CINXE.COM

Search results for: Solanum melongena

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Solanum melongena</title> <meta name="description" content="Search results for: Solanum melongena"> <meta name="keywords" content="Solanum melongena"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Solanum melongena" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Solanum melongena"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 81</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Solanum melongena</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> In vitro Antioxidant and DNA Protectant Activity of Different Skin Colored Eggplant (Solanum melongena)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Somawathie">K. M. Somawathie</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Rizliya"> V. Rizliya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20M.%20Wickrmasinghe"> H. A. M. Wickrmasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Madhujith"> Terrence Madhujith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of our study was to determine the in vitro antioxidant and DNA protectant activity of aqueous extract of S. melongena with different skin colors; dark purple (DP), moderately purple (MP), light purple (LP) and purple and green (PG). The antioxidant activity was evaluated using the DPPH and ABTS free radical scavenging assay, ferric reducing antioxidant power (FRAP), ferric thiocyanate (FTC) and the egg yolk model. The effectiveness of eggplant extracts against radical induced DNA damage was also determined. There was a significant difference (p < 0.0001) between the skin color and antioxidant activity. TPC and FRAP values of eggplant extracts ranged from 48.67±0.27-61.11±0.26 (mg GAE/100 g fresh weight) and 4.19±0.11-7.46±0.26 (mmol of FeS04/g of fresh weight) respectively. MP displayed the highest percentage of DPPH radical scavenging activity while, DP demonstrated the strongest total antioxidant capacity. In the FTC and egg yolk model, DP and MP showed better antioxidant activity than PG and LP. All eggplant extracts showed potent antioxidant activity in retaining DNA against AAPH mediated radical damage. DP and MP demonstrated better antioxidant activity which may be attributed to the higher phenolic content since a positive correlation was observed between the TPC and the antioxidant parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solanum%20melongena" title="Solanum melongena">Solanum melongena</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20color" title=" skin color"> skin color</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20protection" title=" DNA protection"> DNA protection</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/35657/in-vitro-antioxidant-and-dna-protectant-activity-of-different-skin-colored-eggplant-solanum-melongena" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Chaturvedi">Ritu Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Varun"> Mayank Varun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Paul"> M. S. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytostabilization" title=" phytostabilization"> phytostabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a> </p> <a href="https://publications.waset.org/abstracts/63409/effect-of-vesicular-arbuscular-mycorrhiza-on-phytoremedial-potential-and-physiological-changes-in-solanum-melongena-plants-grown-under-heavy-metal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Field Evaluation of Different Aubergine Cultivars against Infestation of Brinjal Shoot and Fruit Borer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajmal%20Khan%20Kassi">Ajmal Khan Kassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Humayun%20Javed"> Humayun Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asif%20Aziz"> Muhammad Asif Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Response of different aubergine cultivars against Brinjal shoot and fruit borer (Leucinodes orbonalis Guenee.) was evaluated at research farm of PMAS, Arid Agriculture University, Rawalpindi, during 2013. Field trials were conducted in randomized completed block design with four replications for the screening of five cultivars of Brinjal (Solanum melongena L) (Short Purpal, Singhnath 666, Brinjal long 6275, Round Brinjal 86602, Round Egg Plant White). Cultivar Round White Brinjal showed maximum fruit infestation (54.44%) followed by Singhnath 666 (53.19%), while minimum fruit infestation was observed in Round Brinjal 86602 (42.39%). Cultivar Short Purpal showed maximum larval population (0.43) followed by Round White Brinjal (0.39), while the minimum larval population was observed in Round Brinjal 86602 with (0.27). It was observed that Round Brinjal 86602 cultivar showed comparatively minimum (L. orbonalis) larval population per leaf. The correlation of Brinjal fruit infestation and larval population of (L. orbonalis) with the different environmental factors showed that, the average relative humidity was positively and significantly correlated with fruit infestation on cultivars average precipitation showed positive but non- significant correlation on all the cultivars except Singhnath 666 with the value of (0.79) which was positive and significant. The average temperature showed non-significant and negative correlation with Brinjal long 6275, Round Brinjal 86602 and Singhnath 666, but significant negative correlation with Short Purpal and Round White Brinjal. Maximum temperature also showed the significant and negative correlation on all the five Brinjal cultivars which were significant and highly significant. Minimum temperature showed negative correlation and not significant correlation with all the cultivars. Consequently, based on the (L. orbonalis) larval density and Brinjal fruit infestation, the Round Brinjal 86602 proved least susceptible and Short Purpal highly susceptible cultivar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaluation" title="evaluation">evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Brinjal%20%28Solanum%20melongena%20L%29" title=" Brinjal (Solanum melongena L)"> Brinjal (Solanum melongena L)</a>, <a href="https://publications.waset.org/abstracts/search?q=Cultivars" title=" Cultivars"> Cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20orbonalis" title=" L. orbonalis"> L. orbonalis</a> </p> <a href="https://publications.waset.org/abstracts/74986/field-evaluation-of-different-aubergine-cultivars-against-infestation-of-brinjal-shoot-and-fruit-borer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Determination of Carbofuran Residue in Brinjal (Solanum melongena L.) and Soil of Brinjal Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Haque"> M. A. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Kabir"> K. H. Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A supervised trail was set with brinjal at research field, Entomology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur to determine the residue of Carbofuran in soil and fruit samples at different days after application (DAA) of Furadan 5 G @ 2 kg AI/ ha. Field collected samples were analyzed by GCMS-EI. Results of the experiment indicated the presence of Carbofuran residue up to 60 DAA in soil samples and 25 DAA in brinjal fruit samples. In case of soil samples, the detected residues were 7.04, 2.78, 0.79, 0.43, 0.12, 0.06 and 0.05 ppm at 0, 2, 5, 10, 20, 30 and 60 DAA respectively. On the other hand, in brinjal fruit samples Carbofuran residues were 0.005 ppm, 0.095 ppm, 0.084 ppm, 0.065 ppm, 0.063 ppm, 0.056 ppm, 0.050 ppm, 0.030 ppm and 0.016 ppm at 0, 2, 4, 6, 8, 10, 12, 15 and 25-DAA, respectively. None of this amount was above the recommended MRL (0.1 mg / kg crop) of Carborufan for agricultural crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brinjal" title="brinjal">brinjal</a>, <a href="https://publications.waset.org/abstracts/search?q=carbofuran" title=" carbofuran"> carbofuran</a>, <a href="https://publications.waset.org/abstracts/search?q=MRL" title=" MRL"> MRL</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a> </p> <a href="https://publications.waset.org/abstracts/29583/determination-of-carbofuran-residue-in-brinjal-solanum-melongena-l-and-soil-of-brinjal-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Solanum tuberosum Ammonium Transporter Gene: Some Bioinformatics Insights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Adetunji">A. T. Adetunji</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20B.