CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 726 results for author: <span class="mathjax">Li, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Li%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+G&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+G&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.18333">arXiv:2503.18333</a> <span> [<a href="https://arxiv.org/pdf/2503.18333">pdf</a>, <a href="https://arxiv.org/format/2503.18333">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Environmental Effects on Hubble Constant Measurements from Gravitational Wave Observations: A Case Study of the GW190514-GW190521 Hierarchical Triple Merger inside AGN J124942.3+344929 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Peng Li</a>, <a href="/search/astro-ph?searchtype=author&query=Fan%2C+X">Xi-Long Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.18333v1-abstract-short" style="display: inline;"> We study the impact of environmental effects on the measurement of the Hubble constant ($H_0$) from gravitational wave (GW) observations of binary black hole mergers residing in active galactic nuclei (AGNs) near the central supermassive black hole. Using the potential hierarchical triple merger candidate GW190514-GW190521 in AGN J124942.3+344929 with its electromagnetic counterpart ZTF19abanrhr a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.18333v1-abstract-full').style.display = 'inline'; document.getElementById('2503.18333v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.18333v1-abstract-full" style="display: none;"> We study the impact of environmental effects on the measurement of the Hubble constant ($H_0$) from gravitational wave (GW) observations of binary black hole mergers residing in active galactic nuclei (AGNs) near the central supermassive black hole. Using the potential hierarchical triple merger candidate GW190514-GW190521 in AGN J124942.3+344929 with its electromagnetic counterpart ZTF19abanrhr as a multimessenger case study, we demonstrate that environmental effects can be negligible for mergers at approximately tens to hundreds of Schwarzschild radii from the supermassive black hole. We find $H_0=40.9_{-8.9}^{+19.3}\,{\rm km\,s^{-1}\,Mpc^{-1}}$ (median and 68\% credible interval) under a flat prior and flat $螞$CDM cosmology. Incorporating GW170817 prior information improves constraints to $H_0=68.8_{-6.0}^{+7.7}\,{\rm km\,s^{-1}\,Mpc^{-1}}$. We suggest that in general, AGN environments could serve as viable laboratories for cosmological studies from GW observations where environmental effects remain below detection thresholds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.18333v1-abstract-full').style.display = 'none'; document.getElementById('2503.18333v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.16864">arXiv:2503.16864</a> <span> [<a href="https://arxiv.org/pdf/2503.16864">pdf</a>, <a href="https://arxiv.org/format/2503.16864">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> A multi-messenger hierarchical triple merger gravitational-wave event pair GW190514-GW190521 inside AGN J124942.3 + 344929 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Peng Li</a>, <a href="/search/astro-ph?searchtype=author&query=Fan%2C+X">Xi-Long Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.16864v1-abstract-short" style="display: inline;"> There is a candidate electromagnetic counterpart to the binary black hole merger GW190521, identified as ZTF19abanrhr within AGN J124942.3 + 344929. Additionally, GW190514 is proposed as a plausible precursor merger to GW190521 within a hierarchical merger scenario. In this study, we investigate the potential association between GW190514 and GW190521 as a hierarchical triple merger associated with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16864v1-abstract-full').style.display = 'inline'; document.getElementById('2503.16864v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.16864v1-abstract-full" style="display: none;"> There is a candidate electromagnetic counterpart to the binary black hole merger GW190521, identified as ZTF19abanrhr within AGN J124942.3 + 344929. Additionally, GW190514 is proposed as a plausible precursor merger to GW190521 within a hierarchical merger scenario. In this study, we investigate the potential association between GW190514 and GW190521 as a hierarchical triple merger associated with ZTF19abanrhr, taking into account of sky position, distance, and mass of the sources using a Bayesian criterion. Our analysis reveals that the association is favored over a random coincidence, with a log Bayes factor of 16.8, corresponding to an odds ratio of $\sim$$199:1$, assuming an astrophysical prior odds of $10^{-5}$. Notably, when accounting for the primary masses of the two gravitational wave events as potential products of mergers in the AGN formation channel, the Bayes factor increases significantly, further enhancing the preference for this association by a factor of $\sim$$10^2$, corresponding to a log Bayes factor of 21.5 and an odds ratio of $\sim$$2\times10^4:1$. Our results suggest strong evidence for the first hierarchical triple merger associated with an electromagnetic counterpart in the AGN formation channel. This work is crucial for understanding the formation mechanisms of massive black holes, the role of AGNs in hierarchical mergers, and the implications of multi-messenger astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16864v1-abstract-full').style.display = 'none'; document.getElementById('2503.16864v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.12263">arXiv:2503.12263</a> <span> [<a href="https://arxiv.org/pdf/2503.12263">pdf</a>, <a href="https://arxiv.org/format/2503.12263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> The Science of the Einstein Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A">Adrian Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abramo%2C+R">Raul Abramo</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">Simone Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Albertini%2C+A">Angelica Albertini</a>, <a href="/search/astro-ph?searchtype=author&query=Agapito%2C+A">Alessandro Agapito</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">Michalis Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Albertus%2C+C">Conrado Albertus</a>, <a href="/search/astro-ph?searchtype=author&query=Andersson%2C+N">Nils Andersson</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade%2C+T">Tom谩s Andrade</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Angeloni%2C+F">Federico Angeloni</a>, <a href="/search/astro-ph?searchtype=author&query=Antonelli%2C+M">Marco Antonelli</a>, <a href="/search/astro-ph?searchtype=author&query=Antoniadis%2C+J">John Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&query=Antonini%2C+F">Fabio Antonini</a>, <a href="/search/astro-ph?searchtype=author&query=Sedda%2C+M+A">Manuel Arca Sedda</a>, <a href="/search/astro-ph?searchtype=author&query=Artale%2C+M+C">M. Celeste Artale</a>, <a href="/search/astro-ph?searchtype=author&query=Ascenzi%2C+S">Stefano Ascenzi</a>, <a href="/search/astro-ph?searchtype=author&query=Auclair%2C+P">Pierre Auclair</a>, <a href="/search/astro-ph?searchtype=author&query=Bachetti%2C+M">Matteo Bachetti</a>, <a href="/search/astro-ph?searchtype=author&query=Badger%2C+C">Charles Badger</a>, <a href="/search/astro-ph?searchtype=author&query=Banerjee%2C+B">Biswajit Banerjee</a>, <a href="/search/astro-ph?searchtype=author&query=Barba-Gonz%C3%A1lez%2C+D">David Barba-Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&query=Barta%2C+D">D谩niel Barta</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolo%2C+N">Nicola Bartolo</a>, <a href="/search/astro-ph?searchtype=author&query=Bauswein%2C+A">Andreas Bauswein</a> , et al. (460 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.12263v1-abstract-short" style="display: inline;"> Einstein Telescope (ET) is the European project for a gravitational-wave (GW) observatory of third-generation. In this paper we present a comprehensive discussion of its science objectives, providing state-of-the-art predictions for the capabilities of ET in both geometries currently under consideration, a single-site triangular configuration or two L-shaped detectors. We discuss the impact that E… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.12263v1-abstract-full').style.display = 'inline'; document.getElementById('2503.12263v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.12263v1-abstract-full" style="display: none;"> Einstein Telescope (ET) is the European project for a gravitational-wave (GW) observatory of third-generation. In this paper we present a comprehensive discussion of its science objectives, providing state-of-the-art predictions for the capabilities of ET in both geometries currently under consideration, a single-site triangular configuration or two L-shaped detectors. We discuss the impact that ET will have on domains as broad and diverse as fundamental physics, cosmology, early Universe, astrophysics of compact objects, physics of matter in extreme conditions, and dynamics of stellar collapse. We discuss how the study of extreme astrophysical events will be enhanced by multi-messenger observations. We highlight the ET synergies with ground-based and space-borne GW observatories, including multi-band investigations of the same sources, improved parameter estimation, and complementary information on astrophysical or cosmological mechanisms obtained combining observations from different frequency bands. We present advancements in waveform modeling dedicated to third-generation observatories, along with open tools developed within the ET Collaboration for assessing the scientific potentials of different detector configurations. We finally discuss the data analysis challenges posed by third-generation observatories, which will enable access to large populations of sources and provide unprecedented precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.12263v1-abstract-full').style.display = 'none'; document.getElementById('2503.12263v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">880 pages, 203 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ET-0036C-25 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.05198">arXiv:2503.05198</a> <span> [<a href="https://arxiv.org/pdf/2503.05198">pdf</a>, <a href="https://arxiv.org/format/2503.05198">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: Unveiling the Magnetic Fields around Galactic Center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Yang%2C+M">Meng-Zhe Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/astro-ph?searchtype=author&query=Karoly%2C+J">Janik Karoly</a>, <a href="/search/astro-ph?searchtype=author&query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+X">Xing Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Eden%2C+D">David Eden</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+S">Sheng-Jun Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Poidevin%2C+F">Fr茅d茅rick Poidevin</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+E">Ekta Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/astro-ph?searchtype=author&query=Fanciullo%2C+L">Lapo Fanciullo</a>, <a href="/search/astro-ph?searchtype=author&query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/astro-ph?searchtype=author&query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/astro-ph?searchtype=author&query=Inutsuka%2C+S">Shu-ichiro Inutsuka</a>, <a href="/search/astro-ph?searchtype=author&query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&query=Duan%2C+H">Hao-Yuan Duan</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+J">Jia-Wei Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Fuller%2C+G">Gary Fuller</a>, <a href="/search/astro-ph?searchtype=author&query=Furuya%2C+R+S">Ray S. Furuya</a>, <a href="/search/astro-ph?searchtype=author&query=Gu%2C+Q">Qilao Gu</a>, <a href="/search/astro-ph?searchtype=author&query=Hasegawa%2C+T">Tetsuo Hasegawa</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guangxing Li</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+J">Junhao Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Akshaya%2C+M+S">M. S. Akshaya</a>, <a href="/search/astro-ph?searchtype=author&query=Najimudeen%2C+B">Bijas Najimudeen</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.05198v1-abstract-short" style="display: inline;"> We acquired 450 渭m and 850 渭m dust continuum polarization observations toward the inner region of the Central Molecular Zone (CMZ) as part of the B-Fields In Star-Forming Region Observations (BISTRO) survey using the POL-2 polarimeter on the James Clerk Maxwell Telescope. These observations encompassed three dense structures: the 20 km s{^{-1}} cloud (20MC), 50 km s{^{-1}} cloud (50MC), and circum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05198v1-abstract-full').style.display = 'inline'; document.getElementById('2503.05198v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.05198v1-abstract-full" style="display: none;"> We acquired 450 渭m and 850 渭m dust continuum polarization observations toward the inner region of the Central Molecular Zone (CMZ) as part of the B-Fields In Star-Forming Region Observations (BISTRO) survey using the POL-2 polarimeter on the James Clerk Maxwell Telescope. These observations encompassed three dense structures: the 20 km s{^{-1}} cloud (20MC), 50 km s{^{-1}} cloud (50MC), and circumnuclear disk (CND). Our aim is to investigate the magnetic field morphology and strength in the inner region of the CMZ using polarized dust continuum and the Davis-Chandrasekhar-Fermi method. The magnetic field morphology is highly ordered in all three dense regions. The plane-of-sky magnetic field strengths are {\sim}1 mG for the 20MC and the 50MC, and {\sim}2 mG for the CND. We compare the energy contributions of turbulence, gravity, and thermal motion with that of the magnetic field using the plasma 尾, mass-to-flux ratio, and Alfv茅n Mach number. The outcomes reveal the magnetic field stands out as the predominant factor within the inner region of the CMZ. The dominance of the magnetic field may explain the low star-forming rate in the CMZ. We further investigate the dust grain alignment efficiency by exploring the relationship between polarization fraction and total intensity. The results suggest that dust grains are well aligned with the magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05198v1-abstract-full').style.display = 'none'; document.getElementById('2503.05198v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. 31 pages, 21 figures (20 in main text, 1 in appendix), 1 appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04899">arXiv:2503.04899</a> <span> [<a href="https://arxiv.org/pdf/2503.04899">pdf</a>, <a href="https://arxiv.org/format/2503.04899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Magnified Waltz: Simulating Light Curves of Binary Stars Passing through Micro-Caustics in Strong Lensing Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+W">Wenwen Zheng</a>, <a href="/search/astro-ph?searchtype=author&query=Fu%2C+X">Xiaoting Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Yang Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+X">Xuefei Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+Y">Yanjun Guo</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+X">Xuechun Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Shan%2C+H">Huanyuan Shan</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04899v1-abstract-short" style="display: inline;"> Individual stars located near the caustics of galaxy clusters can undergo extreme magnification when crossing micro-caustics, rendering them observable even at cosmological distances. Though most massive stars are likely reside in binary systems rather than as single star, the influence of binary star system on magnification events is severely under-explored. In this work, we simulate the light cu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04899v1-abstract-full').style.display = 'inline'; document.getElementById('2503.04899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04899v1-abstract-full" style="display: none;"> Individual stars located near the caustics of galaxy clusters can undergo extreme magnification when crossing micro-caustics, rendering them observable even at cosmological distances. Though most massive stars are likely reside in binary systems rather than as single star, the influence of binary star system on magnification events is severely under-explored. In this work, we simulate the light curves produced by detached binary stars crossing micro-caustics, aiming to characterize their unique observational signatures.Using high-resolution magnification maps generated by the GPU-PMO-CAUSTIC algorithm and PARSEC stellar models with red-shifted magnitude, we examined the impact of binary star parameters and crossing geometries on microlensing magnification patterns. Our simulations reveal that binary stars produce diverse light curve features, including overlapping peaks, plateau-like structures, and time-variable color-magnitude differences. These features, particularly the distinct temporal variations in spectral energy distributions, offer diagnostic tools for distinguishing binary systems from single stars.We further demonstrate the potential of multi-band photometry using the Chinese Space Station Telescope's Multi-Channel Imager (CSST-MCI) to capture these variations.Our findings provide theoretical support for identifying binary systems in future caustic-crossing events, enabling more accurate characterization of high-redshift stellar populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04899v1-abstract-full').style.display = 'none'; document.getElementById('2503.04899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures,submitted to APJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.02086">arXiv:2503.02086</a> <span> [<a href="https://arxiv.org/pdf/2503.02086">pdf</a>, <a href="https://arxiv.org/format/2503.02086">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Discovery of A Low-mass Strong-lens System in SMACS J0723.3-7327 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Deng%2C+L">Limeng Deng</a>, <a href="/search/astro-ph?searchtype=author&query=Shu%2C+Y">Yiping Shu</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Caminha%2C+G+B">Gabriel Bartosch Caminha</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+J">Jiang Dong</a>, <a href="/search/astro-ph?searchtype=author&query=He%2C+Z">Zizhao He</a>, <a href="/search/astro-ph?searchtype=author&query=Qu%2C+H">Han Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Luo%2C+R">Ruibiao Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.02086v1-abstract-short" style="display: inline;"> We report the discovery of an intriguing, low-mass galaxy-scale strong-lens system in the SMACS J0723.3-7327 galaxy cluster. By modeling James Webb Space Telescope imaging and Very Large Telescope Multi-Unit Spectroscopic Explorer spectroscopic data, we find that the lens is cluster member galaxy at $z=0.397$ with an Einstein radius of $0^{\prime \prime}.424$ $\pm$ $0^{\prime \prime}.012$, stellar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02086v1-abstract-full').style.display = 'inline'; document.getElementById('2503.02086v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.02086v1-abstract-full" style="display: none;"> We report the discovery of an intriguing, low-mass galaxy-scale strong-lens system in the SMACS J0723.3-7327 galaxy cluster. By modeling James Webb Space Telescope imaging and Very Large Telescope Multi-Unit Spectroscopic Explorer spectroscopic data, we find that the lens is cluster member galaxy at $z=0.397$ with an Einstein radius of $0^{\prime \prime}.424$ $\pm$ $0^{\prime \prime}.012$, stellar mass of $M_* = (3.3 \pm 0.8) \times 10^{10} M_\odot$, half-light radius of $\sim 1$ kpc, and central stellar velocity dispersion of $140 \pm 6$ km s$^{-1}$. This lens galaxy is one of the few strong lens galaxies known to date that have stellar mass as low as $M_* \sim 10^{10.5} M_\odot$, offering an exceptional opportunity to peek into the population of low-mass galaxies that has largely