CINXE.COM
Search results for: square wave anodic stripping voltammetry
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: square wave anodic stripping voltammetry</title> <meta name="description" content="Search results for: square wave anodic stripping voltammetry"> <meta name="keywords" content="square wave anodic stripping voltammetry"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="square wave anodic stripping voltammetry" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="square wave anodic stripping voltammetry"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3292</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: square wave anodic stripping voltammetry</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3292</span> Square Wave Anodic Stripping Voltammetry of Copper (II) at the Tetracarbonylmolybdenum(0) MWCNT Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Isa">Illyas Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Idris%20Saidin"> Mohamad Idris Saidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustaffa%20Ahmad"> Mustaffa Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashim"> Norhayati Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A highly selective and sensitive electrode for determination of trace amounts of Cu (II) using square wave anodic stripping voltammetry (SWASV) was proposed. The electrode was made of the paste of multiwall carbon nanotubes (MWCNT) and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) at 100:5 (w/w). Under optimal conditions the electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu (II) and limit of detection 8.0 × 10–11 M Cu (II). The relative standard deviation (n = 5) of response to 1.0 × 10–6 M Cu(II) was 0.036. The interferences of cations such as Ni(II), Mg(II), Cd(II), Co(II), Hg(II), and Zn(II) (in 10 and 100-folds concentration) are negligible except from Pb (II). Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favorable. Result of analysis of Cu(II) in several water samples agreed well with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). The proposed electrode was then recommended as an alternative to spectroscopic technique in analyzing Cu (II). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode" title="chemically modified electrode">chemically modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=Square%20wave%20anodic%20stripping%20voltammetry" title=" Square wave anodic stripping voltammetry"> Square wave anodic stripping voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracarbonylmolybdenum%280%29" title=" tetracarbonylmolybdenum(0)"> tetracarbonylmolybdenum(0)</a> </p> <a href="https://publications.waset.org/abstracts/45191/square-wave-anodic-stripping-voltammetry-of-copper-ii-at-the-tetracarbonylmolybdenum0-mwcnt-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3291</span> Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Idris%20Saidin"> Mohamad Idris Saidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustaffa%20Ahmad"> Mustaffa Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashim"> Norhayati Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20modified%20electrode" title="chemically modified electrode">chemically modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracarbonylmolybdenum%280%29" title=" tetracarbonylmolybdenum(0)"> tetracarbonylmolybdenum(0)</a> </p> <a href="https://publications.waset.org/abstracts/37515/sensitive-determination-of-copperii-by-square-wave-anodic-stripping-voltammetry-with-tetracarbonylmolybdenum0-multiwalled-carbon-nanotube-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3290</span> Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Sai%20Geethika">V. Sai Geethika</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Snehitha%20Yadavalli"> Sai Snehitha Yadavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Ghosh%20Acharyya"> Swati Ghosh Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arsenic%28III%29" title="Arsenic(III)">Arsenic(III)</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromium%28III%29" title=" Chromium(III)"> Chromium(III)</a>, <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon%20electrode" title=" glassy carbon electrode"> glassy carbon electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercury%20%28II%29" title=" Mercury (II)"> Mercury (II)</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/146812/simultaneous-electrochemical-detection-of-chromiumiii-arseniciii-and-mercury-ii-in-water-using-anodic-stripping-voltammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3289</span> Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sruthi">K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Snehitha%20Yadavalli"> Sai Snehitha Yadavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Swathi%20Gosh%20Acharyya"> Swathi Gosh Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon%20electrode" title=" glassy carbon electrode"> glassy carbon electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/146805/optimized-parameters-for-simultaneous-detection-of-cd2-pb2-and-co2-ions-in-water-using-square-wave-voltammetry-on-the-unmodified-glassy-carbon-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3288</span> Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Snehitha%20Yadavalli">Sai Snehitha Yadavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sruthi"> K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Ghosh%20Acharyya"> Swati