CINXE.COM

Search results for: microtube array membrane (MTAMs)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microtube array membrane (MTAMs)</title> <meta name="description" content="Search results for: microtube array membrane (MTAMs)"> <meta name="keywords" content="microtube array membrane (MTAMs)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microtube array membrane (MTAMs)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microtube array membrane (MTAMs)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1871</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microtube array membrane (MTAMs)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1871</span> Cold Plasma Surface Modified Electrospun Microtube Array Membrane for Chitosan Immobilization and Their Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ko-Shao%20Chen">Ko-Shao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Tsao"> Yun Tsao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Hsuan%20Tsen"> Chia-Hsuan Tsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chung%20Chen"> Chien-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chuan%20Liao"> Shu-Chuan Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrospun microtube array membranes (MTAMs) made of PLLA (poly-L-lactic acid) have wide potential applications in tissue engineering. However, their surface hydrophobicity and poor biocompatability have limited their further usage. In this study, the surface of PLLA MTAMs were made hydrophilic by introducing extra functional groups, such as peroxide, via an acetic acid plasma (AAP). UV-graft polymerization of acrylic acid (G-AAc) was then used to produce carboxyl group on MTAMs surface, which bonded covalently with chitosan through EDC / NHS crosslinking agents. To evaluate the effects of the surface modification on PLLA MTAMs, water contact angle (WCA) measurement and cell compatibility tests were carried out. We found that AAP treated electrospun PLLA MTAMs grafted with AAc and, finally, with chitosan immobilized via crosslinking agent, exhibited improved hydrophilic and cell compatibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=EDC%2FNHS" title=" EDC/NHS"> EDC/NHS</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20grafting" title=" UV grafting"> UV grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=Chitosan" title=" Chitosan"> Chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29" title=" microtube array membrane (MTAMs)"> microtube array membrane (MTAMs)</a> </p> <a href="https://publications.waset.org/abstracts/50182/cold-plasma-surface-modified-electrospun-microtube-array-membrane-for-chitosan-immobilization-and-their-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1870</span> Numerical Investigation of Al2O3/Water Nanofluid Heat Transfer in a Microtube with Viscous Dissipation Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misagh%20Irandoost%20Shahrestani">Misagh Irandoost Shahrestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Shokouhmand"> Hossein Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Kalteh"> Mohammad Kalteh</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrang%20Hasanpour"> Behrang Hasanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, nanofluid conjugate heat transfer through a microtube with viscous dissipation effect is investigated numerically. The fluid flow is considered as a laminar regime. A constant heat flux is applied on the microtube outer wall and the two ends of its wall are considered adiabatic. Conjugate heat transfer problem is solved and investigated for this geometry. It is shown that viscous dissipation effect which is induced by shear stresses can not be neglected in microtubes. Viscous heating behaves as an energy source in the fluid and affects the temperature distribution. The effect of Reynolds number, particle volume fraction and the nanoparticles diameter on the energy source are investigated and an attempt on establishing suitable equations for assessing the value of the energy source based on Re, Dp and Φ is performed and they are depicted as 3D diagrams. Finally, the significance of viscous dissipation and the influence of these parameters on convective heat transfer coefficient are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer%20coefficient" title="convective heat transfer coefficient">convective heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=microtube" title=" microtube"> microtube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/15475/numerical-investigation-of-al2o3water-nanofluid-heat-transfer-in-a-microtube-with-viscous-dissipation-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1869</span> Effect of Hydraulic Diameter on Flow Boiling Instability in a Single Microtube with Vertical Upward Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20You">Qian You</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Hassan"> Ibrahim Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyes%20Kadem"> Lyes Kadem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment is conducted to fundamentally investigate flow oscillation characteristics in different sizes of single microtubes in vertical upward flow direction. Three microtubes have 0.889 mm, 0.533 mm, and 0.305 mm hydraulic diameters with 100 mm identical heated length. The mass flux of the working fluid FC-72 varies from 700 kg/m2•s to 1400 kg/m2•s, and the heat flux is uniformly applied on the tube surface up to 9.4 W/cm2. The subcooled inlet temperature is maintained around 24°C during the experiment. The