remained unexplored in the context of strong-lensing studies. This strong lens system can also assist in assessing the systematic uncertainty in the lens modeling of cluster member galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02086v1-abstract-full').style.display = 'none'; document.getElementById('2503.02086v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.01740">arXiv:2503.01740</a> <span> [<a href="https://arxiv.org/pdf/2503.01740">pdf</a>, <a href="https://arxiv.org/format/2503.01740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Host Galaxy of FRB 20190520B and Its Unique Ionized Gas Distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+X">Xiang-Lei Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&query=Bochenek%2C+C+D">Christopher D. Bochenek</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+S">Shami Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+C">Chenhui Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Niino%2C+Y">Yuu Niino</a>, <a href="/search/astro-ph?searchtype=author&query=Feng%2C+Y">Yi Feng</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+P">Pei Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Assef%2C+R+J">Roberto J. Assef</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guodong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Lake%2C+S+E">Sean E. Lake</a>, <a href="/search/astro-ph?searchtype=author&query=Luo%2C+G">Gan Luo</a>, <a href="/search/astro-ph?searchtype=author&query=Liao%2C+M">Mai Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.01740v1-abstract-short" style="display: inline;"> The properties of host galaxies associated with Fast Radio Bursts (FRBs) provide critical information for inferring the progenitors and radiation mechanisms of these bursts. We report on the host galaxy of the repeating FRB 20190520B, a dwarf galaxy at the spectroscopic redshift $z=0.241$ with a stellar mass of $(6.2 \pm 0.8) \times 10^8 \ M_{\odot}$. The emission line ratios suggest that the ioni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.01740v1-abstract-full').style.display = 'inline'; document.getElementById('2503.01740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.01740v1-abstract-full" style="display: none;"> The properties of host galaxies associated with Fast Radio Bursts (FRBs) provide critical information for inferring the progenitors and radiation mechanisms of these bursts. We report on the host galaxy of the repeating FRB 20190520B, a dwarf galaxy at the spectroscopic redshift $z=0.241$ with a stellar mass of $(6.2 \pm 0.8) \times 10^8 \ M_{\odot}$. The emission line ratios suggest that the ionized gas is powered by star formation. The total H$伪$-traced star formation rate (SFR) is $0.70 \pm 0.01 \ {M_{\odot} ~ \rm yr^{-1}}$, and the metallicity is $\rm 12+log_{10} ([O/H]) \geq 7.4 \pm 0.1$. The specific star formation rate (sSFR) is $\rm log \ sSFR/yr^{-1} = -9.0 \pm 0.1$, higher than the upper limit of $-9.4$ observed in nearby dwarf galaxies. The dispersion measure contribution from the host galaxy is estimated to be $\rm DM_{host} \approx 950 \pm 220 \ pc \ cm^{-3}$, based on the H$伪$ emission. The FRB and the associated persistent radio source are located at the H$伪$ emission peak, offset by $\sim 1.4^{\prime\prime}$ (5.5 kpc) in projection from the stellar continuum. At this position, the lower limit of $\rm \log \ sSFR/yr^{-1}$ is $-8.5 \pm 0.1$, more than three times the galaxy's total sSFR. The H$伪$ velocity difference between the stellar continuum and the offset gas is $39.6 \pm 0.4$ km s$^{-1}$, which is sufficient to draw conclusions about the nature of the offset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.01740v1-abstract-full').style.display = 'none'; document.getElementById('2503.01740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18900">arXiv:2502.18900</a> <span> [<a href="https://arxiv.org/pdf/2502.18900">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Detection of [C I] Emission in Nebular Spectra of a Peculiar Type Ia Supernova 2022pul </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Liu%2C+J">Jialian Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+X">Xiaofeng Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+Y">Yi Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+W">WeiKang Zheng</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+J">Jujia Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Gaici Li</a>, <a href="/search/astro-ph?searchtype=author&query=Yan%2C+S">Shengyu Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18900v2-abstract-short" style="display: inline;"> SN 2022pul gains special attention due to its possible origin of a super-Chandarsekhar-mass white dwarf explosion (or called a 03fg-like type Ia supernova), which shows prominent [O I], [Ne II], and [Ca II] lines in its late-time spectra taken at $\sim+$300 days after the peak brightness. In this paper, we present new optical observations for this peculiar object, extending up to over 500 days aft… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18900v2-abstract-full').style.display = 'inline'; document.getElementById('2502.18900v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18900v2-abstract-full" style="display: none;"> SN 2022pul gains special attention due to its possible origin of a super-Chandarsekhar-mass white dwarf explosion (or called a 03fg-like type Ia supernova), which shows prominent [O I], [Ne II], and [Ca II] lines in its late-time spectra taken at $\sim+$300 days after the peak brightness. In this paper, we present new optical observations for this peculiar object, extending up to over 500 days after the peak brightness. In particular, in the $t\approx+515$ days spectrum, we identified for the first time the presence of narrow emission from [C I] $位\lambda9824, 9850$, which appears asymmetric and quite similar to the accompanied [O I] $\lambda6300$ line in strength and profile. Based on the violent merger model that accounts well for previous observations but leaves little carbon in the center of the ejecta, this carbon line can be reproduced by increasing the degree of clumping in the ejecta and setting the carbon mass the same as that of oxygen ($\sim$0.06 $M_{\odot}$) in the innermost region ($\lesssim 2000$ km s$^{-1}$). In principle, the central carbon could come from the secondary white dwarf (WD) if it is ignited when hit by the shockwave of the explosion of the primary WD and explodes as a Ca-rich supernova, whereas pure deflagration of a super-Chandarsekhar-mass WD can account for such unburnt carbon more naturally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18900v2-abstract-full').style.display = 'none'; document.getElementById('2502.18900v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, 2 tables, published in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16623">arXiv:2502.16623</a> <span> [<a href="https://arxiv.org/pdf/2502.16623">pdf</a>, <a href="https://arxiv.org/format/2502.16623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Optical appearance of a boson star with soliton potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=He%2C+K">Ke-Jian He</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Ping Li</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+C">Chen-Yu Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Zeng%2C+X">Xiao-Xiong Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16623v1-abstract-short" style="display: inline;"> In this paper, we conduct an in-depth investigation into the optical images of boson stars with the solitonic potential. In the context of a celestial source and a thin accretion disk, the optical characteristics of the soliton boson star have been derived. Considering the influence of the initial scalar field $蠄_0$ and a larger coupling parameter $伪$ (the weak coupling case), the optical images o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16623v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16623v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16623v1-abstract-full" style="display: none;"> In this paper, we conduct an in-depth investigation into the optical images of boson stars with the solitonic potential. In the context of a celestial source and a thin accretion disk, the optical characteristics of the soliton boson star have been derived. Considering the influence of the initial scalar field $蠄_0$ and a larger coupling parameter $伪$ (the weak coupling case), the optical images of boson stars primarily exhibit direct and lensed images. The results demonstrate that variations in $蠄_0$ and $伪$ influence the image size, whereas the observer's inclination angle $胃$ has a substantial impact on the image shape. In contrast, when the coupling parameter $伪$ is small (the strong coupling case), a sub-annular structure emerges within the Einstein ring for a spherically symmetric light source. In the presence of a thin accretion disk, higher-order gravitational lensing images emerge, indicating that photons are capable of orbiting the equatorial plane of the boson star multiple times. We also analyze how the effective potential and redshift factor depend on the parameters $蠄_0$, $伪$, and $胃$. The results indicate that at smaller values of $胃$, gravitational redshift is the dominant effect, resulting in an optical image featuring a bright ring surrounding a comparatively dim central region. At larger values of $胃$, the Doppler effect becomes more pronounced, resulting in a substantial brightness disparity between the left and right sides of the optical image. These findings offer robust theoretical underpinnings for differentiating solitonic boson stars from black holes via high-resolution astronomical observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16623v1-abstract-full').style.display = 'none'; document.getElementById('2502.16623v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15300">arXiv:2502.15300</a> <span> [<a href="https://arxiv.org/pdf/2502.15300">pdf</a>, <a href="https://arxiv.org/format/2502.15300">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning in Stellar Astronomy: Progress up to 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guangping Li</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+Z">Zujia Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+J">Junzhi Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Z">Zhao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15300v2-abstract-short" style="display: inline;"> Machine learning (ML) has become a key tool in astronomy, driving advancements in the analysis and interpretation of complex datasets from observations. This article reviews the application of ML techniques in the identification and classification of stellar objects, alongside the inference of their key astrophysical properties. We highlight the role of both supervised and unsupervised ML algorith… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15300v2-abstract-full').style.display = 'inline'; document.getElementById('2502.15300v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15300v2-abstract-full" style="display: none;"> Machine learning (ML) has become a key tool in astronomy, driving advancements in the analysis and interpretation of complex datasets from observations. This article reviews the application of ML techniques in the identification and classification of stellar objects, alongside the inference of their key astrophysical properties. We highlight the role of both supervised and unsupervised ML algorithms, particularly deep learning models, in classifying stars and enhancing our understanding of essential stellar parameters, such as mass, age, and chemical composition. We discuss ML applications in the study of various stellar objects, including binaries, supernovae, dwarfs, young stellar objects, variables, metal-poor, and chemically peculiar stars. Additionally, we examine the role of ML in investigating star-related interstellar medium objects, such as protoplanetary disks, planetary nebulae, cold neutral medium, feedback bubbles, and molecular clouds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15300v2-abstract-full').style.display = 'none'; document.getElementById('2502.15300v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15267">arXiv:2502.15267</a> <span> [<a href="https://arxiv.org/pdf/2502.15267">pdf</a>, <a href="https://arxiv.org/ps/2502.15267">ps</a>, <a href="https://arxiv.org/format/2502.15267">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abf4c4">10.3847/1538-4357/abf4c4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New insight into the Rapid Burster by Insight-HXMT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y+P">Y. P. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+S">S. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+S+N">S. N. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Ji%2C+L">L. Ji</a>, <a href="/search/astro-ph?searchtype=author&query=Kong%2C+L+D">L. D. Kong</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+P+J">P. J. Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Tao%2C+L">L. Tao</a>, <a href="/search/astro-ph?searchtype=author&query=Ge%2C+M+Y">M. Y. Ge</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+C+Z">C. Z. Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+F+J">F. J. Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Qu%2C+J+L">J. L. Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+T+P">T. P. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Y+P">Y. P. Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Cao%2C+X+L">X. L. Cao</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Bu%2C+Q+C">Q. C. Bu</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+Z">Z. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">G. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+L">L. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+T+X">T. X. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Cui%2C+W+W">W. W. Cui</a>, <a href="/search/astro-ph?searchtype=author&query=Du%2C+Y+Y">Y. Y. Du</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+G+H">G. H. Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+H">H. Gao</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15267v1-abstract-short" style="display: inline;"> We report the timing and spectral analyses upon of the type II X-ray bursts from the Rapid Burster (MXB 1730--335) observed by Insight-HXMT and Swift/XRT. By stacking the long-duration bursts, we find for the first time that the hard X-rays are lagging than the soft X-rays by 3 seconds. However, such a lag is not visible for the short-duration bursts, probably because of the poor statistics. For a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15267v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15267v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15267v1-abstract-full" style="display: none;"> We report the timing and spectral analyses upon of the type II X-ray bursts from the Rapid Burster (MXB 1730--335) observed by Insight-HXMT and Swift/XRT. By stacking the long-duration bursts, we find for the first time that the hard X-rays are lagging than the soft X-rays by 3 seconds. However, such a lag is not visible for the short-duration bursts, probably because of the poor statistics. For all bursts the energy spectrum is found to be non-thermal, thanks to the broad band coverage of Insight-HXMT. These findings put new insights into the type-II bursts and require a temporally showing-up corona for possible interpretation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15267v1-abstract-full').style.display = 'none'; document.getElementById('2502.15267v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021,ApJ,913,150 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14964">arXiv:2502.14964</a> <span> [<a href="https://arxiv.org/pdf/2502.14964">pdf</a>, <a href="https://arxiv.org/format/2502.14964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A Universal Analytic Model for Gravitational Lensing by Self-Interacting Dark Matter Halos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hou%2C+S">Siyuan Hou</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+D">Daneng Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+N">Nan Li</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14964v1-abstract-short" style="display: inline;"> We present a model for analytically calculating gravitational lensing by self-interacting dark matter (SIDM) halos. Leveraging the universal behavior of SIDM halos during gravothermal evolution, we calibrate the lensing potential using a fluid simulation, normalizing the evolution time to align with established scenarios. From this potential, we derive explicit equations for the deflection angle a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14964v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14964v1-abstract-full" style="display: none;"> We present a model for analytically calculating gravitational lensing by self-interacting dark matter (SIDM) halos. Leveraging the universal behavior of SIDM halos during gravothermal evolution, we calibrate the lensing potential using a fluid simulation, normalizing the evolution time to align with established scenarios. From this potential, we derive explicit equations for the deflection angle and surface density profile, quantifying their deviations from numerical results. Our model builds on the parametric approach of arXiv:2305.16176, providing refinements in the deep core-collapse regime and enabling more comprehensive lensing studies. We explore characteristic lensing features, including critical curves and caustics, for SIDM halos in isolation and within a main halo, tracking their evolution through the gravothermal phase. We also examine signatures in the self-similar regime of core collapsed halos and highlight the role of baryonic effects in realistic halos. The efficiency of our model enables large-scale lensing studies, and we make our implementation publicly available on GitHub to support further research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14964v1-abstract-full').style.display = 'none'; document.getElementById('2502.14964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11552">arXiv:2502.11552</a> <span> [<a href="https://arxiv.org/pdf/2502.11552">pdf</a>, <a href="https://arxiv.org/format/2502.11552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: Magnetic Fields Align with Orbital Structure in the Galactic Center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Karoly%2C+J">Janik Karoly</a>, <a href="/search/astro-ph?searchtype=author&query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/astro-ph?searchtype=author&query=Longmore%2C+S+N">Steven N. Longmore</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Francesco%2C+J">James Di Francesco</a>, <a href="/search/astro-ph?searchtype=author&query=Whitworth%2C+A">Anthony Whitworth</a>, <a href="/search/astro-ph?