CINXE.COM
Ideál (teorie okruhů) – Wikipedie
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="cs" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ideál (teorie okruhů) – Wikipedie</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )cswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"ČSN basic dt","wgMonthNames":["","leden","únor","březen","duben","květen","červen","červenec","srpen","září","říjen","listopad","prosinec"],"wgRequestId":"8b25c488-4eb0-42b0-8f68-15d712764f26","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ideál_(teorie_okruhů)","wgTitle":"Ideál (teorie okruhů)","wgCurRevisionId":24300469,"wgRevisionId":24300469,"wgArticleId":132028,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Monitoring:Články s identifikátorem BNF","Monitoring:Články s identifikátorem GND","Monitoring:Články s identifikátorem LCCN","Monitoring:Články s identifikátorem NLI","Algebraické struktury","Teorie okruhů"],"wgPageViewLanguage":"cs","wgPageContentLanguage":"cs","wgPageContentModel":"wikitext","wgRelevantPageName":"Ideál_(teorie_okruhů)","wgRelevantArticleId":132028,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"cs","pageLanguageDir":"ltr","pageVariantFallbacks":"cs"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":7000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q44649","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled": false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.WikiMiniAtlas","ext.gadget.OSMmapa","ext.gadget.direct-links-to-commons","ext.gadget.ReferenceTooltips","ext.gadget.courses","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=cs&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=cs&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=cs&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ideál (teorie okruhů) – Wikipedie"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//cs.m.wikipedia.org/wiki/Ide%C3%A1l_(teorie_okruh%C5%AF)"> <link rel="alternate" type="application/x-wiki" title="Editovat" href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedie (cs)"> <link rel="EditURI" type="application/rsd+xml" href="//cs.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://cs.wikipedia.org/wiki/Ide%C3%A1l_(teorie_okruh%C5%AF)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cs"> <link rel="alternate" type="application/atom+xml" title="Atom kanál Wikipedie." href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Posledn%C3%AD_zm%C4%9Bny&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ideál_teorie_okruhů rootpage-Ideál_teorie_okruhů skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Přeskočit na obsah</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hlavní menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hlavní menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hlavní menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skrýt</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigace </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Hlavn%C3%AD_strana" title="Navštívit Hlavní stranu [z]" accesskey="z"><span>Hlavní strana</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/N%C3%A1pov%C4%9Bda:Obsah" title="Místo, kde najdete pomoc"><span>Nápověda</span></a></li><li id="n-helpdesk" class="mw-list-item"><a href="/wiki/Wikipedie:Pot%C5%99ebuji_pomoc" title="Pokud si nevíte rady, zeptejte se ostatních"><span>Potřebuji pomoc</span></a></li><li id="n-featuredcontent" class="mw-list-item"><a href="/wiki/Wikipedie:Nejlep%C5%A1%C3%AD_%C4%8Dl%C3%A1nky" title="Přehled článků, které jsou považovány za nejlepší na české Wikipedii"><span>Nejlepší články</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:N%C3%A1hodn%C3%A1_str%C3%A1nka" title="Přejít na náhodně vybranou stránku [x]" accesskey="x"><span>Náhodný článek</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Posledn%C3%AD_zm%C4%9Bny" title="Seznam posledních změn na této wiki [r]" accesskey="r"><span>Poslední změny</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedie:Port%C3%A1l_Wikipedie" title="O projektu, jak můžete pomoci, kde hledat"><span>Komunitní portál</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedie:Pod_l%C3%ADpou" title="Hlavní diskusní fórum"><span>Pod lípou</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Hlavn%C3%AD_strana" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedie" src="/static/images/mobile/copyright/wikipedia-wordmark-cs.svg" style="width: 7.5em; height: 1.1875em;"> <img class="mw-logo-tagline" alt="Wikipedie: Otevřená encyklopedie" src="/static/images/mobile/copyright/wikipedia-tagline-cs.svg" width="118" height="13" style="width: 7.375em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speci%C3%A1ln%C3%AD:Hled%C3%A1n%C3%AD" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Prohledat tuto wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Hledání</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Hledat na Wikipedii" aria-label="Hledat na Wikipedii" autocapitalize="sentences" title="Prohledat tuto wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciální:Hledání"> </div> <button class="cdx-button cdx-search-input__end-button">Hledat</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Osobní nástroje"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Vzhled"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Změnit