search?q=Volha%20Roshchanka"> Volha Roshchanka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abandoned%20mines" title="abandoned mines">abandoned mines</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mine%20methane" title=" coal mine methane"> coal mine methane</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mining" title=" coal mining"> coal mining</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20emissions" title=" methane emissions"> methane emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20mitigation" title=" methane mitigation"> methane mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use" title=" recovery and use"> recovery and use</a> </p> <a href="https://publications.waset.org/abstracts/176222/abandoned-mine-methane-mitigation-in-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Analysis of Gas Transport and Sorption Processes in Coal under Confining Pressure Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Pajdak">Anna Pajdak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20%20Kudasik"> Mateusz Kudasik</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20%20Skoczylas"> Norbert Skoczylas</a>, <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Teixeira%20Palla%20Braga"> Leticia Teixeira Palla Braga </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A substantial majority of gas transport and sorption researches into coal are carried out on samples that are free of stress. In natural conditions, coal occurs at considerable depths, which often exceed 1000 meters. In such conditions, coal is subjected to geostatic pressure. Thus, in natural conditions, the sorption capacity of coal subjected to geostatic pressure can differ considerably from the sorption capacity of coal, determined in laboratory conditions, which is free of stress. The work presents the results of filtration and sorption tests of gases in coal under confining pressure conditions. The tests were carried out on the author's device, which ensures: confining pressure regulation in the range of 0-30 MPa, isobaric gas pressure conditions, and registration of changes in sample volume during its gas saturation. Based on the conducted research it was found, among others, that the sorption capacity of coal relative to CO₂ was reduced by about 15% as a result of the change in the confining pressure from 1.5 MPa to 30 MPa exerted on the sample. The same change in sample load caused a significant, more than tenfold reduction in carbon permeability to CO₂. The results confirmed that a load of coal corresponding to a hydrostatic pressure of 1000 meters underground reduces its permeability and sorption properties. These results are so important that the effect of load on the sorption properties of coal should be taken into account in laboratory studies on the applicability of CO₂ Enhanced Coal Bed Methane Recovery (CO₂-ECBM) technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal" title="coal">coal</a>, <a href="https://publications.waset.org/abstracts/search?q=confining%20pressure" title=" confining pressure"> confining pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20transport" title=" gas transport"> gas transport</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a> </p> <a href="https://publications.waset.org/abstracts/124125/analysis-of-gas-transport-and-sorption-processes-in-coal-under-confining-pressure-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Strain Sensing Seams for Monitoring Body Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheilla%20Atieno%20Odhiambo">Sheilla Atieno Odhiambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Vasile"> Simona Vasile</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20De%20Raeve"> Alexandra De Raeve</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20Schwarz"> Ann Schwarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strain sensing seams have been developed by integrating conductive sewing threads in different types of seams design on a fabric typical for sports clothing using sewing technology. The aim is to have a simple integrated textile strain sensor that can be applied to sports clothing to monitor the movements of the upper body parts of the user during sports. Different types of commercially available sewing threads were used as the bobbin thread in the production of different architectural seam sensors. These conductive sewing threads have been integrated into seams in particular designs using specific seam types. Some of the threads are delicate and needed to be laid into the seam with as little friction as possible and less tension; thus, they could only be sewn in as the bobbin thread and not the needle thread. Stitch type 304; 406; 506; 601;602; 605. were produced. The seams were made on a fabric of 80% polyamide 6.6 and 20% elastane. The seams were cycled(stretch-release-stretch) for five cycles and up to 44 cycles following EN ISO 14704-1: 2005 (modified), using a tensile instrument and the changes in the resistance of the seams with time were recorded using Agilent meter U1273A. Both experiments were conducted simultaneously on the same seam sample. Sensing functionality, among which is sensor gauge and reliability, were evaluated on the promising sensor seams. The results show that the sensor seams made from HC Madeira 40 conductive yarns