CINXE.COM

Algorithms for calculating variance - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Algorithms for calculating variance - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"87d32e86-ce4f-49e9-a17e-77cfb2abadc5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Algorithms_for_calculating_variance","wgTitle":"Algorithms for calculating variance","wgCurRevisionId":1253078880,"wgRevisionId":1253078880,"wgArticleId":1063,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Use dmy dates from July 2020","All articles with unsourced statements","Articles with unsourced statements from March 2023","Articles with example pseudocode","Articles with example Python (programming language) code","Statistical algorithms","Statistical deviation and dispersion"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Algorithms_for_calculating_variance","wgRelevantArticleId":1063,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q4724375","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","ext.pygments":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.pygments.view","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips", "ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Algorithms for calculating variance - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Algorithms_for_calculating_variance"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Algorithms_for_calculating_variance rootpage-Algorithms_for_calculating_variance skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Algorithms+for+calculating+variance" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Algorithms+for+calculating+variance" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Algorithms+for+calculating+variance" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Algorithms+for+calculating+variance" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Naïve_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Naïve_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Naïve algorithm</span> </div> </a> <button aria-controls="toc-Naïve_algorithm-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Naïve algorithm subsection</span> </button> <ul id="toc-Naïve_algorithm-sublist" class="vector-toc-list"> <li id="toc-Computing_shifted_data" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computing_shifted_data"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Computing shifted data</span> </div> </a> <ul id="toc-Computing_shifted_data-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Two-pass_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Two-pass_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Two-pass algorithm</span> </div> </a> <ul id="toc-Two-pass_algorithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Welford&#039;s_online_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Welford&#039;s_online_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Welford's online algorithm</span> </div> </a> <ul id="toc-Welford&#039;s_online_algorithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Weighted_incremental_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Weighted_incremental_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Weighted incremental algorithm</span> </div> </a> <ul id="toc-Weighted_incremental_algorithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Parallel_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Parallel_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Parallel algorithm</span> </div> </a> <ul id="toc-Parallel_algorithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higher-order_statistics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Higher-order_statistics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Higher-order statistics</span> </div> </a> <ul id="toc-Higher-order_statistics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Covariance" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Covariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Covariance</span> </div> </a> <button aria-controls="toc-Covariance-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Covariance subsection</span> </button> <ul id="toc-Covariance-sublist" class="vector-toc-list"> <li id="toc-Naïve_algorithm_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Naïve_algorithm_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Naïve algorithm</span> </div> </a> <ul id="toc-Naïve_algorithm_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-With_estimate_of_the_mean" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#With_estimate_of_the_mean"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>With estimate of the mean</span> </div> </a> <ul id="toc-With_estimate_of_the_mean-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Two-pass" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Two-pass"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Two-pass</span> </div> </a> <ul id="toc-Two-pass-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Online" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Online"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Online</span> </div> </a> <ul id="toc-Online-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Weighted_batched_version" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Weighted_batched_version"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Weighted batched version</span> </div> </a> <ul id="toc-Weighted_batched_version-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Algorithms for calculating variance</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Algoritmos_para_calcular_la_varianza" title="Algoritmos para calcular la varianza – Spanish" lang="es" hreflang="es" data-title="Algoritmos para calcular la varianza" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%84%DA%AF%D9%88%D8%B1%DB%8C%D8%AA%D9%85_%D9%85%D8%AD%D8%A7%D8%B3%D8%A8%D9%87_%D9%88%D8%A7%D8%B1%DB%8C%D8%A7%D9%86%D8%B3" title="الگوریتم محاسبه واریانس – Persian" lang="fa" hreflang="fa" data-title="الگوریتم محاسبه واریانس" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Algorithme_de_calcul_de_la_variance" title="Algorithme de calcul de la variance – French" lang="fr" hreflang="fr" data-title="Algorithme de calcul de la variance" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Algoritmi_per_il_calcolo_della_varianza" title="Algoritmi per il calcolo della varianza – Italian" lang="it" hreflang="it" data-title="Algoritmi per il calcolo della varianza" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Varyans_hesaplanmas%C4%B1_i%C3%A7in_algoritmalar" title="Varyans hesaplanması için algoritmalar – Turkish" lang="tr" hreflang="tr" data-title="Varyans hesaplanması için algoritmalar" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4724375#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Algorithms_for_calculating_variance" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Algorithms_for_calculating_variance" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Algorithms_for_calculating_variance"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Algorithms_for_calculating_variance"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Algorithms_for_calculating_variance" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Algorithms_for_calculating_variance" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;oldid=1253078880" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Algorithms_for_calculating_variance&amp;id=1253078880&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlgorithms_for_calculating_variance"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlgorithms_for_calculating_variance"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Algorithms_for_calculating_variance&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4724375" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Important algorithms in numerical statistics</div> <p> <b>Algorithms for calculating variance</b> play a major role in <a href="/wiki/Computational_statistics" title="Computational statistics">computational statistics</a>. A key difficulty in the design of good <a href="/wiki/Algorithm" title="Algorithm">algorithms</a> for this problem is that formulas for the <a href="/wiki/Variance" title="Variance">variance</a> may involve sums of squares, which can lead to <a href="/wiki/Numerical_instability" class="mw-redirect" title="Numerical instability">numerical instability</a> as well as to <a href="/wiki/Arithmetic_overflow" class="mw-redirect" title="Arithmetic overflow">arithmetic overflow</a> when dealing with large values. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Naïve_algorithm"><span id="Na.C3.AFve_algorithm"></span>Naïve algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=1" title="Edit section: Naïve algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A formula for calculating the variance of an entire <a href="/wiki/Statistical_population" title="Statistical population">population</a> of size <i>N</i> is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}={\overline {(x^{2})}}-{\bar {x}}^{2}={\frac {\sum _{i=1}^{N}x_{i}^{2}-(\sum _{i=1}^{N}x_{i})^{2}/N}{N}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </mrow> <mi>N</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}={\overline {(x^{2})}}-{\bar {x}}^{2}={\frac {\sum _{i=1}^{N}x_{i}^{2}-(\sum _{i=1}^{N}x_{i})^{2}/N}{N}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a52e70e4e67e5e2d8fe32a71f7c21ebec27ac3f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.523ex; height:6.176ex;" alt="{\displaystyle \sigma ^{2}={\overline {(x^{2})}}-{\bar {x}}^{2}={\frac {\sum _{i=1}^{N}x_{i}^{2}-(\sum _{i=1}^{N}x_{i})^{2}/N}{N}}.}"></span></dd></dl> <p>Using <a href="/wiki/Bessel%27s_correction" title="Bessel&#39;s correction">Bessel's correction</a> to calculate an <a href="/wiki/Estimator_bias" class="mw-redirect" title="Estimator bias">unbiased</a> estimate of the population variance from a finite <a href="/wiki/Statistical_sample" class="mw-redirect" title="Statistical sample">sample</a> of <i>n</i> observations, the formula is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}=\left({\frac {\sum _{i=1}^{n}x_{i}^{2}}{n}}-\left({\frac {\sum _{i=1}^{n}x_{i}}{n}}\right)^{2}\right)\cdot {\frac {n}{n-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}=\left({\frac {\sum _{i=1}^{n}x_{i}^{2}}{n}}-\left({\frac {\sum _{i=1}^{n}x_{i}}{n}}\right)^{2}\right)\cdot {\frac {n}{n-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1e93f1e1e6aebfaa9301c0bb6995e96a8e482d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:43.113ex; height:8.509ex;" alt="{\displaystyle s^{2}=\left({\frac {\sum _{i=1}^{n}x_{i}^{2}}{n}}-\left({\frac {\sum _{i=1}^{n}x_{i}}{n}}\right)^{2}\right)\cdot {\frac {n}{n-1}}.}"></span></dd></dl> <p>Therefore, a naïve algorithm to calculate the estimated variance is given by the following: </p> <div style="margin-left: 35px; width: 600px"> <style data-mw-deduplicate="TemplateStyles:r1239945218">.mw-parser-output .framebox-container{margin-bottom:1.25em}.mw-parser-output .framebox-header{height:8px;margin:0;border:0;padding:0;font-size:1px}.mw-parser-output .framebox-inner{padding:5px;font-size:small}</style> <div class="framebox-container" style="width: auto; margin-left: auto; border:1px solid #8898BF; background: transparent; color: var(--color-base, #202122)"> <div class="framebox-header" style="border-bottom:1px solid #8898BF; background: #C8D8FF"></div> <div class="framebox-inner"> <ul><li>Let <span class="texhtml"><i>n</i> ← 0, Sum ← 0, SumSq ← 0</span></li> <li>For each datum <span class="texhtml mvar" style="font-style:italic;">x</span>: <ul><li><span class="texhtml"><i>n</i> ← <i>n</i> + 1</span></li> <li><span class="texhtml">Sum ← Sum + <i>x</i></span></li> <li><span class="texhtml">SumSq ← SumSq + <i>x</i> × <i>x</i></span></li></ul></li> <li><span class="texhtml">Var = (SumSq − (Sum × Sum) / n) / (n − 1)</span></li></ul> </div></div> </div> <p>This algorithm can easily be adapted to compute the variance of a finite population: simply divide by <i>n</i> instead of <i>n</i>&#160;−&#160;1 on the last line. </p><p>Because <span class="texhtml">SumSq</span> and <span class="texhtml">(Sum×Sum)/<i>n</i></span> can be very similar numbers, <a href="/wiki/Catastrophic_cancellation" title="Catastrophic cancellation">cancellation</a> can lead to the <a href="/wiki/Precision_(arithmetic)" class="mw-redirect" title="Precision (arithmetic)">precision</a> of the result to be much less than the inherent precision of the <a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">floating-point arithmetic</a> used to perform the computation. Thus this algorithm should not be used in practice,<sup id="cite_ref-Einarsson2005_1-0" class="reference"><a href="#cite_note-Einarsson2005-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Chan1983_2-0" class="reference"><a href="#cite_note-Chan1983-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and several alternate, numerically stable, algorithms have been proposed.<sup id="cite_ref-:1_3-0" class="reference"><a href="#cite_note-:1-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> This is particularly bad if the standard deviation is small relative to the mean. </p> <div class="mw-heading mw-heading3"><h3 id="Computing_shifted_data">Computing shifted data</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=2" title="Edit section: Computing shifted data"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The variance is <a href="/wiki/Invariant_(mathematics)" title="Invariant (mathematics)">invariant</a> with respect to changes in a <a href="/wiki/Location_parameter" title="Location parameter">location parameter</a>, a property which can be used to avoid the catastrophic cancellation in this formula. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X-K)=\operatorname {Var} (X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X-K)=\operatorname {Var} (X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d982570b4d0dbc752123570fdb4e87bf620cc8fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.865ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X-K)=\operatorname {Var} (X).