Ghosh Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensing" title=" electrochemical sensing"> electrochemical sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon%20electrodes" title=" glassy carbon electrodes"> glassy carbon electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20Ions" title=" heavy metal Ions"> heavy metal Ions</a>, <a href="https://publications.waset.org/abstracts/search?q=Iron" title=" Iron"> Iron</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride" title=" polyvinyl chloride"> polyvinyl chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiostat" title=" potentiostat"> potentiostat</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/146822/simultaneous-detection-of-cd2-fe2-co2-and-pb2-heavy-metal-ions-by-stripping-voltammetry-using-polyvinyl-chloride-modified-glassy-carbon-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3287</span> Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad">Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Illyas%20M.%20Isa"> Illyas M. Isa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxybenzene" title="4-dihydroxybenzene">4-dihydroxybenzene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroquinone" title=" hydroquinone"> hydroquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/84969/electrochemical-detection-of-hydroquinone-by-square-wave-voltammetry-using-a-zn-layered-hydroxide-ferulate-modified-multiwall-carbon-nanotubes-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3286</span> Modified Fe₃O₄ Nanoparticles for Electrochemical Sensing of Heavy Metal Ions Pb²⁺, Hg²⁺, and Cd²⁺ in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Megha">Megha</a>, <a href="https://publications.waset.org/abstracts/search?q=Diksha"> Diksha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Rani"> Seema Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Kaur"> Balwinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harminder%20Kaur"> Harminder Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe₃O₄@SiO₂@SB functionalized magnetic nanoparticles were synthesized and used to detect heavy metal ions such as Pb²⁺, Hg²⁺, and Cd²⁺ in water. The formation of Fe₃O₄@SiO₂@SB nanocatalyst was confirmed by XRD, SEM, TEM, and IR. The simultaneous determination of analyte cations was carried out using square wave anodic stripping voltammetry (SWASV). Investigation and optimisation were done to study how experimental variables affected the performance of the modified magnetic electrode. Pb²⁺, Hg²⁺, and Cd²⁺ were successfully detected using the designed sensor in the presence of various possibly interfering ions. The recovery rate was found to be 97.5% for Pb²⁺, 96.2% for Hg²⁺, 103.5% for Cd²⁺. The electrochemical sensor was also employed to determine the presence of heavy metal ions in drinking water samples, which are well below the World Health Organization (WHO) guidelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20water%20samples" title=" environmental water samples"> environmental water samples</a> </p> <a href="https://publications.waset.org/abstracts/172188/modified-fe3o4-nanoparticles-for-electrochemical-sensing-of-heavy-metal-ions-pb2-hg2-and-cd2-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3285</span> Poly (Diphenylamine-4-Sulfonic Acid) Modified Glassy Carbon Electrode for Voltammetric Determination of Gallic Acid in Honey and Peanut Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelalem%20Bitew">Zelalem Bitew</a>, <a href="https://publications.waset.org/abstracts/search?q=Adane%20Kassa"> Adane Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Beyene%20Misgan"> Beyene Misgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a sensitive and selective voltammetric method based on poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode (poly(DPASA)/GCE) was developed for determination of gallic acid. Appearance of an irreversible oxidative peak at both bare GCE and poly(DPASA)/GCE for gallic acid with about three folds current enhancement and much reduced potential at poly(DPASA)/GCE showed catalytic property of the modifier towards oxidation of gallic acid. Under optimized conditions, Adsorptive stripping square wave voltammetric peak current response of the poly(DPASA)/GCE showed linear dependence with gallic acid concentration in the range 5.00 × 10-7 − 3.00 × 10-4 mol L-1 with limit of detection of 4.35 × 10-9. Spike recovery results between 94.62-99.63, 95.00-99.80 and 97.25-103.20% of gallic acid in honey, raw peanut, and commercial peanut butter samples respectively, interference recovery results with less than 4.11% error in the presence of uric acid and ascorbic acid, lower LOD and relatively wider dynamic range than most of the previously reported methods validated the potential applicability of the method based on poly(DPASA)/GCE for determination of gallic acid real samples including in honey and peanut samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title="gallic acid">gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=diphenyl%20amine%20sulfonic%20acid" title=" diphenyl amine sulfonic acid"> diphenyl amine sulfonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorptive%20anodic%20striping%20square%20wave%20voltammetry" title=" adsorptive anodic striping square wave voltammetry"> adsorptive anodic striping square wave voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut" title=" peanut"> peanut</a> </p> <a href="https://publications.waset.org/abstracts/172221/poly-diphenylamine-4-sulfonic-acid-modified-glassy-carbon-electrode-for-voltammetric-determination-of-gallic-acid-in-honey-and-peanut-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3284</span> Electro-oxidation of Catechol in the Presence of Nicotinamide at Different pH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin">M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of catechol in the presence of nicotinamide as nucleophiles has been studied in aqueous solution with various pH values and different concentration of nicotinamide using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry of catechol in buffer solution (3.00 < pH < 9.00) shows one anodic and corresponding cathodic peak which relates to the transformation of catechol to corresponding o-benzoquinone and vice versa within a quasi reversible two electron transfer process. Cyclic voltammogram of catechol in the presence of nicotinamide in buffer solution of pH 7, show one anodic peak in the first cycle of potential and on the reverse scan the corresponding cathodic peak slowly decreases and new peak is observed at less positive potential. In the second cycle of potential a new anodic peak is observed at less positive potential. This indicates that nicotinamide attached with catechol and formed adduct after first cycle of oxidation. The effect of pH of catechol in presence of nicotinamide was studied by varying pH from 3 to 11. The substitution reaction of catechol with nicotimamide is facilitated at pH 7. In buffer solution of higher pH (>9), the CV shows different pattern. The effect of concentration of nicotinamide was studied by 2mM to 100 mM. The maximum substitution reaction has been found for 50 mM of nicotinamide and of pH 7. The proportionality of the first scan anodic and cathodic peak currents with square root of scan rate suggests that the peak current of the species at each redox reaction is controlled by diffusion process. The current functions (1/v-1/2) of the anodic peak decreased with the increasing of scan rate demonstrated that the behavior of the substitution reaction is of ECE type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title="redox interaction">redox interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol" title=" catechol"> catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotinamide" title=" nicotinamide"> nicotinamide</a>, <a href="https://publications.waset.org/abstracts/search?q=substituion%20reaction" title=" substituion reaction"> substituion reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect "> pH effect </a> </p> <a href="https://publications.waset.org/abstracts/19185/electro-oxidation-of-catechol-in-the-presence-of-nicotinamide-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3283</span> Fabrication of Biosensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste Electrode for Determination of Anti-Hypertensive and Prostatic Hyperplasia Drug Terazosin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20M.%20Hassanein">Amira M. Hassanein</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehal%20A.%20Salahuddin"> Nehal A. Salahuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsunori%20Matsuda"> Atsunori Matsuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Hattori"> Toshiaki Hattori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20N.%20Elfiky"> Mona N. Elfiky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New insights into the design of highly sensitive, carbon-based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide- Dodecyl Sulphate/Polypyrrole nanocomposites which were synthesized by in-situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant Dodecyl sulphate as a modifier. The morphology and surface area of the nanocomposites changed with the percentage of Pyrrole. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol.L-1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable, and free from interference by other commonly present excipients in drug formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxide" title="layered double hydroxide">layered double hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=terazosin%20hydrochloride" title=" terazosin hydrochloride"> terazosin hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=square-wave%20adsorptive%20anodic%20stripping%20voltammetry" title=" square-wave adsorptive anodic stripping voltammetry"> square-wave adsorptive anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/79856/fabrication-of-biosensor-based-on-layered-double-hydroxidepolypyrrolecarbon-paste-electrode-for-determination-of-anti-hypertensive-and-prostatic-hyperplasia-drug-terazosin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3282</span> Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Salim%20Reza">K. M. Salim Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin"> M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Cc%20Complex" title=" Fe-Cc Complex"> Fe-Cc Complex</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect"> pH effect</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title=" redox interaction"> redox interaction</a> </p> <a href="https://publications.waset.org/abstracts/19175/electrochemical-behavior-of-iron-iii-complexes-with-catechol-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3281</span> Carbon-Nanodots Modified Glassy Carbon Electrode for the Electroanalysis of Selenium in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azeez%20O.