performed better inseam stitch 304 and 602 compared to the other combination of stitch type and conductive sewing threads. These sensing seams 304, 406 and 602 will further be interconnected to our developed processing and communicating unit and further integrated into a sports clothing prototype that can track body posture. This research is done within the framework of the project SmartSeam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20sewing%20thread" title="conductive sewing thread">conductive sewing thread</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20seams" title=" sensing seams"> sensing seams</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20seam" title=" smart seam"> smart seam</a>, <a href="https://publications.waset.org/abstracts/search?q=sewing%20technology" title=" sewing technology"> sewing technology</a> </p> <a href="https://publications.waset.org/abstracts/138619/strain-sensing-seams-for-monitoring-body-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junhai%20Liao">Junhai Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yansong%20Shen"> Yansong Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title="blast furnace">blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=pulverized%20coal%20injection" title=" pulverized coal injection"> pulverized coal injection</a>, <a href="https://publications.waset.org/abstracts/search?q=Victorian%20brown%20coal" title=" Victorian brown coal"> Victorian brown coal</a> </p> <a href="https://publications.waset.org/abstracts/72804/numerical-study-on-the-performance-of-upgraded-victorian-brown-coal-in-an-ironmaking-blast-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Study of Drape and Seam Strength of Fabric and Garment in Relation to Weave Design and Comparison of 2D and 3D Drape Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Riaz">Shagufta Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Younus"> Ayesha Younus</a>, <a href="https://publications.waset.org/abstracts/search?q=Munir%20Ashraf"> Munir Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Hussain"> Tanveer Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aesthetic and performance are two most important considerations along with quality, durability, comfort and cost that affect the garment credibility. Fabric drape is perhaps the most important clothing characteristics that distinguishes fabric from the sheet, paper, steel or other film materials. It enables the fabric to mold itself under its own weight into desired and required shape when only part of it is directly sustained. The fabric has the ability to be crumpled charmingly in bent folds of single or double curvature due to its drapeability to produce a smooth flowing i.e. ‘the sinusoidal-type folds of a curtain or skirt’. Drape and seam strength are two parameters that are considered for aesthetic and performance of fabric for both apparel and home textiles. Until recently, no such study have been conducted in which effect of weave designs on drape and seam strength of fabric and garment is inspected. Therefore, the aim of this study was to measure seam strength and drape of fabric and garment objectively by changing weave designs and quality of the fabric. Also, the comparison of 2-D drape and 3-D drape was done to find whether a fabric behaves in same manner or differently when sewn and worn on the body. Four different cotton weave designs were developed and pr-treatment was done. 2-D Drape of the fabric was measured by drapemeter attached with digital camera and a supporting disc to hang the specimen on it. Drape coefficient value (DC %) has negative relation with drape. It is the ratio of draped sample’s projected shadow area to the area of undraped (flat) sample expressed as percentage. Similarly, 3-D drape was measured by hanging the A-line skirts for developed weave designs. BS 3356 standard test method was followed for bending length examination. It is related to the angle that the fabric makes with its horizontal axis. Seam strength was determined by following ASTM test standard. For sewn fabric, stitch density of seam was found by magnifying glass according to standard ASTM test method. In this research study, from the experimentation and evaluation it was investigated that drape and seam strength were significantly affected by change of weave design and quality of fabric (PPI & yarn count). Drapeability increased as the number of interlacement or contact point deceased between warp and weft yarns. As the weight of fabric, bending length, and density of fabric had indirect relationship with drapeability. We had concluded that 2-D drape was higher than 3-D drape even though the garment was made of the same fabric construction. Seam breakage strength decreased with decrease in picks density and yarn count. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drape%20coefficient" title="drape coefficient">drape coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20strength" title=" seam strength"> seam strength</a>, <a href="https://publications.waset.org/abstracts/search?q=weave" title=" weave"> weave</a> </p> <a href="https://publications.waset.org/abstracts/95630/study-of-drape-and-seam-strength-of-fabric-and-garment-in-relation-to-weave-design-and-comparison-of-2d-and-3d-drape-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>