}"></span></dd></dl> <p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> any constant, which leads to the new formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}={\frac {\sum _{i=1}^{n}(x_{i}-K)^{2}-(\sum _{i=1}^{n}(x_{i}-K))^{2}/n}{n-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}={\frac {\sum _{i=1}^{n}(x_{i}-K)^{2}-(\sum _{i=1}^{n}(x_{i}-K))^{2}/n}{n-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18f7d88759e45941fae0243041da5fd043a49308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:44.68ex; height:6.009ex;" alt="{\displaystyle \sigma ^{2}={\frac {\sum _{i=1}^{n}(x_{i}-K)^{2}-(\sum _{i=1}^{n}(x_{i}-K))^{2}/n}{n-1}}.}"></span></dd></dl> <p>the closer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> is to the mean value the more accurate the result will be, but just choosing a value inside the samples range will guarantee the desired stability. If the values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{i}-K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{i}-K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75f216c0fd06db99d732c12d0721a71e9fe6cc47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.845ex; height:2.843ex;" alt="{\displaystyle (x_{i}-K)}"></span> are small then there are no problems with the sum of its squares, on the contrary, if they are large it necessarily means that the variance is large as well. In any case the second term in the formula is always smaller than the first one therefore no cancellation may occur.<sup id="cite_ref-Chan1983_2-1" class="reference"><a href="#cite_note-Chan1983-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>If just the first sample is taken as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> the algorithm can be written in <a href="/wiki/Python_(programming_language)" title="Python (programming language)">Python programming language</a> as </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">shifted_data_variance</span><span class="p">(</span><span class="n">data</span><span class="p">):</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">&lt;</span> <span class="mi">2</span><span class="p">:</span> <span class="k">return</span> <span class="mf">0.0</span> <span class="n">K</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="n">n</span> <span class="o">=</span> <span class="n">Ex</span> <span class="o">=</span> <span class="n">Ex2</span> <span class="o">=</span> <span class="mf">0.0</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">data</span><span class="p">:</span> <span class="n">n</span> <span class="o">+=</span> <span class="mi">1</span> <span class="n">Ex</span> <span class="o">+=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">K</span> <span class="n">Ex2</span> <span class="o">+=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">K</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="n">variance</span> <span class="o">=</span> <span class="p">(</span><span class="n">Ex2</span> <span class="o">-</span> <span class="n">Ex</span><span class="o">**</span><span class="mi">2</span> <span class="o">/</span> <span class="n">n</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># use n instead of (n-1) if want to compute the exact variance of the given data</span> <span class="c1"># use (n-1) if data are samples of a larger population</span> <span class="k">return</span> <span class="n">variance</span> </pre></div> <p>This formula also facilitates the incremental computation that can be expressed as </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="n">K</span> <span class="o">=</span> <span class="n">Ex</span> <span class="o">=</span> <span class="n">Ex2</span> <span class="o">=</span> <span class="mf">0.0</span> <span class="n">n</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">def</span> <span class="nf">add_variable</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">global</span> <span class="n">K</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">Ex</span><span class="p">,</span> <span class="n">Ex2</span> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">x</span> <span class="n">n</span> <span class="o">+=</span> <span class="mi">1</span> <span class="n">Ex</span> <span class="o">+=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">K</span> <span class="n">Ex2</span> <span class="o">+=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">K</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">def</span> <span class="nf">remove_variable</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">global</span> <span class="n">K</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">Ex</span><span class="p">,</span> <span class="n">Ex2</span> <span class="n">n</span> <span class="o">-=</span> <span class="mi">1</span> <span class="n">Ex</span> <span class="o">-=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">K</span> <span class="n">Ex2</span> <span class="o">-=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">K</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">def</span> <span class="nf">get_mean</span><span class="p">():</span> <span class="k">global</span> <span class="n">K</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">Ex</span> <span class="k">return</span> <span class="n">K</span> <span class="o">+</span> <span class="n">Ex</span> <span class="o">/</span> <span class="n">n</span> <span class="k">def</span> <span class="nf">get_variance</span><span class="p">():</span> <span class="k">global</span> <span class="n">n</span><span class="p">,</span> <span class="n">Ex</span><span class="p">,</span> <span class="n">Ex2</span> <span class="k">return</span> <span class="p">(</span><span class="n">Ex2</span> <span class="o">-</span> <span class="n">Ex</span><span class="o">**</span><span class="mi">2</span> <span class="o">/</span> <span class="n">n</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> </pre></div> <div class="mw-heading mw-heading2"><h2 id="Two-pass_algorithm">Two-pass algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=3" title="Edit section: Two-pass algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An alternative approach, using a different formula for the variance, first computes the sample mean, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {x}}={\frac {\sum _{j=1}^{n}x_{j}}{n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {x}}={\frac {\sum _{j=1}^{n}x_{j}}{n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12587e2bf25e9d8bb9525f9e877a0ba5e1212a92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.002ex; height:6.176ex;" alt="{\displaystyle {\bar {x}}={\frac {\sum _{j=1}^{n}x_{j}}{n}},}"></span></dd></dl> <p>and then computes the sum of the squares of the differences from the mean, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sample variance}}=s^{2}={\dfrac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}{n-1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>sample variance</mtext> </mrow> <mo>=</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mstyle> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{sample variance}}=s^{2}={\dfrac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}{n-1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30561183657c1c3967c0f2b107d951e210482c19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:40.377ex; height:6.009ex;" alt="{\displaystyle {\text{sample variance}}=s^{2}={\dfrac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}{n-1}},}"></span></dd></dl> <p>where <i>s</i> is the standard deviation. This is given by the following code: </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">two_pass_variance</span><span class="p">(</span><span class="n">data</span><span class="p">):</span> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="n">mean</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">/</span> <span class="n">n</span> <span class="n">variance</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">((</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">data</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="k">return</span> <span class="n">variance</span> </pre></div> <p>This algorithm is numerically stable if <i>n</i> is small.<sup id="cite_ref-Einarsson2005_1-1" class="reference"><a href="#cite_note-Einarsson2005-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> However, the results of both of these simple algorithms ("naïve" and "two-pass") can depend inordinately on the ordering of the data and can give poor results for very large data sets due to repeated roundoff error in the accumulation of the sums. Techniques such as <a href="/wiki/Compensated_summation" class="mw-redirect" title="Compensated summation">compensated summation</a> can be used to combat this error to a degree. </p> <div class="mw-heading mw-heading2"><h2 id="Welford's_online_algorithm"><span id="Welford.27s_online_algorithm"></span>Welford's online algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=4" title="Edit section: Welford&#039;s online algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is often useful to be able to compute the variance in a <a href="/wiki/One-pass_algorithm" title="One-pass algorithm">single pass</a>, inspecting each value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> only once; for example, when the data is being collected without enough storage to keep all the values, or when costs of memory access dominate those of computation. For such an <a href="/wiki/Online_algorithm" title="Online algorithm">online algorithm</a>, a <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence relation</a> is required between quantities from which the required statistics can be calculated in a numerically stable fashion. </p><p>The following formulas can be used to update the <a href="/wiki/Mean" title="Mean">mean</a> and (estimated) variance of the sequence, for an additional element <i>x</i><sub><i>n</i></sub>. Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\overline {x}}_{n}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\overline {x}}_{n}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e20b5b37b79c22901150b0fc1c8d3860b051af1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.842ex; height:3.343ex;" alt="{\textstyle {\overline {x}}_{n}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}"></span> denotes the sample mean of the first <i>n</i> samples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},\dots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},\dots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56204ada1ecf9dd5c6beddfdfd0f341cd69ff632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.92ex; height:2.843ex;" alt="{\displaystyle (x_{1},\dots ,x_{n})}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sigma _{n}^{2}={\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}_{n}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sigma _{n}^{2}={\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}_{n}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f7b8fd464261fd905bd2fa6a736153ec94d8560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.091ex; height:3.509ex;" alt="{\textstyle \sigma _{n}^{2}={\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}_{n}\right)^{2}}"></span> their <a href="/wiki/Variance#Biased_sample_variance" title="Variance">biased sample variance</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle s_{n}^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}_{n}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle s_{n}^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}_{n}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7830d411286cc2e250a564f445ddcc0ddb51bb1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:25.955ex; height:3.843ex;" alt="{\textstyle s_{n}^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}_{n}\right)^{2}}"></span> their <a href="/wiki/Variance#Unbiased_sample_variance" title="Variance">unbiased sample variance</a>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {x}}_{n}={\frac {(n-1)\,{\bar {x}}_{n-1}+x_{n}}{n}}={\bar {x}}_{n-1}+{\frac {x_{n}-{\bar {x}}_{n-1}}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {x}}_{n}={\frac {(n-1)\,{\bar {x}}_{n-1}+x_{n}}{n}}={\bar {x}}_{n-1}+{\frac {x_{n}-{\bar {x}}_{n-1}}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01872e3782e05f2f00af847071b044d419d557ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:45.575ex; height:5.676ex;" alt="{\displaystyle {\bar {x}}_{n}={\frac {(n-1)\,{\bar {x}}_{n-1}+x_{n}}{n}}={\bar {x}}_{n-1}+{\frac {x_{n}-{\bar {x}}_{n-1}}{n}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{n}^{2}={\frac {(n-1)\,\sigma _{n-1}^{2}+(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})}{n}}=\sigma _{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})-\sigma _{n-1}^{2}}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{n}^{2}={\frac {(n-1)\,\sigma _{n-1}^{2}+(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})}{n}}=\sigma _{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})-\sigma _{n-1}^{2}}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a07187029f774ee0da058f3b6ab6e5d3e7131df4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:84.301ex; height:6.009ex;" alt="{\displaystyle \sigma _{n}^{2}={\frac {(n-1)\,\sigma _{n-1}^{2}+(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})}{n}}=\sigma _{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})-\sigma _{n-1}^{2}}{n}}.