CINXE.COM

Search results for: lunar samples

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lunar samples</title> <meta name="description" content="Search results for: lunar samples"> <meta name="keywords" content="lunar samples"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lunar samples" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lunar samples"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6335</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lunar samples</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6335</span> Analysis of Gas Disturbance Characteristics in Lunar Sample Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng">Lv Shizeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao"> Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yi"> Zhang Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Wenjing"> Ding Wenjing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth&#39;s environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20samples" title="lunar samples">lunar samples</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20disturbance" title=" gas disturbance"> gas disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20device" title=" storage device"> storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20analysis" title=" characteristic analysis"> characteristic analysis</a> </p> <a href="https://publications.waset.org/abstracts/69595/analysis-of-gas-disturbance-characteristics-in-lunar-sample-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6334</span> Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangwan%20Xu">Jiangwan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyu%20Ding"> Chunyu Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground-based%20radar" title="ground-based radar">ground-based radar</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20exploration" title=" lunar exploration"> lunar exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20imaging" title=" radar imaging"> radar imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20surface%2Fsubsurface%20detection" title=" lunar surface/subsurface detection"> lunar surface/subsurface detection</a> </p> <a href="https://publications.waset.org/abstracts/190029/lunar-exploration-based-on-ground-based-radar-current-research-progress-and-future-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6333</span> Vision Aided INS for Soft Landing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sri%20Karthi%20Krishna">R. Sri Karthi Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Saravana%20Kumar"> A. Saravana Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kesava%20Brahmaji"> Kesava Brahmaji</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Vinoj"> V. S. Vinoj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vision%20aided%20INS" title="vision aided INS">vision aided INS</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20velocity%20estimation" title=" lateral velocity estimation"> lateral velocity estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/10147/vision-aided-ins-for-soft-landing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6332</span> Electrostatic Cleaning System Integrated with Thunderon Brush for Lunar Dust Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Voss%20%20Harrigan">Voss Harrigan</a>, <a href="https://publications.waset.org/abstracts/search?q=Korey%20%20Carter"> Korey Carter</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Shaeri"> Mohammad Reza Shaeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detrimental effects of lunar dust on space hardware, spacesuits, and astronauts’ health have been already identified during Apollo missions. Developing effective dust mitigation technologies is critically important for successful space exploration and related missions in NASA applications. In this study, an electrostatic cleaning system (ECS) integrated with a negatively ionized Thunderon brush was developed to mitigate small-sized lunar dust particles with diameters ranging from 0.04 µm to 35 µm, and the mean and median size of 7 µm and 5 µm, respectively. It was found that the frequency pulses of the negative ion generator caused particles to stick to the Thunderon bristles and repel between the pulses. The brush was used manually to ensure that particles were removed from areas where the ECS failed to mitigate the lunar simulant. The acquired data demonstrated that the developed system removed over 91-96% of the lunar dust particles. The present study was performed as a proof-of-concept to enhance the cleaning performance of ECSs by integrating a brushing process. Suggestions were made to further improve the performance of the developed technology through future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20dust%20mitigation" title="lunar dust mitigation">lunar dust mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20cleaning%20system" title=" electrostatic cleaning system"> electrostatic cleaning system</a>, <a href="https://publications.waset.org/abstracts/search?q=Brushing" title=" Brushing"> Brushing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thunderon%20brush" title=" Thunderon brush"> Thunderon brush</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaning%20rate" title=" cleaning rate"> cleaning rate</a> </p> <a href="https://publications.waset.org/abstracts/139454/electrostatic-cleaning-system-integrated-with-thunderon-brush-for-lunar-dust-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6331</span> Equipment Design for Lunar Lander Landing-Impact Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohuan%20Li">Xiaohuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wangmin%20Yi"> Wangmin Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghui%20Wu"> Xinghui Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing-impact%20test" title="landing-impact test">landing-impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=releasing%20device" title=" releasing device"> releasing device</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20equipment" title=" test equipment"> test equipment</a> </p> <a href="https://publications.waset.org/abstracts/10548/equipment-design-for-lunar-lander-landing-impact-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6330</span> Determination of the Toxicity of a Lunar Dust Simulant on Human Alveolar Epithelial Cells and Macrophages in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agatha%20Bebbington">Agatha Bebbington</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Tetley"> Terry