%20Lewu"> F. B. Lewu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mundembe"> R. Mundembe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants require nitrogen (N) to support desired production levels. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which nitrogen is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design AMT1-specific primers which were used to amplify the AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1 and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th - 10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20transporter" title="ammonium transporter">ammonium transporter</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=primers" title=" primers"> primers</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20tuberosum" title=" Solanum tuberosum"> Solanum tuberosum</a> </p> <a href="https://publications.waset.org/abstracts/56484/solanum-tuberosum-ammonium-transporter-gene-some-bioinformatics-insights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewole%20Tomiwa%20Adetunji">Adewole Tomiwa Adetunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Bayo%20Lewu"> Francis Bayo Lewu</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Mundembe"> Richard Mundembe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20transporter" title="ammonium transporter">ammonium transporter</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=primers" title=" primers"> primers</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20tuberosum" title=" Solanum tuberosum"> Solanum tuberosum</a> </p> <a href="https://publications.waset.org/abstracts/77923/characterization-of-solanum-tuberosum-ammonium-transporter-gene-using-bioinformatics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evy%20Latifah">Evy Latifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Eko%20Widaryanto"> Eko Widaryanto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dawam%20Maghfoer"> M. Dawam Maghfoer</a>, <a href="https://publications.waset.org/abstracts/search?q=Arifin"> Arifin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato (<em>Lycopersicon esculentum</em> Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is <em>Solanum torvum</em>. <em>S. torvum</em> is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with <em>Solanum torvum</em> as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and <em>Solanum torvum</em>. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with <em>Solanum torvum</em> as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grafting%20technology" title="grafting technology">grafting technology</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20of%20tomato" title=" yield of tomato"> yield of tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20torvum" title=" Solanum torvum"> Solanum torvum</a> </p> <a href="https://publications.waset.org/abstracts/91687/economic-analysis-growth-and-yield-of-grafting-tomato-varieties-for-solanum-torvum-as-a-rootstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Evaluation of Radioprotective Effect of Solanun melongena L. in the Survival of Lasioderma serricorne (Coleoptera, Anobiidae) Irradiated with Gamma Rays of Cobalt-60</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adilson%20C.%20Barros">Adilson C. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayo%20Okazaki"> Kayo Okazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Valter%20Arthur"> Valter Arthur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The radio-protective substances protect the organism from ionizing radiation when previously ingested. Synthetic radio-protectives produce unpleasant side effects and are expensive. This article reports the search for natural radio-protective agents in foods, whose occurrence is widespread, costs are lower and the side effects are non-existent. In this work, we studied the eggplant, a food widely used in Brazil, comparing the radiosensitivity of insects reared on diet eggplant and outside this diet. The eggplant causes change in LD50 parameter of insects population but the response curve needs to be better shaped to conclude something about radioprotection. What we can see is that it seems to contain some radiomodifier substance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioprotector" title="radioprotector">radioprotector</a>, <a href="https://publications.waset.org/abstracts/search?q=radiobiology" title=" radiobiology"> radiobiology</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanun%20melongena%20L." title=" Solanun melongena L."> Solanun melongena L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasioderma%20serricorne" title=" Lasioderma serricorne"> Lasioderma serricorne</a> </p> <a href="https://publications.waset.org/abstracts/15973/evaluation-of-radioprotective-effect-of-solanun-melongena-l-in-the-survival-of-lasioderma-serricorne-coleoptera-anobiidae-irradiated-with-gamma-rays-of-cobalt-60" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Solanum Nigrum Show Anti-Obesity Effects on High Fat Diet Fed Sprague Dawley Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20Nderitu">Kathryn Nderitu</a>, <a href="https://publications.waset.org/abstracts/search?q=Atunga%20Nyachieo"> Atunga Nyachieo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezekiel%20Mecha"> Ezekiel Mecha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Solanum nigrum , also known as black nightshade, biosynthesizes various phytochemical compounds with various pharmacological activities, including treating cardiovascular diseases and type 2 diabetes, among others. Materials and Methods: To assess the anti-obesity effects of Solanum nigrum using high-fat-fed diet rats, Sprague Dawley male rats (n = 35) of weights 160–180 g were assigned randomly into seven groups comprising n = 5 rats each. Each group was fed for 11 weeks as follows: normal group (normal chow rat feed); high-fat diet control (HFD); HFD and standard drug (Orlistat 30 mg/kg bw); HFD and methanolic extract 150 mg/kgbw; HFD and methanolic extract 300 mg/kgbw; HFD and dichloromethane extract 150 mg/kgbw; HFD and dichloromethane extract 300 mg/kgbw. Body mass index and food intake were monitored per week, and an oral glucose tolerance test was measured in weeks 5 and 10. Lipid profiles, liver function tests, adipose tissue, liver weights, and phytochemical analysis of Solanum nigrum were later carried out. Results: High-fat diet control group rats exhibited a significant increase in body mass index (BMI), while rats administered with leaf extracts of Solanum nigrum showed a reduction in BMI. Both low doses of dichloromethane (150 mg/kgbw) and high doses of methanol extracts (300 mg/kgbw) showed a better reduction in BMI than the other treatment groups. A significant decrease (p <0.05) in low-density lipoprotein-cholesterol, triglycerides, and cholesterol was observed among the rats administered with Solanum nigrum extracts compared to those of HFD control. Moreover, the HFD control group significantly increased liver and adipose tissue weights compared to other treatment groups (p<0.05). Solanum nigrum also decreased glycemic levels and normalized the hepatic enzymes of HFD control. However, food intake among the groups showed no significant difference (p>0.05). Qualitative analysis of Solanum nigrum leaf extracts indicated the presence of various bioactive compounds associated with anti-obesity. Conclusion: These results validate the use of Solanum nigrum in controlling obesity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solanum%20nigrum" title="solanum nigrum">solanum nigrum</a>, <a href="https://publications.waset.org/abstracts/search?q=High%20fat%20diet" title=" High fat diet"> High fat diet</a>, <a href="https://publications.waset.org/abstracts/search?q=phytocompounds" title=" phytocompounds"> phytocompounds</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/180013/solanum-nigrum-show-anti-obesity-effects-on-high-fat-diet-fed-sprague-dawley-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Effects of Chemical and Organic Fertilizer Application on Yield of Herbaceous Crops in Succession</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarantino%20E.">Tarantino E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Disciglio%20G."