}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}^{2}={\frac {n-2}{n-1}}\,s_{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})^{2}}{n}}=s_{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})^{2}}{n}}-{\frac {s_{n-1}^{2}}{n-1}},\quad n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}^{2}={\frac {n-2}{n-1}}\,s_{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})^{2}}{n}}=s_{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})^{2}}{n}}-{\frac {s_{n-1}^{2}}{n-1}},\quad n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3f407c573792f57f6a8b9799e70d9b13193bdc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:75.186ex; height:6.176ex;" alt="{\displaystyle s_{n}^{2}={\frac {n-2}{n-1}}\,s_{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})^{2}}{n}}=s_{n-1}^{2}+{\frac {(x_{n}-{\bar {x}}_{n-1})^{2}}{n}}-{\frac {s_{n-1}^{2}}{n-1}},\quad n&gt;1}"></span></dd></dl> <p>These formulas suffer from numerical instability <sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2023)">citation needed</span></a></i>&#93;</sup>, as they repeatedly subtract a small number from a big number which scales with <i>n</i>. A better quantity for updating is the sum of squares of differences from the current mean, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{i=1}^{n}(x_{i}-{\bar {x}}_{n})^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{i=1}^{n}(x_{i}-{\bar {x}}_{n})^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ec4abc32a30ce412c810feb80ce851571cd1fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.735ex; height:3.176ex;" alt="{\textstyle \sum _{i=1}^{n}(x_{i}-{\bar {x}}_{n})^{2}}"></span>, here denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba8df02a452d69ff8d1a763700158247c25550e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.752ex; height:2.843ex;" alt="{\displaystyle M_{2,n}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}M_{2,n}&amp;=M_{2,n-1}+(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})\\[4pt]\sigma _{n}^{2}&amp;={\frac {M_{2,n}}{n}}\\[4pt]s_{n}^{2}&amp;={\frac {M_{2,n}}{n-1}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}M_{2,n}&amp;=M_{2,n-1}+(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})\\[4pt]\sigma _{n}^{2}&amp;={\frac {M_{2,n}}{n}}\\[4pt]s_{n}^{2}&amp;={\frac {M_{2,n}}{n-1}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2ba2132cbd007a99e52e50211c2afa3f29ea65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.481ex; margin-bottom: -0.19ex; width:39.887ex; height:16.509ex;" alt="{\displaystyle {\begin{aligned}M_{2,n}&amp;=M_{2,n-1}+(x_{n}-{\bar {x}}_{n-1})(x_{n}-{\bar {x}}_{n})\\[4pt]\sigma _{n}^{2}&amp;={\frac {M_{2,n}}{n}}\\[4pt]s_{n}^{2}&amp;={\frac {M_{2,n}}{n-1}}\end{aligned}}}"></span></dd></dl> <p>This algorithm was found by Welford,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> and it has been thoroughly analyzed.<sup id="cite_ref-Chan1983_2-2" class="reference"><a href="#cite_note-Chan1983-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> It is also common to denote <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{k}={\bar {x}}_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{k}={\bar {x}}_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b104ec723606827f53d9897e8e264df36307beca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.86ex; height:2.509ex;" alt="{\displaystyle M_{k}={\bar {x}}_{k}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{k}=M_{2,k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{k}=M_{2,k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b580d502ee7c4c5cf3e496a47333be779c46ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.234ex; height:2.843ex;" alt="{\displaystyle S_{k}=M_{2,k}}"></span>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>An example Python implementation for Welford's algorithm is given below. </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="c1"># For a new value new_value, compute the new count, new mean, the new M2.</span> <span class="c1"># mean accumulates the mean of the entire dataset</span> <span class="c1"># M2 aggregates the squared distance from the mean</span> <span class="c1"># count aggregates the number of samples seen so far</span> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="n">existing_aggregate</span><span class="p">,</span> <span class="n">new_value</span><span class="p">):</span> <span class="p">(</span><span class="n">count</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">M2</span><span class="p">)</span> <span class="o">=</span> <span class="n">existing_aggregate</span> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span> <span class="n">delta</span> <span class="o">=</span> <span class="n">new_value</span> <span class="o">-</span> <span class="n">mean</span> <span class="n">mean</span> <span class="o">+=</span> <span class="n">delta</span> <span class="o">/</span> <span class="n">count</span> <span class="n">delta2</span> <span class="o">=</span> <span class="n">new_value</span> <span class="o">-</span> <span class="n">mean</span> <span class="n">M2</span> <span class="o">+=</span> <span class="n">delta</span> <span class="o">*</span> <span class="n">delta2</span> <span class="k">return</span> <span class="p">(</span><span class="n">count</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">M2</span><span class="p">)</span> <span class="c1"># Retrieve the mean, variance and sample variance from an aggregate</span> <span class="k">def</span> <span class="nf">finalize</span><span class="p">(</span><span class="n">existing_aggregate</span><span class="p">):</span> <span class="p">(</span><span class="n">count</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">M2</span><span class="p">)</span> <span class="o">=</span> <span class="n">existing_aggregate</span> <span class="k">if</span> <span class="n">count</span> <span class="o">&lt;</span> <span class="mi">2</span><span class="p">:</span> <span class="k">return</span> <span class="nb">float</span><span class="p">(</span><span class="s2">&quot;nan&quot;</span><span class="p">)</span> <span class="k">else</span><span class="p">:</span> <span class="p">(</span><span class="n">mean</span><span class="p">,</span> <span class="n">variance</span><span class="p">,</span> <span class="n">sample_variance</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="n">mean</span><span class="p">,</span> <span class="n">M2</span> <span class="o">/</span> <span class="n">count</span><span class="p">,</span> <span class="n">M2</span> <span class="o">/</span> <span class="p">(</span><span class="n">count</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span> <span class="k">return</span> <span class="p">(</span><span class="n">mean</span><span class="p">,</span> <span class="n">variance</span><span class="p">,</span> <span class="n">sample_variance</span><span class="p">)</span> </pre></div> <p>This algorithm is much less prone to loss of precision due to <a href="/wiki/Catastrophic_cancellation" title="Catastrophic cancellation">catastrophic cancellation</a>, but might not be as efficient because of the division operation inside the loop. For a particularly robust two-pass algorithm for computing the variance, one can first compute and subtract an estimate of the mean, and then use this algorithm on the residuals. </p><p>The <a href="#Parallel_algorithm">parallel algorithm</a> below illustrates how to merge multiple sets of statistics calculated online. </p> <div class="mw-heading mw-heading2"><h2 id="Weighted_incremental_algorithm">Weighted incremental algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=5" title="Edit section: Weighted incremental algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The algorithm can be extended to handle unequal sample weights, replacing the simple counter <i>n</i> with the sum of weights seen so far. West (1979)<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> suggests this <a href="/wiki/Incremental_computing" title="Incremental computing">incremental algorithm</a>: </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">weighted_incremental_variance</span><span class="p">(</span><span class="n">data_weight_pairs</span><span class="p">):</span> <span class="n">w_sum</span> <span class="o">=</span> <span class="n">w_sum2</span> <span class="o">=</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">S</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">data_weight_pairs</span><span class="p">:</span> <span class="n">w_sum</span> <span class="o">=</span> <span class="n">w_sum</span> <span class="o">+</span> <span class="n">w</span> <span class="n">w_sum2</span> <span class="o">=</span> <span class="n">w_sum2</span> <span class="o">+</span> <span class="n">w</span><span class="o">**</span><span class="mi">2</span> <span class="n">mean_old</span> <span class="o">=</span> <span class="n">mean</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">mean_old</span> <span class="o">+</span> <span class="p">(</span><span class="n">w</span> <span class="o">/</span> <span class="n">w_sum</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean_old</span><span class="p">)</span> <span class="n">S</span> <span class="o">=</span> <span class="n">S</span> <span class="o">+</span> <span class="n">w</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean_old</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span> <span class="n">population_variance</span> <span class="o">=</span> <span class="n">S</span> <span class="o">/</span> <span class="n">w_sum</span> <span class="c1"># Bessel&#39;s correction for weighted samples</span> <span class="c1"># for integer frequency weights</span> <span class="n">sample_frequency_variance</span> <span class="o">=</span> <span class="n">S</span> <span class="o">/</span> <span class="p">(</span><span class="n">w_sum</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> </pre></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Weighted_arithmetic_mean#Weighted_sample_variance" title="Weighted arithmetic mean">Weighted arithmetic mean §&#160;Weighted sample variance</a></div> <div class="mw-heading mw-heading2"><h2 id="Parallel_algorithm">Parallel algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=6" title="Edit section: Parallel algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Chan et al.<sup id="cite_ref-:0_10-0" class="reference"><a href="#cite_note-:0-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> note that Welford's online algorithm detailed above is a special case of an algorithm that works for combining arbitrary sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}n_{AB}&amp;=n_{A}+n_{B}\\\delta &amp;={\bar {x}}_{B}-{\bar {x}}_{A}\\{\bar {x}}_{AB}&amp;={\bar {x}}_{A}+\delta \cdot {\frac {n_{B}}{n_{AB}}}\\M_{2,AB}&amp;=M_{2,A}+M_{2,B}+\delta ^{2}\cdot {\frac {n_{A}n_{B}}{n_{AB}}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B4;<!-- δ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo>+</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}n_{AB}&amp;=n_{A}+n_{B}\\\delta &amp;={\bar {x}}_{B}-{\bar {x}}_{A}\\{\bar {x}}_{AB}&amp;={\bar {x}}_{A}+\delta \cdot {\frac {n_{B}}{n_{AB}}}\\M_{2,AB}&amp;=M_{2,A}+M_{2,B}+\delta ^{2}\cdot {\frac {n_{A}n_{B}}{n_{AB}}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd88631832bace8b86e5b41ffcfa78f50f1b6602" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.671ex; width:36.145ex; height:16.509ex;" alt="{\displaystyle {\begin{aligned}n_{AB}&amp;=n_{A}+n_{B}\\\delta &amp;={\bar {x}}_{B}-{\bar {x}}_{A}\\{\bar {x}}_{AB}&amp;={\bar {x}}_{A}+\delta \cdot {\frac {n_{B}}{n_{AB}}}\\M_{2,AB}&amp;=M_{2,A}+M_{2,B}+\delta ^{2}\cdot {\frac {n_{A}n_{B}}{n_{AB}}}\\\end{aligned}}}"></span>.</dd></dl> <p>This may be useful when, for example, multiple processing units may be assigned to discrete parts of the input. </p><p>Chan's method for estimating the mean is numerically unstable when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{A}\approx n_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>&#x2248;<!-- ≈ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{A}\approx n_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07640e8cffbc13372a410aa20e8055a1d51a7051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.832ex; height:2.009ex;" alt="{\displaystyle n_{A}\approx n_{B}}"></span> and both are large, because the numerical error in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ={\bar {x}}_{B}-{\bar {x}}_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ={\bar {x}}_{B}-{\bar {x}}_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/131dd14741b4b49e517032681385a6265ba05552" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.591ex; height:2.676ex;" alt="{\displaystyle \delta ={\bar {x}}_{B}-{\bar {x}}_{A}}"></span> is not scaled down in the way that it is in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{B}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{B}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b0c6e28d168c8b42599074a2aa8147c03983306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.135ex; height:2.509ex;" alt="{\displaystyle n_{B}=1}"></span> case. In such cases, prefer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\bar {x}}_{AB}={\frac {n_{A}{\bar {x}}_{A}+n_{B}{\bar {x}}_{B}}{n_{AB}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\bar {x}}_{AB}={\frac {n_{A}{\bar {x}}_{A}+n_{B}{\bar {x}}_{B}}{n_{AB}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff0e21c304ed2a315b6957149af1b975249446ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:17.802ex; height:4.509ex;" alt="{\textstyle {\bar {x}}_{AB}={\frac {n_{A}{\bar {x}}_{A}+n_{B}{\bar {x}}_{B}}{n_{AB}}}}"></span>. </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">parallel_variance</span><span class="p">(</span><span class="n">n_a</span><span class="p">,</span> <span class="n">avg_a</span><span class="p">,</span> <span class="n">M2_a</span><span class="p">,</span> <span class="n">n_b</span><span class="p">,</span> <span class="n">avg_b</span><span class="p">,</span> <span class="n">M2_b</span><span class="p">):</span> <span class="n">n</span> <span class="o">=</span> <span class="n">n_a</span> <span class="o">+</span> <span class="n">n_b</span> <span class="n">delta</span> <span class="o">=</span> <span class="n">avg_b</span> <span class="o">-</span> <span class="n">avg_a</span> <span class="n">M2</span> <span class="o">=</span> <span class="n">M2_a</span> <span class="o">+</span> <span class="n">M2_b</span> <span class="o">+</span> <span class="n">delta</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n_a</span> <span class="o">*</span> <span class="n">n_b</span> <span class="o">/</span> <span class="n">n</span> <span class="n">var_ab</span> <span class="o">=</span> <span class="n">M2</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="k">return</span> <span class="n">var_ab</span> </pre></div> <p>This can be generalized to allow parallelization with <a href="/wiki/Advanced_Vector_Extensions" title="Advanced Vector Extensions">AVX</a>, with <a href="/wiki/Graphics_processing_unit" title="Graphics processing unit">GPUs</a>, and <a href="/wiki/Computer_cluster" title="Computer cluster">computer clusters</a>, and to covariance.