effect of hydraulic diameter and mass flux are studied. The results showed that they have interactions on the flow oscillations occurrence and behaviors. The onset of flow instability (OFI), which is a threshold of unstable flow, usually appears in large microtube with diversified and sustained flow oscillations, while the transient point, which is the point when the flow turns from one stable state to another suddenly, is more observed in small microtube without characterized flow oscillations due to the bubble confinement. The OFI/transient point occurs early as hydraulic diameter reduces at a given mass flux. The increased mass flux can delay the OFI/transient point occurrence in large hydraulic diameter, but no significant effect in small size. Although the only transient point is observed in the smallest tube, it appears at small heat flux and is not sensitive to mass flux; hence, the smallest microtube is not recommended since increasing heat flux may cause local dryout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20boiling%20instability" title="flow boiling instability">flow boiling instability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20diameter%20effect" title=" hydraulic diameter effect"> hydraulic diameter effect</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20single%20microtube" title=" a single microtube"> a single microtube</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20upward%20flow" title=" vertical upward flow"> vertical upward flow</a> </p> <a href="https://publications.waset.org/abstracts/29887/effect-of-hydraulic-diameter-on-flow-boiling-instability-in-a-single-microtube-with-vertical-upward-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1868</span> An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20K%C3%BC%C3%A7%C3%BCkak%C3%A7a">Zeynep Küçükakça</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezaket%20Parlak"> Nezaket Parlak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesut%20G%C3%BCr"> Mesut Gür</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahsin%20Engin"> Tahsin Engin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20K%C3%BC%C3%A7%C3%BCk"> Hasan Küçük</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microtube" title="microtube">microtube</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=LMTD%20method" title=" LMTD method"> LMTD method</a> </p> <a href="https://publications.waset.org/abstracts/34123/an-experimental-study-on-heat-and-flow-characteristics-of-water-flow-in-microtube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1867</span> Single Layer Carbon Nanotubes Array as an Efficient Membrane for Desalination: A Molecular Dynamics Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisa%20Y.%20M.%20Ang">Elisa Y. M. Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Yong%20Ng"> Teng Yong Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjie%20Yeo"> Jingjie Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongming%20Lin"> Rongming Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zishun%20Liu"> Zishun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Geethalakshmi"> K. R. Geethalakshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By stacking carbon nanotubes (CNT) one on top of another, single layer CNT arrays can perform water-salt separation with ultra-high permeability and selectivity. Such outer-wall CNT slit membrane is named as the transverse flow CNT membrane. By adjusting the slit size between neighboring CNTs, the membrane can be configured to sieve out different solutes, right down to the separation of monovalent salt ions from water. Molecular dynamics (MD) simulation results show that the permeability of transverse flow CNT membrane is more than two times that of conventional axial-flow CNT membranes, and orders of magnitude higher than current reverse osmosis membrane. In addition, by carrying out MD simulations with different CNT size, it was observed that the variance in desalination performance with CNT size is small. This insensitivity of the transverse flow CNT membrane’s performance to CNT size is a distinct advantage over axial flow CNT membrane designs. Not only does the membrane operate well under constant pressure desalination operation, but MD simulations further indicate that oscillatory operation can further enhance the membrane’s desalination performance, making it suitable for operation such as electrodialysis reversal. While there are still challenges that need to be overcome, particularly on the physical fabrication of such membrane, it is hope that this versatile membrane design can bring the idea of using low dimensional structures for desalination closer to reality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20desalination" title=" membrane desalination"> membrane desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20flow%20carbon%20nanotube%20membrane" title=" transverse flow carbon nanotube membrane"> transverse flow carbon nanotube membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/97386/single-layer-carbon-nanotubes-array-as-an-efficient-membrane-for-desalination-a-molecular-dynamics-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1866</span> SEM-EBSD Observation for Microtubes by Using Dieless Drawing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Sakai">Takashi Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Itaru%20Kumisawa"> Itaru Kumisawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because die drawing requires insertion of a die, a plug, or a mandrel, higher