> Disciglio G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagliardi%20A."> Gagliardi A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gatta%20G."> Gatta G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarantino%20A."> Tarantino A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fertilizer is a critical input for improving production and increasing crop yields. Consecutive experimental trials during six years (from 2010-2015) were carried out in Apulia region (south-eastern Italy) on seven crops grown in cylinder pots. The aim was to determinate the effects of chemical and organic fertilizer on marketable yield and other parameters of processing tomato (Lycopersicum esculentum L., cv Docet), lettuce (Lactuca sativa L., cv Canasta), cauliflower (Brassica oleracea L., cv Casper), pepper (Capsicum annum L., cv Akron), fennel (Foeniculum vulgare L., cv Tarquinia), eggplant (Solanum melongena L. cv Primato F1) and chard (Beta vulgaris L., Argentata). At harvest the quail-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA). Results showed that the yields for all of these crops were greater under the chemical system than the organic system whereas quite variable results were generally observed for the other characteristics of the yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title="fertilizers">fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=herbaceous%20crops" title=" herbaceous crops"> herbaceous crops</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20characteristics" title=" yield characteristics"> yield characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=succession" title=" succession"> succession</a> </p> <a href="https://publications.waset.org/abstracts/34730/effects-of-chemical-and-organic-fertilizer-application-on-yield-of-herbaceous-crops-in-succession" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Genetic Variability and Principal Component Analysis in Eggplant (Solanum melongena)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Naroui%20Rad">M. R. Naroui Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghalandarzehi"> A. Ghalandarzehi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Koohpayegani"> J. A. Koohpayegani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nine advanced cultivars and lines were planted in transplant trays on March, 2013. In mid-April 2014, nine cultivars and lines were taken from the seedling trays and were evaluated and compared in an experiment in form of a completely randomized block design with three replications at the Agricultural Research Station, Zahak. The results of the analysis of variance showed that there was a significant difference between the studied cultivars in terms of average fruit weight, fruit length, fruit diameter, ratio of fruit length to its diameter, the relative number of seeds per fruit, and each plant yield. The total yield of Sohrab and Y6 line with and an average of 41.9 and 36.7 t/ ha allocated the highest yield respectively to themselves. The results of simple correlation between the analyzed traits showed the final yield was affected by the average fruit weight due to direct and indirect effects of fruit weight and plant yield on the final yield. The genotypic and heritability values were high for fruit weight, fruit length and number of seed per fruit. The first two principal components accounted for 81.6% of the total variation among the characters describing genotypes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eggplant" title="eggplant">eggplant</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component" title=" principal component"> principal component</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title=" path analysis"> path analysis</a> </p> <a href="https://publications.waset.org/abstracts/46741/genetic-variability-and-principal-component-analysis-in-eggplant-solanum-melongena" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Imidacloprid and Acetamiprid Residues in Okra and Brinjal Grown in Peri-Urban Environments and Their Dietary Intake Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Atif%20Randhawa">Muhammad Atif Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Amjad"> Adnan Amjad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of insecticides used for growing vegetables in comparison with their safety status was the main purpose of this study. A total of 180 samples of okra (Abelmoschus esculentus L.) and brinjal (Solanum melongena L.) comprising 30 samples of each vegetable were collected from the peri-urban farming system of Multan, Faisalabad and Gujranwala. The mean value for imidacloprid residues found in brinjal (0.226 mg kg-1) and okra (0.176 mg kg-1) from Multan region were greater than the residues reported from Gujranwala and Faisalabad, showing excessive application of imidacloprid in Multan. Out of total 180 samples analysed for imidacloprid and acetamaprid residues, (90 samples for each of okra and brinjal), 104 (58%) and 117 (65%) samples contained detectable imidacloprid and acetamiprid residues, respectively. Whereas 10% and 15% samples exceeded their respective MRLs for imidacloprid and acetamiprid residues. Dietary intake assessment for imidacloprid and acetamiprid was calculated according to their MPI values 3.84 and 4.48 mg person-1day-1, respectively. The dietary intake assessment data revealed that although a reasonable proportion of samples exceeded the MRLs in studied areas but their consumption was found within safe limit in comparison to values obtained for MPI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acceptable%20Daily%20Intake%20%28ADI%29" title="Acceptable Daily Intake (ADI)">Acceptable Daily Intake (ADI)</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticides" title=" insecticides"> insecticides</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximum%20Residual%20Limits%20%28MRLs%29" title=" Maximum Residual Limits (MRLs)"> Maximum Residual Limits (MRLs)</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/41482/imidacloprid-and-acetamiprid-residues-in-okra-and-brinjal-grown-in-peri-urban-environments-and-their-dietary-intake-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Proximate and Amino Acid Composition of Amaranthus hybridus (Spinach), Celosia argentea (Cock&#039;s Comb) and Solanum nigrum (Black nightshade)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Oladeji">S. O. Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Saleh"> I. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Adamu"> A. U. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Fowotade"> S. A. Fowotade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proximate composition, trace metal level and amino acid composition of Amaranthus hybridus, Celosia argentea and Solanum nigrum were determined. These vegetables were high in their ash contents. Twelve elements were determined: calcium, chromium, copper, iron, lead, magnesium, nickel, phosphorous, potassium, sodium and zinc using flame photometer, atomic absorption and UV-Visible spectrophotometers. Calcium levels were highest ranged between 145.28±0.38 to 235.62±0.41mg/100g in all the samples followed by phosphorus. Quantitative chromatographic analysis of the vegetables hydrolysates revealed seventeen amino acids with concentration of leucine (6.51 to 6.66±0.21g/16gN) doubling that of isoleucine (2.99 to 3.33±0.21g/16gN) in all the samples while the limiting amino acids were cystine and methionine. The result showed that these vegetables were of high nutritive values and could be adequate used as supplement in diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proximate" title="proximate">proximate</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaranthus%20hybridus" title=" Amaranthus hybridus"> Amaranthus hybridus</a>, <a href="https://publications.waset.org/abstracts/search?q=Celosia%20argentea" title=" Celosia argentea"> Celosia argentea</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20nigrum" title=" Solanum nigrum"> Solanum nigrum</a> </p> <a href="https://publications.waset.org/abstracts/22066/proximate-and-amino-acid-composition-of-amaranthus-hybridus-spinach-celosia-argentea-cocks-comb-and-solanum-nigrum-black-nightshade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.H.%20Keshek">M.H. Keshek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.N.%20Omar"> M.N. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.H.%20Amer"> A.H. Amer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title="microwave drying">microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=eggplant" title=" eggplant"> eggplant</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20rate" title=" drying rate"> drying rate</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20efficiency" title=" drying efficiency"> drying efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/128071/mathematical-modeling-of-eggplant-slices-drying-using-microwave-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Rapid Green Synthesis of Silver Nanoparticles Using Solanum Nigrum Leaves Extract with Antimicrobial and Anticancer Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anushaa%20A.">Anushaa A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, silver nanoparticles (AgNP) were manufactured directly without harmful chemicals utilising methanol extract (SNLME) Solanum nigrume leaves. We are using nigrum leaf extract from Solanum, which converts silver nitrate to silver ions, for synthesization purposes. An examination of the AgNP produced was performed using ultraviolet (UV-VIS) spectroscopy, infrared spectroscopy (FTIR) transformed from Fourier and scanning electrons (SEM). Biological activity was also tested. UV-VIS has proven that biosynthesized AgNP exists (420-450 nm). The FTIR spectrum has been utilised to confirm the presence of different functional groups within the biomolecules, which are a nanoparticular capping agent and the spectroscopic and crystal nature of AgNP. The viability of the silver nanoparticles was evaluated using zeta potential calculations. Negative zeta potential of -33.4 mV demonstrated the stability of silver-nanoparticles. The morphology of AgNP was examined using a scanning electron microscope. Greenly generated AgNP showed significant anti-Staphylococcus aureus, Candida, and Escherichia coli action. The green AgNP demonstration indicated that the IC50 for the human teratocarcinoma cell line was 29.24 μg/ml during 24 hours of therapy (PA1 Ovarian cell line). The dose-dependent effects were reported in both antibacterial and cytotoxicity assays and as an effective agent. Finally, the findings of this research showed that silver nanoparticles generated might serve as a viable therapeutic agent to combat microorganisms killing and curing cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=PA1%20ovarian%20cancer%20cell%20line" title=" PA1 ovarian cancer cell line"> PA1 ovarian cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20nigrum" title=" Solanum nigrum"> Solanum nigrum</a> </p> <a href="https://publications.waset.org/abstracts/138420/rapid-green-synthesis-of-silver-nanoparticles-using-solanum-nigrum-leaves-extract-with-antimicrobial-and-anticancer-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Biocontrol of Fusarium Crown and Root Rot and Enhancement of Tomato Solanum lycopersicum L. Growth Using Solanum linnaeanum L. Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Nefzi">Ahlem Nefzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rania%20Aydi%20Ben%20Abdallah"> Rania Aydi Ben Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayfa%20Jabnoun-Khiareddine"> Hayfa Jabnoun-Khiareddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawaim%20Ammar"> Nawaim Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sined%20Medimagh-Saidana"> Sined Medimagh-Saidana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mejda%20Daami-Remadi"> Mejda Daami-Remadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, leaf, stem, and fruit aqueous extracts of native wild Solanum linnaeanum L. were screened for their ability to suppress Fusarium Crown and Root Rot disease and to enhance tomato (Solanum lycopersicum L.) growth under greenhouse conditions. Leaf extract used at 30% w/v was the most effective in reducing leaf and root damage index by 92.3% and the extent of vascular discoloration by 97.56% compared to Fusarium oxyxporum f. sp radicis lycopersici -inoculated and untreated control. A significant promotion of growth parameters (root length, shoot height, root and shoot biomass and stem diameter) was recorded on tomato cv. Rio Grande seedlings by 40.3-94.1% as compared to FORL inoculated control and by 9.6-88.8% over pathogen-free control. All S. linnaeanum aqueous extracts tested significantly stimulated the germination by 10.2 to 80.1% relative to the untreated control. FORL mycelial growth, assessed using the poisoned food technique, varied depending on plant organs, extracts, and concentrations used. Butanolic extracts were the most active, leading to 60.81% decrease in FORL mycelial growth. HPLC analysis of butanolic extract revealed the presence of thirteen phenolic compounds. Thus, S. linnaeanum can be explored as a potential natural source of antifungal and biofertilizing compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title="antifungal activity">antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-MS%20analysis" title=" HPLC-MS analysis"> HPLC-MS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum%20f.%20sp.%20radicis-lycopersici" title=" Fusarium oxysporum f. sp. radicis-lycopersici"> Fusarium oxysporum f. sp. radicis-lycopersici</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20growth" title=" tomato growth"> tomato growth</a> </p> <a href="https://publications.waset.org/abstracts/90546/biocontrol-of-fusarium-crown-and-root-rot-and-enhancement-of-tomato-solanum-lycopersicum-l-growth-using-solanum-linnaeanum-l-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> HPTLC Fingerprinting of steroidal glycoside of leaves and berries of Solanum nigrum L. (Inab-us-salab/makoh)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karishma%20Chester">Karishma Chester</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarvesh%20K.