<sup id="cite_ref-:1_3-1" class="reference"><a href="#cite_note-:1-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=7" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume that all floating point operations use standard <a href="/wiki/IEEE_754#Double-precision_64_bit" title="IEEE 754">IEEE 754 double-precision</a> arithmetic. Consider the sample (4, 7, 13, 16) from an infinite population. Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. </p><p>Next consider the sample (<span class="nowrap">10<sup>8</sup>&#160;+&#160;4</span>, <span class="nowrap">10<sup>8</sup>&#160;+&#160;7</span>, <span class="nowrap">10<sup>8</sup>&#160;+&#160;13</span>, <span class="nowrap">10<sup>8</sup>&#160;+&#160;16</span>), which gives rise to the same estimated variance as the first sample. The two-pass algorithm computes this variance estimate correctly, but the naïve algorithm returns 29.333333333333332 instead of 30. </p><p>While this loss of precision may be tolerable and viewed as a minor flaw of the naïve algorithm, further increasing the offset makes the error catastrophic. Consider the sample (<span class="nowrap">10<sup>9</sup>&#160;+&#160;4</span>, <span class="nowrap">10<sup>9</sup>&#160;+&#160;7</span>, <span class="nowrap">10<sup>9</sup>&#160;+&#160;13</span>, <span class="nowrap">10<sup>9</sup>&#160;+&#160;16</span>). Again the estimated population variance of 30 is computed correctly by the two-pass algorithm, but the naïve algorithm now computes it as −170.66666666666666. This is a serious problem with naïve algorithm and is due to <a href="/wiki/Catastrophic_cancellation" title="Catastrophic cancellation">catastrophic cancellation</a> in the subtraction of two similar numbers at the final stage of the algorithm. </p> <div class="mw-heading mw-heading2"><h2 id="Higher-order_statistics">Higher-order statistics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=8" title="Edit section: Higher-order statistics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Terriberry<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> extends Chan's formulae to calculating the third and fourth <a href="/wiki/Central_moment" title="Central moment">central moments</a>, needed for example when estimating <a href="/wiki/Skewness" title="Skewness">skewness</a> and <a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}M_{3,X}=M_{3,A}+M_{3,B}&amp;{}+\delta ^{3}{\frac {n_{A}n_{B}(n_{A}-n_{B})}{n_{X}^{2}}}+3\delta {\frac {n_{A}M_{2,B}-n_{B}M_{2,A}}{n_{X}}}\\[6pt]M_{4,X}=M_{4,A}+M_{4,B}&amp;{}+\delta ^{4}{\frac {n_{A}n_{B}\left(n_{A}^{2}-n_{A}n_{B}+n_{B}^{2}\right)}{n_{X}^{3}}}\\[6pt]&amp;{}+6\delta ^{2}{\frac {n_{A}^{2}M_{2,B}+n_{B}^{2}M_{2,A}}{n_{X}^{2}}}+4\delta {\frac {n_{A}M_{3,B}-n_{B}M_{3,A}}{n_{X}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>X</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>+</mo> <mn>3</mn> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>A</mi> </mrow> </msub> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>,</mo> <mi>X</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>,</mo> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>6</mn> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>A</mi> </mrow> </msub> </mrow> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>+</mo> <mn>4</mn> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>A</mi> </mrow> </msub> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}M_{3,X}=M_{3,A}+M_{3,B}&amp;{}+\delta ^{3}{\frac {n_{A}n_{B}(n_{A}-n_{B})}{n_{X}^{2}}}+3\delta {\frac {n_{A}M_{2,B}-n_{B}M_{2,A}}{n_{X}}}\\[6pt]M_{4,X}=M_{4,A}+M_{4,B}&amp;{}+\delta ^{4}{\frac {n_{A}n_{B}\left(n_{A}^{2}-n_{A}n_{B}+n_{B}^{2}\right)}{n_{X}^{3}}}\\[6pt]&amp;{}+6\delta ^{2}{\frac {n_{A}^{2}M_{2,B}+n_{B}^{2}M_{2,A}}{n_{X}^{2}}}+4\delta {\frac {n_{A}M_{3,B}-n_{B}M_{3,A}}{n_{X}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4d15ceb6b5c7f6a8a1b50f89b1f66ae6dc6b055" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.27ex; margin-bottom: -0.235ex; width:71.873ex; height:24.176ex;" alt="{\displaystyle {\begin{aligned}M_{3,X}=M_{3,A}+M_{3,B}&amp;{}+\delta ^{3}{\frac {n_{A}n_{B}(n_{A}-n_{B})}{n_{X}^{2}}}+3\delta {\frac {n_{A}M_{2,B}-n_{B}M_{2,A}}{n_{X}}}\\[6pt]M_{4,X}=M_{4,A}+M_{4,B}&amp;{}+\delta ^{4}{\frac {n_{A}n_{B}\left(n_{A}^{2}-n_{A}n_{B}+n_{B}^{2}\right)}{n_{X}^{3}}}\\[6pt]&amp;{}+6\delta ^{2}{\frac {n_{A}^{2}M_{2,B}+n_{B}^{2}M_{2,A}}{n_{X}^{2}}}+4\delta {\frac {n_{A}M_{3,B}-n_{B}M_{3,A}}{n_{X}}}\end{aligned}}}"></span></dd></dl> <p>Here the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43175c381ee6ba2694520af1f1a26c676a2726ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.343ex; height:2.509ex;" alt="{\displaystyle M_{k}}"></span> are again the sums of powers of differences from the mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum (x-{\overline {x}})^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x2211;<!-- ∑ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum (x-{\overline {x}})^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/388d8967b3837a7cf01900ab82325a1a487632eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.967ex; height:3.009ex;" alt="{\textstyle \sum (x-{\overline {x}})^{k}}"></span>, giving </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\text{skewness}}=g_{1}={\frac {{\sqrt {n}}M_{3}}{M_{2}^{3/2}}},\\[4pt]&amp;{\text{kurtosis}}=g_{2}={\frac {nM_{4}}{M_{2}^{2}}}-3.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>skewness</mtext> </mrow> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>kurtosis</mtext> </mrow> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>3.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\text{skewness}}=g_{1}={\frac {{\sqrt {n}}M_{3}}{M_{2}^{3/2}}},\\[4pt]&amp;{\text{kurtosis}}=g_{2}={\frac {nM_{4}}{M_{2}^{2}}}-3.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9c838ea34d2f10fe9f8ab6f78607e0b84c99b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:27.279ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}&amp;{\text{skewness}}=g_{1}={\frac {{\sqrt {n}}M_{3}}{M_{2}^{3/2}}},\\[4pt]&amp;{\text{kurtosis}}=g_{2}={\frac {nM_{4}}{M_{2}^{2}}}-3.\end{aligned}}}"></span></dd></dl> <p>For the incremental case (i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=\{x\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=\{x\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16a8bd2b763f0b6509ea8303801d61105aecaf0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.517ex; height:2.843ex;" alt="{\displaystyle B=\{x\}}"></span>), this simplifies to: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\delta &amp;=x-m\\[5pt]m'&amp;=m+{\frac {\delta }{n}}\\[5pt]M_{2}'&amp;=M_{2}+\delta ^{2}{\frac {n-1}{n}}\\[5pt]M_{3}'&amp;=M_{3}+\delta ^{3}{\frac {(n-1)(n-2)}{n^{2}}}-{\frac {3\delta M_{2}}{n}}\\[5pt]M_{4}'&amp;=M_{4}+{\frac {\delta ^{4}(n-1)(n^{2}-3n+3)}{n^{3}}}+{\frac {6\delta ^{2}M_{2}}{n^{2}}}-{\frac {4\delta M_{3}}{n}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B4;<!-- δ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>m</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>m</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B4;<!-- δ --></mi> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>&#x03B4;<!-- δ --></mi> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>6</mn> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>&#x03B4;<!-- δ --></mi> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\delta &amp;=x-m\\[5pt]m'&amp;=m+{\frac {\delta }{n}}\\[5pt]M_{2}'&amp;=M_{2}+\delta ^{2}{\frac {n-1}{n}}\\[5pt]M_{3}'&amp;=M_{3}+\delta ^{3}{\frac {(n-1)(n-2)}{n^{2}}}-{\frac {3\delta M_{2}}{n}}\\[5pt]M_{4}'&amp;=M_{4}+{\frac {\delta ^{4}(n-1)(n^{2}-3n+3)}{n^{3}}}+{\frac {6\delta ^{2}M_{2}}{n^{2}}}-{\frac {4\delta M_{3}}{n}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acfbbe12768419f004d32d11750e940fa0af584e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.838ex; width:56.568ex; height:30.843ex;" alt="{\displaystyle {\begin{aligned}\delta &amp;=x-m\\[5pt]m&#039;&amp;=m+{\frac {\delta }{n}}\\[5pt]M_{2}&#039;&amp;=M_{2}+\delta ^{2}{\frac {n-1}{n}}\\[5pt]M_{3}&#039;&amp;=M_{3}+\delta ^{3}{\frac {(n-1)(n-2)}{n^{2}}}-{\frac {3\delta M_{2}}{n}}\\[5pt]M_{4}&#039;&amp;=M_{4}+{\frac {\delta ^{4}(n-1)(n^{2}-3n+3)}{n^{3}}}+{\frac {6\delta ^{2}M_{2}}{n^{2}}}-{\frac {4\delta M_{3}}{n}}\end{aligned}}}"></span></dd></dl> <p>By preserving the value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta /n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta /n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81e6c8cc7925797c3b5c5f5ef6d34f0772dd692d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.606ex; height:2.843ex;" alt="{\displaystyle \delta /n}"></span>, only one division operation is needed and the higher-order statistics can thus be calculated for little incremental cost. </p><p>An example of the online algorithm for kurtosis implemented as described is: </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">online_kurtosis</span><span class="p">(</span><span class="n">data</span><span class="p">):</span> <span class="n">n</span> <span class="o">=</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">M2</span> <span class="o">=</span> <span class="n">M3</span> <span class="o">=</span> <span class="n">M4</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">data</span><span class="p">:</span> <span class="n">n1</span> <span class="o">=</span> <span class="n">n</span> <span class="n">n</span> <span class="o">=</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span> <span class="n">delta</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">mean</span> <span class="n">delta_n</span> <span class="o">=</span> <span class="n">delta</span> <span class="o">/</span> <span class="n">n</span> <span class="n">delta_n2</span> <span class="o">=</span> <span class="n">delta_n</span><span class="o">**</span><span class="mi">2</span> <span class="n">term1</span> <span class="o">=</span> <span class="n">delta</span> <span class="o">*</span> <span class="n">delta_n</span> <span class="o">*</span> <span class="n">n1</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">mean</span> <span class="o">+</span> <span class="n">delta_n</span> <span class="n">M4</span> <span class="o">=</span> <span class="n">M4</span> <span class="o">+</span> <span class="n">term1</span> <span class="o">*</span> <span class="n">delta_n2</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="mi">3</span><span class="o">*</span><span class="n">n</span> <span class="o">+</span> <span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="mi">6</span> <span class="o">*</span> <span class="n">delta_n2</span> <span class="o">*</span> <span class="n">M2</span> <span class="o">-</span> <span class="mi">4</span> <span class="o">*</span> <span class="n">delta_n</span> <span class="o">*</span> <span class="n">M3</span> <span class="n">M3</span> <span class="o">=</span> <span class="n">M3</span> <span class="o">+</span> <span class="n">term1</span> <span class="o">*</span> <span class="n">delta_n</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="mi">3</span> <span class="o">*</span> <span class="n">delta_n</span> <span class="o">*</span> <span class="n">M2</span> <span class="n">M2</span> <span class="o">=</span> <span class="n">M2</span> <span class="o">+</span> <span class="n">term1</span> <span class="c1"># Note, you may also calculate variance using M2, and skewness using M3</span> <span class="c1"># Caution: If all the inputs are the same, M2 will be 0, resulting in a division by 0.</span> <span class="n">kurtosis</span> <span class="o">=</span> <span class="p">(</span><span class="n">n</span> <span class="o">*</span> <span class="n">M4</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">M2</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="mi">3</span> <span class="k">return</span> <span class="n">kurtosis</span> </pre></div> <p>Pébaÿ<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> further extends these results to arbitrary-order <a href="/wiki/Central_moment" title="Central moment">central moments</a>, for the incremental and the pairwise cases, and subsequently Pébaÿ et al.