Tetley</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20Hadler"> Kathryn Hadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Astronauts will set foot on the Moon later this decade, and are at high risk of lunar dust inhalation. Freshly-fractured lunar dust produces reactive oxygen species in solution, which are known to cause cellular damage and inflammation. Cytotoxicity and inflammatory mediator release was measured in pulmonary alveolar epithelial cells (cells that line the gas-exchange zone of the lung) exposed to a lunar dust simulant, LMS-1. It was hypothesised that freshly-fractured LMS-1 would result in increased cytotoxicity and inflammatory mediator release, owing to the angular morphology and high reactivity of fractured particles. Methods: A human alveolar epithelial type 1-like cell line (TT1) and a human macrophage-like cell line (THP-1) were exposed to 0-200μg/ml of unground, aged-ground, and freshly-ground LMS-1 (screened at <22μm). Cell viability, cytotoxicity, and inflammatory mediator release (IL-6, IL-8) were assessed using MMT, LDH, and ELISA assays, respectively. LMS-1 particles were characterised for their size, surface area, and morphology before and after grinding. Results: Exposure to LMS-1 particles did not result in overt cytotoxicity in either TT1 epithelial cells or THP-1 macrophage-like cells. A dose-dependent increase in IL-8 release was observed in TT1 cells, whereas THP-1 cell exposure, even at low particle concentrations, resulted in increased IL-8 release. Both cytotoxic and pro-inflammatory responses were most marked and significantly greater in TT1 and THP-1 cells exposed to freshly-fractured LMS-1. Discussion: LMS-1 is a novel lunar dust simulant; this is the first study to determine its toxicological effects on respiratory cells in vitro. An increased inflammatory response in TT1 and THP-1 cells exposed to ground LMS-1 suggests that low particle size, increased surface area, and angularity likely contribute to toxicity. Conclusions: Evenlow levels of exposure to LMS-1 could result in alveolar inflammation. This may have pathological consequences for astronauts exposed to lunar dust on future long-duration missions. Future research should test the effect of low-dose, intermittent lunar dust exposure on the respiratory system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20dust" title="lunar dust">lunar dust</a>, <a href="https://publications.waset.org/abstracts/search?q=LMS-1" title=" LMS-1"> LMS-1</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20dust%20simulant" title=" lunar dust simulant"> lunar dust simulant</a>, <a href="https://publications.waset.org/abstracts/search?q=long-duration%20space%20travel" title=" long-duration space travel"> long-duration space travel</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20dust%20toxicity" title=" lunar dust toxicity"> lunar dust toxicity</a> </p> <a href="https://publications.waset.org/abstracts/141528/determination-of-the-toxicity-of-a-lunar-dust-simulant-on-human-alveolar-epithelial-cells-and-macrophages-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6329</span> Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Jia">Shan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinbao%20Chen"> Jinbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhua%20Zhou"> Jinhua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiacheng%20Qian"> Jiacheng Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=configuration%20design" title="configuration design">configuration design</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20soft-landing%20device" title=" lunar soft-landing device"> lunar soft-landing device</a>, <a href="https://publications.waset.org/abstracts/search?q=movable" title=" movable"> movable</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/98256/configuration-design-and-optimization-of-the-movable-leg-foot-lunar-soft-landing-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6328</span> Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrigank%20Sahai">Mrigank Sahai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sri%20Raghu"> R. Sri Raghu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision-less%20gas" title="collision-less gas">collision-less gas</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=plume%20impingement" title=" plume impingement"> plume impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=rarefied%20exhaust%20plume" title=" rarefied exhaust plume"> rarefied exhaust plume</a> </p> <a href="https://publications.waset.org/abstracts/58713/modelling-of-lunar-landers-thrusters-exhaust-plume-impingement-in-vacuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6327</span> Invalidation of the Start of Lunar Calendars Based on Sighting of Crescent: A Survey of 101 Years of Data between 1938 and 2038</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Ouared">Rafik Ouared</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to invalidate decisions made by the Islamic conference led at Istanbul in 2016, which had defined two basic criteria to determine the start of the lunar month: (1)they are all based on the sighting of the crescent, be it observed or computed with modern methods, and (2) they've strongly recommended the adoption of the principle of 'unification of sighting', by which any occurrence of sighting anywhere would be applicable everywhere. To demonstrate the invalidation of those statements, a survey of 101 years of data, from 1938 to 2038, have been analyzed to compare the probability density function (PDF) of time difference between different types of fajr and new moon. Two groups of fajr have been considered: the 'natural fajr', which is the very first fajr following new moon, and the 'biased fajr', which is defined by human being inclusively of all chosen definitions. The parametric and non-parametric statistical comparisons between the different groups have shown the all the biased PDFs are significantly different from the unbiased (natural) PDF with probability value (p-value) less than 0.001. The significance level was fixed to 0.05. Conclusion: the on-going reference to sighting of crescent is inducing an significant bias in defining lunar calendar. Therefore, 'natural' calendar would be more applicable requiring a more contextualized revision of issue in fiqh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biased%20fajr" title="biased fajr">biased fajr</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20calendar" title=" lunar calendar"> lunar calendar</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fajr" title=" natural