%20Idris">Azeez O. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20O.%20Orimolade"> Benjamin O. Orimolade</a>, <a href="https://publications.waset.org/abstracts/search?q=Potlako%20J.%20Mafa"> Potlako J. Mafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20T.%20Kuvarega"> Alex T. Kuvarega</a>, <a href="https://publications.waset.org/abstracts/search?q=Usisipho%20Feleni"> Usisipho Feleni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhekie%20B.%20Mamba"> Bhekie B. Mamba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a simple and cheaper method for the electrochemical detection of Se(IV) using carbon nanodots (CNDTs) prepared from oat. The carbon nanodots were synthesised by green and facile approach and characterised using scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. The CNDT was used to fabricate an electrochemical sensor for the quantification of Se(IV) in water. The modification of glassy carbon electrode (GCE) with carbon nanodots led to an increase in the electroactive surface area of the electrode, which enhances the redox current peak of [Fe(CN)₆]₃₋/₄‒ in comparison to the bare GCE. Using the square wave voltammetry, the detection limit and quantification limit of 0.05 and 0.167 ppb were obtained under the optimised parameters using deposition potential of -200 mV, 0.1 M HNO₃ electrolyte, electrodeposition time of 60 s, and pH 1. The results further revealed that the GCE-CNDT was not susceptible to many interfering cations except Cu(II) and Pb(II), and Fe(II). The sensor fabrication involves a one-step electrode modification and was used to detect Se(IV) in a real water sample, and the result obtained is in agreement with the inductively coupled plasma technique. Overall, the electrode offers a cheap, fast, and sensitive way of detecting selenium in environmental matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanodots" title="carbon nanodots">carbon nanodots</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium" title=" selenium"> selenium</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/150663/carbon-nanodots-modified-glassy-carbon-electrode-for-the-electroanalysis-of-selenium-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3280</span> Electrochemical Behavior and Cathodic Stripping Voltammetric Determination of Dianabol Steroid in Urine at Bare Glassy Carbon Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Al-Orfi">N. Al-Orfi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20El-Shahawi"> M. S. El-Shahawi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Bashammakh"> A. S. Bashammakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrochemical response of glassy carbon electrode (GCE) for the sensitive and selective determination of dianabol steroid (DS) in phosphate, Britton-Robinson (B-R) and HEPES buffers of pH 2.0 - 11, 2.0 - 11 and 6.2 - 8.0, respectively using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) at bare GCE was studied. The dependence of the CV response of the developed cathodic peak potential (Ep, c), peak current (ip, c) and the current function (ip, c / υ1/2) on the scan rate (υ) at the bare GCE revealed the occurrence of electrode coupled chemical reaction of EC type mechanism. The selectivity of the proposed method was assessed in the presence of high concentrations of major interfering species e.g. uric acid, ascorbic acid, citric acid, glucose, fructose, sucrose, starch and ions Na+, K+, PO4-3, NO3- and SO42-. The recovery of the method was not significant where t(critical)=2.20 > texp=1.81-1.93 at 95% confidence. The analytical application of the sensor for the quantification of DS in biological fluids as urine was investigated. The results were demonstrated as recovery percentages in the range 95±2.5-97±4.7% with relative standard deviation (RSD) of 0.5-1.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dianabol" title="dianabol">dianabol</a>, <a href="https://publications.waset.org/abstracts/search?q=determination" title=" determination"> determination</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20electrode" title=" modified electrode"> modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=urine" title=" urine"> urine</a> </p> <a href="https://publications.waset.org/abstracts/43111/electrochemical-behavior-and-cathodic-stripping-voltammetric-determination-of-dianabol-steroid-in-urine-at-bare-glassy-carbon-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3279</span> Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Rathinaraj%20Benjamin">Stephen Rathinaraj Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Colmati%20Junior"> Flavio Colmati Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Izabel%20Florindo%20Guedes"> Maria Izabel Florindo Guedes</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Amalia%20Fireman%20Dutra"> Rosa Amalia Fireman Dutra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium%20dioxide%20nanoparticles" title="cerium dioxide nanoparticles">cerium dioxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=horseradish%20peroxidase" title=" horseradish peroxidase"> horseradish peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=rutin" title=" rutin"> rutin</a> </p> <a