%20Paliwal"> Sarvesh K. Paliwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayeed%20Ahmad"> Sayeed Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inab-us-salab also known as Solanum nigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various unani traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of solanaceae, these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time its fractionation and fingerprinting of aglycone (solasodine) and glycosides (solamargine and solasonine) in leaves and berries of S. nigrum using solvent extraction and fractionation followed by HPTLC analysis. The fingerprinting was done using silica gel 60F254 HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5% ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phase at 400 nm, after derivatization with antimony tri chloride reagent for identification of steroidal glycoside. The statistical data obtained can further be validated and can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solanum%20nigrum" title="solanum nigrum">solanum nigrum</a>, <a href="https://publications.waset.org/abstracts/search?q=solasodine" title=" solasodine"> solasodine</a>, <a href="https://publications.waset.org/abstracts/search?q=solamargine" title=" solamargine"> solamargine</a>, <a href="https://publications.waset.org/abstracts/search?q=solasonine" title=" solasonine"> solasonine</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a> </p> <a href="https://publications.waset.org/abstracts/33780/hptlc-fingerprinting-of-steroidal-glycoside-of-leaves-and-berries-of-solanum-nigrum-l-inab-us-salabmakoh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Saponins from the Fruits of Solanum anguivi Reverse Hyperglycemia, Hyperlipidemia and Increase Antioxidant Status in Stretozotocin Induced Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Gbadura%20Adanlawo">Isaac Gbadura Adanlawo</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Olalekan%20Elekofehinti"> Olusola Olalekan Elekofehinti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigated the antihyperglycemic, antioxidant and antihyperlipidemic effects of saponins from the fruit of Solanum anguivi, a plant generally used in folk medicine to treat diabetes and hypertension and to compare its effect with metformin in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in albino rats by administration of STZ (65 mg/kg) intraperitoneally. Saponin (40 and 100 mg/kg) was administered by oral gavage once daily for 21 days. Metformin (200 mg/kg b.w.) was administered as the positive control. The effect of saponin on blood glucose, serum lipids and enzymatic antioxidants defense systems, like superoxide dismutase (SOD), catalase (CAT), as well as MDA levels in serum, liver and pancreas were studied. Saponins from S. anguivi fruits reduced the blood glucose, total cholesterol (TC), triglycerides (TG) and low-density lipoprotein (LDL) levels in STZ-diabetic rats. They also significantly abolished the increase in MDA level in serum, liver and pancreas of diabetic rats. The activities of SOD and CAT in serum, liver and pancreas were significantly increased as well as concentration of HDL in the serum. Metformin had the same effect as saponin but saponins seems to be more potent in reducing serum TC, TG, LDL, and MDA, and increasing SOD and CAT. Conclusions: These results suggest that saponins from S. anguivi fruits have anti-diabetic and antihypercholesterolemic, antihypertriglyceridemic antiperoxidative activities mediated through their antioxidant properties. Also, saponins appeared to have more hypolipidemic, antiperoxidative and antioxidant activity than metformin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saponin" title="saponin">saponin</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=metformin" title=" metformin"> metformin</a>, <a href="https://publications.waset.org/abstracts/search?q=streptozotocin" title=" streptozotocin"> streptozotocin</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20anguivi" title=" Solanum anguivi"> Solanum anguivi</a> </p> <a href="https://publications.waset.org/abstracts/20630/saponins-from-the-fruits-of-solanum-anguivi-reverse-hyperglycemia-hyperlipidemia-and-increase-antioxidant-status-in-stretozotocin-induced-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navodit%20Goel">Navodit Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabir%20K.%20Paul"> Prabir K. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title="Azadirachta indica">Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=lysozyme" title=" lysozyme"> lysozyme</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol%20oxidase" title=" polyphenol oxidase"> polyphenol oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20lycopersicum" title=" Solanum lycopersicum"> Solanum lycopersicum</a> </p> <a href="https://publications.waset.org/abstracts/58191/eco-friendly-control-of-bacterial-speck-on-solanum-lycopersicum-by-azadirachta-indica-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahzad%20Iqbal">Muhammad Shahzad Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zobia%20Sarwar"> Zobia Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah-ud-Din"> Salah-ud-Din</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato%20spotted%20wild%20virus%20%28TSWV%29" title="tomato spotted wild virus (TSWV)">tomato spotted wild virus (TSWV)</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20lycopersicum" title=" Solanum lycopersicum"> Solanum lycopersicum</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20virus" title=" plant virus"> plant virus</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20target%20prediction" title=" microRNA target prediction"> microRNA target prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=mRNA" title=" mRNA"> mRNA</a> </p> <a href="https://publications.waset.org/abstracts/145943/prediction-of-solanum-lycopersicum-genome-encoded-micrornas-targeting-tomato-spotted-wilt-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Studies on the Immunostimulatory Effect of Extract of Solanum Trilobatum and Ocimum Sanctum in Mystus Keletius</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subeena%20Begum">Subeena Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=Navaraj%20Perumalsamy"> Navaraj Perumalsamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The freshwater catfish Mystus keletius was injected with the methanolic extract (water soluble fraction) of Solanum trilobatum and Ocimum sanctum alone and in combination in 3mg, 30mg.300mg/Kg body weight. Serum was collected every 7 days interval. Fishes were fed with normal diet for the entire period of the experiment. The nonspecific immune response such as Total WBC count, phagocytic activity and serum antiprotease activity were observed. They were enhanced (p<0.05) in fish injected with methanolic extract (water soluble fraction) S.trilobatum and O. sanctum alone and in combination than control group. Highest level of WBC count, phagocytic activity and serum antiprotease activity were confirmed when the fish injected with the mixed extract of 1:1 ratio of S.trilobatum and O.sanctum in 30mg/kg (b.w).The effect of mixture of methanolic extract of medicinal plant in M. keletius is highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Immunology" title="Immunology">Immunology</a>, <a href="https://publications.waset.org/abstracts/search?q=Fish" title=" Fish"> Fish</a>, <a href="https://publications.waset.org/abstracts/search?q=Stimulatory%20effect" title=" Stimulatory effect"> Stimulatory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicinal%20plants" title=" Medicinal plants"> Medicinal plants</a> </p> <a href="https://publications.waset.org/abstracts/188189/studies-on-the-immunostimulatory-effect-of-extract-of-solanum-trilobatum-and-ocimum-sanctum-in-mystus-keletius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Transcriptome Analysis of Dry and Soaked Tomato (Solanum lycopersicum) Seeds in Response to Fast Neutron Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yujie%20Zhou">Yujie Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Seong%20Byun"> Hee-Seong Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-In%20Bak"> Sang-In