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> for weighted and compound moments. One can also find there similar formulas for <a href="/wiki/Covariance" title="Covariance">covariance</a>. </p><p>Choi and Sweetman<sup id="cite_ref-Choi2010_14-0" class="reference"><a href="#cite_note-Choi2010-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> offer two alternative methods to compute the skewness and kurtosis, each of which can save substantial computer memory requirements and CPU time in certain applications. The first approach is to compute the statistical moments by separating the data into bins and then computing the moments from the geometry of the resulting histogram, which effectively becomes a <a href="/wiki/One-pass_algorithm" title="One-pass algorithm">one-pass algorithm</a> for higher moments. One benefit is that the statistical moment calculations can be carried out to arbitrary accuracy such that the computations can be tuned to the precision of, e.g., the data storage format or the original measurement hardware. A relative histogram of a random variable can be constructed in the conventional way: the range of potential values is divided into bins and the number of occurrences within each bin are counted and plotted such that the area of each rectangle equals the portion of the sample values within that bin: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(x_{k})={\frac {h(x_{k})}{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>A</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(x_{k})={\frac {h(x_{k})}{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0823ffbd15a8a29d670291ee96ad80b27532e4db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.793ex; height:5.843ex;" alt="{\displaystyle H(x_{k})={\frac {h(x_{k})}{A}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7cafe3a7018ccbd18072363647649a125b4a142" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.567ex; height:2.843ex;" alt="{\displaystyle h(x_{k})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62078d290756950d0275e7071dfd09a4b1390fa1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.291ex; height:2.843ex;" alt="{\displaystyle H(x_{k})}"></span> represent the frequency and the relative frequency at bin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2b88c64c76a03611549fb9b4cf4ed060b56002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.418ex; height:2.009ex;" alt="{\displaystyle x_{k}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A=\sum _{k=1}^{K}h(x_{k})\,\Delta x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A=\sum _{k=1}^{K}h(x_{k})\,\Delta x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfdd56dbc14317429ae0bfb00fe1ef509c771d93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.18ex; height:3.509ex;" alt="{\textstyle A=\sum _{k=1}^{K}h(x_{k})\,\Delta x_{k}}"></span> is the total area of the histogram. After this normalization, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> raw moments and central moments of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span> can be calculated from the relative histogram: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{n}^{(h)}=\sum _{k=1}^{K}x_{k}^{n}H(x_{k})\,\Delta x_{k}={\frac {1}{A}}\sum _{k=1}^{K}x_{k}^{n}h(x_{k})\,\Delta x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>A</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{n}^{(h)}=\sum _{k=1}^{K}x_{k}^{n}H(x_{k})\,\Delta x_{k}={\frac {1}{A}}\sum _{k=1}^{K}x_{k}^{n}h(x_{k})\,\Delta x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8be2914ad152e7d545420ea2beeada2eb284cbfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.583ex; height:7.343ex;" alt="{\displaystyle m_{n}^{(h)}=\sum _{k=1}^{K}x_{k}^{n}H(x_{k})\,\Delta x_{k}={\frac {1}{A}}\sum _{k=1}^{K}x_{k}^{n}h(x_{k})\,\Delta x_{k}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{n}^{(h)}=\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}\,H(x_{k})\,\Delta x_{k}={\frac {1}{A}}\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}h(x_{k})\,\Delta x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>A</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{n}^{(h)}=\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}\,H(x_{k})\,\Delta x_{k}={\frac {1}{A}}\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}h(x_{k})\,\Delta x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4544936b1ebb6e1e373030ed8834d912c04705ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:69.427ex; height:7.343ex;" alt="{\displaystyle \theta _{n}^{(h)}=\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}\,H(x_{k})\,\Delta x_{k}={\frac {1}{A}}\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}h(x_{k})\,\Delta x_{k}}"></span></dd></dl> <p>where the superscript <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{(h)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{(h)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aafde7bf67b35ed1d7e04342d5ee4337ea891bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:2.458ex; height:2.676ex;" alt="{\displaystyle ^{(h)}}"></span> indicates the moments are calculated from the histogram. For constant bin width <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}=\Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}=\Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/996e11040922984df3ad46a027dcc354339dc725" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.718ex; height:2.509ex;" alt="{\displaystyle \Delta x_{k}=\Delta x}"></span> these two expressions can be simplified using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=A/\Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=A/\Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e557049f9f0077352eaa203d96d8258bbfe3fb66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.441ex; height:2.843ex;" alt="{\displaystyle I=A/\Delta x}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{n}^{(h)}={\frac {1}{I}}\sum _{k=1}^{K}x_{k}^{n}\,h(x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>I</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{n}^{(h)}={\frac {1}{I}}\sum _{k=1}^{K}x_{k}^{n}\,h(x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa350e390ed68b7c81872067921d57ddbe4bf9f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.236ex; height:7.343ex;" alt="{\displaystyle m_{n}^{(h)}={\frac {1}{I}}\sum _{k=1}^{K}x_{k}^{n}\,h(x_{k})}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{n}^{(h)}={\frac {1}{I}}\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}h(x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>I</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{n}^{(h)}={\frac {1}{I}}\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}h(x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b446a58253762907ec85555174c2aba3b60a1d94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.103ex; height:7.343ex;" alt="{\displaystyle \theta _{n}^{(h)}={\frac {1}{I}}\sum _{k=1}^{K}{\Big (}x_{k}-m_{1}^{(h)}{\Big )}^{n}h(x_{k})}"></span></dd></dl> <p>The second approach from Choi and Sweetman<sup id="cite_ref-Choi2010_14-1" class="reference"><a href="#cite_note-Choi2010-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> is an analytical methodology to combine statistical moments from individual segments of a time-history such that the resulting overall moments are those of the complete time-history. This methodology could be used for parallel computation of statistical moments with subsequent combination of those moments, or for combination of statistical moments computed at sequential times. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> sets of statistical moments are known: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\gamma _{0,q},\mu _{q},\sigma _{q}^{2},\alpha _{3,q},\alpha _{4,q})\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>,</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\gamma _{0,q},\mu _{q},\sigma _{q}^{2},\alpha _{3,q},\alpha _{4,q})\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c2af50d87c5001f01adf601568f9198f167f019" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.026ex; height:3.176ex;" alt="{\displaystyle (\gamma _{0,q},\mu _{q},\sigma _{q}^{2},\alpha _{3,q},\alpha _{4,q})\quad }"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1,2,\ldots ,Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=1,2,\ldots ,Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0504071b4afecbf12daf70f1c275813c0b3ed8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.543ex; height:2.509ex;" alt="{\displaystyle q=1,2,\ldots ,Q}"></span>, then each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84a6d83f89515bf8d1a053639dc484e620f42036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.423ex; height:2.176ex;" alt="{\displaystyle \gamma _{n}}"></span> can be expressed in terms of the equivalent <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> raw moments: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{n,q}=m_{n,q}\gamma _{0,q}\qquad \quad {\textrm {for}}\quad n=1,2,3,4\quad {\text{ and }}\quad q=1,2,\dots ,Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mspace width="2em" /> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>for</mtext> </mrow> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{n,q}=m_{n,q}\gamma _{0,q}\qquad \quad {\textrm {for}}\quad n=1,2,3,4\quad {\text{ and }}\quad q=1,2,\dots ,Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4b984dcf1f94bc80eb489e32213b711f1cf2b2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:63.098ex; height:2.843ex;" alt="{\displaystyle \gamma _{n,q}=m_{n,q}\gamma _{0,q}\qquad \quad {\textrm {for}}\quad n=1,2,3,4\quad {\text{ and }}\quad q=1,2,\dots ,Q}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{0,q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{0,q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13223d94d4f3bd4b58bc9c68151b888795db5875" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.472ex; height:2.343ex;" alt="{\displaystyle \gamma _{0,q}}"></span> is generally taken to be the duration of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{th}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>h</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{th}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/215a844f887a954d9eb533647a71f02da11355db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.852ex; height:3.009ex;" alt="{\displaystyle q^{th}}"></span> time-history, or the number of points if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c28867ecd34e2caed12cf38feadf6a81a7ee542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.775ex; height:2.176ex;" alt="{\displaystyle \Delta t}"></span> is constant. </p><p>The benefit of expressing the statistical moments in terms of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is that the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> sets can be combined by addition, and there is no upper limit on the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{n,c}=\sum _{q=1}^{Q}\gamma _{n,q}\quad \quad {\text{for }}n=0,1,2,3,4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> </munderover> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mspace width="1em" /> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{n,c}=\sum _{q=1}^{Q}\gamma _{n,q}\quad \quad {\text{for }}n=0,1,2,3,4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40bff45d3a920f17239a410fc171bbfd760f5445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:36.522ex; height:7.843ex;" alt="{\displaystyle \gamma _{n,c}=\sum _{q=1}^{Q}\gamma _{n,q}\quad \quad {\text{for }}n=0,1,2,3,4}"></span></dd></dl> <p>where the subscript <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle _{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle _{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ac95da3d27b8f3d4540ba99845ecc3990bfb0b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:0.944ex; height:1.343ex;" alt="{\displaystyle _{c}}"></span> represents the concatenated time-history or combined <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>. These combined values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> can then be inversely transformed into raw moments representing the complete concatenated time-history </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{n,c}={\frac {\gamma _{n,c}}{\gamma _{0,c}}}\quad {\text{for }}n=1,2,3,4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mi>c</mi> </mrow> </msub> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{n,c}={\frac {\gamma _{n,c}}{\gamma _{0,c}}}\quad {\text{for }}n=1,2,3,4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669f8cce2b9d6af600bc364397a1006bb8a8c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.889ex; height:5.676ex;" alt="{\displaystyle m_{n,c}={\frac {\gamma _{n,c}}{\gamma _{0,c}}}\quad {\text{for }}n=1,2,3,4}"></span></dd></dl> <p>Known relationships between the raw moments (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae8181c5cf15da902bbaa5c2291aeb8167fe78ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.259ex; height:2.009ex;" alt="{\displaystyle m_{n}}"></span>) and the central moments (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{n}=\operatorname {E} [(x-\mu )^{n}])}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{n}=\operatorname {E} [(x-\mu )^{n}])}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be6c61d2b10f7f76d3bd29dbbc2d52b1decf3053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.788ex; height:2.843ex;" alt="{\displaystyle \theta _{n}=\operatorname {E} [(x-\mu )^{n}])}"></span>) are then used to compute the central moments of the concatenated time-history. Finally, the statistical moments of the concatenated history are computed from the central moments: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{c}=m_{1,c}\qquad \sigma _{c}^{2}=\theta _{2,c}\qquad \alpha _{3,c}={\frac {\theta _{3,c}}{\sigma _{c}^{3}}}\qquad \alpha _{4,c}={\frac {\theta _{4,c}}{\sigma _{c}^{4}}}-3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mspace width="2em" /> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mspace width="2em" /> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mi>c</mi> </mrow> </msub> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> </mfrac> </mrow> <mspace width="2em" /> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>,</mo> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>,</mo> <mi>c</mi> </mrow> </msub> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{c}=m_{1,c}\qquad \sigma _{c}^{2}=\theta _{2,c}\qquad \alpha _{3,c}={\frac {\theta _{3,c}}{\sigma _{c}^{3}}}\qquad \alpha _{4,c}={\frac {\theta _{4,c}}{\sigma _{c}^{4}}}-3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1de2de6cf52fb1852f3da5aa4e607a894f9ab3f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:58.364ex; height:6.509ex;" alt="{\displaystyle \mu _{c}=m_{1,c}\qquad \sigma _{c}^{2}=\theta _{2,c}\qquad \alpha _{3,c}={\frac {\theta _{3,c}}{\sigma _{c}^{3}}}\qquad \alpha _{4,c}={\frac {\theta _{4,c}}{\sigma _{c}^{4}}}-3}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Covariance">Covariance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=9" title="Edit section: Covariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Very similar algorithms can be used to compute the <a href="/wiki/Covariance" title="Covariance">covariance</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Naïve_algorithm_2"><span id="Na.C3.AFve_algorithm_2"></span>Naïve algorithm</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=10" title="Edit section: Naïve algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The naïve algorithm is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cov} (X,Y)={\frac {\sum _{i=1}^{n}x_{i}y_{i}-(\sum _{i=1}^{n}x_{i})(\sum _{i=1}^{n}y_{i})/n}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cov</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cov} (X,Y)={\frac {\sum _{i=1}^{n}x_{i}y_{i}-(\sum _{i=1}^{n}x_{i})(\sum _{i=1}^{n}y_{i})/n}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa56e6b8a568e85a091819226af741ab18c273e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:49.622ex; height:5.843ex;" alt="{\displaystyle \operatorname {Cov} (X,Y)={\frac {\sum _{i=1}^{n}x_{i}y_{i}-(\sum _{i=1}^{n}x_{i})(\sum _{i=1}^{n}y_{i})/n}{n}}.