fajr"> natural fajr</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20density%20function" title=" probability density function"> probability density function</a>, <a href="https://publications.waset.org/abstracts/search?q=sighting%20of%20crescent" title=" sighting of crescent"> sighting of crescent</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20difference%20between%20fajr%20and%20new%20moon" title=" time difference between fajr and new moon"> time difference between fajr and new moon</a> </p> <a href="https://publications.waset.org/abstracts/95353/invalidation-of-the-start-of-lunar-calendars-based-on-sighting-of-crescent-a-survey-of-101-years-of-data-between-1938-and-2038" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6326</span> Perturbative Analysis on a Lunar Free Return Trajectory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20%C3%9Cnal">Emre Ünal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Ba%C5%9Faran"> Hasan Başaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission&rsquo;s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6<sup>th</sup> order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apollo-13%20trajectory" title="Apollo-13 trajectory">Apollo-13 trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20drag" title=" atmospheric drag"> atmospheric drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20trajectories" title=" lunar trajectories"> lunar trajectories</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness%20effect" title=" oblateness effect"> oblateness effect</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbative%20effects" title=" perturbative effects"> perturbative effects</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation%20pressure" title=" solar radiation pressure"> solar radiation pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20body%20perturbations" title=" third body perturbations"> third body perturbations</a> </p> <a href="https://publications.waset.org/abstracts/130408/perturbative-analysis-on-a-lunar-free-return-trajectory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6325</span> A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johns%20Paul">Johns Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20J.%20Nalluveettil"> Santhosh J. Nalluveettil</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Purushothaman"> P. Purushothaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Premdas"> M. Premdas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title="honeycomb">honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20leg%20tripod" title=" landing leg tripod"> landing leg tripod</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20link" title=" primary link"> primary link</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20link" title=" secondary link"> secondary link</a> </p> <a href="https://publications.waset.org/abstracts/37327/a-mathematical-model-for-studying-landing-dynamics-of-a-typical-lunar-soft-lander" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6324</span> Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Borja%20de%20Lara">Francisco Borja de Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ravanbakhsh"> Ali Ravanbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20F.%20Wimmer-Schweingruber"> Robert F. Wimmer-Schweingruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Seimetz"> Lars Seimetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferm%C3%ADn%20Navarro"> Fermín Navarro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%E2%80%99E4" title="Chang’E4">Chang’E4</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20national%20space%20administration" title=" Chinese national space administration"> Chinese national space administration</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander%20neutron%20dosimetry" title=" lunar lander neutron dosimetry"> lunar lander neutron dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=nastran-patran" title=" nastran-patran"> nastran-patran</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/71329/study-case-of-spacecraft-instruments-in-structural-modelling-with-nastran-patran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6323</span> Crater Detection Using PCA from Captured CMOS Camera Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatsuya%20Takino">Tatsuya Takino</a>, <a href="https://publications.waset.org/abstracts/search?q=Izuru%20Nomura"> Izuru Nomura</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Kageyama"> Yuji Kageyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%20Nagata"> Shin Nagata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Kamata"> Hiroyuki Kamata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a method of detecting the craters from the image of the lunar surface. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) working group aiming at the pinpoint landing on the lunar surface and investigating scientific research. It is difficult to equip and use high-performance computers for the small space probe. So, it is necessary to use a small computer with an exclusive hardware such as FPGA. We have studied the crater detection using principal component analysis (PCA), In this paper, We implement detection algorithm into the FPGA, and the detection is performed on the data that was captured from the CMOS camera. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crater%20detection" title="crater detection">crater detection</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/19003/crater-detection-using-pca-from-captured-cmos-camera-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6322</span> Next-Generation Lunar and Martian Laser Retro-Reflectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simone%20Dell%27Agnello">Simone Dell&#039;Agnello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are laser retroreflectors on the Moon and no laser retroreflectors on Mars. Here we describe the design, construction, qualification and imminent deployment of next-generation, optimized laser retroreflectors on the Moon and on Mars (where they will be the first ones). These instruments are positioned by time-of-flight measurements of short laser pulses, the so-called 'laser ranging' technique. Data analysis is carried out with PEP, the Planetary Ephemeris Program of CfA (Center for Astrophysics). Since 1969 Lunar Laser Ranging (LLR) to Apollo/Lunokhod laser retro-reflector (CCR) arrays supplied accurate tests of General Relativity (GR) and new gravitational physics: possible changes of the gravitational constant Gdot/G, weak and strong