precision and efficiency are demanded for drawing equipment for a tube having smaller diameter. Manufacturing of such tubes is also accompanied by problems such as cracking and fracture. We specifically examine dieless drawing, which is less affected by these drawing-related difficulties. This deformation process is governed by a similar principle to that of reduction in diameter when pulling a heated glass tube. We conducted dieless drawing of SUS304 stainless steel microtubes under various conditions with three factor parameters of heating temperature, area reduction, and drawing speed. We used SEM-EBSD to observe the processing condition effects on microstructural elements. As the result of this study, crystallographic orientation of microtube is clear by using SEM-EBSD analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microtube" title="microtube">microtube</a>, <a href="https://publications.waset.org/abstracts/search?q=dieless%20drawing" title=" dieless drawing"> dieless drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=IPF%20%28inverse%20pole%20figure%29" title=" IPF (inverse pole figure)"> IPF (inverse pole figure)</a>, <a href="https://publications.waset.org/abstracts/search?q=GOS%20%28grain%20orientation%20spread%29" title=" GOS (grain orientation spread)"> GOS (grain orientation spread)</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallographic%20analysis" title=" crystallographic analysis"> crystallographic analysis</a> </p> <a href="https://publications.waset.org/abstracts/74385/sem-ebsd-observation-for-microtubes-by-using-dieless-drawing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1865</span> Kinetics of Cu(II) Transport through Bulk Liquid Membrane with Different Membrane Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siu%20Hua%20Chang">Siu Hua Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayub%20Md%20Som"> Ayub Md Som</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannathan%20Krishnan"> Jagannathan Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: Fresh cooking oil, waste cooking oil, and kerosene each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane, and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20kinetics" title="transport kinetics">transport kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20liquid%20membrane" title=" bulk liquid membrane"> bulk liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cooking%20oil" title=" waste cooking oil "> waste cooking oil </a> </p> <a href="https://publications.waset.org/abstracts/2082/kinetics-of-cuii-transport-through-bulk-liquid-membrane-with-different-membrane-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1864</span> The Design of Broadband 8x2 Phased Array 5G Antenna MIMO 28 GHz for Base Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saiful%20Fadhil%20Reyhan">Muhammad Saiful Fadhil Reyhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusnita%20Rahayu"> Yusnita Rahayu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhel%20Muhammadsyah"> Fadhel Muhammadsyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed a design of 16 elements, 8x2 linear fed patch antenna array with 16 ports, for 28 GHz, mm-wave band 5G for base station. The phased array covers along the azimuth plane to provide the coverage to the users in omnidirectional. The proposed antenna is designed RT Duroid 5880 substrate with the overall size of 85x35.6x0.787 mm<sup>3</sup>. The array is operating from 27.43 GHz to 28.34 GHz with a 910 MHz impedance bandwidth. The gain of the array is 18.3 dB, while the suppression of the side lobes is -1.0 dB. The main lobe direction of the array is 15 deg. The array shows a high array gain throughout the impedance bandwidth with overall of VSWR is below 1.12. The design will be proposed in single element and 16 elements antenna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G%20antenna" title="5G antenna">5G antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=28%20GHz" title=" 28 GHz"> 28 GHz</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=omnidirectional" title=" omnidirectional"> omnidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=phased%20array" title=" phased array"> phased array</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20station" title=" base station"> base station</a>, <a href="https://publications.waset.org/abstracts/search?q=broadband" title=" broadband"> broadband</a> </p> <a href="https://publications.waset.org/abstracts/85986/the-design-of-broadband-8x2-phased-array-5g-antenna-mimo-28-ghz-for-base-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1863</span> Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Khaled">Fatma Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Hidouri"> Khaoula Hidouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bechir%20Chaouachi"> Bechir Chaouachi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20membrane%20distillation" title="vacuum membrane distillation">vacuum membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20module" title=" membrane module"> membrane module</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20temperature" title=" membrane temperature"> membrane temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/107225/study-of-a-developed-model-describing-a-vacuum-membrane-distillation-unit-coupled-to-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1862</span> Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Alenezi">Hanan Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20Dispersive%20X-Ray%20Spectroscopy%20%28EDS%29" title="Energy