href="https://publications.waset.org/abstracts/68623/electrochemical-biosensor-for-rutin-detection-with-multiwall-carbon-nanotubes-and-cerium-dioxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3278</span> Electrochemical Sensing of L-Histidine Based on Fullerene-C60 Mediated Gold Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeeb%20Sutradhar">Sanjeeb Sutradhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Archita%20Patnaik"> Archita Patnaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Histidine is one of the twenty-two naturally occurring essential amino acids exhibiting two conformations, L-histidine and D-histidine. D-Histidine is biologically inert, while L-histidine is bioactive because of its conversion to neurotransmitter or neuromodulator histamine in both brain as well as central nervous system. The deficiency of L-histidine causes serious diseases like Parkinson’s disease, epilepsy and the failure of normal erythropoiesis development. Gold nanocomposites are attractive materials due to their excellent biocompatibility and are easy to adsorb on the electrode surface. In the present investigation, hydrophobic fullerene-C60 was functionalized with homocysteine via nucleophilic addition reaction to make it hydrophilic and to successively make the nanocomposite with in-situ prepared gold nanoparticles with ascorbic acid as reducing agent. The electronic structure calculations of the AuNPs@Hcys-C60 nanocomposite showed a drastic reduction of HOMO-LUMO gap compared to the corresponding molecules of interest, indicating enhanced electron transportability to the electrode surface. In addition, the electrostatic potential map of the nanocomposite showed the charge was distributed over either end of the nanocomposite, evidencing faster direct electron transfer from nanocomposite to the electrode surface. This nanocomposite showed catalytic activity; the nanocomposite modified glassy carbon electrode showed a tenfold higher kₑt, the electron transfer rate constant than the bare glassy carbon electrode. Significant improvement in its sensing behavior by square wave voltammetry was noted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fullerene-C60" title="fullerene-C60">fullerene-C60</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanocomposites" title=" gold nanocomposites"> gold nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Histidine" title=" L-Histidine"> L-Histidine</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/63166/electrochemical-sensing-of-l-histidine-based-on-fullerene-c60-mediated-gold-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3277</span> The Effects of pH on the Electrochromism in Nickel Oxide Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Ta%C5%9Fk%C3%B6pr%C3%BC">T. Taşköprü</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zor"> M. Zor</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Turan"> E. Turan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20oxide" title="nickel oxide">nickel oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/39351/the-effects-of-ph-on-the-electrochromism-in-nickel-oxide-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3276</span> Simple Fabrication of Au (111)-Like Electrode and Its Applications to Electrochemical Determination of Dopamine and Ascorbic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahrah%20Thamer%20Althagafi">Zahrah Thamer Althagafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20I.%20Awad"> Mohamed I. Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple method for the fabrication of Au (111)-like electrode via controlled reductive desorption of a pre-adsorbed cysteine monolayer onto polycrystalline gold (poly-Au) electrode is introduced. Then, the voltammetric behaviour of dopamine (DA) and ascorbic acid (AA) on the thus modified electrode is investigated. Electrochemical characterization of the modified electrode is achieved using cyclic voltammetry and square wave voltammetry. For the binary mixture of DA and AA, the results showed that Au (111)-like electrode exhibits excellent electrocatalytic activity towards the oxidation of DA and AA. This allows highly selective and simultaneous determination of DA and AA. The effect of various experimental parameters on the voltammetric responses of DA and AA was investigated. The enrichment of the Au (111) facet of the poly-Au electrode is thought to be behind the electrocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20electrode" title="gold electrode">gold electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electroanalysis" title=" electroanalysis"> electroanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayers" title=" monolayers"> monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=cysteine" title=" cysteine"> cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=dopamine" title=" dopamine"> dopamine</a>, <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title=" ascorbic acid"> ascorbic acid</a> </p> <a href="https://publications.waset.org/abstracts/117052/simple-fabrication-of-au-111-like-electrode-and-its-applications-to-electrochemical-determination-of-dopamine-and-ascorbic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3275</span> Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Zhou">Hang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Limin%20Zhu"> Limin Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructures" title="microstructures">microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=anodic%20oxidation" title=" anodic