equivalence principle, gravitational self-energy (Parametrized Post Newtonian parameter beta), geodetic precession, inverse-square force-law; it can also constraint gravitomagnetism. Some of these measurements also allowed for testing extensions of GR, including spacetime torsion, non-minimally coupled gravity. LLR has also provides significant information on the composition of the deep interior of the Moon. In fact, LLR first provided evidence of the existence of a fluid component of the deep lunar interior. In 1969 CCR arrays contributed a negligible fraction of the LLR error budget. Since laser station range accuracy improved by more than a factor 100, now, because of lunar librations, current array dominate the error due to their multi-CCR geometry. We developed a next-generation, single, large CCR, MoonLIGHT (Moon Laser Instrumentation for General relativity high-accuracy test) unaffected by librations that supports an improvement of the space segment of the LLR accuracy up to a factor 100. INFN also developed INRRI (INstrument for landing-Roving laser Retro-reflector Investigations), a microreflector to be laser-ranged by orbiters. Their performance is characterized at the SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab, INFN-LNF, Frascati, Italy) for their deployment on the lunar surface or the cislunar space. They will be used to accurately position landers, rovers, hoppers, orbiters of Google Lunar X Prize and space agency missions, thanks to LLR observations from station of the International Laser Ranging Service in the USA, in France and in Italy. INRRI was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars) EDM (Entry, descent and landing Demonstration Module), deployed on the Schiaparelli lander and is proposed for the ExoMars 2020 Rover. Based on an agreement between NASA and ASI (Agenzia Spaziale Italiana), another microreflector, LaRRI (Laser Retro-Reflector for InSight), was delivered to JPL (Jet Propulsion Laboratory) and integrated on NASA’s InSight Mars Lander in August 2017 (launch scheduled in May 2018). Another microreflector, LaRA (Laser Retro-reflector Array) will be delivered to JPL for deployment on the NASA Mars 2020 Rover. The first lunar landing opportunities will be from early 2018 (with TeamIndus) to late 2018 with commercial missions, followed by opportunities with space agency missions, including the proposed deployment of MoonLIGHT and INRRI on NASA’s Resource Prospectors and its evolutions. In conclusion, we will extend significantly the CCR Lunar Geophysical Network and populate the Mars Geophysical Network. These networks will enable very significantly improved tests of GR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20retroreflectors" title=" laser retroreflectors"> laser retroreflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20laser%20ranging" title=" lunar laser ranging"> lunar laser ranging</a>, <a href="https://publications.waset.org/abstracts/search?q=Mars%20geodesy" title=" Mars geodesy"> Mars geodesy</a> </p> <a href="https://publications.waset.org/abstracts/80376/next-generation-lunar-and-martian-laser-retro-reflectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6321</span> Characterization of Kopff Crater Using Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreekumari%20Patel">Shreekumari Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhjot%20Kaur"> Prabhjot Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Paras%20Solanki"> Paras Solanki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crater" title="crater">crater</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=moon" title=" moon"> moon</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20observations" title=" radar observations"> radar observations</a> </p> <a href="https://publications.waset.org/abstracts/96879/characterization-of-kopff-crater-using-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6320</span> Calendar Anomalies in Islamic Frontier Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aslam%20Faheem">Aslam Faheem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunjra%20Ahmed%20Imran"> Hunjra Ahmed Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayachi%20Tahar"> Tayachi Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Verhoeven%20Peter"> Verhoeven Peter</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Yasir"> Tariq Yasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the evidence of three risk-adjusted calendar anomalies in eight frontier markets. Our sample consists of the daily closing prices of their stock indices for the period of January 2006 to September 2019. We categorize the data with respect to day-of-the-week, Lunar calendar and Islamic calendar. Using Morgan Stanley Capital International (MSCI) eight Markets Index as our proxy of the market portfolio, most of the frontier markets tested exhibit calendar seasonality. We confirm that systematic risk varies with respect to day-of-the-week, Lunar months and Islamic months. After consideration of time-varying risk and applying Bonferroni correction, few frontier markets exhibit profitable investment opportunities from calendar return anomalies for active investment managers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asset%20pricing" title="asset pricing">asset pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=frontier%20markets" title=" frontier markets"> frontier markets</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20efficiency" title=" market efficiency"> market efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Islamic%20calendar%20effects" title=" Islamic calendar effects"> Islamic calendar effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Islamic%20stock%20markets" title=" Islamic stock markets"> Islamic stock markets</a> </p> <a href="https://publications.waset.org/abstracts/143899/calendar-anomalies-in-islamic-frontier-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6319</span> Noise Mitigation Techniques to Minimize Electromagnetic Interference/Electrostatic Discharge Effects for the Lunar Mission Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vabya%20Kumar%20Pandit">Vabya Kumar Pandit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudit%20Mittal"> Mudit Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Prahlad%20Rao"> N. Prahlad Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramnath%20Babu"> Ramnath Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TeamIndus is the only Indian team competing for the Google Lunar XPRIZE(GLXP). The GLXP is a global competition to challenge the private entities