Dispersive X-Ray Spectroscopy (EDS)">Energy Dispersive X-Ray Spectroscopy (EDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Membrane" title=" Membrane"> Membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyetherimide%20PEI" title=" Polyetherimide PEI"> Polyetherimide PEI</a>, <a href="https://publications.waset.org/abstracts/search?q=Scanning%20electron%20microscope%20%28SEM%29" title=" Scanning electron microscope (SEM)"> Scanning electron microscope (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Solvent" title=" Solvent"> Solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20Diffraction%20%28XRD%29" title=" X-Ray Diffraction (XRD)"> X-Ray Diffraction (XRD)</a> </p> <a href="https://publications.waset.org/abstracts/120499/basic-evaluation-for-polyetherimide-membrane-using-spectroscopy-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1861</span> Photovoltaic Array Cleaning System Design and Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghoname%20Abdullah">Ghoname Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidekazu%20Nishimura"> Hidekazu Nishimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dust accumulation on the photovoltaic module&#39;s surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cleaning%20system" title="cleaning system">cleaning system</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20accumulation" title=" dust accumulation"> dust accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20array" title=" PV array"> PV array</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title=" PV module"> PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=soiling" title=" soiling"> soiling</a> </p> <a href="https://publications.waset.org/abstracts/136571/photovoltaic-array-cleaning-system-design-and-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1860</span> Water Purification By Novel Nanocomposite Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Johal">E. S. Johal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Saini"> M. S. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Jha"> M. K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, 1.1 billion people are at risk due to lack of clean water and about 35 % of people in the developed world die from water related problem. To alleviate these problems water purification technology requires new approaches for effective management and conservation of water resources. Electrospun nanofibres membrane has a potential for water purification due to its high large surface area and good mechanical strength. In the present study PAMAM dendrimers composite nynlon-6 nanofibres membrane was prepared by crosslinking method using Glutaraldehyde. Further, the efficacy of the modified membrane can be renewed by mere exposure of the saturated membrane with the solution having acidic pH. The modified membrane can be used as an effective tool for water purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title="dendrimer">dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20membrane" title=" nanocomposite membrane"> nanocomposite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/9638/water-purification-by-novel-nanocomposite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1859</span> Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Claribelle%20Nwogu">Ngozi Claribelle Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Nasir%20Kajama"> Mohammed Nasir Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Godson%20Osueke"> Godson Osueke</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20permeation" title="gas permeation">gas permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/25963/gas-permeation-behavior-of-single-and-mixed-gas-components-using-an-asymmetric-ceramic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1858</span> Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingwei%20Wang">Jingwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20G.%20Fane"> Anthony G. Fane</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling%20mitigation" title="membrane fouling mitigation">membrane fouling mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-solid%20fluidization" title=" liquid-solid fluidization"> liquid-solid fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20flux" title=" critical flux"> critical flux</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20input" title=" energy input"> energy input</a> </p> <a href="https://publications.waset.org/abstracts/75555/effect-of-fluidized-granular-activated-carbon-for-the-mitigation-of-membrane-fouling-in-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1857</span> A CMOS Capacitor Array for ESPAR with Fast Switching Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Sup%20Kim">Jin-Sup Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Se-Hwan%20Choi"> Se-Hwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Young%20Lee"> Jae-Young Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 8-bit CMOS capacitor array is designed for using in electrically steerable passive array radiator (ESPAR). The proposed capacitor array shows the fast response time in rising and falling characteristics. Compared to other works in silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technologies, it shows a comparable tuning range and switching time with low power consumption. Using the 0.18um CMOS, the capacitor array features a tuning range of 1.5 to 12.9 pF at 2.4GHz. Including the 2X4 decoder for control interface, the Chip size is 350um X 145um. Current