vzhled velikosti písma, šířky stránky a barvy" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Vzhled" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Vzhled</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_cs.wikipedia.org&uselang=cs" class=""><span>Podpořte Wikipedii</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Vytvo%C5%99it_%C3%BA%C4%8Det&returnto=Ide%C3%A1l+%28teorie+okruh%C5%AF%29" title="Doporučujeme vytvořit si účet a přihlásit se, ovšem není to povinné" class=""><span>Vytvoření účtu</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1ln%C3%AD:P%C5%99ihl%C3%A1sit&returnto=Ide%C3%A1l+%28teorie+okruh%C5%AF%29" title="Doporučujeme vám přihlásit se, ovšem není to povinné. [o]" accesskey="o" class=""><span>Přihlášení</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Další možnosti" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Osobní nástroje" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Osobní nástroje</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Uživatelské menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_cs.wikipedia.org&uselang=cs"><span>Podpořte Wikipedii</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Vytvo%C5%99it_%C3%BA%C4%8Det&returnto=Ide%C3%A1l+%28teorie+okruh%C5%AF%29" title="Doporučujeme vytvořit si účet a přihlásit se, ovšem není to povinné"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Vytvoření účtu</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:P%C5%99ihl%C3%A1sit&returnto=Ide%C3%A1l+%28teorie+okruh%C5%AF%29" title="Doporučujeme vám přihlásit se, ovšem není to povinné. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Přihlášení</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Stránky pro odhlášené editory <a href="/wiki/N%C3%A1pov%C4%9Bda:%C3%9Avod" aria-label="Více informací o editování"><span>dozvědět se více</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Moje_p%C5%99%C3%ADsp%C4%9Bvky" title="Seznam editací provedených z této IP adresy [y]" accesskey="y"><span>Příspěvky</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Moje_diskuse" title="Diskuse o editacích provedených z této IP adresy [n]" accesskey="n"><span>Diskuse</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Obsah" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Obsah</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skrýt</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(úvod)</div> </a> </li> <li id="toc-Definice" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definice"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definice</span> </div> </a> <ul id="toc-Definice-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Příklady_ideálů" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Příklady_ideálů"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Příklady ideálů</span> </div> </a> <ul id="toc-Příklady_ideálů-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operace_s_ideály" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Operace_s_ideály"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Operace s ideály</span> </div> </a> <ul id="toc-Operace_s_ideály-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vlastnosti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Vlastnosti"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Vlastnosti</span> </div> </a> <ul id="toc-Vlastnosti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Věta" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Věta"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Věta</span> </div> </a> <ul id="toc-Věta-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Odkazy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Odkazy"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Odkazy</span> </div> </a> <button aria-controls="toc-Odkazy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Odkazy</span> </button> <ul id="toc-Odkazy-sublist" class="vector-toc-list"> <li id="toc-Literatura" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Literatura"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Literatura</span> </div> </a> <ul id="toc-Literatura-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Související_články" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Související_články"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Související články</span> </div> </a> <ul id="toc-Související_články-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Externí_odkazy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Externí_odkazy"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Externí odkazy</span> </div> </a> <ul id="toc-Externí_odkazy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Obsah" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Přepnout obsah" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Přepnout obsah</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ideál (teorie okruhů)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Přejděte k článku v jiném jazyce. Je dostupný v 40 jazycích" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-40" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">40 jazyků</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AB%D8%A7%D9%84%D9%8A_(%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A7%D8%AA)" title="مثالي (نظرية الحلقات) – arabština" lang="ar" hreflang="ar" data-title="مثالي (نظرية الحلقات)" data-language-autonym="العربية" data-language-local-name="arabština" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BF%D1%80%D1%8A%D1%81%D1%82%D0%B5%D0%BD%D0%B8%D1%82%D0%B5)" title="Идеал (теория на пръстените) – bulharština" lang="bg" hreflang="bg" data-title="Идеал (теория на пръстените)" data-language-autonym="Български" data-language-local-name="bulharština" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Ideal_(matem%C3%A0tiques)" title="Ideal (matemàtiques) – katalánština" lang="ca" hreflang="ca" data-title="Ideal (matemàtiques)" data-language-autonym="Català" data-language-local-name="katalánština" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Идеал (алгебра) – čuvaština" lang="cv" hreflang="cv" data-title="Идеал (алгебра)" data-language-autonym="Чӑвашла" data-language-local-name="čuvaština" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ideal_(ringteori)" title="Ideal (ringteori) – dánština" lang="da" hreflang="da" data-title="Ideal (ringteori)" data-language-autonym="Dansk" data-language-local-name="dánština" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ideal_(Ringtheorie)" title="Ideal (Ringtheorie) – němčina" lang="de" hreflang="de" data-title="Ideal (Ringtheorie)" data-language-autonym="Deutsch" data-language-local-name="němčina" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%99%CE%B4%CE%B5%CF%8E%CE%B4%CE%B5%CF%82_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC)" title="Ιδεώδες (μαθηματικά) – řečtina" lang="el" hreflang="el" data-title="Ιδεώδες (μαθηματικά)" data-language-autonym="Ελληνικά" data-language-local-name="řečtina" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Ideal_(ring_theory)" title="Ideal (ring theory) – angličtina" lang="en" hreflang="en" data-title="Ideal (ring theory)" data-language-autonym="English" data-language-local-name="angličtina" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Idealo_(algebro)" title="Idealo (algebro) – esperanto" lang="eo" hreflang="eo" data-title="Idealo (algebro)" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ideal_(teor%C3%ADa_de_anillos)" title="Ideal (teoría de anillos) – španělština" lang="es" hreflang="es" data-title="Ideal (teoría de anillos)" data-language-autonym="Español" data-language-local-name="španělština" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Ringi_ideaal" title="Ringi ideaal – estonština" lang="et" hreflang="et" data-title="Ringi ideaal" data-language-autonym="Eesti" data-language-local-name="estonština" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%DB%8C%D8%AF%D9%87%E2%80%8C%D8%A2%D9%84_(%D9%86%D8%B8%D8%B1%DB%8C%D9%87_%D8%AD%D9%84%D9%82%D9%87%E2%80%8C%D9%87%D8%A7)" title="ایدهآل (نظریه حلقهها) – perština" lang="fa" hreflang="fa" data-title="ایدهآل (نظریه حلقهها)" data-language-autonym="فارسی" data-language-local-name="perština" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ideaali_(rengasteoria)" title="Ideaali (rengasteoria) – finština" lang="fi" hreflang="fi" data-title="Ideaali (rengasteoria)" data-language-autonym="Suomi" data-language-local-name="finština" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Id%C3%A9al" title="Idéal – francouzština" lang="fr" hreflang="fr" data-title="Idéal" data-language-autonym="Français" data-language-local-name="francouzština" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ideal_(teor%C3%ADa_dos_aneis)" title="Ideal (teoría dos aneis) – galicijština" lang="gl" hreflang="gl" data-title="Ideal (teoría dos aneis)" data-language-autonym="Galego" data-language-local-name="galicijština" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%99%D7%93%D7%99%D7%90%D7%9C_(%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94)" title="אידיאל (אלגברה) – hebrejština" lang="he" hreflang="he" data-title="אידיאל (אלגברה)" data-language-autonym="עברית" data-language-local-name="hebrejština" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Ide%C3%A1l_(gy%C5%B1r%C5%B1elm%C3%A9let)" title="Ideál (gyűrűelmélet) – maďarština" lang="hu" hreflang="hu" data-title="Ideál (gyűrűelmélet)" data-language-autonym="Magyar" data-language-local-name="maďarština" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Ideal_(theoria_de_anellos)" title="Ideal (theoria de anellos) – interlingua" lang="ia" hreflang="ia" data-title="Ideal (theoria de anellos)" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ideal_(teori_gelanggang)" title="Ideal (teori gelanggang) – indonéština" lang="id" hreflang="id" data-title="Ideal (teori gelanggang)" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonéština" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Ideale_(matematica)" title="Ideale (matematica) – italština" lang="it" hreflang="it" data-title="Ideale (matematica)" data-language-autonym="Italiano" data-language-local-name="italština" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%87%E3%82%A2%E3%83%AB_(%E7%92%B0%E8%AB%96)" title="イデアル (環論) – japonština" lang="ja" hreflang="ja" data-title="イデアル (環論)" data-language-autonym="日本語" data-language-local-name="japonština" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0%D0%B4%D0%B0)" title="Идеал (математикада) – kazaština" lang="kk" hreflang="kk" data-title="Идеал (математикада)" data-language-autonym="Қазақша" data-language-local-name="kazaština" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%95%84%EC%9D%B4%EB%94%94%EC%96%BC" title="아이디얼 – korejština" lang="ko" hreflang="ko" data-title="아이디얼" data-language-autonym="한국어" data-language-local-name="korejština" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Ideaal_(matem%C3%A0tica)" title="Ideaal (matemàtica) – lombardština" lang="lmo" hreflang="lmo" data-title="Ideaal (matemàtica)" data-language-autonym="Lombard" data-language-local-name="lombardština" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ideaal_(ringtheorie)" title="Ideaal (ringtheorie) – nizozemština" lang="nl" hreflang="nl" data-title="Ideaal (ringtheorie)" data-language-autonym="Nederlands" data-language-local-name="nizozemština" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ideal_i_matematikk" title="Ideal i matematikk – norština (nynorsk)" lang="nn" hreflang="nn" data-title="Ideal i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="norština (nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ideal_(matematikk)" title="Ideal (matematikk) – norština (bokmål)" lang="nb" hreflang="nb" data-title="Ideal (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="norština (bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Idea%C5%82_(teoria_pier%C5%9Bcieni)" title="Ideał (teoria pierścieni) – polština" lang="pl" hreflang="pl" data-title="Ideał (teoria pierścieni)" data-language-autonym="Polski" data-language-local-name="polština" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Ideal_(teoria_dos_an%C3%A9is)" title="Ideal (teoria dos anéis) – portugalština" lang="pt" hreflang="pt" data-title="Ideal (teoria dos anéis)" data-language-autonym="Português" data-language-local-name="portugalština" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ideal_(teoria_inelelor)" title="Ideal (teoria inelelor) – rumunština" lang="ro" hreflang="ro" data-title="Ideal (teoria inelelor)" data-language-autonym="Română" data-language-local-name="rumunština" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Идеал (алгебра) – ruština" lang="ru" hreflang="ru" data-title="Идеал (алгебра)" data-language-autonym="Русский" data-language-local-name="ruština" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Ide%C3%A1l_(okruhu)" title="Ideál (okruhu) – slovenština" lang="sk" hreflang="sk" data-title="Ideál (okruhu)" data-language-autonym="Slovenčina" data-language-local-name="slovenština" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Ideal_(teorija_kolobarjev)" title="Ideal (teorija kolobarjev) – slovinština" lang="sl" hreflang="sl" data-title="Ideal (teorija kolobarjev)" data-language-autonym="Slovenščina" data-language-local-name="slovinština" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Идеал (математика) – srbština" lang="sr" hreflang="sr" data-title="Идеал (математика)" data-language-autonym="Српски / srpski" data-language-local-name="srbština" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ideal_(ringteori)" title="Ideal (ringteori) – švédština" lang="sv" hreflang="sv" data-title="Ideal (ringteori)" data-language-autonym="Svenska" data-language-local-name="švédština" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%B3%E0%AF%88%E0%AE%AF%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%BF%E0%AE%B2%E0%AF%8D_%E0%AE%9A%E0%AF%80%E0%AE%B0%E0%AF%8D%E0%AE%AE%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="வளையத்தில் சீர்மம் (கணிதம்) – tamilština" lang="ta" hreflang="ta" data-title="வளையத்தில் சீர்மம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="tamilština" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%86%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Ідеал (алгебра) – ukrajinština" lang="uk" hreflang="uk" data-title="Ідеал (алгебра)" data-language-autonym="Українська" data-language-local-name="ukrajinština" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/I-%C4%91%C3%AA-an" title="I-đê-an – vietnamština" lang="vi" hreflang="vi" data-title="I-đê-an" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamština" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%90%86%E6%83%B3_(%E7%8E%AF%E8%AE%BA)" title="理想 (环论) – čínština" lang="zh" hreflang="zh" data-title="理想 (环论)" data-language-autonym="中文" data-language-local-name="čínština" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%92%B0%E5%80%8D%E6%95%B8" title="環倍數 – kantonština" lang="yue" hreflang="yue" data-title="環倍數" data-language-autonym="粵語" data-language-local-name="kantonština" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44649#sitelinks-wikipedia" title="Editovat mezijazykové odkazy" class="wbc-editpage">Upravit odkazy</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Jmenné prostory"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ide%C3%A1l_(teorie_okruh%C5%AF)" title="Zobrazit obsahovou stránku [c]" accesskey="c"><span>Článek</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Diskuse:Ide%C3%A1l_(teorie_okruh%C5%AF)" rel="discussion" title="Diskuse ke stránce [t]" accesskey="t"><span>Diskuse</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Změnit variantu