to soft land a rover on the moon, travel minimum 500 meters and transmit high definition images and videos to Earth. Towards this goal, the TeamIndus strategy is to design and developed lunar lander that will deliver a rover onto the surface of the moon which will accomplish GLXP mission objectives. This paper showcases the various system level noise control techniques adopted by Electrical Distribution System (EDS), to achieve the required Electromagnetic Compatibility (EMC) of the spacecraft. The design guidelines followed to control Electromagnetic Interference by proper electronic package design, grounding, shielding, filtering, and cable routing within the stipulated mass budget, are explained. The paper also deals with the challenges of achieving Electromagnetic Cleanliness in presence of various Commercial Off-The-Shelf (COTS) and In-House developed components. The methods of minimizing Electrostatic Discharge (ESD) by identifying the potential noise sources, susceptible areas for charge accumulation and the methodology to prevent arcing inside spacecraft are explained. The paper then provides the EMC requirements matrix derived from the mission requirements to meet the overall Electromagnetic compatibility of the Spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility" title="electromagnetic compatibility">electromagnetic compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20discharge" title=" electrostatic discharge"> electrostatic discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20systems" title=" electrical distribution systems"> electrical distribution systems</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20schemes" title=" grounding schemes"> grounding schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20harnessing" title=" light weight harnessing"> light weight harnessing</a> </p> <a href="https://publications.waset.org/abstracts/71198/noise-mitigation-techniques-to-minimize-electromagnetic-interferenceelectrostatic-discharge-effects-for-the-lunar-mission-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6318</span> Solar Panel Design Aspects and Challenges for a Lunar Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mannika%20Garg">Mannika Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Srinivas%20Murthy"> N. Srinivas Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunish%20Nair"> Sunish Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20balance%20analysis" title="energy balance analysis">energy balance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20junction%20solar%20cells" title=" multi junction solar cells"> multi junction solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20attitude" title=" spacecraft attitude"> spacecraft attitude</a> </p> <a href="https://publications.waset.org/abstracts/71202/solar-panel-design-aspects-and-challenges-for-a-lunar-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6317</span> Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youtao%20Gao">Youtao Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingyu%20Jin"> Bingyu Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanran%20Zhao"> Tanran Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Xu"> Bo Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72788/comparison-of-extended-kalman-filter-and-unscented-kalman-filter-for-autonomous-orbit-determination-of-lagrangian-navigation-constellation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6316</span> Living by the Maramataka: Mahi Maramataka, Indigenous Environmental Knowledge Systems and Wellbeing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayla%20Hoeta">Ayla Hoeta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this research is mahi Maramataka, ‘the practices of Maramataka’ as a traditional and evolving knowledge system and its connection to whaanau oranga (wellbeing) and healing. Centering kaupapa Maaori methods and knowledge this research will explore how Maramataka can be used as a tool for oranga and healing for whaanau to engage with different environments aligned with Maramataka flow and optimal time based on the environment. Maramataka is an ancestral lunar environmental knowledge system rooted within korero tuku iho, Maaori creation stories, dating back to the beginning of time. The significance of Maramataka is the ancient environmental knowledge and the connecting energy flow of mauri (life force) between whenua (land), moana (ocean) and rangi (sky). The lunar component of the Maramataka is widely understood and highlights the different phases of the moon. Each moon phase is named with references to puurakau stories and environmental and ecological information. Marama, meaning moon and taka, meaning cycle, is used as a lunar and environmental calendar. There are lunar phases that are optimal for specific activities, such as the Tangaroa phase, a time of abundance and productivity and ocean-based activities like fishing. Other periods in the Maramataka, such as Rakaunui (full moon), connect the highest tides and highest energy of the lunar cycle, ideal for social, physical activity and particularly planting. Other phases like Tamatea are unpredictable whereas Whiro (new moon/s) is reflective, deep and cautious during the darkest nights. Whaanau, particularly in urban settings have become increasingly disconnected from the natural environment, the Maramataka has become a tool that they can connect to which offers an alternative to dominant perspectives of health and is an approach that is uniquely Maaori. In doing so, this research will raise awareness of oranga or lack of oranga, and lived experience of whaanau in Tamaki Makaurau - Aotearoa, on a journey to revival of Maramataka and healing. The research engages Hautu Waka as a methodology using the methods of ancient kaupapa Māori practises based on wayfinding and attunement with the natural environment. Using ancient ways of being, knowing, seeing and doing the Hautu Waka will centre kaupapa Maaori perspectives to process design, reflection and evaluation. The methods of Hautu Waka consists of five interweaving phases, 1) Te Rapunga (the search) in infinite potential, 2) Te Kitenga (the seeing), observations of and attunement to tohu 3) te whainga (the pursuit) and deeply exploring key tohu 4) te whiwhinga (the acquiring), of knowledge and clearer ideas, 5) Te Rawenga (the celebration), reflection and acknowledgement of the journey and achievements. This research is an expansion from my creative practices across whaanau-centred inquiry, to understand the benefits of Maramataka and how it can be embodied