consumption is about 80 nA at 1.8 V operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20capacitor%20array" title="CMOS capacitor array">CMOS capacitor array</a>, <a href="https://publications.waset.org/abstracts/search?q=ESPAR" title=" ESPAR"> ESPAR</a>, <a href="https://publications.waset.org/abstracts/search?q=SOI" title=" SOI"> SOI</a>, <a href="https://publications.waset.org/abstracts/search?q=SOS" title=" SOS"> SOS</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20time" title=" switching time"> switching time</a> </p> <a href="https://publications.waset.org/abstracts/24058/a-cmos-capacitor-array-for-espar-with-fast-switching-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> Micro-Filtration with an Inorganic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benyamina">Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouldabess"> Ouldabess</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalah"> Bensalah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to use membrane technique for filtration of a coloring solution. the preparation of the micro-filtration membranes is based on a natural clay powder with a low cost, deposited on macro-porous ceramic supports. The micro-filtration membrane provided a very large permeation flow. Indeed, the filtration effectiveness of membrane was proved by the total discoloration of bromothymol blue solution with initial concentration of 10-3 mg/L after the first minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20inorganic%20membrane" title="the inorganic membrane">the inorganic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-filtration" title=" micro-filtration"> micro-filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=coloring%20solution" title=" coloring solution"> coloring solution</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20clay%20powder" title=" natural clay powder"> natural clay powder</a> </p> <a href="https://publications.waset.org/abstracts/25743/micro-filtration-with-an-inorganic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> An Automated Sensor System for Cochlear Implants Electrode Array Insertion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Hou">Lei Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinli%20Du"> Xinli Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Boulgouris"> Nikolaos Boulgouris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cochlear implant, referred to as a CI, is a small electronic device that can provide direct electrical stimulation to the auditory nerve. During cochlear implant surgery, atraumatic electrode array insertion is considered to be a crucial step. However, during implantation, the mechanical behaviour of an electrode array inside the cochlea is not known. The behaviour of an electrode array inside of the cochlea is hardly identified by regular methods. In this study, a CI electrode array capacitive sensor system is proposed. It is able to automatically determine the array state as a result of the capacitance variations. Instead of applying sensors to the electrode array, the capacitance information from the electrodes will be gathered and analysed. Results reveal that this sensing method is capable of recognising different states when fed into a pre-shaped model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implant" title="cochlear implant">cochlear implant</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20preservation" title=" hearing preservation"> hearing preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=insertion%20force" title=" insertion force"> insertion force</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive%20sensing" title=" capacitive sensing"> capacitive sensing</a> </p> <a href="https://publications.waset.org/abstracts/80147/an-automated-sensor-system-for-cochlear-implants-electrode-array-insertion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Experimental Analysis on the Thermal Performance of Vacuum Membrane Distillation Module Using Polyvinylidene Fluoride Hollow Fiber Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong-Jin%20Joo">Hong-Jin Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Yoel%20Kwak"> Hee-Yoel Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum Membrane Distillation (VMD) uses pressure lower than the atmospheric pressure. The feed seawater is capable of producing more vapor at the same temperature than Direct Contact Membrane Distillation (DCMD), Air Gap Membrane Distillation (AGMD) or Sweep Gas Membrane Distillation (SGMD). It is advantageous because it is operable at a lower temperature than other membrane distillations. However, no commercial product is available that uses the VMD method, as it is still in the study stage. In this study, therefore, thermal performance test according to the feed water conditions was performed prior to both construction of the demonstration plant, which uses VMD module of the capacity of 400m³/d in South Korea, and commercialization of VMD module with hollow fiber membrane. Such study was performed by designing and constructing the VMD module of the capacity of 2 m³/day which utilizes the polyvinylidene fluoride (PVDF) hollow fiber membrane. The results obtained from the VMD module manufactured by ECONITY Co., Ltd in South Korea, showed that the maximum performance ratio (PR) value of 0.904, feed water temperature of 75 ℃, and the flow rate of 8 m3/h. As the temperature of and flow rate of the feed water increased, the PR value of the VMD module also increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title="membrane distillation">membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20membrane%20distillation" title=" vacuum membrane distillation"> vacuum membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20fiber%20membrane" title=" hollow fiber membrane"> hollow fiber membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a> </p> <a href="https://publications.waset.org/abstracts/76714/experimental-analysis-on-the-thermal-performance-of-vacuum-membrane-distillation-module-using-polyvinylidene-fluoride-hollow-fiber-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1853</span> Super-Hydrophilic TFC Membrane with High Stability in Oil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Obaid">M. Obaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20M.