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+M">Meng-Zhe Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+X">Xing Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/astro-ph?searchtype=author&query=Debattista%2C+V">Victor Debattista</a>, <a href="/search/astro-ph?searchtype=author&query=Eden%2C+D">David Eden</a>, <a href="/search/astro-ph?searchtype=author&query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/astro-ph?searchtype=author&query=Poidevin%2C+F">Frederick Poidevin</a>, <a href="/search/astro-ph?searchtype=author&query=Najimudeen%2C+B">Bijas Najimudeen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+S">Szu-Ting Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chung%2C+E+J">Eun Jung Chung</a>, <a href="/search/astro-ph?searchtype=author&query=Coude%2C+S">Simon Coude</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+S">Sheng-Jun Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Doi%2C+Y">Yasuo Doi</a>, <a href="/search/astro-ph?searchtype=author&query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/astro-ph?searchtype=author&query=Fanciullo%2C+L">Lapo Fanciullo</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11552v2-abstract-short" style="display: inline;"> We present the magnetic field in the dense material of the Central Molecular Zone (CMZ) of the Milky Way, traced in 850 $渭$m polarized dust emission as part of the James Clerk Maxwell Telescope (JCMT) B-fields In STar-forming Region Observations (BISTRO) Survey. We observe a highly ordered magnetic field across the CMZ between Sgr B2 and Sgr C, which is strongly preferentially aligned with the orb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11552v2-abstract-full').style.display = 'inline'; document.getElementById('2502.11552v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11552v2-abstract-full" style="display: none;"> We present the magnetic field in the dense material of the Central Molecular Zone (CMZ) of the Milky Way, traced in 850 $渭$m polarized dust emission as part of the James Clerk Maxwell Telescope (JCMT) B-fields In STar-forming Region Observations (BISTRO) Survey. We observe a highly ordered magnetic field across the CMZ between Sgr B2 and Sgr C, which is strongly preferentially aligned with the orbital gas flows within the clouds of the CMZ. We find that the observed relative orientations are non-random at a $>$99% confidence level and are consistent with models in which the magnetic field vectors are aligned within 30$^{o}$ to the gas flows in 3D. The deviations from aligned magnetic fields are most prominent at positive Galactic longitudes, where the CMZ clouds are more massive, denser, and more actively forming stars. Our observed strongly preferentially parallel magnetic field morphology leads us to hypothesize that in the absence of star formation, the magnetic field in the CMZ is entrained in the orbital gas flows around Sgr A$^{*}$, while gravitational collapse and feedback in star-forming regions can locally reorder the field. This magnetic field behavior is similar to that observed in the CMZ of the nuclear starburst galaxy NGC 253. This suggests that despite its current low star formation rate, the CMZ of the Milky Way is analogous to those of more distant, actively star-forming, galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11552v2-abstract-full').style.display = 'none'; document.getElementById('2502.11552v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ApJL. 16 pages, 9 figures (4 in main text, 5 in appendices), 5 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11489">arXiv:2502.11489</a> <span> [<a href="https://arxiv.org/pdf/2502.11489">pdf</a>, <a href="https://arxiv.org/format/2502.11489">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> The nature of gravitational wave events with host environment escape velocities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Peng Li</a>, <a href="/search/astro-ph?searchtype=author&query=Fan%2C+X">Xi-Long Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11489v1-abstract-short" style="display: inline;"> We propose a novel method to probe the parameters and origin channels of gravitational wave events using the escape velocities of their host environments. This method could lead to more convergent posterior distributions offering additional insights into the physical properties, formation, and evolution of the sources. It also enables testing general relativity and improves source localization, wh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11489v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11489v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11489v1-abstract-full" style="display: none;"> We propose a novel method to probe the parameters and origin channels of gravitational wave events using the escape velocities of their host environments. This method could lead to more convergent posterior distributions offering additional insights into the physical properties, formation, and evolution of the sources. It also enables testing general relativity and improves source localization, which the latter is instrumental in multi-messenger astronomy. The method provides more accurate parameter estimation for events that represent previous mergers in the hierarchical triple merger scenario and is valuable for the search for such mergers with third-generation ground-based detectors. To demonstrate this approach, we take six recently identified events in LIGO-Virgo-KAGRA data, considered as potential previous mergers in hierarchical triple mergers, as examples. The use of escape velocities results in posterior spin distributions that are concentrated near zero, aligning with the expected birth spins of first-generation black holes formed from the collapse of stars. The uncertainty in the posterior primary mass distribution is significantly reduced comparing with the LIGO-Virgo-KAGRA distributions, especially for events originating from globular clusters. We rule out the possibility that GW190512, GW170729, and GW190708 originates from globular clusters as previous mergers in the hierarchical triple merger scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11489v1-abstract-full').style.display = 'none'; document.getElementById('2502.11489v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10503">arXiv:2502.10503</a> <span> [<a href="https://arxiv.org/pdf/2502.10503">pdf</a>, <a href="https://arxiv.org/format/2502.10503">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202453214">10.1051/0004-6361/202453214 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially resolved dust properties over 50 kpc in a hyperluminous galaxy merger at $z = 4.6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Aranda%2C+R+F">Rom谩n Fern谩ndez Aranda</a>, <a href="/search/astro-ph?searchtype=author&query=Santos%2C+T+D">Tanio D铆az Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&query=Aravena%2C+M">Manuel Aravena</a>, <a href="/search/astro-ph?searchtype=author&query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&query=Armus%2C+L">Lee Armus</a>, <a href="/search/astro-ph?searchtype=author&query=Assef%2C+R+J">Roberto J. Assef</a>, <a href="/search/astro-ph?searchtype=author&query=Blain%2C+A+W">Andrew W. Blain</a>, <a href="/search/astro-ph?searchtype=author&query=Charmandaris%2C+V">Vassilis Charmandaris</a>, <a href="/search/astro-ph?searchtype=author&query=Decarli%2C+R">Roberto Decarli</a>, <a href="/search/astro-ph?searchtype=author&query=Eisenhardt%2C+P+R+M">Peter R. M. Eisenhardt</a>, <a href="/search/astro-ph?searchtype=author&query=Ferkinhoff%2C+C">Carl Ferkinhoff</a>, <a href="/search/astro-ph?searchtype=author&query=Gonz%C3%A1lez-L%C3%B3pez%2C+J">Jorge Gonz谩lez-L贸pez</a>, <a href="/search/astro-ph?searchtype=author&query=Jun%2C+H+D">Hyunsung D. Jun</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guodong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Liao%2C+M">Mai Liao</a>, <a href="/search/astro-ph?searchtype=author&query=Shevill%2C+V">Victoria Shevill</a>, <a href="/search/astro-ph?searchtype=author&query=Shobhana%2C+D">Devika Shobhana</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Vayner%2C+A">Andrey Vayner</a>, <a href="/search/astro-ph?searchtype=author&query=Wu%2C+J">Jingwen Wu</a>, <a href="/search/astro-ph?searchtype=author&query=Zewdie%2C+D">Dejene Zewdie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10503v1-abstract-short" style="display: inline;"> We present spatially resolved dust-continuum ALMA observations from rest-frame $\sim$60 to $\sim$600 $渭$m (bands 3-10) of the hyperluminous hot dust-obscured galaxy (hot DOG) WISE J224607.6-052634.9 (W2246-0526), at redshift $z=4.6$. W2246-0526 is interacting with at least three companion galaxies, forming a system connected by tidal streams. We model the multiwavelength ALMA observations of the d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10503v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10503v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10503v1-abstract-full" style="display: none;"> We present spatially resolved dust-continuum ALMA observations from rest-frame $\sim$60 to $\sim$600 $渭$m (bands 3-10) of the hyperluminous hot dust-obscured galaxy (hot DOG) WISE J224607.6-052634.9 (W2246-0526), at redshift $z=4.6$. W2246-0526 is interacting with at least three companion galaxies, forming a system connected by tidal streams. We model the multiwavelength ALMA observations of the dust continuum using a modified blackbody, from which we derive the dust properties (mass, emissivity index, area of the emitting region, and temperature) in the hot DOG and resolved structures across a region of nearly $\sim$50 kpc. The peak temperature at the location of the hot DOG, $\sim$110 K, is likely the consequence of heating by the central quasar. The dust temperature drops to $\sim$40 K at a radius of $\sim$8 kpc, suggesting that heating by the quasar beyond that distance is nondominant. The dust in the connecting streams between the host and companion galaxies is at temperatures between 30-40 K, typical of starburst galaxies, suggesting it is most likely heated by recent, in-situ star formation. This is the first time dust properties are spatially resolved over several tens of kpc in a galaxy system beyond Cosmic Noon --this is more than six times the scales previously probed in galaxies at those redshifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10503v1-abstract-full').style.display = 'none'; document.getElementById('2502.10503v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures. Accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 695, L15 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09158">arXiv:2502.09158</a> <span> [<a href="https://arxiv.org/pdf/2502.09158">pdf</a>, <a href="https://arxiv.org/format/2502.09158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ada4af">10.3847/1538-4357/ada4af <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsar scattering as a probe for structures in the interstellar medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=He%2C+Q">Qiuyi He</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+X">Xun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guangxing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09158v1-abstract-short" style="display: inline;"> Due to the inhomogeneity of electron number density, radio waves emitted by pulsars undergo scattering as they pass through the interstellar medium (ISM). However, a connection between large-scale pulsar scattering data and the structure of the Galactic ISM has yet to be established. In this paper, we explore the capability of pulsar scattering time data in discovering structures in the ISM. Using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09158v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09158v1-abstract-full" style="display: none;"> Due to the inhomogeneity of electron number density, radio waves emitted by pulsars undergo scattering as they pass through the interstellar medium (ISM). However, a connection between large-scale pulsar scattering data and the structure of the Galactic ISM has yet to be established. In this paper, we explore the capability of pulsar scattering time data in discovering structures in the ISM. Using a large dataset of scattering time measurements for 473 pulsars, we fit the pulsar reduced scattering intensity as a function of Galactic latitude and distance, constructing a smooth model of the Galactic pulsar scattering distribution. By comparing this smooth distribution with observational data, we identify two ISM structures responsible for pulsar scattering, one is associated with the Vela supernova remnant region within the Gum Nebula, while the other is a newly discovered structure -- a distant superbubble, G38, located at a distance of 2.3 kpc with a size of ~50 pc. Analysis of the correlation coefficient of the pulsar scattering distribution shows that the correlation is dominated by structures smaller than 0.15 kpc -- the closest separation approachable by the current dataset. As measurements of the pulsar scattering time continue to increase in the future, they can potentially become an independent tool for exploring structures in the ISM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09158v1-abstract-full').style.display = 'none'; document.getElementById('2502.09158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05813">arXiv:2502.05813</a> <span> [<a href="https://arxiv.org/pdf/2502.05813">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/adabe3">10.3847/1538-4357/adabe3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for Low-Redshift Hot Dust-Obscured Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guodong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Wu%2C+J">Jingwen Wu</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&query=Assef%2C+R+J">Roberto J. Assef</a>, <a href="/search/astro-ph?searchtype=author&query=Eisenhardt%2C+P+R+M">Peter R. M. Eisenhardt</a>, <a href="/search/astro-ph?searchtype=author&query=McCarthy%2C+K">Kevin McCarthy</a>, <a href="/search/astro-ph?searchtype=author&query=Jun%2C+H+D">Hyunsung D. Jun</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%ADaz-Santos%2C+T">Tanio D铆az-Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Blain%2C+A+W">Andrew W. Blain</a>, <a href="/search/astro-ph?searchtype=author&query=Lambert%2C+T">Trystan Lambert</a>, <a href="/search/astro-ph?searchtype=author&query=Zewdie%2C+D">Dejene Zewdie</a>, <a href="/search/astro-ph?searchtype=author&query=Aranda%2C+R+F">Rom谩n Fern谩ndez Aranda</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+C">Cuihuan Li</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Tan%2C+Z">Zeyu Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05813v2-abstract-short" style="display: inline;"> Hot Dust-Obscured Galaxies (Hot DOGs), discovered by the "W1W2 dropout" selection at high redshifts ($z\sim$ 2-4), are a rare population of hyper-luminous obscured quasars. Their number density is comparable to similarly luminous type 1 quasars in the same redshift range, potentially representing a short, yet critical stage in galaxy evolution. The evolution in their number density towards low red… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05813v2-abstract-full').style.display = 'inline'; document.getElementById('2502.05813v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05813v2-abstract-full" style="display: none;"> Hot Dust-Obscured Galaxies (Hot DOGs), discovered by the "W1W2 dropout" selection at high redshifts ($z\sim$ 2-4), are a rare population of hyper-luminous obscured quasars. Their number density is comparable to similarly luminous type 1 quasars in the same redshift range, potentially representing a short, yet critical stage in galaxy evolution. The evolution in their number density towards low redshift, however, remains unclear as their selection function is heavily biased against objects at $z\lesssim2$. We combine data from the WISE and Herschel archives to search for Hot DOGs at $z<0.5$ based on their unique spectral energy distributions. We find 68 candidates, and spectroscopic observations confirm that 3 of them are at $z<0.5$. For those 3 we find their black hole accretion is close to the Eddington limit, with lower bolometric luminosities and black hole masses than those of higher-$z$ Hot DOGs. Compared to high-$z$ systems, these low-$z$ systems are closer to the local relation between host galaxy stellar mass and black hole mass but still lie above it, and we discuss several possible scenarios for it. Finally, we also find the surface number density of $z<$0.5 Hot DOGs is $\rm 2.4 \times 10^{-3}$ deg$^{-2}$, about an order of magnitude lower than high-$z$ Hot DOGs but comparable to hyper-luminous unobscured quasars in the same redshift range. These results further support the idea that Hot DOGs may be a transitional phase of galaxy evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05813v2-abstract-full').style.display = 'none'; document.getElementById('2502.05813v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures. Published in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 981, Number 2, 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05587">arXiv:2502.05587</a> <span> [<a href="https://arxiv.org/pdf/2502.05587">pdf</a>, <a href="https://arxiv.org/format/2502.05587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Host Galaxy of the Hyperactive Repeating FRB 20240114A: Behind a Galaxy Cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+X">Xiang-Lei Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+P">Pei Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Feng%2C+Y">Yi Feng</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+J">Jun-Shuo Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Dong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+Y">Yong-Kun Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Bao%2C+L">Lu-Lu Bao</a>, <a href="/search/astro-ph?searchtype=author&query=Liao%2C+M">Mai Liao</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+L">Lu-Dan Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Zuo%2C+P">Pei Zuo</a>, <a href="/search/astro-ph?searchtype=author&query=Bao%2C+D">Dong-Wei Bao</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+C">Chen-Hui Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Luo%2C+R">Rui Luo</a>, <a href="/search/astro-ph?searchtype=author&query=Zhu%2C+W">Wei-Wei Zhu</a>, <a href="/search/astro-ph?searchtype=author&query=Zou%2C+H">Hu Zou</a>, <a href="/search/astro-ph?searchtype=author&query=Xue%2C+S">Sui-Jian Xue</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+B">Bing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05587v3-abstract-short" style="display: inline;"> We report on the optical spectroscopic observations of the host galaxy of the hyperactive repeating fast radio burst, FRB 20240114A. The host galaxy is a dwarf galaxy at a redshift of $z=0.1306\pm0.0002$. With a rest-frame coverage of 4300-7900 脜, we have detected H$\rm伪$, H$\rm尾$, [O III]$位位$4959,5007, [N II]$位位$6548,6583, and [S II]$位$6716 emission lines. The emission line ratios suggest that th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05587v3-abstract-full').style.display = 'inline'; document.getElementById('2502.05587v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05587v3-abstract-full" style="display: none;"> We report on the optical spectroscopic observations of the host galaxy of the hyperactive repeating fast radio burst, FRB 20240114A. The host galaxy is a dwarf galaxy at a redshift of $z=0.1306\pm0.0002$. With a rest-frame coverage of 4300-7900 脜, we have detected H$\rm伪$, H$\rm尾$, [O III]$位位$4959,5007, [N II]$位位$6548,6583, and [S II]$位$6716 emission lines. The emission line ratios suggest that the ionization in the host galaxy is dominated by star formation. The star formation rate (SFR) derived from the H$\rm伪$ emission line is $(0.06 \pm 0.01) \ \rm{M_{\odot} \ yr^{-1}}$, and the SED fitting suggests the lower limit of the SFR(UV) is $0.09 \ \rm{M_{\odot} \ yr^{-1}}$. The stellar mass is $(\rm 4.0 \pm 1.8) \times 10^8 \ M_{\odot}$, making the specific star formation rate $\rm log \ sSFR(H\rm 伪) = -9.8 \pm 0.2 \ yr^{-1}$. The line ratios indicate an upper limit of a metallicity of $\rm 12+log_{10} ([O/H]) \sim 8.5$. As the nearest dwarf host galaxy with a repeating FRB, the activity of FRB 20240114A and the properties of this host galaxy closely resemble those of FRB 20121102A and FRB 20190520B. The H$\rm伪$-traced dispersion measure (DM) provided by the ionized gas of the host galaxy has a moderate contribution of $\sim 200 \rm \ pc \ cm^{-3}$, assuming a warm ionized gas. We found that the distributions of the stellar mass versus SFR are significantly different between repeating and one-off FRBs, as determined by the MANOVA test with $p=0.0116$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05587v3-abstract-full').style.display = 'none'; document.getElementById('2502.05587v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05354">arXiv:2502.05354</a> <span> [<a href="https://arxiv.org/pdf/2502.05354">pdf</a>, <a href="https://arxiv.org/format/2502.05354">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Evolution of black hole echo modes and the causality dilemma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Daghigh%2C+R+G">Ramin G. Daghigh</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guan-Ru Li</a>, <a href="/search/astro-ph?searchtype=author&query=Qian%2C+W">Wei-Liang