and practised in a modern-day context to support oranga and healing. Thus, the goal is to work with kaupapa Maaori methodologies to authenticate as a Maaori practitioner and researcher and allow an authentic indigenous approach to the exploration of Maramataka and through a kaupapa Maaori lens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maramataka%20%28Maaori%20calendar%29" title="maramataka (Maaori calendar)">maramataka (Maaori calendar)</a>, <a href="https://publications.waset.org/abstracts/search?q=tangata%20%28people%29" title=" tangata (people)"> tangata (people)</a>, <a href="https://publications.waset.org/abstracts/search?q=taiao%20%28environment%29" title=" taiao (environment)"> taiao (environment)</a>, <a href="https://publications.waset.org/abstracts/search?q=whenua%20%28land%29" title=" whenua (land)"> whenua (land)</a>, <a href="https://publications.waset.org/abstracts/search?q=whaanau%20%28family%29" title=" whaanau (family)"> whaanau (family)</a>, <a href="https://publications.waset.org/abstracts/search?q=hautu%20waka%20%28navigation%20framework%29" title=" hautu waka (navigation framework)"> hautu waka (navigation framework)</a> </p> <a href="https://publications.waset.org/abstracts/171705/living-by-the-maramataka-mahi-maramataka-indigenous-environmental-knowledge-systems-and-wellbeing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6315</span> Great Food, No Atmosphere: A Review of Performance Nutrition for Application to Extravehicular Activities in Spaceflight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lauren%20E.%20Church">Lauren E. Church</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Extravehicular activities (EVAs) are a critical aspect of missions aboard the International Space Station (ISS). It has long been noted that the spaceflight environment and the physical demands of EVA cause physiological and metabolic changes in humans; this review aims to combine these findings with nutritional studies in analogues of the spaceflight and EVA environments to make nutritional recommendations for astronauts scheduled for and immediately returning from EVAs. Results: Energy demands increase during orbital spaceflight and see further increases during EVA. Another critical element of EVA nutrition is adequate hydration. Orbital EVA appears to provide adequate hydration under current protocol, but during lunar surface EVA (LEVA) and in a 10km lunar walk-back test astronauts have stated that up to 20% more water was needed. Previous attempts for in-suit edible sustenance have not been adequately taken up by astronauts to be economically viable. In elite endurance athletes, a mixture of glucose and fructose is used in gels, improving performance. Discussion: A combination of non-caffeinated energy drink and simple water should be available for astronauts during EVA, allowing more autonomy. There should also be provision of gels or a similar product containing appropriate sodium levels to maintain hydration, but not so much as to hyperhydrate through renal water reabsorption. It is also suggested that short breaks be built into the schedule of EVAs for these gels to be consumed, as it is speculated that reason for low uptake of in-suit sustenance is the lack of time available in which to consume it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astronaut" title="astronaut">astronaut</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=sport" title=" sport"> sport</a> </p> <a href="https://publications.waset.org/abstracts/121556/great-food-no-atmosphere-a-review-of-performance-nutrition-for-application-to-extravehicular-activities-in-spaceflight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6314</span> Determination of Carbofuran Residue in Brinjal (Solanum melongena L.) and Soil of Brinjal Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Haque"> M. A. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Kabir"> K. H. Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A supervised trail was set with brinjal at research field, Entomology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur to determine the residue of Carbofuran in soil and fruit samples at different days after application (DAA) of Furadan 5 G @ 2 kg AI/ ha. Field collected samples were analyzed by GCMS-EI. Results of the experiment indicated the presence of Carbofuran residue up to 60 DAA in soil samples and 25 DAA in brinjal fruit samples. In case of soil samples, the detected residues were 7.04, 2.78, 0.79, 0.43, 0.12, 0.06 and 0.05 ppm at 0, 2, 5, 10, 20, 30 and 60 DAA respectively. On the other hand, in brinjal fruit samples Carbofuran residues were 0.005 ppm, 0.095 ppm, 0.084 ppm, 0.065 ppm, 0.063 ppm, 0.056 ppm, 0.050 ppm, 0.030 ppm and 0.016 ppm at 0, 2, 4, 6, 8, 10, 12, 15 and 25-DAA, respectively. None of this amount was above the recommended MRL (0.1 mg / kg crop) of Carborufan for agricultural crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brinjal" title="brinjal">brinjal</a>, <a href="https://publications.waset.org/abstracts/search?q=carbofuran" title=" carbofuran"> carbofuran</a>, <a href="https://publications.waset.org/abstracts/search?q=MRL" title=" MRL"> MRL</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a> </p> <a href="https://publications.waset.org/abstracts/29583/determination-of-carbofuran-residue-in-brinjal-solanum-melongena-l-and-soil-of-brinjal-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6313</span> The Determination of Contamination Rate of Traditional White Cheese in Behbahan Markets to Coliforms and Pathogenic Escherichia Coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Mohammad%20Jafar">Sana Mohammad Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossaini%20Seyahi%20Zohreh"> Hossaini Seyahi Zohreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infections and food intoxication caused by microbial contamination of food is of major issues in different countries, and diseases caused by the consumption of contaminated food included a large percentage of the country's health problems. Since traditional cheese for cultural reasons, good taste and smell in many parts of the area still has the important place in people's food basket, transmission of pathogenic bacteria could be at risk human health through the consumption of this food. In this study selected randomly 100 samples of 250 grams of traditional cheeses supplied in the city Behbahan market and adjacent to the ice was transferred to the laboratory and microbiological tests were performed immediately. According to the results, from 100 samples tested traditional