Bak</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui-Joon%20Kil"> Eui-Joon Kil</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Joo%20Min"> Kyung Joo Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Chavan"> Vivek Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Won%20Kyong%20Cho"> Won Kyong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukchan%20Lee"> Sukchan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Woo%20Hong"> Seung-Woo Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Sun%20Park"> Tae-Sun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast neutron irradiation (FNI) can cause mutations on plant genome but, in the most of cases, these irradiated plants have not shown significant characteristics phenotypically. In this study, we utilized RNA-Seq to generate a high-resolution transcriptome map of the tomato (Solanum lycopersicum) genome effected by FNI. To quantify the different transcription levels in tomato irradiated by FNI, tomato seeds were irradiated by using MC-50 cyclotron (KIRAMS, Korea) for 0, 30 and 90 minutes, respectively. To investigate the effects on the pre-soaking condition, experimental groups were divided into dry and soaked seeds, which were soaked for 8 hours before irradiation. There was no noticeable difference in the percentage germination (PG) among dry seeds, while irradiated soaked seeds have about 10 % lower PG compared to the unirradiated control group. Using whole transcriptome sequencing by HiSeq 2000, we analyzed the differential gene expression in response to different time of FNI in dry and soaked seeds. More than 1.4 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between irradiated and unirradiated seeds were assessed. In 0, 30 and 90 minutes irradiation, 12,135, 28,495 and 28,675 transcripts were generated, respectively. Gene ontology analysis suggested the different enrichment of transcripts involved in response to different FNI. The present study showed that FNI effects on plant gene expression, which can become a new parameters for evaluating the responses against FNI on plants. In addition, the comparative analysis of differentially expressed genes in D and S seeds by FNI will also give us a chance to deep explore novel candidate genes for FNI, which could be a good model system to understand the mechanisms behind the adaption of plant to space biology research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato%20%28solanum%20lycopersicum%29" title="tomato (solanum lycopersicum)">tomato (solanum lycopersicum)</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron%20irradiation" title=" fast neutron irradiation"> fast neutron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-sequence" title=" RNA-sequence"> RNA-sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptome%20expression" title=" transcriptome expression"> transcriptome expression</a> </p> <a href="https://publications.waset.org/abstracts/65369/transcriptome-analysis-of-dry-and-soaked-tomato-solanum-lycopersicum-seeds-in-response-to-fast-neutron-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Phytochemical Analysis of Some Solanaceous Plants of Chandigarh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishtha">Nishtha</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa"> Richa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anju%20Rao"> Anju Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants are the source of herbal medicine and medicinal value of the plants lies in the bioactive phytochemical constituents that produce definite physiological effects on human body. Angiospermic families are known to produce such phytochemical constituents which are termed as secondary plant metabolites. These metabolites include alkaloids, saponins, phenolic compounds, flavonoids, tannins, terpenoids and so on. Solanaceae is one of the important families of Angiosperms known for medicinally important alkaloids such as hyoscyamine, scopolamine, solanine, nicotine, capsaicin etc. Medicinally important species of this family mostly belong to the genera of Datura,Atropa,Solanum,Withania and Nicotiana.Six species such as Datura metel, Solanum torvum, Physalis minima, Cestrum nocturnum, Cestrum diurnum and Nicotiana plumbaginifolia have been collected from different localities of Chandigarh and adjoining areas.Field and anatomical studies helped to identify the plants and their parts used for the study of secondary plant metabolites. Preliminary phytochemcial studies have been done on various parts of plants such as roots, stem and leaves by making aqueous and alcoholic extracts from their powdered forms which showed the presence of alkaloids in almost all the species followed by steroids, flavonoids, terpenoids, tannins etc. HPLC profiles of leaves of Datura metel showed the presence of active compounds such as scopalamine and hyoscyamine and Solanum torvum showed the presence of solanine and solasodine. These alkaloids are important source of drug based medicine used in pharmacognosy. The respective compounds help in treating vomiting, nausea, respiratory disorders, dizziness, asthma and many heart problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaloids" title="alkaloids">alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=flavanoids" title=" flavanoids"> flavanoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20constituents" title=" phytochemical constituents"> phytochemical constituents</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacognosy" title=" pharmacognosy"> pharmacognosy</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites "> secondary metabolites </a> </p> <a href="https://publications.waset.org/abstracts/37388/phytochemical-analysis-of-some-solanaceous-plants-of-chandigarh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Evaluation of Anti-Leishmanial Activity of Albaha Medicinal Plants against Leishmania amazonensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20S.%20Al-Sokari">Saeed S. Al-Sokari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20Awadh%20Ali"> Nasser A. Awadh Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianet%20Monzote"> Lianet Monzote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis (CL) is endemic in at least 82 countries and considered to be a major public-health problem (1). The annual incidence of CL is 1–1.5 million cases of which 90% occur in only seven countries: Afghanistan, Algeria, Brazil, Iran, Peru, Saudi Arabia and Syria (2). In Saudi Arabia, the disease was first described in 1973 by Moursy and Shoura (3). Currently, CL is common in the human population in different localities, including the Eastern Province of Saudi Arabia and in particular the Al-Hassa Oasis that is a known endemic area for CL (4). Five methanolic extracts obtained from Achillea biebersteinii (flower leaf), Euphorbia antiquorm, Solanum incanum (leaf and fruit extracts), collected from Albaha region and selected from ethno-botanical data, were screened for their anti-leishmanial activity against Leishmania amazonensis (6). The cytotoxic activity against normal peritoneal macrophages from normal BALB/c mice was also determined (6). The five extracts had IC50 values ranging from < 12.5 to 37.8 µg/ml against promastigotes. Achillea biebersteinii flower, Euphorbia antiquorm, Solanum incanum leaf extracts showed anti-leishmanial activities with IC50 between < 12.5 - 26.9µg/mL and acceptable selectivity indices of 8 - 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title="plant extracts">plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=Albaha" title=" Albaha"> Albaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20amazonensis" title=" Leishmania amazonensis"> Leishmania