}"></span></dd></dl> <p>For the algorithm above, one could use the following Python code: </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">naive_covariance</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">):</span> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data1</span><span class="p">)</span> <span class="n">sum1</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">data1</span><span class="p">)</span> <span class="n">sum2</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">data2</span><span class="p">)</span> <span class="n">sum12</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">([</span><span class="n">i1</span> <span class="o">*</span> <span class="n">i2</span> <span class="k">for</span> <span class="n">i1</span><span class="p">,</span> <span class="n">i2</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">)])</span> <span class="n">covariance</span> <span class="o">=</span> <span class="p">(</span><span class="n">sum12</span> <span class="o">-</span> <span class="n">sum1</span> <span class="o">*</span> <span class="n">sum2</span> <span class="o">/</span> <span class="n">n</span><span class="p">)</span> <span class="o">/</span> <span class="n">n</span> <span class="k">return</span> <span class="n">covariance</span> </pre></div> <div class="mw-heading mw-heading3"><h3 id="With_estimate_of_the_mean">With estimate of the mean</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=11" title="Edit section: With estimate of the mean"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As for the variance, the covariance of two random variables is also shift-invariant, so given any two constant values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adcbcc5a960cbbd063fb012b087a8fdef03066d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.509ex;" alt="{\displaystyle k_{x}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{y},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{y},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff5bb5ce28c07dffba22fc642174f9eba5485d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.907ex; height:2.843ex;" alt="{\displaystyle k_{y},}"></span> it can be written: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cov} (X,Y)=\operatorname {Cov} (X-k_{x},Y-k_{y})={\dfrac {\sum _{i=1}^{n}(x_{i}-k_{x})(y_{i}-k_{y})-(\sum _{i=1}^{n}(x_{i}-k_{x}))(\sum _{i=1}^{n}(y_{i}-k_{y}))/n}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cov</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Cov</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mi>Y</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cov} (X,Y)=\operatorname {Cov} (X-k_{x},Y-k_{y})={\dfrac {\sum _{i=1}^{n}(x_{i}-k_{x})(y_{i}-k_{y})-(\sum _{i=1}^{n}(x_{i}-k_{x}))(\sum _{i=1}^{n}(y_{i}-k_{y}))/n}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94d06c7f798b0612a368b11cd49c307d36fa2cfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:100.436ex; height:5.843ex;" alt="{\displaystyle \operatorname {Cov} (X,Y)=\operatorname {Cov} (X-k_{x},Y-k_{y})={\dfrac {\sum _{i=1}^{n}(x_{i}-k_{x})(y_{i}-k_{y})-(\sum _{i=1}^{n}(x_{i}-k_{x}))(\sum _{i=1}^{n}(y_{i}-k_{y}))/n}{n}}.}"></span></dd></dl> <p>and again choosing a value inside the range of values will stabilize the formula against catastrophic cancellation as well as make it more robust against big sums. Taking the first value of each data set, the algorithm can be written as: </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">shifted_data_covariance</span><span class="p">(</span><span class="n">data_x</span><span class="p">,</span> <span class="n">data_y</span><span class="p">):</span> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data_x</span><span class="p">)</span> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;</span> <span class="mi">2</span><span class="p">:</span> <span class="k">return</span> <span class="mi">0</span> <span class="n">kx</span> <span class="o">=</span> <span class="n">data_x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="n">ky</span> <span class="o">=</span> <span class="n">data_y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="n">Ex</span> <span class="o">=</span> <span class="n">Ey</span> <span class="o">=</span> <span class="n">Exy</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">ix</span><span class="p">,</span> <span class="n">iy</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">data_x</span><span class="p">,</span> <span class="n">data_y</span><span class="p">):</span> <span class="n">Ex</span> <span class="o">+=</span> <span class="n">ix</span> <span class="o">-</span> <span class="n">kx</span> <span class="n">Ey</span> <span class="o">+=</span> <span class="n">iy</span> <span class="o">-</span> <span class="n">ky</span> <span class="n">Exy</span> <span class="o">+=</span> <span class="p">(</span><span class="n">ix</span> <span class="o">-</span> <span class="n">kx</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">iy</span> <span class="o">-</span> <span class="n">ky</span><span class="p">)</span> <span class="k">return</span> <span class="p">(</span><span class="n">Exy</span> <span class="o">-</span> <span class="n">Ex</span> <span class="o">*</span> <span class="n">Ey</span> <span class="o">/</span> <span class="n">n</span><span class="p">)</span> <span class="o">/</span> <span class="n">n</span> </pre></div> <div class="mw-heading mw-heading3"><h3 id="Two-pass">Two-pass</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=12" title="Edit section: Two-pass"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The two-pass algorithm first computes the sample means, and then the covariance: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {x}}=\sum _{i=1}^{n}x_{i}/n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {x}}=\sum _{i=1}^{n}x_{i}/n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb385f363a8b4a96a189de33d5b4a62c1854bd58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.857ex; height:6.843ex;" alt="{\displaystyle {\bar {x}}=\sum _{i=1}^{n}x_{i}/n}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {y}}=\sum _{i=1}^{n}y_{i}/n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {y}}=\sum _{i=1}^{n}y_{i}/n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2646ae762bb8b57823ffe1d3b969c7e32f55fa22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.639ex; height:6.843ex;" alt="{\displaystyle {\bar {y}}=\sum _{i=1}^{n}y_{i}/n}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cov} (X,Y)={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cov</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cov} (X,Y)={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a45cc6687d7f659ddebdee3df2b9dde2e87c3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:36.6ex; height:5.843ex;" alt="{\displaystyle \operatorname {Cov} (X,Y)={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{n}}.}"></span></dd></dl> <p>The two-pass algorithm may be written as: </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">two_pass_covariance</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">):</span> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data1</span><span class="p">)</span> <span class="n">mean1</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">data1</span><span class="p">)</span> <span class="o">/</span> <span class="n">n</span> <span class="n">mean2</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">data2</span><span class="p">)</span> <span class="o">/</span> <span class="n">n</span> <span class="n">covariance</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">i1</span><span class="p">,</span> <span class="n">i2</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">):</span> <span class="n">a</span> <span class="o">=</span> <span class="n">i1</span> <span class="o">-</span> <span class="n">mean1</span> <span class="n">b</span> <span class="o">=</span> <span class="n">i2</span> <span class="o">-</span> <span class="n">mean2</span> <span class="n">covariance</span> <span class="o">+=</span> <span class="n">a</span> <span class="o">*</span> <span class="n">b</span> <span class="o">/</span> <span class="n">n</span> <span class="k">return</span> <span class="n">covariance</span> </pre></div> <p>A slightly more accurate compensated version performs the full naive algorithm on the residuals. The final sums <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{i}x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{i}x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/842460409f03764d17d9e1c0cee98837469cb1d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.77ex; height:3.009ex;" alt="{\textstyle \sum _{i}x_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{i}y_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{i}y_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dac3620693928c4eb931881989b65b5d57bd7e50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.58ex; height:3.009ex;" alt="{\textstyle \sum _{i}y_{i}}"></span> <i>should</i> be zero, but the second pass compensates for any small error. </p> <div class="mw-heading mw-heading3"><h3 id="Online">Online</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=13" title="Edit section: Online"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A stable one-pass algorithm exists, similar to the online algorithm for computing the variance, that computes co-moment <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle C_{n}=\sum _{i=1}^{n}(x_{i}-{\bar {x}}_{n})(y_{i}-{\bar {y}}_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle C_{n}=\sum _{i=1}^{n}(x_{i}-{\bar {x}}_{n})(y_{i}-{\bar {y}}_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/850927eedc9fafa60339507410ea8a691bf0ce2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.769ex; height:3.176ex;" alt="{\textstyle C_{n}=\sum _{i=1}^{n}(x_{i}-{\bar {x}}_{n})(y_{i}-{\bar {y}}_{n})}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}{\bar {x}}_{n}&amp;={\bar {x}}_{n-1}&amp;\,+\,&amp;{\frac {x_{n}-{\bar {x}}_{n-1}}{n}}\\[5pt]{\bar {y}}_{n}&amp;={\bar {y}}_{n-1}&amp;\,+\,&amp;{\frac {y_{n}-{\bar {y}}_{n-1}}{n}}\\[5pt]C_{n}&amp;=C_{n-1}&amp;\,+\,&amp;(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n-1})\\[5pt]&amp;=C_{n-1}&amp;\,+\,&amp;(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n})\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="0.8em 0.8em 0.8em 0.3em" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}{\bar {x}}_{n}&amp;={\bar {x}}_{n-1}&amp;\,+\,&amp;{\frac {x_{n}-{\bar {x}}_{n-1}}{n}}\\[5pt]{\bar {y}}_{n}&amp;={\bar {y}}_{n-1}&amp;\,+\,&amp;{\frac {y_{n}-{\bar {y}}_{n-1}}{n}}\\[5pt]C_{n}&amp;=C_{n-1}&amp;\,+\,&amp;(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n-1})\\[5pt]&amp;=C_{n-1}&amp;\,+\,&amp;(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n})\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f440f49beea73d0aeec36d0101caa20f89e864aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.838ex; width:35.668ex; height:20.843ex;" alt="{\displaystyle {\begin{alignedat}{2}{\bar {x}}_{n}&amp;={\bar {x}}_{n-1}&amp;\,+\,&amp;{\frac {x_{n}-{\bar {x}}_{n-1}}{n}}\\[5pt]{\bar {y}}_{n}&amp;={\bar {y}}_{n-1}&amp;\,+\,&amp;{\frac {y_{n}-{\bar {y}}_{n-1}}{n}}\\[5pt]C_{n}&amp;=C_{n-1}&amp;\,+\,&amp;(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n-1})\\[5pt]&amp;=C_{n-1}&amp;\,+\,&amp;(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n})\end{alignedat}}}"></span></dd></dl> <p>The apparent asymmetry in that last equation is due to the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (x_{n}-{\bar {x}}_{n})={\frac {n-1}{n}}(x_{n}-{\bar {x}}_{n-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (x_{n}-{\bar {x}}_{n})={\frac {n-1}{n}}(x_{n}-{\bar {x}}_{n-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62c6438fed70eadeed78060c49d1693b6f44d7a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.614ex; height:3.509ex;" alt="{\textstyle (x_{n}-{\bar {x}}_{n})={\frac {n-1}{n}}(x_{n}-{\bar {x}}_{n-1})}"></span>, so both update terms are equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {n-1}{n}}(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {n-1}{n}}(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a791a6b260b85a31f1f9c883704ff77680accccb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.398ex; height:3.509ex;" alt="{\textstyle {\frac {n-1}{n}}(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n-1})}"></span>. Even greater accuracy can be achieved by first computing the means, then using the stable one-pass algorithm on the residuals. </p><p>Thus the covariance can be computed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Cov} _{N}(X,Y)={\frac {C_{N}}{N}}&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n-1})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+{\frac {N-1}{N}}(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n-1})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+{\frac {N}{N-1}}(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n})}{N}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>Cov</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mi>N</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>Cov</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>N</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>Cov</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>N</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>Cov</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>N</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>N</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>Cov</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>N</mi> <mrow> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>N</mi> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Cov} _{N}(X,Y)={\frac {C_{N}}{N}}&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n-1})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+{\frac {N-1}{N}}(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n-1})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+{\frac {N}{N-1}}(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n})}{N}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/241549051c7dfd419243943194d0912785b9fbf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.005ex; width:79.053ex; height:25.