cheese, 94 samples (94% of samples) were contaminated with coliforms, which of this number 75 samples (75% of samples) the contamination rate was higher than the limit (more than 100 cfu/g). Of the total samples, 36 samples (36% of samples) were contaminated with fecal coliform which of this number 30 samples (30% of samples) were contaminated with Escherichia.coli bacteria. Based on the results of agglutination test,no samples was found positive as pathogenic Escherichia.coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=determination" title="determination">determination</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20cheese" title=" traditional cheese"> traditional cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=Behbahan" title=" Behbahan"> Behbahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/32561/the-determination-of-contamination-rate-of-traditional-white-cheese-in-behbahan-markets-to-coliforms-and-pathogenic-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6312</span> Melt Conditioned-Twin Roll Casting of Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das">Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. The microstructures showed uniform fine equiaxed grain morphology in the case of MC-TRC cast samples. In the case of TRC samples elongated grains with centerline segregation was observed. Further investigation showed both the process has different solidification mechanism. Tensile tests were performed at 250–400ºC for both TRC and MCTRC samples. At 250ºC, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. It was observed that homogenized MC-TRC samples were easily hot stamped compared to TRC samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MC-TRC" title="MC-TRC">MC-TRC</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/71008/melt-conditioned-twin-roll-casting-of-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6311</span> Evaluation of Major and Minor Components in Dakahlia Water Resources for Drinking Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Mandour">R. A. Mandour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physical, chemical, and microbiological analyses of fifty Quaternary water samples representing the different types of drinking water (surface and wells) in the governorate were carried-out. This paper aims to evaluate the drinking water in Dakahlia governorate in comparison with the national and international standards as a step to handle water pollutants affecting human health in this governorate. All investigated water samples were chemically considered suitable for drinking except two samples for iron, two samples for lead and one water sample for manganese having values higher than the permissible limit of EMH and WHO. Also microbiologically there were five water samples having a high total count of bacteria and three samples having high coli form than the permissible limit of EMH. Obviously, groundwater samples from Mit-Ghamr, El-Sinbillawin and Aga districts of Dakahlia governorate should have special attention for treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=major%20ions" title="major ions">major ions</a>, <a href="https://publications.waset.org/abstracts/search?q=minor%20elements" title=" minor elements"> minor elements</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=EMH" title=" EMH"> EMH</a>, <a href="https://publications.waset.org/abstracts/search?q=WHO" title=" WHO "> WHO </a> </p> <a href="https://publications.waset.org/abstracts/24534/evaluation-of-major-and-minor-components-in-dakahlia-water-resources-for-drinking-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6310</span> Histopathological Examination of Lung Surgery Camel in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Chitgar">Ali Chitgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Respiratory infections including diseases in camels are important not only because of the threat of animal health but also to reduce their production. Since that deal with respiratory problems and their treatment requires adequate knowledge of the existing respiratory problems, unfortunately, there is limited information about the species of camels. This study aimed to identify lung lesions camels slaughtered in a slaughterhouse more important was performed using histopathology. Respiratory camels (n = 477) was examined after the killing fully and tissue samples were placed in 10% formalin. The samples and histological sections using hematoxylin and eosin staining and color were evaluated. In this study 79.6 % (236 of 477 samples) of the samples was at least a lung lesion. Rate acute interstitial pneumonia, chronic interstitial pneumonia, bronchopneumonia, bronchiolitis, an inflammation of the pleura and 52.8 % respectively atelectasis (236 of 477 samples), 5.4 % (24 of 477 samples), 7.8 % (35 of 477 samples), 6.7 % (30 of 477 samples), 3.4 % (15 of 477 samples) and 15.2% (68 of 477 samples). The lung lesions, acute interstitial pneumonia and bronchopneumonia in autumn winter rather than spring and summer (p <0/05) and as a result, this study showed that high rates of lung lesions in the camel population. Waste higher results in cold seasons (fall and winter) shows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel" title="camel">camel</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a>, <a href="https://publications.waset.org/abstracts/search?q=breathing%20organ" title=" breathing organ"> breathing organ</a> </p> <a href="https://publications.waset.org/abstracts/55173/histopathological-examination-of-lung-surgery-camel-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6309</span> Maramataka ki te Tiri o Te Moana (Maramataka in Antarctica).: A Conceptual Maramataka in the Southwestern Ross Sea Region of Antarctica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayla%20Hoeta">Ayla Hoeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Holly%20Winton"> Holly Winton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maramataka is an ancestral lunar environmental knowledge system based on environmental tohu (signs, observations or indicators), that continues to impart maatauranga (knowledge) to tangata whenua, people of the land after thousands of years. Maramataka is the mauri (energy) flow between whenua (land), moana (water) and rangi (sky), experienced through tirotiro (observing), connecting and attuning to the natural environment. Tohu serve as guidance to practises of kaiawhina (protection) a key value driving Aotearoa New Zealand led research in Antarctica. Recent developments recognise the importance of including