Qian</a>, <a href="/search/astro-ph?searchtype=author&query=Randow%2C+S+J">Stefan J. Randow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05354v1-abstract-short" style="display: inline;"> It has been shown that black hole quasinormal modes are subject to spectral instability, typically triggered by metric perturbations. These perturbations, which can introduce a minor bump in the effective potential of the wave equation, give rise to a novel branch of asymptotic quasinormal modes, dubbed the {\it echo modes}, which lie mainly parallel to the real frequency axis. This study explores… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05354v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05354v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05354v1-abstract-full" style="display: none;"> It has been shown that black hole quasinormal modes are subject to spectral instability, typically triggered by metric perturbations. These perturbations, which can introduce a minor bump in the effective potential of the wave equation, give rise to a novel branch of asymptotic quasinormal modes, dubbed the {\it echo modes}, which lie mainly parallel to the real frequency axis. This study explores the evolution of the echo modes and their interplay with the outward spiral motion observed in low-lying quasinormal modes. As the bump in the effective potential moves away from the central black hole, the echo modes collectively shift toward the real axis, with the spacing between successive modes decreasing uniformly. This collective motion occurs simultaneously with the spiral of the low-lying modes until the echo modes eventually take over the fundamental quasinormal mode. In the time domain, such a takeover coincides with a transition point for the temporal waveform, where the distinction between the original black hole's ringdown and the echoes becomes clear. This marks a transition in the characteristics of the waveform from primarily damped oscillations, dominated by the damping rate of the fundamental mode, to echo waves, characterized by periodic echo pulses. We argue that this phenomenon is universal by employing analytical and numerical analyses. We first elucidate our arguments using explicit but simplified toy models, where the effective potential barriers are disjoint. The derivations are then generalized to scenarios where perturbations are introduced on top of a black hole metric with a continuous effective potential. The observational implications, particularly the causality dilemma, are elaborated. We show that the echo modes can be extracted by applying the Fourier transform to ringdown waveforms, which can be important for gravitational wave observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05354v1-abstract-full').style.display = 'none'; document.getElementById('2502.05354v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, regular article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18241">arXiv:2501.18241</a> <span> [<a href="https://arxiv.org/pdf/2501.18241">pdf</a>, <a href="https://arxiv.org/format/2501.18241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Evolution of molecular clouds on galaxy-cloud scale revealed by gravitational network analysis : High-mass clouds may deplete nearby gas via accretion or merging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zhou%2C+J+W">J. W. Zhou</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guang-Xing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18241v1-abstract-short" style="display: inline;"> Observations show that molecular gas in spiral galaxies is organized into a network of interconnected systems through the gravitational coupling of multi-scale hub-filament structures. Building on this picture, we model molecular gas in the galaxy NGC 628 as a gravitational network, where molecular clouds are represented as nodes. Through analyzing this network, we can characterize both the gravit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18241v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18241v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18241v1-abstract-full" style="display: none;"> Observations show that molecular gas in spiral galaxies is organized into a network of interconnected systems through the gravitational coupling of multi-scale hub-filament structures. Building on this picture, we model molecular gas in the galaxy NGC 628 as a gravitational network, where molecular clouds are represented as nodes. Through analyzing this network, we can characterize both the gravitational interactions and the physical properties of the clouds using geometry-based network metrics. A strong correlation is observed between the geometric and physical properties of the nodes (clouds). High-mass clouds tend to exhibit less clustering and greater average separations, suggesting that they generally have fewer neighbors. During their formation and evolution, high-mass clouds may deplete nearby gas via accretion or merging, leading to more isolated characteristics within the network. This aligns with observations showing a decrease in the virial ratio of molecular clouds as their mass increases. For clouds at different evolutionary stages, less evolved clouds with lower mass are typically found in tighter gravitational subnetworks, with closer proximity to neighboring clouds. As a result, they are more prone to accretion or merging during evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18241v1-abstract-full').style.display = 'none'; document.getElementById('2501.18241v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16618">arXiv:2501.16618</a> <span> [<a href="https://arxiv.org/pdf/2501.16618">pdf</a>, <a href="https://arxiv.org/format/2501.16618">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe11020037">10.3390/universe11020037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Individual Halo Concentrations Across Cosmic Time Using Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+T">Tianchi Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Mao%2C+T">Tianxiang Mao</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+W">Wenxiao Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16618v1-abstract-short" style="display: inline;"> The concentration of dark matter haloes is closely linked to their mass accretion history. We utilize the halo mass accretion histories from large cosmological N-body simulations as inputs for our neural networks, which we train to predict the concentration of individual haloes at a given redshift. The trained model performs effectively in other cosmological simulations, achieving the root mean sq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16618v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16618v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16618v1-abstract-full" style="display: none;"> The concentration of dark matter haloes is closely linked to their mass accretion history. We utilize the halo mass accretion histories from large cosmological N-body simulations as inputs for our neural networks, which we train to predict the concentration of individual haloes at a given redshift. The trained model performs effectively in other cosmological simulations, achieving the root mean square error between the actual and predicted concentrations that significantly lower than that of the model by Zhao et al. and Giocoli et al. at any redshift. This model serves as a valuable tool for rapidly predicting halo concentrations at specified redshifts in large cosmological simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16618v1-abstract-full').style.display = 'none'; document.getElementById('2501.16618v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, version published by Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2025, 11(2), 37. This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15018">arXiv:2501.15018</a> <span> [<a href="https://arxiv.org/pdf/2501.15018">pdf</a>, <a href="https://arxiv.org/format/2501.15018">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The 2.5-meter Wide Field Survey Telescope Real-time Data Processing Pipeline I: From raw data to alert distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cai%2C+M">Minxuan Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Z">Zelin Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Fan%2C+L">Lulu Fan</a>, <a href="/search/astro-ph?searchtype=author&query=Wan%2C+Z">Zhen Wan</a>, <a href="/search/astro-ph?searchtype=author&query=Kong%2C+X">Xu Kong</a>, <a href="/search/astro-ph?searchtype=author&query=Hu%2C+W">Weida Hu</a>, <a href="/search/astro-ph?searchtype=author&query=Jiang%2C+J">Ji-an Jiang</a>, <a href="/search/astro-ph?searchtype=author&query=Hu%2C+L">Lei Hu</a>, <a href="/search/astro-ph?searchtype=author&query=Zhu%2C+Q">Qing-feng Zhu</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+J">Jie Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+M">Min Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Xue%2C+Y">Yongquan Xue</a>, <a href="/search/astro-ph?searchtype=author&query=Zhen%2C+X">Xianzhong Zhen</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+T">Tinggui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15018v1-abstract-short" style="display: inline;"> The Wide Field Survey Telescope (WFST) is a dedicated photometric surveying facility built jointly by the University of Science and Technology of China (USTC) and the Purple Mountain Observatory (PMO). Since many of its scientific objectives rely on near-real-time data for effective analysis, prompt processing of WFST images is of great significance. To meet this need, we adapted the Rubin Observa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15018v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15018v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15018v1-abstract-full" style="display: none;"> The Wide Field Survey Telescope (WFST) is a dedicated photometric surveying facility built jointly by the University of Science and Technology of China (USTC) and the Purple Mountain Observatory (PMO). Since many of its scientific objectives rely on near-real-time data for effective analysis, prompt processing of WFST images is of great significance. To meet this need, we adapted the Rubin Observatory Legacy Survey of Space and Time (LSST) science pipelines to handle the data collected by WFST. This paper presents the complete data processing workflow, from ingestion of raw images to the distribution of alerts, and details the primary data products generated by our pipeline. Researchers using data processed by this pipeline can refer to this document to fully understand the data processing procedures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15018v1-abstract-full').style.display = 'none'; document.getElementById('2501.15018v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13764">arXiv:2501.13764</a> <span> [<a href="https://arxiv.org/pdf/2501.13764">pdf</a>, <a href="https://arxiv.org/format/2501.13764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Optical Images of Mini Boson Stars in Palatini $f(R)$ Gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zeng%2C+X">Xiao-Xiong Zeng</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+C">Chen-Yu Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Huang%2C+Y">Yu-Xiang Huang</a>, <a href="/search/astro-ph?searchtype=author&query=He%2C+K">Ke-Jian He</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Ping Li</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+S">Sen Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13764v1-abstract-short" style="display: inline;"> We investigate the optical properties of mini boson stars within the framework of Palatini $f(R)$ gravity, adopting a quadratic form $f(R) = R + 尉R^2$, where $尉$ is the gravitational coupling constant. By deriving the modified scalar Lagrangian and solving the field equations numerically, we explore photon trajectories and the resulting optical images under spherical light sources and thin accreti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13764v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13764v1-abstract-full" style="display: none;"> We investigate the optical properties of mini boson stars within the framework of Palatini $f(R)$ gravity, adopting a quadratic form $f(R) = R + 尉R^2$, where $尉$ is the gravitational coupling constant. By deriving the modified scalar Lagrangian and solving the field equations numerically, we explore photon trajectories and the resulting optical images under spherical light sources and thin accretion disks. Unlike Schwarzschild black holes (BHs), boson stars lack stable photon rings due to the positive second derivative of their effective potential. Consequently, their images are dominated by direct emissions from photons completing a single orbit. The study examines the dependence of the optical characteristics on the initial scalar field $蠄_0$ and the coupling parameter $尉$. Numerical results include effective potentials, redshift maps, and detailed imaging of boson stars, providing insights into distinguishing boson stars from black holes using high-resolution astronomical observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13764v1-abstract-full').style.display = 'none'; document.getElementById('2501.13764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12562">arXiv:2501.12562</a> <span> [<a href="https://arxiv.org/pdf/2501.12562">pdf</a>, <a href="https://arxiv.org/format/2501.12562">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Fault Diagnosis in GWAC: A Monitoring System for Telescope Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Xu%2C+Y">Y. Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G+W">G. W. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+J">J. Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Xin%2C+L+P">L. P. Xin</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H+B">H. B. Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+X+H">X. H. Han</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+X+M">X. M. Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Huang%2C+L">L. Huang</a>, <a href="/search/astro-ph?searchtype=author&query=Wei%2C+J+Y">J. Y. Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12562v2-abstract-short" style="display: inline;"> The Ground-based Wide-Angle Cameras array (GWAC) necessitates the integration of over 100 hardware devices, more than 100 servers, and upwards of 2500 software modules, all synchronized within a 3-second imaging cycle. However, the complexity of real-time and high concurrency processing of big data have historically resulted in a substantial failure rate, with estimated observation efficiency of l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12562v2-abstract-full').style.display = 'inline'; document.getElementById('2501.12562v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12562v2-abstract-full" style="display: none;"> The Ground-based Wide-Angle Cameras array (GWAC) necessitates the integration of over 100 hardware devices, more than 100 servers, and upwards of 2500 software modules, all synchronized within a 3-second imaging cycle. However, the complexity of real-time and high concurrency processing of big data have historically resulted in a substantial failure rate, with estimated observation efficiency of less than 50% in 2023. To address these challenges, we developed a monitoring system aimed at enhancing fault diagnosis efficiency. The system features two innovative monitoring views: state evolution monitoring and transient lifecycle monitoring. These, combined with instantaneous state monitoring and key parameter monitoring views, create a comprehensive and holistic monitoring strategy. This paper details the system's architecture, data collection methods, and the design philosophy of monitoring views. After a year of practical fault diagnostics, the system has demonstrated the ability to identify and localize faults within minutes, achieving fault localization speeds nearly ten times faster than traditional methods. Additionally, the system's design exhibits high generalizability, making them applicable to other telescope array systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12562v2-abstract-full').style.display = 'none'; document.getElementById('2501.12562v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08541">arXiv:2501.08541</a> <span> [<a href="https://arxiv.org/pdf/2501.08541">pdf</a>, <a href="https://arxiv.org/format/2501.08541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202452731">10.1051/0004-6361/202452731 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of 19 strongly-lensed quasars, dual and projected quasars in DESI-LS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=He%2C+Z">Zizhao He</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Q">Qihang Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Deng%2C+L">Limeng Deng</a>, <a href="/search/astro-ph?searchtype=author&query=Shu%2C+Y">Yiping Shu</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+R">Rui Li</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+N">Nan Li</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+D">Dongdong Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08541v1-abstract-short" style="display: inline;"> We report the follow-up spectroscopic confirmation of two lensed quasars, six dual quasars, and eleven projected quasars that were previously identified as lensed-quasar candidates in \cite{He2023}. The spectroscopic data were obtained from two different sources: the P200/DBSP in California and publicly available datasets, including SDSS and DESI-EDR. The two lensed quasars (both pairs) have the f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08541v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08541v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08541v1-abstract-full" style="display: none;"> We report the follow-up spectroscopic confirmation of two lensed quasars, six dual quasars, and eleven projected quasars that were previously identified as lensed-quasar candidates in \cite{He2023}. The spectroscopic data were obtained from two different sources: the P200/DBSP in California and publicly available datasets, including SDSS and DESI-EDR. The two lensed quasars (both pairs) have the following properties: $胃_E$ = 1.208'', $z_s$ = 3.105; $胃_E$ = 0.749, $z_s$ = 2.395. The six dual quasars have redshifts ranging from 0.58 to 3.28 and projected separations ranging from 15.44 to 22.54 kpc, with a mean separation of 17.95 kpc. The eleven projected quasars have projected separations ranging from 10.96 to 39.07 kpc, with a mean separation of 22.64 kpc. Additionally, there are three likely lensed quasars that cannot be definitively confirmed, contributed by two reasons. Firstly, their image separations (0.83'', 0.98'', and 0.93'') are small compared to the seeing conditions during our observations (around 1.2''). Secondly, no high SNR lensing galaxy can be detected in the Legacy Survey Imaging. Better spectroscopy and (or) imaging are needed to confirm their lensing nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08541v1-abstract-full').style.display = 'none'; document.getElementById('2501.08541v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 Figures, 15 Pages, 6 Tables. Accepted by A&A. Comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 695, A76 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08377">arXiv:2501.08377</a> <span> [<a href="https://arxiv.org/pdf/2501.08377">pdf</a>, <a href="https://arxiv.org/format/2501.08377">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Complete Hamiltonian Framework of Relativistic Hierarchical Triple Systems: Capabilities and Limitations of Secular Perturbation Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+K+J">Kaye Jiale Li</a>, <a href="/search/astro-ph?searchtype=author&query=Wu%2C+K">Kinwah Wu</a>, <a href="/search/astro-ph?searchtype=author&query=Younsi%2C+Z">Ziri Younsi</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+T+G+F">Tjonnie G. F. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08377v1-abstract-short" style="display: inline;"> Relativistic secular perturbation theory has ignited significant interest in uncovering intricate cross-term effects, especially the interplay between 1PN and quadrupole terms. While most existing studies rely on the Lagrangian planetary perturbation method for computing cross terms, a comprehensive Hamiltonian framework for the field has been missing. In this work, we introduce a framework based… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08377v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08377v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08377v1-abstract-full" style="display: none;"> Relativistic secular perturbation theory has ignited significant interest in uncovering intricate cross-term effects, especially the interplay between 1PN and quadrupole terms. While most existing studies rely on the Lagrangian planetary perturbation method for computing cross terms, a comprehensive Hamiltonian framework for the field has been missing. In this work, we introduce a framework based on von Zeipel transformation, utilizing two sequential canonical transformations to systematically compute cross terms to arbitrary orders. Our results reveal secular cross terms up to quadrupole-squared order, showcasing remarkable consistency with both the Lagrangian method [1] and the effective-field-theory approach [2]. We present leading-order periodic cross terms arising from the interactions between 1PN and quadrupole, and present estimates of higher-order cross terms. It is demonstrated that this method not only accurately predicts the long-term evolution of hierarchical systems but also captures fast oscillations observed in N-body simulations. We identify and validate resonances caused by quadrupole-squared effects, highlighting both consistencies and discrepancies when compared to N-body simulations. These discrepancies underscore the importance of mean-motion resonances, a factor overlooked in current secular perturbation frameworks. Finally, we provide a comprehensive review of the subtleties and limitations inherent to secular perturbation theory, paving the way for future research and advancements in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08377v1-abstract-full').style.display = 'none'; document.getElementById('2501.08377v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 9 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05303">arXiv:2501.05303</a> <span> [<a href="https://arxiv.org/pdf/2501.05303">pdf</a>, <a href="https://arxiv.org/format/2501.05303">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Forecast of gravitationally lensed Type Ia supernovae time delay measurement by Muztage-Ata 1.93m Synergy Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Rui%2C+G">Guanhua Rui</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+W">Wenwen Zheng</a>, <a href="/search/astro-ph?searchtype=author&query=He%2C+Z">Zizhao He</a>, <a href="/search/astro-ph?searchtype=author&query=Shu%2C+Y">Yiping Shu</a>, <a href="/search/astro-ph?searchtype=author&query=Er%2C+X">Xinzhong Er</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Hu%2C+B">Bin Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05303v1-abstract-short" style="display: inline;"> Strong lensing time delay measurement is a promising method to address the Hubble tension, offering a completely independent approach compared to both the cosmic microwave background analysis and the local distance ladder. As a third-party examination of the Hubble tension, this method provides a unique perspective. Strongly lensed quasar (glQSO) systems have demonstrated significant potential in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05303v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05303v1-abstract-full" style="display: none;"> Strong lensing time delay measurement is a promising method to address the Hubble tension, offering a completely independent approach compared to both the cosmic microwave background analysis and the local distance ladder. As a third-party examination of the Hubble tension, this method provides a unique perspective. Strongly lensed quasar (glQSO) systems have demonstrated significant potential in tackling this issue, achieving an impressive \(2\%\) accuracy level. However, advancing to \(1\%\) or sub-percent accuracy is challenging due to several intrinsic limitations of glQSOs. Fortunately, strongly lensed supernovae (glSNe) offer a more robust solution, thanks to their characteristic light curve, significant brightness variations, and additional advantages. The Muztagh-Ata 1.93m Synergy Telescope (MOST) is an exceptional instrument for monitoring strong lensing time delays. In this study, we simulate the follow-up multi-band light curve monitoring for glSNe Ia systems, which are expected to be firstly discovered by the Chinese Survey Space Telescope (CSST). Our results show that with \(300s \times 9\) exposures in each epoch, MOST can achieve a signal-to-noise ratio (SNR) of approximately 50 for the brightest images of glSNe Ia, while even the faintest images maintain an SNR of at least 7. Using a standard SNe Ia light curve template for fitting, we measured the time delays. With a 2-day cadence, MOST achieves a time delay error of only a few hours, with the bias typically remaining below one hour. This study highlights the capability of MOST to significantly advance the precision of time delay measurements, offering a promising path toward resolving the Hubble tension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05303v1-abstract-full').style.display = 'none'; document.getElementById('2501.05303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03027">arXiv:2501.03027</a> <span> [<a href="https://arxiv.org/pdf/2501.03027">pdf</a>, <a href="https://arxiv.org/format/2501.03027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Shear-gravity transition determines the steep velocity dispersion-size relation in molecular clouds: confronting analytical formula with observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Xie%2C+Y">Yi-Heng Xie</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guang-Xing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03027v1-abstract-short" style="display: inline;"> The velocity dispersion-size relation is a crucial indicator of the dynamic properties of interstellar gas. Recent observations reveal a steep velocity dispersion-size relation ($蟽_{\rm v}\sim R^尾$) with the index $尾> 0.6$, which cannot be explained by a single mechanism with only gravity ($尾\sim0.5$) or shear ($尾\sim 1$). We present a two-component model… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03027v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03027v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03027v1-abstract-full" style="display: none;"> The velocity dispersion-size relation is a crucial indicator of the dynamic properties of interstellar gas. Recent observations reveal a steep velocity dispersion-size relation ($蟽_{\rm v}\sim R^尾$) with the index $尾> 0.6$, which cannot be explained by a single mechanism with only gravity ($尾\sim0.5$) or shear ($尾\sim 1$). We present a two-component model $蟽_{\rm v_{mixture}} = 位_1 蟽_{\rm v_{g}} + 位_2 蟽_{\rm v_{shear}} = A[(GM/R)^{\frac{1}{2}} + f(R/t_{\rm shear})]$ to explain the steep velocity dispersion-size relation in the observation from e.g. Miville et al. (2017) and Zhou et al. (2022). We find that the velocity dispersion of small clouds is mainly caused by self-gravity, while large clouds are primarily affected by shear, and these two regimes are linked by a gradual transition with a transition scale $\sim100$ pc. The variation of cloud velocity dispersion with the Galactocentric distance results from the variation of both cloud internal density structure and Galactic shear. Our two-component model captures how the dynamics of the molecular gas can be affected by both internal and external factors, and we expect it to be applied to data from galaxies with different physical conditions to reveal the physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03027v1-abstract-full').style.display = 'none'; document.getElementById('2501.03027v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to APJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01495">arXiv:2501.01495</a> <span> [<a href="https://arxiv.org/pdf/2501.01495">pdf</a>, <a href="https://arxiv.org/format/2501.01495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1794 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01495v1-abstract-short" style="display: inline;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent ana… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01495v1-abstract-full" style="display: none;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'none'; document.getElementById('2501.01495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main paper: 12 pages, 6 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400315 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01171">arXiv:2501.01171</a> <span> [<a href="https://arxiv.org/pdf/2501.01171">pdf</a>, <a href="https://arxiv.org/format/2501.01171">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> LAMOST J101356.33+272410.7: A Detached White Dwarf-Main-sequence Binary with a Massive White Dwarf Within the Period Gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=He%2C+Y">Yuji He</a>, <a href="/search/astro-ph?searchtype=author&query=Yuan%2C+H">Hailong Yuan</a>, <a href="/search/astro-ph?searchtype=author&query=Bai%2C+Z">Zhongrui Bai</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+M">Mingkuan Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+M">Mengxin Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+Y">Yiqiao Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Huang%2C+X">Xin Huang</a>, <a href="/search/astro-ph?searchtype=author&query=Zhou%2C+M">Ming Zhou</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+Q">Qian Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+X">Xiaozhen Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Ganyu Li</a>, <a href="/search/astro-ph?searchtype=author&query=Jiang%2C+Z">Ziyue Jiang</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+H">Haotong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01171v1-abstract-short" style="display: inline;"> We report the analysis of the detached eclipsing spectroscopic binary system LAMOST J101356.33+272410.7, which features a massive white dwarf. Using LAMOST and SDSS spectra, we determined the stellar parameters and radial velocities of both components. SED fitting of photometric data from GALEX, 2MASS, and Pan-STARRS1 yielded the effective temperatures and photometric radii. Eclipsing analysis of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01171v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01171v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01171v1-abstract-full" style="display: none;"> We report the analysis of the detached eclipsing spectroscopic binary system LAMOST J101356.33+272410.7, which features a massive white dwarf. Using LAMOST and SDSS spectra, we determined the stellar parameters and radial velocities of both components. SED fitting of photometric data from GALEX, 2MASS, and Pan-STARRS1 yielded the effective temperatures and photometric radii. Eclipsing analysis of high-speed photometric data from the Liverpool Telescope provided orbital inclination, masses, radii, and related physical parameters. The white dwarf in this system has a mass of $1.05 \pm 0.09 \, M_\odot$ and a radius of $0.0090 \pm 0.0008 \, R_\odot$, while the main-sequence star has a mass of $0.299 \pm 0.045 \, M_\odot$ and a radius of $0.286 \pm 0.018 \, R_\odot$. Emission lines observed in the spectra indicate the likely presence of stellar magnetic activity in this system. The relatively cool temperature of the white dwarf suggests that the system could be a post-common-envelope binary (PCEB) that has not undergone mass transfer, while the presence of a massive white dwarf indicates that the system might also represent a detached cataclysmic variable (dCV) crossing the period gap. We suggest that the system is more likely to be a PCEB, and it is predicted to evolve into a cataclysmic variable and begin mass transfer in approximately 0.27 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01171v1-abstract-full').style.display = 'none'; document.getElementById('2501.01171v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to The Astrophysical Journal (ApJ) on December 31, 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17716">arXiv:2412.17716</a> <span> [<a href="https://arxiv.org/pdf/2412.17716">pdf</a>, <a href="https://arxiv.org/format/2412.17716">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad93d2">10.3847/2041-8213/ad93d2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Tale of Three: Magnetic Fields along the Orion Integral-Shaped Filament as Revealed by JCMT BISTRO survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Wu%2C+J">Jintai Wu</a>, <a href="/search/astro-ph?searchtype=author&query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/astro-ph?searchtype=author&query=Poidevin%2C+F">Frederick Poidevin</a>, <a href="/search/astro-ph?searchtype=author&query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+J">Junhao Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/astro-ph?searchtype=author&query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/astro-ph?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/astro-ph?searchtype=author&query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Fanciullo%2C+L">Lapo Fanciullo</a>, <a href="/search/astro-ph?searchtype=author&query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/astro-ph?searchtype=author&query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/astro-ph?searchtype=author&query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&query=Soam%2C+A">Archana Soam</a>, <a href="/search/astro-ph?searchtype=author&query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/astro-ph?searchtype=author&query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/astro-ph?searchtype=author&query=Eswaraiah%2C+C">Chakali Eswaraiah</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+H">Hua-Bai Li</a>, <a href="/search/astro-ph?searchtype=author&query=Berry%2C+D">David Berry</a>, <a href="/search/astro-ph?searchtype=author&query=Furuya%2C+R+S">Ray S. Furuya</a>, <a href="/search/astro-ph?searchtype=author&query=Coude%2C+S">Simon Coude</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17716v1-abstract-short" style="display: inline;"> As part of the BISTRO survey, we present JCMT 850 $渭$m polarimetric observations towards the Orion Integral-Shaped Filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multi-scale analysis shows that the magnetic fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17716v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17716v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17716v1-abstract-full" style="display: none;"> As part of the BISTRO survey, we present JCMT 850 $渭$m polarimetric observations towards the Orion Integral-Shaped Filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multi-scale analysis shows that the magnetic field structure in OMC-3 is very consistent at all the scales, whereas the field structure in OMC-2 shows no correlation across different scales. In OMC-1, the field retains its mean orientation from large to small scales, but shows some deviations at small scales. Histograms of relative orientations between the magnetic field and filaments reveal a bimodal distribution for OMC-1, a relatively random distribution for OMC-2, and a distribution with a predominant peak at 90$^\circ$ for OMC-3. Furthermore, the magnetic fields in OMC-1 and OMC-3 both appear to be aligned perpendicular to the fibers, which are denser structures within the filament, but the field in OMC-2 is aligned along with the fibers. All these suggest that gravity, turbulence, and magnetic field are each playing a leading role in OMC-1, 2, and 3, respectively. While OMC-2 and 3 have almost the same gas mass, density, and non-thermal velocity dispersion, there are on average younger and fewer young stellar objects in OMC-3, providing evidence that a stronger magnetic field will induce slower and less efficient star formation in molecular clouds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17716v1-abstract-full').style.display = 'none'; document.getElementById('2412.17716v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in the ApJ Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 977, L31 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10508">arXiv:2412.10508</a> <span> [<a href="https://arxiv.org/pdf/2412.10508">pdf</a>, <a href="https://arxiv.org/format/2412.10508">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202452811">10.1051/0004-6361/202452811 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MOCKA -- A PLATO mock asteroseismic catalogue: Simulations for gravity-mode oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jannsen%2C+N">N. Jannsen</a>, <a href="/search/astro-ph?searchtype=author&query=Tkachenko%2C+A">A. Tkachenko</a>, <a href="/search/astro-ph?searchtype=author&query=Royer%2C+P">P. Royer</a>, <a href="/search/astro-ph?searchtype=author&query=De+Ridder%2C+J">J. De Ridder</a>, <a href="/search/astro-ph?searchtype=author&query=Seynaeve%2C+D">D. Seynaeve</a>, <a href="/search/astro-ph?searchtype=author&query=Aerts%2C+C">C. Aerts</a>, <a href="/search/astro-ph?searchtype=author&query=Aigrain%2C+S">S. Aigrain</a>, <a href="/search/astro-ph?searchtype=author&query=Plachy%2C+E">E. Plachy</a>, <a href="/search/astro-ph?searchtype=author&query=Bodi%2C+A">A. Bodi</a>, <a href="/search/astro-ph?searchtype=author&query=Uzundag%2C+M">M. Uzundag</a>, <a href="/search/astro-ph?searchtype=author&query=Bowman%2C+D+M">D. M. Bowman</a>, <a href="/search/astro-ph?searchtype=author&query=Fritzewski%2C+D+J">D. J. Fritzewski</a>, <a href="/search/astro-ph?searchtype=author&query=IJspeert%2C+L+W">L. W. IJspeert</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Pedersen%2C+M+G">M. G. Pedersen</a>, <a href="/search/astro-ph?searchtype=author&query=Vanrespaille%2C+M">M. Vanrespaille</a>, <a href="/search/astro-ph?searchtype=author&query=Van+Reeth%2C+T">T. Van Reeth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10508v1-abstract-short" style="display: inline;"> With ESA's PLATO space mission set for launch in December 2026, a new photometric legacy and a future of new scientific discoveries await. In this work we investigate PLATO's potential for observing pulsating stars across the Hertzsprung-Russell diagram as part of the PLATO Complimentary Science program (PLATO-CS). Specifically, a PLATO mock asteroseismic catalogue (MOCKA) of intermediate to massi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10508v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10508v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10508v1-abstract-full" style="display: none;"> With ESA's PLATO space mission set for launch in December 2026, a new photometric legacy and a future of new scientific discoveries await. In this work we investigate PLATO's potential for observing pulsating stars across the Hertzsprung-Russell diagram as part of the PLATO Complimentary Science program (PLATO-CS). Specifically, a PLATO mock asteroseismic catalogue (MOCKA) of intermediate to massive stars is presented as a benchmark to highlight the asteroseismic yield of PLATO-CS in a quantitative way. MOCKA includes simulations of $尾$~Cephei, slowly pulsating B (SPB), $未$~Scuti, $纬$~Doradus, RR Lyrae, Cepheid, hot subdwarf, and white dwarf stars. In particular, main-sequence gravity (g) mode pulsators are of interest as some of these stars form an important foundation for the scientific calibration of PLATO. MOCKA is based on a magnitude limited ($G\lesssim17$) \textit{Gaia} catalogue and is a product of realistic end-to-end \texttt{PlatoSim} simulations of stars for the first PLATO pointing field in the Southern hemisphere, which will be observed for a minimally 2-yr duration. We show that an abundant spectrum of frequencies is achievable across a wide range of magnitudes and co-pointing PLATO cameras. Within the magnitude limited regimes simulated ($G \lesssim 14$ for $纬$~Doradus stars and $G \lesssim 16$ for SPB stars) the dominant g-mode frequency is recovered in more than $95\%$ of the cases. MOCKA help us to understand the limits of the PLATO mission as well as highlight the opportunities to push astrophysics beyond current stellar models. All data products of this paper are made available to the community for further exploration. The key data products of MOCKA are the magnitude limited \textit{Gaia} catalogue of the first PLATO pointing field, together with fully reduced light curves from multi-camera observations for each pulsation class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10508v1-abstract-full').style.display = 'none'; document.getElementById('2412.10508v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 694, A185 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09217">arXiv:2412.09217</a> <span> [<a href="https://arxiv.org/pdf/2412.09217">pdf</a>, <a href="https://arxiv.org/format/2412.09217">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Fast-rotating A- and F-type stars with H伪 emissions in NGC 3532, candidate UV-dim stars? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=He%2C+C">Chenyu He</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+C">Chengyuan Li</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Gang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09217v1-abstract-short" style="display: inline;"> Extended main-sequence stars that are dim in the ultraviolet passbands of Hubble Space Telescope (UV-dim stars) are found in several young and intermediate-age Magellanic Cloud star clusters. The obscuring of the dust in the discs of stars expelled due to fast rotation have been suggested to be responsible for the appearance of UV-dim stars, and play an important role in the formation of extended… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09217v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09217v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09217v1-abstract-full" style="display: none;"> Extended main-sequence stars that are dim in the ultraviolet passbands of Hubble Space Telescope (UV-dim stars) are found in several young and intermediate-age Magellanic Cloud star clusters. The obscuring of the dust in the discs of stars expelled due to fast rotation have been suggested to be responsible for the appearance of UV-dim stars, and play an important role in the formation of extended main-sequences. In this paper, we report a population of A- and F-type stars who show H伪 emission features in their spectra in a young (~ 340 Myr-old) Galactic neighboring star cluster NGC 3532. By fitting the observed absorption profiles, we found that most H伪 emitters are fast rotating stars, indicating that they form decretion discs by fast rotation like Be stars. As A- and F-type stars dominate the extended main-sequence turn-off regions of intermediate-age clusters, their appearance provides observational evidence to support the dust extinction scenario for these clusters, and might be the counterparts of UV-dim stars that are detected in remote Magellanic Cloud star clusters like NGC 1783. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09217v1-abstract-full').style.display = 'none'; document.getElementById('2412.09217v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, accepted by Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04436">arXiv:2412.04436</a> <span> [<a href="https://arxiv.org/pdf/2412.04436">pdf</a>, <a href="https://arxiv.org/format/2412.04436">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451403">10.1051/0004-6361/202451403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overdensity of Lyman-Break Galaxy Candidates Around Hot Dust-Obscured Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zewdie%2C+D">Dejene Zewdie</a>, <a href="/search/astro-ph?searchtype=author&query=Assef%2C+R+J">Roberto J. Assef</a>, <a href="/search/astro-ph?searchtype=author&query=Lambert%2C+T">Trystan Lambert</a>, <a href="/search/astro-ph?searchtype=author&query=Mazzucchelli%2C+C">Chiara Mazzucchelli</a>, <a href="/search/astro-ph?searchtype=author&query=Loubser%2C+S+I">S. Ilani Loubser</a>, <a href="/search/astro-ph?searchtype=author&query=Aravena%2C+M">Manuel Aravena</a>, <a href="/search/astro-ph?searchtype=author&query=Gonz%C3%A1lez-L%C3%B3pez%2C+J">Jorge Gonz谩lez-L贸pez</a>, <a href="/search/astro-ph?searchtype=author&query=Jun%2C+H+D">Hyunsung D. Jun</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guodong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Aranda%2C+R+F">Rom谩n Fern谩ndez Aranda</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%ADaz-Santos%2C+T">Tanio D铆az-Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Eisenhardt%2C+P+R+M">Peter R. M. Eisenhardt</a>, <a href="/search/astro-ph?searchtype=author&query=Vayner%2C+A">Andrey Vayner</a>, <a href="/search/astro-ph?searchtype=author&query=Martin%2C+L+R">Lee R. Martin</a>, <a href="/search/astro-ph?searchtype=author&query=Blain%2C+A+W">Andrew W. Blain</a>, <a href="/search/astro-ph?searchtype=author&query=Wu%2C+J">Jingwen Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04436v1-abstract-short" style="display: inline;"> Hot dust-obscured galaxies (Hot DOGs), are a family of hyper-luminous, heavily obscured quasars. A number of studies have shown that these objects reside in significantly overdense regions of the Universe based on the identification of companions at optical through far-IR wavelengths. Here we present further characterization of their environments by studying the surface density of Lyman break gala… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04436v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04436v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04436v1-abstract-full" style="display: none;"> Hot dust-obscured galaxies (Hot DOGs), are a family of hyper-luminous, heavily obscured quasars. A number of studies have shown that these objects reside in significantly overdense regions of the Universe based on the identification of companions at optical through far-IR wavelengths. Here we present further characterization of their environments by studying the surface density of Lyman break galaxy (LBG) candidates in the vicinity of three Hot DOGs. For two of them, WISE J041010.60-091305.2 at z=3.631 and WISE J083153.25+014010.8 at z=3.912, we identify the candidate LBG companions using deep observations obtained with Baade/IMACS. For the third, WISE J224607.56-052634.9 at z=4.601, we re-analyse previously published data obtained with Gemini-S/GMOS-S. We optimise the LBG photometric selection criteria at the redshift of each target using the COSMOS2020 catalog. When comparing the density of LBG candidates found in the vicinity of these Hot DOGs with that in the COSMOS2020 catalog, we find overdensities of $未=1.83\pm 0.08$ ($未' = 7.49\pm 0.68$), $未=4.67\pm 0.21$ ($未' = 29.17\pm 2.21$), and $未= 2.36\pm 0.25$ ($未' = 11.60\pm 1.96$) around W0410-0913, W0831+0140, and W2246-0526, respectively, without (with) contamination correction. Additionally, we find that the overdensities are centrally concentrated around each Hot DOG. Our analysis also reveals that the overdensity of the fields surrounding W0410-0913 and W0831+0140 declines steeply beyond physical scales of $\sim$2 Mpc. If these overdensities evolve to clusters by z=0, these results suggest that the Hot DOG may correspond to the early formation stages of the brightest cluster galaxy. We were unable to determine if this is also the case for W2246-0526 due to the smaller field of view of the GMOS-S observations. Our results imply that Hot DOGs may be excellent tracers of protoclusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04436v1-abstract-full').style.display = 'none'; document.getElementById('2412.04436v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A, the manuscript consists of 14 pages, 16 figures, and 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 694, A121 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02862">arXiv:2412.02862</a> <span> [<a href="https://arxiv.org/pdf/2412.02862">pdf</a>, <a href="https://arxiv.org/format/2412.02862">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Powerful nuclear outflows and circumgalactic medium shocks driven by the most luminous quasar in the Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Vayner%2C+A">Andrey Vayner</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%ADaz-Santos%2C+T">Tanio D铆az-Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Eisenhardt%2C+P+R+M">Peter R. M. Eisenhardt</a>, <a href="/search/astro-ph?searchtype=author&query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&query=Armus%2C+L">Lee Armus</a>, <a href="/search/astro-ph?searchtype=author&query=Angl%C3%A9s-Alc%C3%A1zar%2C+D">Daniel Angl茅s-Alc谩zar</a>, <a href="/search/astro-ph?searchtype=author&query=Assef%2C+R+J">Roberto J. Assef</a>, <a href="/search/astro-ph?searchtype=author&query=Aranda%2C+R+F">Rom谩n Fern谩ndez Aranda</a>, <a href="/search/astro-ph?searchtype=author&query=Blain%2C+A+W">Andrew W. Blain</a>, <a href="/search/astro-ph?searchtype=author&query=Jun%2C+H+D">Hyunsung D. Jun</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Roy%2C+N+C">Niranjan Chandra Roy</a>, <a href="/search/astro-ph?searchtype=author&query=Brisbin%2C+D">Drew Brisbin</a>, <a href="/search/astro-ph?searchtype=author&query=Ferkinhoff%2C+C+D">Carl D. Ferkinhoff</a>, <a href="/search/astro-ph?searchtype=author&query=Aravena%2C+M">Manuel Aravena</a>, <a href="/search/astro-ph?searchtype=author&query=Gonz%C3%A1lez-L%C3%B3pez%2C+J">Jorge Gonz谩lez-L贸pez</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guodong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Liao%2C+M">Mai Liao</a>, <a href="/search/astro-ph?searchtype=author&query=Shobhana%2C+D">Devika Shobhana</a>, <a href="/search/astro-ph?searchtype=author&query=Wu%2C+J">Jingwen Wu</a>, <a href="/search/astro-ph?searchtype=author&query=Zewdie%2C+D">Dejene Zewdie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02862v1-abstract-short" style="display: inline;"> We report integral field spectroscopy observations with the Near-Infrared Spectrograph on board JWST targeting the 60 kpc environment surrounding the most luminous quasar known at $z=4.6$. We detect ionized gas filaments on 40 kpc scales connecting a network of merging galaxies likely to form a cluster. We find regions of low ionization consistent with large-scale shock excitation surrounding the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02862v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02862v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02862v1-abstract-full" style="display: none;"> We report integral field spectroscopy observations with the Near-Infrared Spectrograph on board JWST targeting the 60 kpc environment surrounding the most luminous quasar known at $z=4.6$. We detect ionized gas filaments on 40 kpc scales connecting a network of merging galaxies likely to form a cluster. We find regions of low ionization consistent with large-scale shock excitation surrounding the central dust-obscured quasar, out to distances nearly eight times the effective stellar radius of the quasar host galaxy. In the nuclear region, we find an ionized outflow driven by the quasar with velocities reaching 13,000 km s$^{-1}$, one of the fastest discovered to date with an outflow rate of 2000 M$_\odot$ yr$^{-1}$ and a kinetic luminosity of 6$\times10^{46}$ erg s$^{-1}$ resulting in coupling efficiency between the bolometric luminosity of the quasar and the outflow of 5%. The kinetic luminosity of the outflow is sufficient to power the turbulent motion of the gas on galactic and circumgalactic scales and is likely the primary driver of the radiative shocks on interstellar medium and circumgalactic medium scales. This provides compelling evidence supporting long-standing theoretical predictions that powerful quasar outflows are a main driver in regulating the heating and accretion rate of gas onto massive central cluster galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02862v1-abstract-full').style.display = 'none'; document.getElementById('2412.02862v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, 1 table, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19061">arXiv:2411.19061</a> <span> [<a href="https://arxiv.org/pdf/2411.19061">pdf</a>, <a href="https://arxiv.org/format/2411.19061">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202452376">10.1051/0004-6361/202452376 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A study of particle acceleration, heating, power deposition, and the damping length of kinetic Alfv茅n waves in non-Maxwellian coronal plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ayaz%2C+S">S. Ayaz</a>, <a href="/search/astro-ph?searchtype=author&query=Zank%2C+G+P">Gary P. Zank</a>, <a href="/search/astro-ph?searchtype=author&query=Khan%2C+I+A">Imran A. Khan</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Rivera%2C+Y+J">Yeimy J. Rivera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19061v2-abstract-short" style="display: inline;"> The heating of the solar corona and solar wind, through suprathermal particles and kinetic Alfv茅n waves within the 0 - 10 $R_{\rm Sun}$ range, has been a subject of great interest for many decades. This study investigates the acceleration and heating of charged particles and the role of KAWs in the solar corona. We investigate how KAWs transport energy and accelerate/heat the charged particles, fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19061v2-abstract-full').style.display = 'inline'; document.getElementById('2411.19061v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19061v2-abstract-full" style="display: none;"> The heating of the solar corona and solar wind, through suprathermal particles and kinetic Alfv茅n waves within the 0 - 10 $R_{\rm Sun}$ range, has been a subject of great interest for many decades. This study investigates the acceleration and heating of charged particles and the role of KAWs in the solar corona. We investigate how KAWs transport energy and accelerate/heat the charged particles, focusing on the behavior of perturbed EM fields, Poynting flux vectors, net power transfer, resonant particle speed, group speed, and the damping length of KAWs. The study examines how these elements are influenced by suprathermal particles 魏and the electron-to-ion temperature $T_e/T_i$. We use kinetic plasma theory coupled with the Vlasov-Maxwell model to investigate the dynamics of KAWs and particles. We assume a collisionless, homogeneous, and low-beta electron-ion plasma in which Alfv茅n waves travel in the kinetic limits. The results show the perturbed EM fields are significantly influenced by $魏$ and $T_e/T_i$. We evaluate both the parallel and perpendicular Poynting fluxes and find that the parallel Poynting flux dissipates gradually for lower 魏values. The perpendicular flux dissipates quickly over shorter distances. Power deposition in solar flux tubes is significantly influenced by 魏and Te/Ti. We find that particles can heat the solar corona over long distances in the parallel direction and short distances in the perpendicular direction. The group velocity of KAWs increases for lower 魏values, and the damping length is enhanced under lower 魏, suggesting longer energy transport distances. These findings offer a comprehensive understanding of particle-wave interactions in the solar corona and wind, with potential applications for missions such as the Parker Solar Probe (PSP), and can also apply to other environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19061v2-abstract-full').style.display = 'none'; document.getElementById('2411.19061v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astronomy and Astrophysics (A&A) journal (2024)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 694, A23 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18777">arXiv:2411.18777</a> <span> [<a href="https://arxiv.org/pdf/2411.18777">pdf</a>, <a href="https://arxiv.org/format/2411.18777">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451995">10.1051/0004-6361/202451995 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KIC 4150611: A quadruply eclipsing heptuple star system with a g-mode period-spacing pattern Asteroseismic modelling of the g-mode period-spacing pattern </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kemp%2C+A">Alex Kemp</a>, <a href="/search/astro-ph?searchtype=author&query=Fritzewski%2C+D+J">Dario J Fritzewski</a>, <a href="/search/astro-ph?searchtype=author&query=Van+Reeth%2C+T">Timothy Van Reeth</a>, <a href="/search/astro-ph?searchtype=author&query=IJspeert%2C+L">Luc IJspeert</a>, <a href="/search/astro-ph?searchtype=author&query=Michielsen%2C+M">Mathias Michielsen</a>, <a href="/search/astro-ph?searchtype=author&query=Mombarg%2C+J">Joey Mombarg</a>, <a href="/search/astro-ph?searchtype=author&query=Vanlaer%2C+V">Vincent Vanlaer</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Tkachenko%2C+A">Andrew Tkachenko</a>, <a href="/search/astro-ph?searchtype=author&query=Aerts%2C+C">Conny Aerts</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18777v1-abstract-short" style="display: inline;"> In this work, we aim to estimate the stellar parameters of the primary (Aa) by performing asteroseismic analysis on its period-spacing pattern. We use the C-3PO neural network to perform asteroseismic modelling of the g-mode period-spacing pattern of Aa, discussing the interplay of this information with external constraints from spectroscopy ($T_{\rm eff}$ and $\log(g)$) and eclipse modelling (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18777v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18777v1-abstract-full" style="display: none;"> In this work, we aim to estimate the stellar parameters of the primary (Aa) by performing asteroseismic analysis on its period-spacing pattern. We use the C-3PO neural network to perform asteroseismic modelling of the g-mode period-spacing pattern of Aa, discussing the interplay of this information with external constraints from spectroscopy ($T_{\rm eff}$ and $\log(g)$) and eclipse modelling ($R$). To estimate the level of uncertainty due to different frequency extraction and pattern identification processes, we consider four different variations on the period-spacing patterns. To better understand the correlations between and the uncertainty structure of our parameter estimates, we also employed a classical, parameter-based MCMC grid search on four different stellar grids. The best-fitting, externally constrained model to the period-spacing pattern arrives at estimates of the stellar properties for Aa of: $M=1.51 \pm 0.05 M_\odot$, $X_c =0.43 \pm 0.04$, $R=1.66 \pm 0.1 R_\odot$, $f_{\rm ov}=0.010$, $惟_c=1.58 \pm 0.01$ d$^{-1}$ with rigid rotation to within the measurement errors, $\log(T_{\rm eff})=3.856 \pm 0.008$ dex, $\log(g)=4.18 \pm 0.04$ dex, and $\log(L)=0.809 \pm 0.005$ dex, which agree well with previous measurements from eclipse modelling, spectroscopy, and the Gaia DR3 luminosity. We find that the near-core properties of the best-fitting asteroseismic models are consistent with external constraints from eclipse modelling and spectroscopy. Aa appears to be a typical example of a $纬$ Dor star, fitting well within existing populations. We find that Aa is quasi-rigidly rotating to within the uncertainties, and note that the asteroseismic age estimate for Aa (1100 $\pm$ 100 Myr) is considerably older than the young (35 Myr) age implied by previous isochrone fits to the B binary in the literature. Our MCMC parameter-based grid-search agrees well with our pattern-modelling approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18777v1-abstract-full').style.display = 'none'; document.getElementById('2411.18777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted, A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 693, A184 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17247">arXiv:2411.17247</a> <span> [<a href="https://arxiv.org/pdf/2411.17247">pdf</a>, <a href="https://arxiv.org/format/2411.17247">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing vector gravitational atom with eccentric intermediate mass-ratio inspirals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cao%2C+Y">Yan Cao</a>, <a href="/search/astro-ph?searchtype=author&query=Cheng%2C+Y">Ya-Ze Cheng</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Gen-Liang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Tang%2C+Y">Yong Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17247v1-abstract-short" style="display: inline;"> Ultralight bosons, proposed as candidates for dark matter, are predicted by various new physics models. In the presence of bosons with suitable masses, superradiant (SR) instability can naturally transform a spinning black hole (BH) into a gravitational atom (GA). Here we study the dynamics of intermediate mass-ratio inspirals (IMRIs) around a GA formed by ultralight vector field saturated in its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17247v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17247v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17247v1-abstract-full" style="display: none;"> Ultralight bosons, proposed as candidates for dark matter, are predicted by various new physics models. In the presence of bosons with suitable masses, superradiant (SR) instability can naturally transform a spinning black hole (BH) into a gravitational atom (GA). Here we study the dynamics of intermediate mass-ratio inspirals (IMRIs) around a GA formed by ultralight vector field saturated in its SR ground state. We employ a perturbative model at the leading Newtonian order to consistently account for both the conservative effect of cloud gravity and the dissipative effect of cloud ionization. We find the cloud can make a sizable negative contribution to the secular periastron precession at binary separations comparable to the gravitational Bohr radius. Meanwhile, the backreaction of ionization could significantly accelerate the process of orbital decay and circularization. Considering reasonably small vector boson masses, we investigate the adiabatic orbital evolution and gravitational waveforms of eccentric inspirals. The results indicate that vector GAs might be detectable through observations of low-frequency IMRIs by future space-based gravitational-wave detectors, such as LISA and Taiji. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17247v1-abstract-full').style.display = 'none'; document.getElementById('2411.17247v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15917">arXiv:2411.15917</a> <span> [<a href="https://arxiv.org/pdf/2411.15917">pdf</a>, <a href="https://arxiv.org/ps/2411.15917">ps</a>, <a href="https://arxiv.org/format/2411.15917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Depolarization by jet precession in early optical afterglows of gamma-ray bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Huang%2C+B">Bao-Quan Huang</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+T">Tong Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Yu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15917v1-abstract-short" style="display: inline;"> Polarization observations provide a unique way to probe the nature of jet magnetic fields in gamma-ray bursts (GRBs). Currently, some GRBs have been detected to be polarized in their early optical afterglows. However, the measured polarization degrees (PDs) of these GRBs are much lower than those predicted by theoretical models. In this work, we investigate the depolarization induced by jet preces… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15917v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15917v1-abstract-full" style="display: none;"> Polarization observations provide a unique way to probe the nature of jet magnetic fields in gamma-ray bursts (GRBs). Currently, some GRBs have been detected to be polarized in their early optical afterglows. However, the measured polarization degrees (PDs) of these GRBs are much lower than those predicted by theoretical models. In this work, we investigate the depolarization induced by jet precession in combination with the measured PDs of the GRB early optical afterglows in the reverse shock (RS) dominated phase ($\sim 10^2-10^3 \,{\rm s}$). We calculate the PDs of RS emission with and without jet precession in both magnetic field configurations, i.e., aligned and toroidal magnetic fields, and meanwhile explore the effect of different parameters on the PDs. We find that the PDs are slightly affected by the configurations of the ordered magnetic fields and are positively related to the precession period. Moreover, the PDs are sensitive to the observed angle and the measured low PDs favor a small one. Thus, as one of the plausible origins of the structured jets, jet precession could be considered as an alternative mechanism for the low PDs observed in GRB early optical afterglows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15917v1-abstract-full').style.display = 'none'; document.getElementById('2411.15917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, 1 table, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15506">arXiv:2411.15506</a> <span> [<a href="https://arxiv.org/pdf/2411.15506">pdf</a>, <a href="https://arxiv.org/format/2411.15506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Null Stream Based Third-generation-ready Glitch Mitigation for Gravitational Wave Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Narola%2C+H">Harsh Narola</a>, <a href="/search/astro-ph?searchtype=author&query=Wouters%2C+T">Thibeau Wouters</a>, <a href="/search/astro-ph?searchtype=author&query=Negri%2C+L">Luca Negri</a>, <a href="/search/astro-ph?searchtype=author&query=Lopez%2C+M">Melissa Lopez</a>, <a href="/search/astro-ph?searchtype=author&query=Dooney%2C+T">Tom Dooney</a>, <a href="/search/astro-ph?searchtype=author&query=Cireddu%2C+F">Francesco Cireddu</a>, <a href="/search/astro-ph?searchtype=author&query=Wils%2C+M">Milan Wils</a>, <a href="/search/astro-ph?searchtype=author&query=Wong%2C+I+C+F">Isaac C. F. Wong</a>, <a href="/search/astro-ph?searchtype=author&query=Pang%2C+P+T+H">Peter T. H. Pang</a>, <a href="/search/astro-ph?searchtype=author&query=Janquart%2C+J">Justin Janquart</a>, <a href="/search/astro-ph?searchtype=author&query=Samajdar%2C+A">Anuradha Samajdar</a>, <a href="/search/astro-ph?searchtype=author&query=Broeck%2C+C+V+D">Chris Van Den Broeck</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+T+G+F">Tjonnie G. F. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15506v1-abstract-short" style="display: inline;"> Gravitational Wave (GW) detectors routinely encounter transient noise bursts, known as glitches, which are caused by either instrumental or environmental factors. Due to their high occurrence rate, glitches can overlap with GW signals, as in the notable case of GW170817, the first detection of a binary neutron star merger. Accurate reconstruction and subtraction of these glitches is a challenging… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15506v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15506v1-abstract-full" style="display: none;"> Gravitational Wave (GW) detectors routinely encounter transient noise bursts, known as glitches, which are caused by either instrumental or environmental factors. Due to their high occurrence rate, glitches can overlap with GW signals, as in the notable case of GW170817, the first detection of a binary neutron star merger. Accurate reconstruction and subtraction of these glitches is a challenging problem that must be addressed to ensure that scientific conclusions drawn from the data are reliable. This problem will intensify with third-generation observatories like the Einstein Telescope (ET) due to their higher detection rates of GWs and the longer duration of signals within the sensitivity band of the detectors. Robust glitch mitigation algorithms are, therefore, crucial for maximizing the scientific output of next-generation GW observatories. For the first time, we demonstrate how the null stream inherent in ET's unique triangular configuration can be leveraged by state-of-the-art glitch characterization methodology to essentially undo the effect of glitches for the purpose of estimating the parameters of the source. The null stream based approach enables characterization and subtraction of glitches that occur arbitrarily close to the peak of the signal without any significant effect on the quality of parameter measurements, and achieves an order of magnitude computational speed-up compared to when the null stream is not available. By contrast, without the null stream, significant biases can occur in the glitch reconstruction, which deteriorate the quality of subsequent measurements of the source parameters. This demonstrates a clear edge which the null stream can offer for precision GW science in the ET era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15506v1-abstract-full').style.display = 'none'; document.getElementById('2411.15506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13891">arXiv:2411.13891</a> <span> [<a href="https://arxiv.org/pdf/2411.13891">pdf</a>, <a href="https://arxiv.org/format/2411.13891">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> UPdec-Webb: A Dataset for Coaddition of JWST NIRCam Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Shan%2C+H">Huanyuan Shan</a>, <a href="/search/astro-ph?searchtype=author&query=Nie%2C+L">Lin Nie</a>, <a href="/search/astro-ph?searchtype=author&query=Cheng%2C+C">Cheng Cheng</a>, <a href="/search/astro-ph?searchtype=author&query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&query=Cui%2C+Q">Qifan Cui</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Xie%2C+Y">Yushan Xie</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+D">Dezi Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+Y">Yao Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+M">Min Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+N">Nan Li</a>, <a href="/search/astro-ph?searchtype=author&query=Jia%2C+P">Peng Jia</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+R">Ran Li</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+F">Fengshan Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Shu%2C+Y">Yiping Shu</a>, <a href="/search/astro-ph?searchtype=author&query=Jiang%2C+C">Chang Jiang</a>, <a href="/search/astro-ph?searchtype=author&query=Wei%2C+C">Cheng-Liang Wei</a>, <a href="/search/astro-ph?searchtype=author&query=Qu%2C+H">Han Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+W">Wen-Wen Zheng</a>, <a href="/search/astro-ph?searchtype=author&query=Zhu%2C+L">Li-Yan Zhu</a>, <a href="/search/astro-ph?searchtype=author&query=Kang%2C+X">Xi Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13891v1-abstract-short" style="display: inline;"> We present the application of the image coaddition algorithm, Up-sampling and PSF Deconvolution Coaddition (UPDC), for stacking multiple exposure images captured by the James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam). By addressing the point spread function (PSF) effect, UPDC provides visually enhanced and sharper images. Furthermore, the anti-aliasing and super-resolution capabili… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13891v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13891v1-abstract-full" style="display: none;"> We present the application of the image coaddition algorithm, Up-sampling and PSF Deconvolution Coaddition (UPDC), for stacking multiple exposure images captured by the James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam). By addressing the point spread function (PSF) effect, UPDC provides visually enhanced and sharper images. Furthermore, the anti-aliasing and super-resolution capabilities of UPDC make it easier to deblend sources overlapped on images, yielding a higher accuracy of aperture photometry. We apply this algorithm to the SMACS J0723 imaging data. Comparative analysis with the Drizzle algorithm demonstrates significant improvements in detecting faint sources, achieving accurate photometry, and effectively deblending (super-resolution) closely packed sources. {As a result, we have newly detected a pair of close binary stars that were previously unresolvable in the original exposures or the Drizzled image.} These improvements significantly benefit various scientific projects conducted by JWST. The resulting dataset, named "UPdec-Webb", can be accessible through the official website of the Chinese Virtual Observatory (ChinaVO). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13891v1-abstract-full').style.display = 'none'; document.getElementById('2411.13891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 18 figures, accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13527">arXiv:2411.13527</a> <span> [<a href="https://arxiv.org/pdf/2411.13527">pdf</a>, <a href="https://arxiv.org/format/2411.13527">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad901c">10.3847/2041-8213/ad901c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FAST H I 21 cm study of blueberry galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chandola%2C+Y">Yogesh Chandola</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Saikia%2C+D+J">D. J. Saikia</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guodong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&query=Ma%2C+Y">Yin-Zhe Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13527v1-abstract-short" style="display: inline;"> Green Peas (GPs) and blueberry galaxies (BBs) are thought to be local analogs ($z<$0.1) of high redshift Ly$伪$ emitters. H I study of these can help us understand the star formation in the primordial Universe. In this Letter, we present the results of H I 21 cm study of 28 high specific star formation rate (sSFR $\gtrsim$10$^{-8}$ yr$^{-1}$) BBs at $z\lesssim$0.05 with the Five-hundred-meter Apert… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13527v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13527v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13527v1-abstract-full" style="display: none;"> Green Peas (GPs) and blueberry galaxies (BBs) are thought to be local analogs ($z<$0.1) of high redshift Ly$伪$ emitters. H I study of these can help us understand the star formation in the primordial Universe. In this Letter, we present the results of H I 21 cm study of 28 high specific star formation rate (sSFR $\gtrsim$10$^{-8}$ yr$^{-1}$) BBs at $z\lesssim$0.05 with the Five-hundred-meter Aperture Spherical radio Telescope. We report significant H I detection towards two BBs namely J1026+0426 and J1132+0809, and discuss possible H I contribution from neighboring galaxies. The median 3$蟽$ upper limit of $\sim$2.0$\times$10$^{8}$ M$_{\odot}$ was obtained on H I mass for galaxies with nondetections. We find BBs tend to have lower H I-to-stellar mass ratio or gas fraction ($f_{\rm HI}$) than expected from $f_{\rm HI}$-sSFR and $f_{\rm HI}$-$M_{\ast}$ relations for main-sequence galaxies. The BBs also have a median 3$蟽$ upper limit on H I gas depletion time scale ($蟿_{\rm HI}$) $\sim$0.5 Gyr, about 1 order of magnitude lower than $蟿_{\rm HI}$ for local main-sequence galaxies. We find a significantly low H I detection rate of 2/28 (7.1$^{+9.4}_{-4.6}$ \%) towards these galaxies, which is similar to previous H I studies of low redshift GPs of high ionization parameter indicator, O32 $\equiv$O[{\sc iii}]$位$5007/O[{\sc ii}]$位$3727 ratios $\gtrsim$10. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13527v1-abstract-full').style.display = 'none'; document.getElementById('2411.13527v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table, accepted for publication in the Astrophysical Journal Letters (ApJL), this is proof corrected version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12453">arXiv:2411.12453</a> <span> [<a href="https://arxiv.org/pdf/2411.12453">pdf</a>, <a href="https://arxiv.org/format/2411.12453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Using time series to identify strongly-lensed gravitational waves with deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Offermans%2C+A">Arthur Offermans</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+T+G+F">Tjonnie G. F. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12453v1-abstract-short" style="display: inline;"> The presence of a massive body between the Earth and a gravitational-wave source will produce the so-called gravitational lensing effect. In the case of strong lensing, it leads to the observation of multiple deformed copies of the initial wave. Machine-learning (ML) models have been proposed for identifying these copies much faster than optimal Bayesian methods, as will be needed with the detecti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12453v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12453v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12453v1-abstract-full" style="display: none;"> The presence of a massive body between the Earth and a gravitational-wave source will produce the so-called gravitational lensing effect. In the case of strong lensing, it leads to the observation of multiple deformed copies of the initial wave. Machine-learning (ML) models have been proposed for identifying these copies much faster than optimal Bayesian methods, as will be needed with the detection rate of next-generation detector. Most of these ML models are based on a time-frequency representation of the data that discards the phase information. We introduce a neural network that directly uses the time series data to retain the phase, limit the pre-processing time and keep a one-dimensional input. We show that our model is more efficient than the base model used on time-frequency maps at any False Alarm Rate (FPR), up to $\sim 5$ times more for an FPR of $10^{-4}$. We also show that it is not significantly impacted by the choice of waveform model, by lensing-induced phase shifts and by reasonable errors on the merger time that induce a misalignment of the waves in the input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12453v1-abstract-full').style.display = 'none'; document.getElementById('2411.12453v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11680">arXiv:2411.11680</a> <span> [<a href="https://arxiv.org/pdf/2411.11680">pdf</a>, <a href="https://arxiv.org/format/2411.11680">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Observational features of the rotating Bardeen black hole surrounded by perfect fluid dark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=He%2C+K">Ke-Jian He</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Ping Li</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+C">Chen-Yu Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Zeng%2C+X">Xiao-Xiong Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11680v1-abstract-short" style="display: inline;"> By employing ray-tracing techniques, we investigate the shadow images of rotating Bardeen black holes surrounded by perfect fluid dark matter. In this work, two models are considered for the background light source, namely the celestial light source model and the thin accretion disk model. Regarding the celestial light source, the investigation focuses on the impact of variations in relevant param… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11680v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11680v1-abstract-full" style="display: none;"> By employing ray-tracing techniques, we investigate the shadow images of rotating Bardeen black holes surrounded by perfect fluid dark matter. In this work, two models are considered for the background light source, namely the celestial light source model and the thin accretion disk model. Regarding the celestial light source, the investigation focuses on the impact of variations in relevant parameters and observed inclination on the contour and size of the shadow. For the thin accretion disk model, the optical appearance of a black hole is evidently contingent upon the radiative properties exhibited by the accretion disk, as well as factors such as observed inclination and relevant parameters governing spacetime. With an increasing observation inclination, the observed