jazyka" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">čeština</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Zobrazení"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ide%C3%A1l_(teorie_okruh%C5%AF)"><span>Číst</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit" title="Editovat tuto stránku [v]" accesskey="v"><span>Editovat</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit" title="Editovat zdrojový kód této stránky [e]" accesskey="e"><span>Editovat zdroj</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=history" title="Starší verze této stránky. [h]" accesskey="h"><span>Zobrazit historii</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Nástroje ke stránce"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Nástroje" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Nástroje</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Nástroje</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skrýt</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Další možnosti" > <div class="vector-menu-heading"> Akce </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ide%C3%A1l_(teorie_okruh%C5%AF)"><span>Číst</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit" title="Editovat tuto stránku [v]" accesskey="v"><span>Editovat</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit" title="Editovat zdrojový kód této stránky [e]" accesskey="e"><span>Editovat zdroj</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=history"><span>Zobrazit historii</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Obecné </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Co_odkazuje_na/Ide%C3%A1l_(teorie_okruh%C5%AF)" title="Seznam všech wikistránek, které sem odkazují [j]" accesskey="j"><span>Odkazuje sem</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Souvisej%C3%ADc%C3%AD_zm%C4%9Bny/Ide%C3%A1l_(teorie_okruh%C5%AF)" rel="nofollow" title="Nedávné změny stránek, na které je odkazováno [k]" accesskey="k"><span>Související změny</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=cs" title="Nahrát obrázky či jiná multimédia [u]" accesskey="u"><span>Načíst soubor</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Speci%C3%A1ln%C3%AD_str%C3%A1nky" title="Seznam všech speciálních stránek [q]" accesskey="q"><span>Speciální stránky</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&oldid=24300469" title="Trvalý odkaz na současnou verzi této stránky"><span>Trvalý odkaz</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=info" title="Více informací o této stránce"><span>Informace o stránce</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Citovat&page=Ide%C3%A1l_%28teorie_okruh%C5%AF%29&id=24300469&wpFormIdentifier=titleform" title="Informace o tom, jak citovat tuto stránku"><span>Citovat stránku</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:UrlShortener&url=https%3A%2F%2Fcs.wikipedia.org%2Fwiki%2FIde%25C3%25A1l_%28teorie_okruh%25C5%25AF%29"><span>Získat zkrácené URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:QrCode&url=https%3A%2F%2Fcs.wikipedia.org%2Fwiki%2FIde%25C3%25A1l_%28teorie_okruh%25C5%25AF%29"><span>Stáhnout QR kód</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tisk/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Kniha&bookcmd=book_creator&referer=Ide%C3%A1l+%28teorie+okruh%C5%AF%29"><span>Vytvořit knihu</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:DownloadAsPdf&page=Ide%C3%A1l_%28teorie_okruh%C5%AF%29&action=show-download-screen"><span>Stáhnout jako PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&printable=yes" title="Tato stránka v podobě vhodné k tisku [p]" accesskey="p"><span>Verze k tisku</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Na jiných projektech </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Ideal_(ring_theory)" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44649" title="Odkaz na propojenou položku datového úložiště [g]" accesskey="g"><span>Položka Wikidat</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Nástroje ke stránce"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Vzhled"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Vzhled</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skrýt</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Z Wikipedie, otevřené encyklopedie</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="cs" dir="ltr"><p><i><b>Ideál</b></i> je <a href="/wiki/Matematika" title="Matematika">matematický</a> pojem z oblasti <a href="/wiki/Algebra" title="Algebra">algebry</a> označující podmnožinu nějakého <a href="/wiki/Okruh_(algebra)" title="Okruh (algebra)">okruhu</a> s jistými „dobrými“ vlastnostmi. </p> <ul><li>Tak jako <a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">normální podgrupy</a> jsou speciálními případy <a href="/wiki/Podgrupa" title="Podgrupa">podgrup</a>, jsou rovněž ideály jisté podmnožiny daného <a href="/wiki/Okruh_(algebra)" title="Okruh (algebra)">okruhu</a>.</li></ul> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definice">Definice</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=1" title="Editace sekce: Definice" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=1" title="Editovat zdrojový kód sekce Definice"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Množina <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \emptyset \neq I\subseteq R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∅<!-- ∅ --></mi> <mo>≠<!