amazonensis</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicinal" title=" Medicinal "> Medicinal </a> </p> <a href="https://publications.waset.org/abstracts/33181/evaluation-of-anti-leishmanial-activity-of-albaha-medicinal-plants-against-leishmania-amazonensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> In-Vitro Assessment of Saponin’s Level and Hemolytic Activity of Five Medicinal Plants from Eritrea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leah%20%20Ghebreberhan">Leah Ghebreberhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liya%20%20Abraham"> Liya Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20%20%20Issac"> John Issac</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20%20Kaushik"> Atul Kaushik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants are used for various indications in Eritrea according to traditional systems of medicine. Safety concerns, however, are dubious since some medicinal plants have toxic effects indeed. The medicinal plants under study (Commicarpus pedunculosis, Steganotaenia araliaceae, Boscia angustifolia, Solanum incanum, and Calpurnia aurea) are used in the treatment of various diseases. Thus, safety studies must be performed prior to usage since they are rich in phytoconstituents like saponins. Saponns are natural glycosides with several pharmacologic activities including hemolysis. The study was done to assess the level of saponin and toxic effects (hemolysis) of medicinal plants used in folk medicine. The plant extracts were subject to phytochemical analysis, foam test, and hemolytic assay. Regarding the Fh value, Solanam incanum consisted highest Fh value (20mm), whereas Boscia angustifolia showed the lowest Fh value (10mm). The level of hemolysis of all the plant extracts ranged between 9.0 to 20.2 %. All the plant extracts were suitable for treatment with respect to saponin level since they exhibited minimal hemolytic effect against erythrocytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boscia%20angustifolia" title="Boscia angustifolia">Boscia angustifolia</a>, <a href="https://publications.waset.org/abstracts/search?q=Calpurnia%20aurea" title=" Calpurnia aurea"> Calpurnia aurea</a>, <a href="https://publications.waset.org/abstracts/search?q=Commicarpus%20pedunculosis" title=" Commicarpus pedunculosis"> Commicarpus pedunculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hemolysis" title=" hemolysis"> hemolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=saponin" title=" saponin"> saponin</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20incanum" title=" Solanum incanum"> Solanum incanum</a>, <a href="https://publications.waset.org/abstracts/search?q=Steganotaenia%20araliaceae" title=" Steganotaenia araliaceae"> Steganotaenia araliaceae</a> </p> <a href="https://publications.waset.org/abstracts/138675/in-vitro-assessment-of-saponins-level-and-hemolytic-activity-of-five-medicinal-plants-from-eritrea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Allelopathic Effect of Duranta Repens on Salinity-Stressed Solanum Lycopersicum Seedlings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Nafisat%20Omoniyi">Olusola Nafisat Omoniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous extract of Duranta repens leaves was investigated for its allelopathic effect on Solanum lycopersicum Seedlings germinated and grown under salinity condition. The study was carried out using both laboratory petri dish and pot assays to simulate the plant’s natural environmental conditions. The experiment consisted of 5 groups (1-5), each containing 5 replicates (of 10 seeds). Group 1 was treated with distilled water; Group 2 was treated with 5 mM NaCl; Group 3 was treated with the Extract, Group 4 was treated with a mixture of 5 mM NaCl and the Extract (2:1 v/v), and Group 5 was treated with a mixture of 5 mM NaCl and the Extract (1:2 v/v). The results showed that treatment with NaCl caused significant reductions in germination, growth parameters (plumule and radicle lengths), and chlorophyll concentration of S. lycopersicum seedlings when compared to those treated with D. rupens aqueous leaf extract. Salinity also caused an increase in malondialdehyde and proline concentrations and lowered the activity of superoxide dismutase. However, in the presence of the extract, the adverse effects of the NaCl were attenuated, implying that the extract improved tolerance of S. lycopersicum seedlings. In conclusion, the findings of this study show that the extract is very important in the optimal growth of the plant in saline soil, which has become useful for the management of soil salinity problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=allelopathic" title=" allelopathic"> allelopathic</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a> </p> <a href="https://publications.waset.org/abstracts/114419/allelopathic-effect-of-duranta-repens-on-salinity-stressed-solanum-lycopersicum-seedlings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Preservative Potentials of Piper Guineense on Roma Tomato (Solanum lycopersicum) Fruit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grace%20O.%20Babarinde">Grace O. Babarinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Adegoke%20O.Gabriel"> Adegoke O.Gabriel</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahman%20Akinoso"> Rahman Akinoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Adekanye%20Bosede%20R."> Adekanye Bosede R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health risks associated with the use of synthetic chemicals to control post-harvest losses in fruit calls for use of natural biodegradable compounds. The potential of Piper guineense as postharvest preservative for Roma tomato (Solanum lycopersicum L.) was investigated. Freshly harvested red tomato (200 g) was dipped into five concentrations (1, 2, 3, 4 and 5% w/v) of P. guineense aqueous extract, while untreated fruits served as control. The samples were stored under refrigeration and analysed at 5-day interval for physico-chemical properties. P. guineense essential oil (EO) was characterised using GC-MS and its tomato preservative potential was evaluated. Percentage weight loss (PWL) in extract-treated tomato ranged from 0.0-0.68% compared to control (0.3-19.97%) during storage. Values obtained for firmness ranged from 8.23-16.88 N and 8.4 N in extract-treated and control. pH reduced from 5.4 to 4.5 and 3.7 in extract-treated and untreated samples, respectively. Highest value of Total Soluble Solid (1.8 °Brix) and maximum retention of Ascorbic acid (13.0 mg/100 g) were observed in 4% P. guineense-treated samples. Predominant P. guineense EO components were zingiberene (9.9%), linalool (10.7%), β-caryophyllene (12.6%), 1, 5-Heptadiene, 6-methyl-2-(4-methyl-3-cyclohexene-l-yl) (16.4%) and β-sesquiphellandrene (23.7%). Tomatoes treated with EO had lower PWL (5.2%) and higher firmness (14.2 N) than controls (15.3% and 11.9 N) respectively. The result indicates that P. guineense can be incorporated in to post harvest technology of Roma tomato fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title="aqueous extract">aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=piper%20guineense" title=" piper guineense"> piper guineense</a>, <a href="https://publications.waset.org/abstracts/search?q=Roma%20tomato" title=" Roma tomato"> Roma tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20condition" title=" storage condition"> storage condition</a> </p> <a href="https://publications.waset.org/abstracts/26166/preservative-potentials-of-piper-guineense-on-roma-tomato-solanum-lycopersicum-fruit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Influence of Maturity Stage on Nutritional and Therapeutic Potentialities of Solanum anguivi Lam Berries (Gnagnan) Cultivated in CôTe D&#039;Ivoire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Dan%20Ch%C3%A9po">G. Dan