flux of direct and lensed images of the accretion disk gradually converge towards the lower region of the image, while an increase in the dark matter parameter $a$ significantly expands the region encompassing both direct and lensed images. Furthermore, the predominant effect is redshift at lower observation angles, whereas the blueshift effect only becomes apparent at higher observation angles. Simultaneously, the increase in the observation inclination will amplify the redshift effect, whereas an increase in the magnetic charge $\mathcal{G}$, rotation parameter $a$ and the absolute value of dark matter parameter $伪$ will attenuate the redshift effect observed in the image. These observations of a rotating Bardeen black hole surrounded by perfect fluid dark matter could provide a convenient way to distinguish it from other black hole models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11680v1-abstract-full').style.display = 'none'; document.getElementById('2411.11680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 12 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09195">arXiv:2411.09195</a> <span> [<a href="https://arxiv.org/pdf/2411.09195">pdf</a>, <a href="https://arxiv.org/format/2411.09195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/adb578">10.3847/1538-4357/adb578 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The origin channels of hierarchical binary black hole mergers in the LIGO-Virgo-KAGRA O1, O2, and O3 runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guo-Peng Li</a>, <a href="/search/astro-ph?searchtype=author&query=Fan%2C+X">Xi-Long Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09195v2-abstract-short" style="display: inline;"> We infer the origin channels of hierarchical mergers observed in the LIGO-Virgo-KAGRA (LVK) O1, O2, and O3 runs using a hierarchical Bayesian analysis under a parametric population model. By assuming the active galactic nucleus (AGN) disk and nuclear star cluster (NSC) channels, we find that NSCs likely dominate the hierarchical merger rate in the Universe, corresponding to a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09195v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09195v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09195v2-abstract-full" style="display: none;"> We infer the origin channels of hierarchical mergers observed in the LIGO-Virgo-KAGRA (LVK) O1, O2, and O3 runs using a hierarchical Bayesian analysis under a parametric population model. By assuming the active galactic nucleus (AGN) disk and nuclear star cluster (NSC) channels, we find that NSCs likely dominate the hierarchical merger rate in the Universe, corresponding to a fraction of $f_{\rm NSC}=0.87_{-0.29}^{+0.10}$ at 90\% credible intervals in our fiducial model; AGN disks may contribute up to nearly half of hierarchical mergers detectable with LVK, specifically $f_{\rm det,AGN}=0.34_{-0.26}^{+0.38}$. We investigate the impact of the escape speed, along with other population parameters on the branching fraction, suggesting that the mass, mass ratio, and spin of the sources play significant roles in population analysis. We show that hierarchical mergers constitute at least $\sim$$10\%$ of the gravitational wave events detected by LVK during the O1-O3 runs. Furthermore, we demonstrate that it is challenging to effectively infer detailed information about the host environment based solely on the distribution of black hole merger parameters if multiple formation channels are considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09195v2-abstract-full').style.display = 'none'; document.getElementById('2411.09195v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures, 2 tables; accepted for publication in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 981:177 (11pp), 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05396">arXiv:2411.05396</a> <span> [<a href="https://arxiv.org/pdf/2411.05396">pdf</a>, <a href="https://arxiv.org/format/2411.05396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield (HIERACHY) II: Project Design, Current Status, and Examples of Initial Data Products </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+J">Jiang-Tao Li</a>, <a href="/search/astro-ph?searchtype=author&query=Yu%2C+X">Xiaodi Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Mao%2C+H">Huiyang Mao</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+H">Hanxiao Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+T">Tiancheng Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Qu%2C+Z">Zhijie Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Bian%2C+F">Fuyan Bian</a>, <a href="/search/astro-ph?searchtype=author&query=Bregman%2C+J+N">Joel N. Bregman</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+Z">Zheng Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Fan%2C+X">Xiaohui Fan</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+T">Taotao Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Ji%2C+L">Li Ji</a>, <a href="/search/astro-ph?searchtype=author&query=Ji%2C+Z">Zhiyuan Ji</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+S+D">Sean D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guoliang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+W">Weizhe Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Song%2C+Y">Ying-Yi Song</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+F">Feige Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+X">Xin Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Williams%2C+C">Christina Williams</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+M">Mingxuan Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+J">Jinyi Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+X">Xianzhong Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05396v1-abstract-short" style="display: inline;"> The He II reionization epoch is expected to take place at $z\sim3-5$. In this stage, the helium and metals in the inter-galactic medium (IGM) are further ionized with additional contributions from harder non-stellar sources, and some large-scale gravitationally bound systems approach virialization. The "Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield (HIERACHY)" program uti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05396v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05396v1-abstract-full" style="display: none;"> The He II reionization epoch is expected to take place at $z\sim3-5$. In this stage, the helium and metals in the inter-galactic medium (IGM) are further ionized with additional contributions from harder non-stellar sources, and some large-scale gravitationally bound systems approach virialization. The "Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield (HIERACHY)" program utilizes high- and medium-resolution spectra of bright background quasars at $z\approx3.9-5.2$ to investigate Ly$伪$, C IV, and other metal absorption lines during this epoch. Additionally, we employ narrow-band imaging to search for Ly$伪$ emitters associated with C IV absorbers, alongside multi-wavelength observations to identify and study particularly intriguing cases. In this paper, we present the design of the HIERACHY program, its current status, major scientific goals, and examples of initial data products from completed Magellan/MIKE, MagE spectroscopy, and MDM imaging observations. We also provide a brief outlook on future multi-wavelength observations that may significantly impact the related science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05396v1-abstract-full').style.display = 'none'; document.getElementById('2411.05396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures, 2 tables, accepted for publication by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05387">arXiv:2411.05387</a> <span> [<a href="https://arxiv.org/pdf/2411.05387">pdf</a>, <a href="https://arxiv.org/ps/2411.05387">ps</a>, <a href="https://arxiv.org/format/2411.05387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449699">10.1051/0004-6361/202449699 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A photometric and spectroscopic study of eight semi-detached eclipsing binaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lei%2C+Y">Yajuan Lei</a>, <a href="/search/astro-ph?searchtype=author&query=Zhou%2C+G">Guiping Zhou</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+L">Liang Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guangwei Li</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+K">Kai Li</a>, <a href="/search/astro-ph?searchtype=author&query=Yi%2C+T">Tuan Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05387v1-abstract-short" style="display: inline;"> By cross-matching the eclipsing binary catalog from TESS with that from LAMOST MRS, semi-detached eclipsing binaries with radial velocities coverage spanning more than 0.3 phases were authenticated. The absolute parameters for these systems were determined by simultaneous modeling of light curves and radial velocities using the Wilson-Devinney program. Additionally, the secular orbital variations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05387v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05387v1-abstract-full" style="display: none;"> By cross-matching the eclipsing binary catalog from TESS with that from LAMOST MRS, semi-detached eclipsing binaries with radial velocities coverage spanning more than 0.3 phases were authenticated. The absolute parameters for these systems were determined by simultaneous modeling of light curves and radial velocities using the Wilson-Devinney program. Additionally, the secular orbital variations were further analyzed using O-C curves. Eight semi-detached eclipsing binaries have been identified. Among them, seven feature primary stars situated within the main-sequence band, while their secondaries are all in evolved stages. This suggests that these systems likely originated as detached binaries and have undergone a reversal of the mass ratio. However, TIC 428257299 is an exception where the primary is Roche lobe-filling, and its secondary has experienced mass loss events. Additionally, TIC 8677671 and TIC 318217844 demonstrate secular cyclical changes of orbital periods. Specifically, for TIC 8677671, the cyclical change could result from magnetic activity or a third body which is likely to be compact, with a mass of at least 2.97 M$_{\odot}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05387v1-abstract-full').style.display = 'none'; document.getElementById('2411.05387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, 8 tables, accepted for publication in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 692, A168 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03347">arXiv:2411.03347</a> <span> [<a href="https://arxiv.org/pdf/2411.03347">pdf</a>, <a href="https://arxiv.org/format/2411.03347">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Dispersion relation for the linear theory of relativistic Rayleigh Taylor instability in magnetized medium revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jiang%2C+Q">Qiqi Jiang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G">Guang-Xing Li</a>, <a href="/search/astro-ph?searchtype=author&query=Singh%2C+C+B">Chandra B. Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03347v1-abstract-short" style="display: inline;"> The Rayleigh Taylor instability (RTI) occurs at the interface between two fluids of different densities, notably when a heavier fluid sits above a lighter one in an effective gravitational field. This instability is relevant to many astrophysical systems where relativistic effects are significant. We examine the linear theory of relativistic Rayleigh Taylor instability (RRTI) in a magnetized mediu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03347v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03347v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03347v1-abstract-full" style="display: none;"> The Rayleigh Taylor instability (RTI) occurs at the interface between two fluids of different densities, notably when a heavier fluid sits above a lighter one in an effective gravitational field. This instability is relevant to many astrophysical systems where relativistic effects are significant. We examine the linear theory of relativistic Rayleigh Taylor instability (RRTI) in a magnetized medium, allowing for relativistic fluid motion parallel to the interface. To simplify our derivations, we use an "intermediate frame" where fluids on both sides have the same Lorentz factor. Our analysis yields the dispersion relation for RRTI. We find that the instability occurs when the Atwood number $\mathcal{A}$ = $(蟻_1 h_1 - 蟻_2 h_2) / (蟻_1 h_1 + 蟻_2 h_2) >0$, without requiring relativistic correction. Relativistic motion increases the effective inertia ($蟻\rightarrow 纬_*^2 蟻$), weakening the magnetic field's suppression of the instability. In the laboratory frame, the instability growth rate is reduced due to time dilation. These analytical results may inform studies of instabilities in systems such as microquasars, active galactic nuclei, gamma-ray bursts, and radio pulsars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03347v1-abstract-full').style.display = 'none'; document.getElementById('2411.03347v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01960">arXiv:2411.01960</a> <span> [<a href="https://arxiv.org/pdf/2411.01960">pdf</a>, <a href="https://arxiv.org/format/2411.01960">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: The Magnetic Fields of the IC 348 Star-forming Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Choi%2C+Y">Youngwoo Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/astro-ph?searchtype=author&query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/astro-ph?searchtype=author&query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/astro-ph?searchtype=author&query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/astro-ph?searchtype=author&query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/astro-ph?searchtype=author&query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/astro-ph?searchtype=author&query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/astro-ph?searchtype=author&query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/astro-ph?searchtype=author&query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/astro-ph?searchtype=author&query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&query=Berry%2C+D">David Berry</a>, <a href="/search/astro-ph?searchtype=author&query=Byun%2C+D">Do-Young Byun</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+H+V">Huei-Ru Vivien Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+W+P">Wen Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+M">Mike Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Z">Zhiwei Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/astro-ph?searchtype=author&query=Cho%2C+J">Jungyeon Cho</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+M">Minho Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+Y">Yunhee Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Coud%C3%A9%2C+S">Simon Coud茅</a> , et al. (128 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01960v1-abstract-short" style="display: inline;"> We present 850 $渭$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary struc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01960v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01960v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01960v1-abstract-full" style="display: none;"> We present 850 $渭$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary structure of the region. The polarization fraction decreases with intensity, and we estimate the trend by power-law and the mean of the Rice distribution fittings. The power indices for the cores are much smaller than 1, indicative of possible grain growth to micron size in the cores. We also measure the magnetic field strengths of the two cores and the filamentary area separately by applying the Davis-Chandrasekhar-Fermi method and its alternative version for compressed medium. The estimated mass-to-flux ratios are 0.45-2.20 and 0.63-2.76 for HH 211 MMS and IC 348 MMS, respectively, while the ratios for the filament is 0.33-1.50. This result may suggest that the transition from subcritical to supercritical conditions occurs at the core scale ($\sim$ 0.05 pc) in the region. In addition, we study the energy balance of the cores and find that the relative strength of turbulence to the magnetic field tends to be stronger for IC 348 MMS than HH 211 MMS. The result could potentially explain the different configurations inside the two cores: a single protostellar system in HH 211 MMS and multiple protostars in IC 348 MMS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01960v1-abstract-full').style.display = 'none'; document.getElementById('2411.01960v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. 21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21738">arXiv:2410.21738</a> <span> [<a href="https://arxiv.org/pdf/2410.21738">pdf</a>, <a href="https://arxiv.org/format/2410.21738">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Millilensing induced systematic biases in parameterized tests of General Relativity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Liu%2C+A">Anna Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Chandramouli%2C+R+S">Rohit S. Chandramouli</a>, <a href="/search/astro-ph?searchtype=author&query=Hannuksela%2C+O+A">Otto A. Hannuksela</a>, <a href="/search/astro-ph?searchtype=author&query=Yunes%2C+N">Nicol谩s Yunes</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+T+G+F">Tjonnie G. F. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21738v1-abstract-short" style="display: inline;"> Tests of general relativity (GR) can be systematically biased when our waveform models are inaccurate. We here study systematic biases in tests of general relativity induced by neglecting lensing effects for millilensed gravitational-wave signals, where the lens mass is typically in the $10^3M_\odot$--$10^5M_\odot$ range. In particular, we use a nested-sampling Bayesian parameter estimation and mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21738v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21738v1-abstract-full" style="display: none;"> Tests of general relativity (GR) can be systematically biased when our waveform models are inaccurate. We here study systematic biases in tests of general relativity induced by neglecting lensing effects for millilensed gravitational-wave signals, where the lens mass is typically in the $10^3M_\odot$--$10^5M_\odot$ range. In particular, we use a nested-sampling Bayesian parameter estimation and model selection analysis of a millilensed signal with an unlensed parameterized post-Einsteinian (ppE) recovery model. We find that the ppE model is significantly biased toward a detection of a deviation from general relativity at signal-to-noise ratios of 30 and higher, especially when the source is aligned with the lens mass (the lensing effect is pronounced) and when its total mass is low (the signal duration is long). We use a toy model and the linear signal and Laplace approximations to provide a semi-analytic explanation for the trends in the systematic errors found in the nested sampling analysis. Moreover, a Bayes factor analysis reveals that the (unlensed) ppE model is weakly favored over the (unlensed) GR model, and a fitting factor study shows there is a significant loss of signal-to-noise ratio when using the (unlensed) ppE model. This implies that although a parameter estimation study may incorrectly infer a deviation from general relativity, a residual signal-to-noise ratio test would reveal that the ppE model is not a good fit to the data. Thus, with current detectors, millilensing-induced systematic biases are unlikely to result in false positive detections of GR deviations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21738v1-abstract-full').style.display = 'none'; document.getElementById('2410.21738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+G&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+G&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>