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Cov} _{N}(X,Y)={\frac {C_{N}}{N}}&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n-1})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+{\frac {N-1}{N}}(x_{n}-{\bar {x}}_{n-1})(y_{n}-{\bar {y}}_{n-1})}{N}}\\&amp;={\frac {\operatorname {Cov} _{N-1}(X,Y)\cdot (N-1)+{\frac {N}{N-1}}(x_{n}-{\bar {x}}_{n})(y_{n}-{\bar {y}}_{n})}{N}}.\end{aligned}}}"></span></dd></dl> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">online_covariance</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">):</span> <span class="n">meanx</span> <span class="o">=</span> <span class="n">meany</span> <span class="o">=</span> <span class="n">C</span> <span class="o">=</span> <span class="n">n</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">):</span> <span class="n">n</span> <span class="o">+=</span> <span class="mi">1</span> <span class="n">dx</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">meanx</span> <span class="n">meanx</span> <span class="o">+=</span> <span class="n">dx</span> <span class="o">/</span> <span class="n">n</span> <span class="n">meany</span> <span class="o">+=</span> <span class="p">(</span><span class="n">y</span> <span class="o">-</span> <span class="n">meany</span><span class="p">)</span> <span class="o">/</span> <span class="n">n</span> <span class="n">C</span> <span class="o">+=</span> <span class="n">dx</span> <span class="o">*</span> <span class="p">(</span><span class="n">y</span> <span class="o">-</span> <span class="n">meany</span><span class="p">)</span> <span class="n">population_covar</span> <span class="o">=</span> <span class="n">C</span> <span class="o">/</span> <span class="n">n</span> <span class="c1"># Bessel&#39;s correction for sample variance</span> <span class="n">sample_covar</span> <span class="o">=</span> <span class="n">C</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> </pre></div> <p>A small modification can also be made to compute the weighted covariance: </p> <div class="mw-highlight mw-highlight-lang-python mw-content-ltr" dir="ltr"><pre><span></span><span class="k">def</span> <span class="nf">online_weighted_covariance</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">,</span> <span class="n">data3</span><span class="p">):</span> <span class="n">meanx</span> <span class="o">=</span> <span class="n">meany</span> <span class="o">=</span> <span class="mi">0</span> <span class="n">wsum</span> <span class="o">=</span> <span class="n">wsum2</span> <span class="o">=</span> <span class="mi">0</span> <span class="n">C</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">w</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">data1</span><span class="p">,</span> <span class="n">data2</span><span class="p">,</span> <span class="n">data3</span><span class="p">):</span> <span class="n">wsum</span> <span class="o">+=</span> <span class="n">w</span> <span class="n">wsum2</span> <span class="o">+=</span> <span class="n">w</span> <span class="o">*</span> <span class="n">w</span> <span class="n">dx</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">meanx</span> <span class="n">meanx</span> <span class="o">+=</span> <span class="p">(</span><span class="n">w</span> <span class="o">/</span> <span class="n">wsum</span><span class="p">)</span> <span class="o">*</span> <span class="n">dx</span> <span class="n">meany</span> <span class="o">+=</span> <span class="p">(</span><span class="n">w</span> <span class="o">/</span> <span class="n">wsum</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">y</span> <span class="o">-</span> <span class="n">meany</span><span class="p">)</span> <span class="n">C</span> <span class="o">+=</span> <span class="n">w</span> <span class="o">*</span> <span class="n">dx</span> <span class="o">*</span> <span class="p">(</span><span class="n">y</span> <span class="o">-</span> <span class="n">meany</span><span class="p">)</span> <span class="n">population_covar</span> <span class="o">=</span> <span class="n">C</span> <span class="o">/</span> <span class="n">wsum</span> <span class="c1"># Bessel&#39;s correction for sample variance</span> <span class="c1"># Frequency weights</span> <span class="n">sample_frequency_covar</span> <span class="o">=</span> <span class="n">C</span> <span class="o">/</span> <span class="p">(</span><span class="n">wsum</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># Reliability weights</span> <span class="n">sample_reliability_covar</span> <span class="o">=</span> <span class="n">C</span> <span class="o">/</span> <span class="p">(</span><span class="n">wsum</span> <span class="o">-</span> <span class="n">wsum2</span> <span class="o">/</span> <span class="n">wsum</span><span class="p">)</span> </pre></div> <p>Likewise, there is a formula for combining the covariances of two sets that can be used to parallelize the computation:<sup id="cite_ref-:1_3-2" class="reference"><a href="#cite_note-:1-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{X}=C_{A}+C_{B}+({\bar {x}}_{A}-{\bar {x}}_{B})({\bar {y}}_{A}-{\bar {y}}_{B})\cdot {\frac {n_{A}n_{B}}{n_{X}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{X}=C_{A}+C_{B}+({\bar {x}}_{A}-{\bar {x}}_{B})({\bar {y}}_{A}-{\bar {y}}_{B})\cdot {\frac {n_{A}n_{B}}{n_{X}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f170d41f6631ce258a60d3025e9ad73064a3332" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:47.689ex; height:5.009ex;" alt="{\displaystyle C_{X}=C_{A}+C_{B}+({\bar {x}}_{A}-{\bar {x}}_{B})({\bar {y}}_{A}-{\bar {y}}_{B})\cdot {\frac {n_{A}n_{B}}{n_{X}}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Weighted_batched_version">Weighted batched version</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=14" title="Edit section: Weighted batched version"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A version of the weighted online algorithm that does batched updated also exists: let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{1},\dots w_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{1},\dots w_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20e0597fff43d471b464b7ffcf3cdaa35ff68543" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.218ex; height:2.009ex;" alt="{\displaystyle w_{1},\dots w_{N}}"></span> denote the weights, and write </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}{\bar {x}}_{n+k}&amp;={\bar {x}}_{n}&amp;\,+\,&amp;{\frac {\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n})}{\sum _{i=1}^{n+k}w_{i}}}\\{\bar {y}}_{n+k}&amp;={\bar {y}}_{n}&amp;\,+\,&amp;{\frac {\sum _{i=n+1}^{n+k}w_{i}(y_{i}-{\bar {y}}_{n})}{\sum _{i=1}^{n+k}w_{i}}}\\C_{n+k}&amp;=C_{n}&amp;\,+\,&amp;\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n+k})(y_{i}-{\bar {y}}_{n})\\&amp;=C_{n}&amp;\,+\,&amp;\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n})(y_{i}-{\bar {y}}_{n+k})\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}{\bar {x}}_{n+k}&amp;={\bar {x}}_{n}&amp;\,+\,&amp;{\frac {\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n})}{\sum _{i=1}^{n+k}w_{i}}}\\{\bar {y}}_{n+k}&amp;={\bar {y}}_{n}&amp;\,+\,&amp;{\frac {\sum _{i=n+1}^{n+k}w_{i}(y_{i}-{\bar {y}}_{n})}{\sum _{i=1}^{n+k}w_{i}}}\\C_{n+k}&amp;=C_{n}&amp;\,+\,&amp;\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n+k})(y_{i}-{\bar {y}}_{n})\\&amp;=C_{n}&amp;\,+\,&amp;\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n})(y_{i}-{\bar {y}}_{n+k})\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ce541f496b3df80b7d5f6bf6ecacd86bcd0a64a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.838ex; width:43.07ex; height:30.843ex;" alt="{\displaystyle {\begin{alignedat}{2}{\bar {x}}_{n+k}&amp;={\bar {x}}_{n}&amp;\,+\,&amp;{\frac {\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n})}{\sum _{i=1}^{n+k}w_{i}}}\\{\bar {y}}_{n+k}&amp;={\bar {y}}_{n}&amp;\,+\,&amp;{\frac {\sum _{i=n+1}^{n+k}w_{i}(y_{i}-{\bar {y}}_{n})}{\sum _{i=1}^{n+k}w_{i}}}\\C_{n+k}&amp;=C_{n}&amp;\,+\,&amp;\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n+k})(y_{i}-{\bar {y}}_{n})\\&amp;=C_{n}&amp;\,+\,&amp;\sum _{i=n+1}^{n+k}w_{i}(x_{i}-{\bar {x}}_{n})(y_{i}-{\bar {y}}_{n+k})\\\end{alignedat}}}"></span></dd></dl> <p>The covariance can then be computed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cov} _{N}(X,Y)={\frac {C_{N}}{\sum _{i=1}^{N}w_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Cov</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cov} _{N}(X,Y)={\frac {C_{N}}{\sum _{i=1}^{N}w_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c62280dd9d52ecccf6d9911e41880fbb42e64fe3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.496ex; height:6.676ex;" alt="{\displaystyle \operatorname {Cov} _{N}(X,Y)={\frac {C_{N}}{\sum _{i=1}^{N}w_{i}}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Kahan_summation_algorithm" title="Kahan summation algorithm">Kahan summation algorithm</a></li> <li><a href="/wiki/Squared_deviations_from_the_mean" title="Squared deviations from the mean">Squared deviations from the mean</a></li> <li><a href="/wiki/Yamartino_method" title="Yamartino method">Yamartino method</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=16" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Einarsson2005-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Einarsson2005_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Einarsson2005_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFEinarsson2005" class="citation book cs1">Einarsson, Bo (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8hrDV5EbrEsC"><i>Accuracy and Reliability in Scientific Computing</i></a>. SIAM. p.&#160;47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-584-2" title="Special:BookSources/978-0-89871-584-2"><bdi>978-0-89871-584-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Accuracy+and+Reliability+in+Scientific+Computing&amp;rft.pages=47&amp;rft.pub=SIAM&amp;rft.date=2005&amp;rft.isbn=978-0-89871-584-2&amp;rft.aulast=Einarsson&amp;rft.aufirst=Bo&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8hrDV5EbrEsC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-Chan1983-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Chan1983_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Chan1983_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Chan1983_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanGolubLeVeque1983" class="citation journal cs1"><a href="/wiki/Tony_F._Chan" title="Tony F. Chan">Chan, Tony F.</a>; <a href="/wiki/Gene_H._Golub" title="Gene H. Golub">Golub, Gene H.</a>; LeVeque, Randall J. (1983). <a rel="nofollow" class="external text" href="http://cpsc.yale.edu/sites/default/files/files/tr222.pdf">"Algorithms for computing the sample variance: Analysis and recommendations"</a> <span class="cs1-format">(PDF)</span>. <i>The American Statistician</i>. <b>37</b> (3): 242–247. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00031305.1983.10483115">10.1080/00031305.1983.10483115</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2683386">2683386</a>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://cpsc.yale.edu/sites/default/files/files/tr222.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 9 October 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Statistician&amp;rft.atitle=Algorithms+for+computing+the+sample+variance%3A+Analysis+and+recommendations&amp;rft.volume=37&amp;rft.issue=3&amp;rft.pages=242-247&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.1080%2F00031305.1983.10483115&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2683386%23id-name%3DJSTOR&amp;rft.aulast=Chan&amp;rft.aufirst=Tony+F.&amp;rft.au=Golub%2C+Gene+H.&amp;rft.au=LeVeque%2C+Randall+J.&amp;rft_id=http%3A%2F%2Fcpsc.yale.edu%2Fsites%2Fdefault%2Ffiles%2Ffiles%2Ftr222.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-:1-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchubertGertz2018" class="citation book cs1">Schubert, Erich; Gertz, Michael (9 July 2018). <a rel="nofollow" class="external text" href="http://dl.acm.org/citation.cfm?id=3221269.3223036"><i>Numerically stable parallel computation of (co-)variance</i></a>. ACM. p.&#160;10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F3221269.3223036">10.1145/3221269.3223036</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781450365055" title="Special:BookSources/9781450365055"><bdi>9781450365055</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:49665540">49665540</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerically+stable+parallel+computation+of+%28co-%29variance&amp;rft.pages=10&amp;rft.pub=ACM&amp;rft.date=2018-07-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A49665540%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F3221269.3223036&amp;rft.isbn=9781450365055&amp;rft.aulast=Schubert&amp;rft.aufirst=Erich&amp;rft.au=Gertz%2C+Michael&amp;rft_id=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D3221269.3223036&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHigham2002" class="citation book cs1">Higham, Nicholas J. (2002). "Problem 1.10". <a rel="nofollow" class="external text" href="https://epubs.siam.org/doi/book/10.1137/1.9780898718027"><i>Accuracy and Stability of Numerical Algorithms</i></a> (2nd&#160;ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F1.9780898718027">10.1137/1.9780898718027</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-898715-21-7" title="Special:BookSources/978-0-898715-21-7"><bdi>978-0-898715-21-7</bdi></a>. e<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-802-7" title="Special:BookSources/978-0-89871-802-7">978-0-89871-802-7</a>, 2002075848.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Problem+1.10&amp;rft.btitle=Accuracy+and+Stability+of+Numerical+Algorithms&amp;rft.place=Philadelphia%2C+PA&amp;rft.edition=2nd&amp;rft.pub=Society+for+Industrial+and+Applied+Mathematics&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1137%2F1.9780898718027&amp;rft.isbn=978-0-898715-21-7&amp;rft.aulast=Higham&amp;rft.aufirst=Nicholas+J.