and integrating indigenous knowledge and perspectives such as maatauranga Maaori which can provide insights into the conservation of Antarctica. We use an ancient kaupapa Maaori framework of weaving, wayfinding and attunement to navigate complexities using Hautu Waka. We investigate and weave together learnings from Antarctic and western science and indigenous Maaori maatauranga and tohu of moana, whenua and rangi to provide an indigenous perspective of Antarctica taiao and Maramataka. Drawing on past and present knowledge of environmental calendars contained in maatauranga Maaori and paleoclimate knowledge bases, field observations, interviews and whakataukii (proverbs), we aim to provide a conceptual Maramataka of the southwestern Ross Sea region and area of Antarctica. A key area of interest are the tohu related to the marama which are connected to all three interweaving spheres of moana, rangi, whenua. Maatauranga Maramataka in Aotearoa has been developed over millennia and we acknowledge the mana and sacredness of this tupuna knowledge and that this conceptual Maramataka serves as the starting point of a journey to shine light on indigenous perspectives using Maaori methods and frameworks in a dominant western science paradigm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maramataka" title="Maramataka">Maramataka</a>, <a href="https://publications.waset.org/abstracts/search?q=Antarctica" title=" Antarctica"> Antarctica</a>, <a href="https://publications.waset.org/abstracts/search?q=Aotearoa" title=" Aotearoa"> Aotearoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maaori" title=" Maaori"> Maaori</a>, <a href="https://publications.waset.org/abstracts/search?q=tohu" title=" tohu"> tohu</a>, <a href="https://publications.waset.org/abstracts/search?q=moon" title=" moon"> moon</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20calendar" title=" lunar calendar"> lunar calendar</a> </p> <a href="https://publications.waset.org/abstracts/172755/maramataka-ki-te-tiri-o-te-moana-maramataka-in-antarctica-a-conceptual-maramataka-in-the-southwestern-ross-sea-region-of-antarctica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6308</span> Thoughts on the Informatization Technology Innovation of Cores and Samples in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Honggang%20Qu">Honggang Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongmei%20Liu"> Rongmei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wang"> Bin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Xu"> Yong Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenji%20Gao"> Zhenji Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a big gap in the ability and level of the informatization technology innovation of cores and samples compared with developed countries. Under the current background of promoting the technology innovation, how to strengthen the informatization technology innovation of cores and samples for National Cores and Samples Archives, which is a national innovation research center, is an important research topic. The paper summarizes the development status of cores and samples informatization technology, and finds the gaps and deficiencies, and proposes the innovation research directions and content, including data extraction, recognition, processing, integration, application and so on, so as to provide some reference and guidance for the future innovation research of the archives and support better the geological technology innovation in China. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cores%20and%20samples%3B" title="cores and samples;">cores and samples;</a>, <a href="https://publications.waset.org/abstracts/search?q=informatization%20technology%3B" title=" informatization technology;"> informatization technology;</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%3B" title=" innovation;"> innovation;</a>, <a href="https://publications.waset.org/abstracts/search?q=suggestion" title=" suggestion"> suggestion</a> </p> <a href="https://publications.waset.org/abstracts/167580/thoughts-on-the-informatization-technology-innovation-of-cores-and-samples-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6307</span> Comparison of Aflatoxin B1 Levels in Iranian and Indian Spices by ELISA Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sasan%20Mozaffari%20Nejad">Amir Sasan Mozaffari Nejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to detect the presence of aflatoxin B1 (AFB1) in 36 samples of spices from Iran and India that was included of chilli powder (n=12), black pepper powder (n=12) and whole black pepper (n=12). Enzyme-linked immunosorbent assay (ELISA) method was used for analysing the samples. Aflatoxin B1 was found in all the spices samples, the concentration of AFB1 in Iranian samples was ranged from 63.16 to 626.81 ng/kg and in Indian samples was ranged from 31.15 to 245.94 ng/kg. The mean of AFB1 concentration in the chilli powder was significantly higher (P < 0.05) than the whole and powdered black pepper. However, none of the samples exceeded the maximum prescribed limit i.e. 5 µg/kg of European Union regulations for aflatoxin B1. The occurrence of AFB1 in spices samples could be a potential hazard for public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20B1" title="Aflatoxin B1">Aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=chilli" title=" chilli"> chilli</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/2110/comparison-of-aflatoxin-b1-levels-in-iranian-and-indian-spices-by-elisa-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6306</span> Machine Learning for Exoplanetary Habitability Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=King%20Kumire">King Kumire</a>, <a href="https://publications.waset.org/abstracts/search?q=Amos%20Kubeka"> Amos Kubeka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine-learning" title="machine-learning">machine-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=habitability" title=" habitability"> habitability</a>, <a href="https://publications.waset.org/abstracts/search?q=exoplanets" title=" exoplanets"> exoplanets</a>, <a href="https://publications.waset.org/abstracts/search?q=supercomputing" title=" supercomputing"> supercomputing</a> </p> <a href="https://publications.waset.org/abstracts/152642/machine-learning-for-exoplanetary-habitability-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=211">211</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=212">212</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lunar%20samples&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10