%20Barakat"> Nasser A. M. Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadali%20O.A"> Fadali O.A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low stability in oil media and the hydrophobicity problems of the ploysulfone electrospun membranes could be overcome in the present study. Synthesis of super-hydrophilic and highly stable in oil polysulfone electrospun nanofiber membrane was achieved by electrospinning of polysulfone solution containing NaOH salt followed by activation of the dried electrospun membrane by deposition of polyamide layer on the surface using m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride. The introduced membrane has super-hydrophilicity characteristic (contact angle=3o), excellent stability in oil media and distinct performance in oil-water separation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-degradability" title=" oil-degradability"> oil-degradability</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/17053/super-hydrophilic-tfc-membrane-with-high-stability-in-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1852</span> Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Bera">Rajesh Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=Durbadal%20Mandal"> Durbadal Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Kar"> Rajib Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakti%20P.%20Ghoshal"> Sakti P. Ghoshal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thinned%20array" title="thinned array">thinned array</a>, <a href="https://publications.waset.org/abstracts/search?q=Particle%20Swarm%20Optimization" title=" Particle Swarm Optimization"> Particle Swarm Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Elliptical%20Cylindrical%20Array" title=" Elliptical Cylindrical Array"> Elliptical Cylindrical Array</a>, <a href="https://publications.waset.org/abstracts/search?q=Side%20Lobe%20Label." title=" Side Lobe Label."> Side Lobe Label.</a> </p> <a href="https://publications.waset.org/abstracts/4068/thinned-elliptical-cylindrical-antenna-array-synthesis-using-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1851</span> Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Alhathal%20Alanezi">Adnan Alhathal Alanezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alanood%20A.%20Alsarayreh"> Alanood A. Alsarayreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20contact%20membrane%20distillation" title="direct contact membrane distillation">direct contact membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20inclination%20angle" title=" membrane inclination angle"> membrane inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20number" title=" reynolds number"> reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/151283/effect-of-inclination-angle-on-productivity-of-a-direct-contact-membrane-distillation-dcmd-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1850</span> Integrated Flavor Sensor Using Microbead Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziba%20Omidi">Ziba Omidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Ki%20Kim"> Min-Ki Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20sensor" title="optical sensor">optical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20manufacturing" title=" semiconductor manufacturing"> semiconductor manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=smell%20sensor" title=" smell sensor"> smell sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=taste%20sensor" title=" taste sensor"> taste sensor</a> </p> <a href="https://publications.waset.org/abstracts/11443/integrated-flavor-sensor-using-microbead-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1849</span> Effect of Silver Nanoparticles in Temperature Polarization of Distillation Membranes for Desalination Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lopez%20J.">Lopez J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrvar%20M."> Mehrvar M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Quinones%20E."> Quinones E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Suarez%20A."> Suarez A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Romero%20C."> Romero C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane Distillation is an emerging technology that uses thermal and membrane steps for the desalination process to get drinking water. In this study, silver nanoparticles (AgNP) were deposited by dip-coating process over Polyvinylidene Fluoride, Fiberglass hydrophilic, and Polytetrafluoroethylene hydrophobic commercial membranes as substrate. Membranes were characterized and used in a Vacuum Membrane Distillation cell under Ultraviolet light with sea salt feed solution. The presence of AgNP increases the absorption of energy on the membrane, which improves the transmembrane flux. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title="silver nanoparticles">silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title=" membrane distillation"> membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination%20technologies" title=" desalination technologies"> desalination technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20deliver" title=" heat deliver"> heat deliver</a> </p> <a href="https://publications.waset.org/abstracts/148598/effect-of-silver-nanoparticles-in-temperature-polarization-of-distillation-membranes-for-desalination-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1848</span> Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Aida%20Isma">M. I. Aida Isma</a>, <a href="https://publications.waset.org/abstracts/search?q=Azni%20Idris"> Azni Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozita%20Omar"> Rozita Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Putri%20Razreena"> A. R. Putri Razreena </a> </p> <p class="card-text"><strong>Abstract:</strong></p> 40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title="membrane bioreactor">membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=SRT" title=" SRT"> SRT</a>, <a href="https://publications.waset.org/abstracts/search?q=HRT" title=" HRT"> HRT</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a> </p> <a href="https://publications.waset.org/abstracts/6152/effects-of-srt-and-hrt-on-treatment-performance-of-mbr-and-membrane-fouling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1847</span> Organic Rejection and Membrane Fouling with Inorganic Alumina Membrane for Industrial Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Ahmad">Rizwan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Soomin%20Chang"> Soomin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Daeun%20Kwon"> Daeun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghwan%20Kim"> Jeonghwan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interests in an inorganic membrane are growing rapidly for industrial wastewater treatment due to its excellent chemical and thermal stability over polymeric membrane. Nevertheless, understanding of the membrane rejection and fouling rate caused by the deposit of contaminants on membrane surface and within membrane pores through inorganic porous membranes still requires much attention. Microfiltration alumina membranes were developed and applied for the industrial wastewater treatment to investigate rejection efficiency of organic contaminant and membrane fouling at various operational conditions. In this study, organic rejection and membrane fouling were investigated by using the alumina flat-tubular membrane developed for the treatment of industrial wastewaters. The flat-tubular alumina membranes were immersed in a fluidized membrane reactor added with granular activated carbon (GAC) particles. Fluidization was driven by recirculating a bulk industrial wastewater along membrane surface through the reactor. In the absence of GAC particles, for hazardous anionic dye contaminants, functional group characterized by the organic contaminant was found as one of the main factors affecting both membrane rejection and fouling rate. More fouling on the membrane surface led to the existence of dipolar characterizations and this was more pronounced at lower solution pH, thereby improving membrane rejection accordingly. Similar result was observed with a real metal-plating wastewater. Strong correlation was found that higher fouling rate resulted in higher organic rejection efficiency. Hydrophilicity exhibited by alumina membrane improved the organic rejection efficiency of the membrane due to the formation of hydrophilic fouling layer deposited on it. In addition, less surface roughness of alumina membrane resulted in less fouling rate. Regardless of the operational conditions applied in this study, fluidizing the GAC particles along the surface of alumina membrane was very effective to enhance organic removal efficiency higher than 95% and provide an excellent tool to reduce membrane fouling. Less than 0.1 bar as suction pressure was maintained with the alumina membrane at 25 L/m²hr of permeate set-point flux during the whole operational periods without performing any backwashing and chemical enhanced cleaning for the membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20membrane" title="alumina membrane">alumina membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20membrane%20reactor" title=" fluidized membrane reactor"> fluidized membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title=" industrial wastewater"> industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=rejection" title=" rejection"> rejection</a> </p> <a href="https://publications.waset.org/abstracts/102592/organic-rejection-and-membrane-fouling-with-inorganic-alumina-membrane-for-industrial-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1846</span> 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ojaroudi%20Parchin">N. Ojaroudi Parchin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jahanbakhsh%20Basherlou"> H. Jahanbakhsh Basherlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Al-Yasir"> Y. Al-Yasir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abdulkhaleq"> A. M. Abdulkhaleq</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Abd-Alhameed"> R. A. Abd-Alhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Excell"> P. S. Excell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1&times;8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mm-wave%20communications" title="mm-wave communications">mm-wave communications</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-sector%20array" title=" multi-sector array"> multi-sector array</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20antenna" title=" patch antenna"> patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20cell%20networks" title=" small cell networks"> small cell networks</a> </p> <a href="https://publications.waset.org/abstracts/111450/60-ghz-multi-sector-antenna-array-with-switchable-radiation-beams-for-small-cell-5g-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1845</span> Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Heidari">M. Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Safekordi"> A. Safekordi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zamaniyan"> A. Zamaniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ganji%20Babakhani"> E. Ganji Babakhani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amanipour"> M. Amanipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite-type membrane Ba<sub>0.5</sub>Sr<sub>0.5</sub>Ce<sub>0.9</sub>Y<sub>0.1</sub>O<sub>3-&delta;</sub> (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 &deg;C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba<sup>2+</sup>. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm<sup>2</sup> at 900 &deg;C and partial pressure of 0.6. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20separation" title="hydrogen separation">hydrogen separation</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20conducting%20membrane." title=" proton conducting membrane."> proton conducting membrane.</a> </p> <a href="https://publications.waset.org/abstracts/54608/hydrogen-permeability-of-bscy-proton-conducting-perovskite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1844</span> Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hasbullah">N. Hasbullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Sekak"> K. A. Sekak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte%20membrane%20%28PEM%29" title="polymer electrolyte membrane (PEM)">polymer electrolyte membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29" title=" sulfonated poly (ether ether ketone) (SPEEK)"> sulfonated poly (ether ether ketone) (SPEEK)</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20sulfonation" title=" degree sulfonation"> degree sulfonation</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrospinning" title=" Electrospinning"> Electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanofibers" title=" Nanofibers "> Nanofibers </a> </p> <a href="https://publications.waset.org/abstracts/26841/synthesis-and-characterizations-of-sulfonated-poly-ether-ether-ketone-speek-nanofiber-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1843</span> Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Wei%20Huang">Kai-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20capture" title="carbon dioxide capture">carbon dioxide capture</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20contactor" title=" membrane contactor"> membrane contactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title=" ceramic membrane"> ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fiber%20membrane" title=" ceramic hollow fiber membrane"> ceramic hollow fiber membrane</a> </p> <a href="https://publications.waset.org/abstracts/21521/preparation-of-ceramic-hollow-fiber-membranes-for-co2-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1842</span> PIN-Diode Based Slotted Reconfigurable Multiband Antenna Array for Vehicular Communication </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Upadhyay">Gaurav Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nand%20Kishore"> Nand Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Ranjan"> Prashant Ranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivesh%20Tripathi"> Shivesh Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Tripathi"> V. S. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a patch antenna array design is proposed for vehicular communication. The antenna consists of 2-element patch array. The antenna array is operating at multiple frequency bands. The multiband operation is achieved by use of slots at proper locations at the patch. The array is made reconfigurable by use of two PIN-diodes. The antenna is simulated and measured in four states of diodes i.e. ON-ON, ON-OFF, OFF-ON, and OFF-OFF. In ON-ON state of diodes, the resonant frequencies are 4.62-4.96, 6.50-6.75, 6.90-7.01, 7.34-8.22, 8.89-9.09 GHz. In ON-OFF state of diodes, the measured resonant frequencies are 4.63-4.93, 6.50-6.70 and 7.81-7.91 GHz. In OFF-ON states of diodes the resonant frequencies are 1.24-1.46, 3.40-3.75, 5.07-5.25 and 6.90-7.20 GHz and in the OFF-OFF state of diodes 4.49-4.75 and 5.61-5.98 GHz. The maximum bandwidth of the proposed antenna is 16.29%. The peak gain of the antenna is 3.4 dB at 5.9 GHz, which makes it suitable for vehicular communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=array" title=" array"> array</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title=" reconfigurable"> reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular" title=" vehicular"> vehicular</a> </p> <a href="https://publications.waset.org/abstracts/85090/pin-diode-based-slotted-reconfigurable-multiband-antenna-array-for-vehicular-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microtube%20array%20membrane%20%28MTAMs%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10