Chépo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ban-Koffi"> L. Ban-Koffi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kouassi%20Kouakou"> N. Kouassi Kouakou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dje%20Kouakou"> M. Dje Kouakou</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Nemlin"> J. Nemlin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sahore%20Drogba"> A. Sahore Drogba</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kouame%20Patrice"> L. Kouame Patrice</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solanum anguivi Lam, collectively called Gnagnan in Côte d'Ivoire is an eggplant with nutritional and therapeutic potentialities more or less known. The present study was undertaken to analyze the biochemical composition of berries at the different stages of maturity. Data showed that at the first stage of maturity (green berries), fruits are rich in ascorbic acid (34.48 ± 1.7 mg / 100 g dm), phenolic compounds (956.7 ± 71.14 mg / 100 g dm), iron (467.7 ± 1.84 mg / 100 g dm), magnesium (404.6 ± 16.25 mg / 100 g dm) and potassium (404.64 ± 16.25 mg/100 g dm). However, at the last stage of maturity (red berries), fruits are rich in proteins, cellulose, total sugars, fat and potassium with the values of 22.53 ± 2 g/100 g dm, 19.12 ± 0.35 g/100 g dm, 3.7 ± 0.2 g/100 g dm, 2.65 ± 0.19 g/100 g dm and 2290.84 ± 22.24 mg / 100 g dm, respectively. The chromatography on thin layer revealed the presence of glucose, ribose, xylose, arabinose and fructose at all the maturity stages. Except for alkaloids and gallic tannins, the phytochemical sorting revealed that Gnagnan contain many pharmacological components. According to the maturity stages, orange and red berries showed a higher content in sterols and polyterpens, flavonoids and saponins. The green berries contain most of polyphenols, catechintannins and quinons. As for the yellow berries, they are rich in polyphenols and catechintannins. These data contribute to enhance clinical researches on nutritional and pharmacological properties of S. anguivi Lam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gnagnan" title="Gnagnan">Gnagnan</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20stage" title=" maturity stage"> maturity stage</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography%20thin%20layer" title=" chromatography thin layer"> chromatography thin layer</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20sorting" title=" phytochemical sorting"> phytochemical sorting</a> </p> <a href="https://publications.waset.org/abstracts/8456/influence-of-maturity-stage-on-nutritional-and-therapeutic-potentialities-of-solanum-anguivi-lam-berries-gnagnan-cultivated-in-cote-divoire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> A Novel PfkB Gene Cloning and Characterization for Expression in Potato Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arfan%20Ali">Arfan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Idrees%20Ahmad%20Nasir"> Idrees Ahmad Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato (Solanum tuberosum) is an important cash crop and popular vegetable in Pakistan and throughout the world. Cold storage of potatoes accelerates the conversion of starch into reduced sugars (glucose and fructose). This process causes dry mass and bitter taste in the potatoes that are not acceptable to end consumers. In the current study, the phosphofructokinase B gene was cloned into the pET-30 vector for protein expression and the pCambia-1301 vector for plant expression. Amplification of a 930bp product from an E. coli strain determined the successful isolation of the phosphofructokinase B gene. Restriction digestion using NcoI and BglII along with the amplification of the 930bp product using gene specific primers confirmed the successful cloning of the PfkB gene in both vectors. The protein was expressed as a His-PfkB fusion protein. Western blot analysis confirmed the presence of the 35 Kda PfkB protein when hybridized with anti-His antibodies. The construct Fani-01 was evaluated transiently using a histochemical gus assay. The appearance of blue color in the agroinfiltrated area of potato leaves confirmed the successful expression of construct Fani-01. Further, the area displaying gus expression was evaluated for PfkB expression using ELISA. Moreover, PfkB gene expression evaluated through transient expression determined successful gene expression and highlighted its potential utilization for stable expression in potato to reduce sweetening due to long-term storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potato" title="potato">potato</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20tuberosum" title=" Solanum tuberosum"> Solanum tuberosum</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=PfkB" title=" PfkB"> PfkB</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-sweetening" title=" anti-sweetening "> anti-sweetening </a> </p> <a href="https://publications.waset.org/abstracts/24921/a-novel-pfkb-gene-cloning-and-characterization-for-expression-in-potato-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Transcriptome and Metabolome Analysis of a Tomato Solanum Lycopersicum STAYGREEN1 Null Line Generated Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Young%20Kim">Jin Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwon%20Kyoo%20Kang"> Kwon Kyoo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SGR1 (STAYGREEN1) protein is a critical regulator of plant leaves in chlorophyll degradation and senescence. The functions and mechanisms of tomato SGR1 action are poorly understood and worthy of further investigation. To investigate the function of the SGR1 gene, we generated a SGR1-knockout (KO) null line via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing and conducted RNA sequencing and gas chromatography tandem mass spectrometry (GC-MS/MS) analysis to identify the differentially expressed genes. The SlSGR1 (Solanum lycopersicum SGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid content compared to wild-type (WT) fruit. Differential gene expression analysis revealed 728 differentially expressed genes (DEGs) between WT and sgr1 #1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, for which fold change was >2, and the adjusted p-value was <0.05. Most of the DEGs were related to photosynthesis and chloroplast function. In addition, the pigment, carotenoid changes in sgr1 #1-6 line was accumulated of key primary metabolites such as sucrose and its derivatives (fructose, galactinol, raffinose), glycolytic intermediates (glucose, G6P, Fru6P) and tricarboxylic acid cycle (TCA) intermediates (malate and fumarate). Taken together, the transcriptome and metabolite profiles of SGR1-KO lines presented here provide evidence for the mechanisms underlying the effects of SGR1 and molecular pathways involved in chlorophyll degradation and carotenoid biosynthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title=" CRISPR/Cas9"> CRISPR/Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=null%20line" title=" null line"> null line</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-sequencing" title=" RNA-sequencing"> RNA-sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolite%20profiling" title=" metabolite profiling"> metabolite profiling</a> </p> <a href="https://publications.waset.org/abstracts/159361/transcriptome-and-metabolome-analysis-of-a-tomato-solanum-lycopersicum-staygreen1-null-line-generated-using-clustered-regularly-interspaced-short-palindromic-repeatscas9-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Solanum%20melongena&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Solanum%20melongena&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Solanum%20melongena&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10