oxidation"> anodic oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=agarose%20stamps" title=" agarose stamps"> agarose stamps</a> </p> <a href="https://publications.waset.org/abstracts/57259/microstructures-of-si-surfaces-fabricated-by-electrochemical-anodic-oxidation-with-agarose-stamps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3274</span> The Extraction and Stripping of Hg(II) from Produced Water via Hollow Fiber Contactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dolapop%20Sribudda">Dolapop Sribudda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ura%20Pancharoen"> Ura Pancharoen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of Hg(II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a counter current flow. Samples were kept in the outlet of feed and stripping solution for 1 hour and characterized concentration of Hg(II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg(II) were 98% and 44.2%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hg%28II%29" title="Hg(II)">Hg(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20fiber%20contactor" title=" hollow fiber contactor"> hollow fiber contactor</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/27276/the-extraction-and-stripping-of-hgii-from-produced-water-via-hollow-fiber-contactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3273</span> Laser Paint Stripping on Large Zones on AA 2024 Based Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selen%20Unaldi">Selen Unaldi</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Richaud"> Emmanuel Richaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Gervais"> Matthieu Gervais</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Berthe"> Laurent Berthe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20coatings" title="aircraft coatings">aircraft coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20stripping" title=" laser stripping"> laser stripping</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20adhesion%20tests" title=" laser adhesion tests"> laser adhesion tests</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/144931/laser-paint-stripping-on-large-zones-on-aa-2024-based-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3272</span> Fe-BTC Based Electrochemical Sensor for Anti-Psychotic and Anti-Migraine Drugs: Aripiprazole and Rizatriptan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Saxena">Sachin Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Srivastava"> Manju Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study describes a stable, highly sensitive and selective analytical sensor. Fe-BTC was synthesized at room temperature using the noble Iron-trimesate system. The high surface area of as synthesized Fe-BTC proved MOFs as ideal modifiers for glassy carbon electrode. The characterization techniques such as TGA, XRD, FT-IR, BET (BET surface area= 1125 m2/gm) analysis explained the electrocatalytic behaviour of Fe-BTC towards these two drugs. The material formed is cost effective and exhibit higher catalytic behaviour towards analyte systems. The synergism between synthesized Fe-BTC and electroanalytical techniques helped in developing a highly sensitive analytical method for studying the redox fate of ARP and RZ, respectively. Cyclic voltammetry of ferricyanide system proved Fe-BTC/GCE with an increase in 132% enhancement in peak current value as compared to that of GCE. The response characteristics of cyclic voltammetry (CV) and square wave voltammetry (SWV) revealed that the ARP and RZ could be effectively accumulated at Fe-BTC/GCE. On the basis of the electrochemical measurements, electrode dynamics parameters have been evaluated. Present study opens up new field of applications of MOFs modified GCE for drug sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOFs" title="MOFs">MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-psychotic" title=" anti-psychotic"> anti-psychotic</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-migraine%20drugs" title=" anti-migraine drugs"> anti-migraine drugs</a> </p> <a href="https://publications.waset.org/abstracts/103954/fe-btc-based-electrochemical-sensor-for-anti-psychotic-and-anti-migraine-drugs-aripiprazole-and-rizatriptan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3271</span> Stripping of Flavour-Active Compounds from Aqueous Food Streams: Effect of Liquid Matrix on Vapour-Liquid Equilibrium in a Beer-Like Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ammari">Ali Ammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20Schroen"> Karin Schroen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In brewing industries, stripping is a downstream process to separate volatiles from beer. Due to physiochemical similarities between flavour components, the selectivity of this method is not favourable. Besides, the presence of non-volatile compounds such as proteins and carbohydrates may affect the separation of flavours due to their retaining properties. By using a stripping column with structured packing coupled with a gas chromatography, in this work, the overall mass transfer coefficient along with their corresponding equilibrium data was investigated for a model solution consist of water, ethanol, ethyl acetate and isoamyl acetate. Static headspace analysis also was employed to derive equilibrium data for flavours in the presence of beer dry matter. As it was expected ethanol and dry matter showed retention properties; however, the effect of viscosity in mass transfer coefficient was discarded due to the fact that the viscosity of solution decreased during stripping. The effect of ethanol and beer dry matter were mapped to be used for designing stripping could. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavour" title="flavour">flavour</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace" title=" headspace"> headspace</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%E2%80%99s%20coefficient" title=" Henry’s coefficient"> Henry’s coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer%20coefficient" title=" mass transfer coefficient"> mass transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=stripping" title=" stripping"> stripping</a> </p> <a href="https://publications.waset.org/abstracts/80348/stripping-of-flavour-active-compounds-from-aqueous-food-streams-effect-of-liquid-matrix-on-vapour-liquid-equilibrium-in-a-beer-like-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3270</span> Tunable in Phase, out of Phase and T/4 Square-Wave Pulses in Delay-Coupled Optoelectronic Oscillators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jade%20Mart%C3%ADnez-Llin%C3%A0s">Jade Martínez-Llinàs</a>, <a href="https://publications.waset.org/abstracts/search?q=Pere%20Colet"> Pere Colet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By exploring the possible dynamical regimes in a prototypical model for mutually delay-coupled OEOs, here it is shown that two mutually coupled non-identical OEOs, besides in- and out-of-phase square-waves, can generate stable square-wave pulses synchronized at a quarter of the period (T/4) in a broad parameter region. The key point to obtain T/4 solutions is that the two OEO operate with mixed feedback, namely with negative feedback in one and positive in the other. Furthermore, the coexistence of multiple solutions provides a large degree of flexibility for tuning the frequency in the GHz range without changing any parameter. As a result the two coupled OEOs system is good candidate to be implemented for information encoding as a high-capacity memory device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title="nonlinear optics">nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20oscillators" title=" optoelectronic oscillators"> optoelectronic oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20waves" title=" square waves"> square waves</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/39791/tunable-in-phase-out-of-phase-and-t4-square-wave-pulses-in-delay-coupled-optoelectronic-oscillators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3269</span> The Effectiveness of Pretreatment Methods on COD and Ammonia Removal from Landfill Leachate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Poveda">M. Poveda</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lozecznik"> S. Lozecznik</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Oleszkiewicz"> J. Oleszkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Yuan"> Q. Yuan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this experiment is to evaluate the effectiveness of different leachate pre-treatment options in terms of COD and ammonia removal. This research focused on the evaluation of physical-chemical methods for pre-treatment of leachate that would be effective and rapid in order to satisfy the requirements of the sewer discharge by-laws. The four pre-treatment options evaluated were: air stripping, chemical coagulation, electro-coagulation and advanced oxidation with sodium ferrate. Chemical coagulation reported the best COD removal rate at 43%, compared to 18 % for both air stripping and electro-coagulation, and 20 % for oxidation with sodium ferrate. On the other hand, air stripping was far superior to the other treatment options in terms of ammonia removal with 86 %. Oxidation with sodium ferrate reached only 16 %, while chemical coagulation and electro-coagulation removed less than 10 %. When combined, air stripping and chemical coagulation removed up to 50 % COD and 85 % ammonia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leachate%20pretreatment" title="leachate pretreatment">leachate pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20stripping" title=" air stripping"> air stripping</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20coagulation" title=" chemical coagulation"> chemical coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-coagulation" title=" electro-coagulation"> electro-coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/28457/the-effectiveness-of-pretreatment-methods-on-cod-and-ammonia-removal-from-landfill-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">843</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3268</span> Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyar%20Singh%20Jassal">Pyar Singh Jassal</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Rani"> Priti Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Johar"> Rajni Johar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0<RL<1) is a favorable and spontaneous process. The