&amp;rft_id=https%3A%2F%2Fepubs.siam.org%2Fdoi%2Fbook%2F10.1137%2F1.9780898718027&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span> Metadata also listed at <a rel="nofollow" class="external text" href="https://dl.acm.org/doi/10.5555/579525">ACM Digital Library</a>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWelford1962" class="citation journal cs1">Welford, B. P. (1962). "Note on a method for calculating corrected sums of squares and products". <i><a href="/wiki/Technometrics" title="Technometrics">Technometrics</a></i>. <b>4</b> (3): 419–420. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1266577">10.2307/1266577</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1266577">1266577</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technometrics&amp;rft.atitle=Note+on+a+method+for+calculating+corrected+sums+of+squares+and+products&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=419-420&amp;rft.date=1962&amp;rft_id=info%3Adoi%2F10.2307%2F1266577&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1266577%23id-name%3DJSTOR&amp;rft.aulast=Welford&amp;rft.aufirst=B.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="/wiki/Donald_E._Knuth" class="mw-redirect" title="Donald E. Knuth">Donald E. Knuth</a> (1998). <i><a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming">The Art of Computer Programming</a></i>, volume 2: <i>Seminumerical Algorithms</i>, 3rd edn., p.&#160;232. Boston: Addison-Wesley.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLing1974" class="citation journal cs1">Ling, Robert F. (1974). "Comparison of Several Algorithms for Computing Sample Means and Variances". <i>Journal of the American Statistical Association</i>. <b>69</b> (348): 859–866. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2286154">10.2307/2286154</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2286154">2286154</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Statistical+Association&amp;rft.atitle=Comparison+of+Several+Algorithms+for+Computing+Sample+Means+and+Variances&amp;rft.volume=69&amp;rft.issue=348&amp;rft.pages=859-866&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.2307%2F2286154&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2286154%23id-name%3DJSTOR&amp;rft.aulast=Ling&amp;rft.aufirst=Robert+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCook2022" class="citation web cs1">Cook, John D. (30 September 2022) [1 November 2014]. <a rel="nofollow" class="external text" href="http://www.johndcook.com/standard_deviation.html">"Accurately computing sample variance"</a>. <i>John D. Cook Consulting: Expert consulting in applied mathematics &amp; data privacy</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=John+D.+Cook+Consulting%3A+Expert+consulting+in+applied+mathematics+%26+data+privacy&amp;rft.atitle=Accurately+computing+sample+variance&amp;rft.date=2022-09-30&amp;rft.aulast=Cook&amp;rft.aufirst=John+D.&amp;rft_id=http%3A%2F%2Fwww.johndcook.com%2Fstandard_deviation.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWest1979" class="citation journal cs1">West, D. H. D. (1979). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F359146.359153">"Updating Mean and Variance Estimates: An Improved Method"</a>. <i><a href="/wiki/Communications_of_the_ACM" title="Communications of the ACM">Communications of the ACM</a></i>. <b>22</b> (9): 532–535. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F359146.359153">10.1145/359146.359153</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:30671293">30671293</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+of+the+ACM&amp;rft.atitle=Updating+Mean+and+Variance+Estimates%3A+An+Improved+Method&amp;rft.volume=22&amp;rft.issue=9&amp;rft.pages=532-535&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1145%2F359146.359153&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A30671293%23id-name%3DS2CID&amp;rft.aulast=West&amp;rft.aufirst=D.+H.+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F359146.359153&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-:0-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanGolubLeVeque1979" class="citation web cs1"><a href="/wiki/Tony_F._Chan" title="Tony F. Chan">Chan, Tony F.</a>; <a href="/wiki/Gene_H._Golub" title="Gene H. Golub">Golub, Gene H.</a>; LeVeque, Randall J. (November 1979). <a rel="nofollow" class="external text" href="http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf">"Updating Formulae and a Pairwise Algorithm for Computing Sample Variances"</a> <span class="cs1-format">(PDF)</span>. Department of Computer Science, Stanford University. Technical Report STAN-CS-79-773, supported in part by Army contract No. DAAGEI-‘E-G-013.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Updating+Formulae+and+a+Pairwise+Algorithm+for+Computing+Sample+Variances&amp;rft.pub=Department+of+Computer+Science%2C+Stanford+University&amp;rft.date=1979-11&amp;rft.aulast=Chan&amp;rft.aufirst=Tony+F.&amp;rft.au=Golub%2C+Gene+H.&amp;rft.au=LeVeque%2C+Randall+J.&amp;rft_id=http%3A%2F%2Fi.stanford.edu%2Fpub%2Fcstr%2Freports%2Fcs%2Ftr%2F79%2F773%2FCS-TR-79-773.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerriberry2008" class="citation web cs1">Terriberry, Timothy B. (15 October 2008) [9 December 2007]. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140423031833/http://people.xiph.org/~tterribe/notes/homs.html">"Computing Higher-Order Moments Online"</a>. Archived from <a rel="nofollow" class="external text" href="http://people.xiph.org/~tterribe/notes/homs.html">the original</a> on 23 April 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">5 May</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Computing+Higher-Order+Moments+Online&amp;rft.date=2008-10-15&amp;rft.aulast=Terriberry&amp;rft.aufirst=Timothy+B.&amp;rft_id=http%3A%2F%2Fpeople.xiph.org%2F~tterribe%2Fnotes%2Fhoms.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPébay2008" class="citation web cs1">Pébay, Philippe Pierre (September 2008). <a rel="nofollow" class="external text" href="https://digital.library.unt.edu/ark:/67531/metadc837537/">"Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments"</a>. Sponsoring Org.: USDOE. Albuquerque, NM, and Livermore, CA (United States): Sandia National Laboratories (SNL). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2172%2F1028931">10.2172/1028931</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1028931">1028931</a></span>. Technical Report SAND2008-6212, TRN: US201201%%57, DOE Contract Number: AC04-94AL85000 &#8211; via UNT Digital Library.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Formulas+for+Robust%2C+One-Pass+Parallel+Computation+of+Covariances+and+Arbitrary-Order+Statistical+Moments&amp;rft.place=Albuquerque%2C+NM%2C+and+Livermore%2C+CA+%28United+States%29&amp;rft.pub=Sandia+National+Laboratories+%28SNL%29&amp;rft.date=2008-09&amp;rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1028931%23id-name%3DOSTI&amp;rft_id=info%3Adoi%2F10.2172%2F1028931&amp;rft.aulast=P%C3%A9bay&amp;rft.aufirst=Philippe+Pierre&amp;rft_id=https%3A%2F%2Fdigital.library.unt.edu%2Fark%3A%2F67531%2Fmetadc837537%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPébaÿTerriberryKollaBennett2016" class="citation journal cs1">Pébaÿ, Philippe; Terriberry, Timothy; Kolla, Hemanth; Bennett, Janine (2016). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1232635">"Numerically Stable, Scalable Formulas for Parallel and Online Computation of Higher-Order Multivariate Central Moments with Arbitrary Weights"</a>. <i>Computational Statistics</i>. <b>31</b> (4). Springer: 1305–1325. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00180-015-0637-z">10.1007/s00180-015-0637-z</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124570169">124570169</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computational+Statistics&amp;rft.atitle=Numerically+Stable%2C+Scalable+Formulas+for+Parallel+and+Online+Computation+of+Higher-Order+Multivariate+Central+Moments+with+Arbitrary+Weights&amp;rft.volume=31&amp;rft.issue=4&amp;rft.pages=1305-1325&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1007%2Fs00180-015-0637-z&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124570169%23id-name%3DS2CID&amp;rft.aulast=P%C3%A9ba%C3%BF&amp;rft.aufirst=Philippe&amp;rft.au=Terriberry%2C+Timothy&amp;rft.au=Kolla%2C+Hemanth&amp;rft.au=Bennett%2C+Janine&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1232635&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> <li id="cite_note-Choi2010-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Choi2010_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Choi2010_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoiSweetman2010" class="citation journal cs1">Choi, Myoungkeun; Sweetman, Bert (2010). "Efficient Calculation of Statistical Moments for Structural Health Monitoring". <i>Journal of Structural Health Monitoring</i>. <b>9</b> (1): 13–24. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F1475921709341014">10.1177/1475921709341014</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17534100">17534100</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Structural+Health+Monitoring&amp;rft.atitle=Efficient+Calculation+of+Statistical+Moments+for+Structural+Health+Monitoring&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=13-24&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1177%2F1475921709341014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17534100%23id-name%3DS2CID&amp;rft.aulast=Choi&amp;rft.aufirst=Myoungkeun&amp;rft.au=Sweetman%2C+Bert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Algorithms_for_calculating_variance&amp;action=edit&amp;section=17" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation mathworld" id="Reference-Mathworld-Sample_Variance_Computation"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/SampleVarianceComputation.html">"Sample Variance Computation"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Sample+Variance+Computation&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FSampleVarianceComputation.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAlgorithms+for+calculating+variance" class="Z3988"></span></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐jlfln Cached time: 20241122140948 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.521 seconds Real time usage: 1.956 seconds Preprocessor visited node count: 2449/1000000 Post‐expand include size: 38575/2097152 bytes Template argument size: 2426/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 16/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 89172/5000000 bytes Lua time usage: 0.226/10.000 seconds Lua memory usage: 5735046/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1636.457 1 -total 7.65% 125.113 3 Template:Cite_book 6.17% 100.969 1 Template:Short_description 3.99% 65.300 2 Template:Pagetype 2.71% 44.324 1 Template:Use_dmy_dates 2.62% 42.954 6 Template:Cite_journal 2.61% 42.640 1 Template:Cn 2.30% 37.562 1 Template:Fix 1.58% 25.805 2 Template:Category_handler 1.46% 23.920 12 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:1063-0!canonical and timestamp 20241122140948 and revision id 1253078880. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Algorithms_for_calculating_variance&amp;oldid=1253078880">https://en.wikipedia.org/w/index.php?title=Algorithms_for_calculating_variance&amp;oldid=1253078880</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Statistical_algorithms" title="Category:Statistical algorithms">Statistical algorithms</a></li><li><a href="/wiki/Category:Statistical_deviation_and_dispersion" title="Category:Statistical deviation and dispersion">Statistical deviation and dispersion</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_July_2020" title="Category:Use dmy dates from July 2020">Use dmy dates from July 2020</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2023" title="Category:Articles with unsourced statements from March 2023">Articles with unsourced statements from March 2023</a></li><li><a href="/wiki/Category:Articles_with_example_pseudocode" title="Category:Articles with example pseudocode">Articles with example pseudocode</a></li><li><a href="/wiki/Category:Articles_with_example_Python_(programming_language)_code" title="Category:Articles with example Python (programming language) code">Articles with example Python (programming language) code</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 October 2024, at 07:23<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Algorithms_for_calculating_variance&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-d7pw2","wgBackendResponseTime":129,"wgPageParseReport":{"limitreport":{"cputime":"0.521","walltime":"1.956","ppvisitednodes":{"value":2449,"limit":1000000},"postexpandincludesize":{"value":38575,"limit":2097152},"templateargumentsize":{"value":2426,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":16,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":89172,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1636.457 1 -total"," 7.65% 125.113 3 Template:Cite_book"," 6.17% 100.969 1 Template:Short_description"," 3.99% 65.300 2 Template:Pagetype"," 2.71% 44.324 1 Template:Use_dmy_dates"," 2.62% 42.954 6 Template:Cite_journal"," 2.61% 42.640 1 Template:Cn"," 2.30% 37.562 1 Template:Fix"," 1.58% 25.805 2 Template:Category_handler"," 1.46% 23.920 12 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.226","limit":"10.000"},"limitreport-memusage":{"value":5735046,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-jlfln","timestamp":"20241122140948","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Algorithms for calculating variance","url":"https:\/\/en.wikipedia.org\/wiki\/Algorithms_for_calculating_variance","sameAs":"http:\/\/www.wikidata.org\/entity\/Q4724375","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q4724375","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-03-24T17:10:53Z","dateModified":"2024-10-24T07:23:02Z","headline":"important algorithms in numerical statistics"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10