thermodynamic parameters suggest that it is an exothermic reaction which results with an increase in the randomness of the adsorption process. The kinetic data of Pb(II) ions fitted well with the pseudo-second-order kinetic model. The EGDE-MCB was characterized by using FTIR, SEM, EDX, and TGA techniques. The desorption of metal ion loaded chitosan beads was performed with 0.1M ethylene diamine tetra acetic acid (EDTA) solution for further use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20chitosan%20beads" title="magnetic chitosan beads">magnetic chitosan beads</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20glycol%20diglycidyl%20ether" title=" ethylene glycol diglycidyl ether"> ethylene glycol diglycidyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20parameters" title=" equilibrium parameters"> equilibrium parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/147347/removal-of-pbii-ions-from-wastewater-using-magnetic-chitosan-ethylene-glycol-diglycidyl-ether-beads-as-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3267</span> Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramakrishna%20Rao%20Mamidi">Ramakrishna Rao Mamidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20search" title="direct search">direct search</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20plot" title=" flux plot"> flux plot</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20analysis" title=" fourier analysis"> fourier analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a> </p> <a href="https://publications.waset.org/abstracts/139812/estimation-of-fourier-coefficients-of-flux-density-for-surface-mounted-permanent-magnet-smpm-generators-by-direct-search-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3266</span> Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shekher%20Kummari">Shekher Kummari</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sunil%20Kumar"> V. Sunil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vengatajalabathy%20Gobi"> K. Vengatajalabathy Gobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amperometry" title="amperometry">amperometry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20detection" title=" electrochemical detection"> electrochemical detection</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20blood%20serum" title=" human blood serum"> human blood serum</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=SWV" title=" SWV"> SWV</a> </p> <a href="https://publications.waset.org/abstracts/86857/electrochemical-detection-of-the-chemotherapy-agent-methotrexate-in-vitro-from-physiological-fluids-using-functionalized-carbon-nanotube-past-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3265</span> Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20P.P.">Rajesh P.P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Tabish%20Noori"> Md. Tabish Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20M.%20Ghangrekar"> Makarand M. Ghangrekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulombic%20efficiency" title="coulombic efficiency">coulombic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenesis%20inhibition" title=" methanogenesis inhibition"> methanogenesis inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroethane" title=" nitroethane"> nitroethane</a> </p> <a href="https://publications.waset.org/abstracts/70270/pre-treatment-of-anodic-inoculum-with-nitroethane-to-improve-performance-of-a-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3264</span> Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ipek%20Gunay">Ipek Gunay</a>, <a href="https://publications.waset.org/abstracts/search?q=Efe%20B.%20Orman"> Efe B. Orman</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Ozer"> Metin Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20Salih"> Bekir Salih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Ozkaya"> Ali R. Ozkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalocyanine" title="phthalocyanine">phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20spectroelectrochemistry" title=" in-situ spectroelectrochemistry"> in-situ spectroelectrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/76061/electrochemicalelectro-catalytic-applications-of-novel-alcohol-substituted-metallophthalocyanines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3263</span> Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Musfirah%20Che%20Sobry"> Maryam Musfirah Che Sobry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad"> Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurashikin%20Abd%20Azis"> Nurashikin Abd Azis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20A" title="bisphenol A">bisphenol A</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20layered%20hydroxide%203-%284-methoxyphenyl%29propionic%20acid%20nanocomposite" title=" magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite"> magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=uric%20acid" title=" uric acid"> uric acid</a> </p> <a href="https://publications.waset.org/abstracts/84874/determination-of-bisphenol-a-and-uric-acid-by-modified-single-walled-carbon-nanotube-with-magnesium-layered-hydroxide-3-4-methoxyphenylpropionic-acid-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=109">109</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=110">110</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>