-- ≠ --></mo> <mi>I</mi> <mo>⊆<!-- ⊆ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \emptyset \neq I\subseteq R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a77af68f3fc6e300fbe40853b8148612d269abf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.295ex; height:2.843ex;" alt="{\displaystyle \emptyset \neq I\subseteq R}"></span>, kde <i>R</i> je <a href="/wiki/Okruh_(algebra)" title="Okruh (algebra)">okruh</a>, se nazývá levý resp. pravý <b>ideál</b>, má-li následující vlastnosti: </p> <ul><li>pro každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6cfbf3b87c8aa4be682ee15fcd61a7085888fc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.274ex; height:2.509ex;" alt="{\displaystyle a,b\in I}"></span> je také <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a-b\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a-b\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961721cd7710cf87571c660d94e6e99b223c2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.08ex; height:2.343ex;" alt="{\displaystyle a-b\in I}"></span></li> <li>pro každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06736171fb6cabbf6888f6c07cfc4630cd799ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.242ex; height:2.176ex;" alt="{\displaystyle a\in I}"></span> a každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span> je také <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\cdot a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>⋅<!-- ⋅ --></mo> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\cdot a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac5cfb01c73a20b3eb8dfabacb818517eaff530" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.97ex; height:2.176ex;" alt="{\displaystyle r\cdot a\in I}"></span> resp. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot r\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot r\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/234665eaddbb641fafcb5c92fbf3e19bea152b05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.97ex; height:2.176ex;" alt="{\displaystyle a\cdot r\in I}"></span></li></ul> <p>Je-li ideál zároveň levý i pravý, nazývá se oboustranný ideál, nebo prostě jen ideál. </p><p>Nechť (<i>R</i>, +, •) je okruh, <i>M</i> je libovolná podmnožina množiny <i>R</i>. Potom průnik všech ideálů v <i>R</i>, které obsahují množinu <i>M</i>, je ideál v <i>R</i>, který se nazývá <b>ideálem generovaným množinou</b> a značí se [<i>M</i>]. Množina <i>M</i> se nazývá <b>systém generátorů</b> ideálu [<i>M</i>] a její prvky <b>generátory</b> tohoto ideálu. </p><p>Prázdná množina generuje v libovolném okruhu nulový ideál <i>R</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Příklady_ideálů"><span id="P.C5.99.C3.ADklady_ide.C3.A1l.C5.AF"></span>Příklady ideálů</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=2" title="Editace sekce: Příklady ideálů" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=2" title="Editovat zdrojový kód sekce Příklady ideálů"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>V každém okruhu <i>R</i> jsou <a href="/wiki/Mno%C5%BEina" title="Množina">množiny</a> <i>{0}</i> a <i>R</i> ideály. Tyto ideály se nazývají <b>triviální ideály</b> v <i>R</i>. Ideál, který není triviální se nazývá <b>netriviální</b> nebo také <b>vlastní</b>.</li> <li>Každá podmnožina tvaru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a)=\{a\cdot r;r\in R\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> <mo>;</mo> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mi>R</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a)=\{a\cdot r;r\in R\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b5e847e98fcbc15c2034967e1dacd35c2e3952" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.107ex; height:2.843ex;" alt="{\displaystyle (a)=\{a\cdot r;r\in R\}}"></span> je ideál v <i>R</i>. Ideály tvaru <i>(a)</i> se nazývají <b><a href="/wiki/Hlavn%C3%AD_ide%C3%A1l_(teorie_okruh%C5%AF)" title="Hlavní ideál (teorie okruhů)">hlavní ideály</a></b> v <i>R</i>.</li> <li>V okruhu <a href="/wiki/Cel%C3%A9_%C4%8D%C3%ADslo" title="Celé číslo">celých čísel</a> je množina všech <a href="/wiki/Sud%C3%A1_a_lich%C3%A1_%C4%8D%C3%ADsla" title="Sudá a lichá čísla">sudých čísel</a> ideálem, konkrétně hlavním ideálem (2).</li> <li>Libovolný podokruh komutativního okruhu nemusí být jeho ideálem. Například v okruhu racionálních čísel (<i>Q</i>,+,•) tvoří celá čísla podokruh (<i>Z</i>,+,•). Ten však není ideálem v <b>Q</b>, neboť nesplňuje podmínku: pro každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06736171fb6cabbf6888f6c07cfc4630cd799ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.242ex; height:2.176ex;" alt="{\displaystyle a\in I}"></span> a každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span> je také <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\cdot a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>⋅<!-- ⋅ --></mo> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\cdot a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac5cfb01c73a20b3eb8dfabacb818517eaff530" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.97ex; height:2.176ex;" alt="{\displaystyle r\cdot a\in I}"></span> resp. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot r\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot r\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/234665eaddbb641fafcb5c92fbf3e19bea152b05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.97ex; height:2.176ex;" alt="{\displaystyle a\cdot r\in I}"></span>. Stačí volit třeba <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=3,r={\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=3,r={\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/808fe07c512c350d5a26143fe63281be264a0bec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.67ex; height:5.176ex;" alt="{\displaystyle a=3,r={\frac {1}{2}}}"></span>, pak <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\in Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>∈<!-- ∈ --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\in Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86036401e8ff797815f2c42e8aaca07fb43fba13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.684ex; height:2.176ex;" alt="{\displaystyle 3\in Z}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\cdot {\frac {1}{2}}={\frac {3}{2}}\notin Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>∉<!-- ∉ --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\cdot {\frac {1}{2}}={\frac {3}{2}}\notin Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03d80960f244a2283323588041b74f33f264d1f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.458ex; height:5.176ex;" alt="{\displaystyle 3\cdot {\frac {1}{2}}={\frac {3}{2}}\notin Z}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Operace_s_ideály"><span id="Operace_s_ide.C3.A1ly"></span>Operace s ideály</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=3" title="Editace sekce: Operace s ideály" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=3" title="Editovat zdrojový kód sekce Operace s ideály"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b><a href="/wiki/Pr%C5%AFnik" title="Průnik">průnik</a></b> ideálů <i>I,J</i> je ideál <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\cap J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>∩<!-- ∩ --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\cap J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9444054edd640576f42e6bd9700079279bcf022" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.226ex; height:2.176ex;" alt="{\displaystyle I\cap J}"></span>, který je největším ideálem, obsaženým v obou ideálech <i>I,J</i>.</li> <li><b>součet</b> ideálů <i>I,J</i> je ideál <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,I+J=\{i+j;i\in I,j\in J\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>i</mi> <mo>+</mo> <mi>j</mi> <mo>;</mo> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> <mi>j</mi> <mo>∈<!-- ∈ --></mo> <mi>J</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,I+J=\{i+j;i\in I,j\in J\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2bf26d5af6182d08fc3df7acd55042132772968" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.048ex; height:2.843ex;" alt="{\displaystyle \,I+J=\{i+j;i\in I,j\in J\}}"></span>, který je nejmenším ideálem obsahujícím oba ideály <i>I,J</i>.</li> <li><b>součin</b> ideálů <i>I,J</i> je ideál <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\cdot J=\{\sum _{k=1}^{n}a_{k}\cdot b_{k};n\in N,a_{k}\in I,b_{k}\in J\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>⋅<!-- ⋅ --></mo> <mi>J</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>;</mo> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>J</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\cdot J=\{\sum _{k=1}^{n}a_{k}\cdot b_{k};n\in N,a_{k}\in I,b_{k}\in J\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afd54a5e36e87964ea4ecfda097826fe102e3e09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.702ex; height:6.843ex;" alt="{\displaystyle I\cdot J=\{\sum _{k=1}^{n}a_{k}\cdot b_{k};n\in N,a_{k}\in I,b_{k}\in J\}}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Vlastnosti">Vlastnosti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=4" title="Editace sekce: Vlastnosti" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=4" title="Editovat zdrojový kód sekce Vlastnosti"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Ideál <i>I</i> v okruhu <i>R</i> se nazývá <b>maximální ideál</b>, je-li <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\neq R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>≠<!-- ≠ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\neq R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe38b8d0d6ca989337107df023f9782afae6e014" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.034ex; height:2.676ex;" alt="{\displaystyle I\neq R}"></span> a pro každý ideál <i>J</i>, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\subseteq J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>⊆<!-- ⊆ --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\subseteq J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16b159c54aac97dc2112a26c8ad64655f7697fb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.742ex; height:2.343ex;" alt="{\displaystyle I\subseteq J}"></span>, je <i>I = J</i> nebo <i>J = R</i>.</li> <li>Ideál <i>I</i> v okruhu <i>R</i> se nazývá <b><a href="/wiki/Prvoide%C3%A1l_(teorie_okruh%C5%AF)" title="Prvoideál (teorie okruhů)">prvoideál</a></b>, jestliže pro každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d992800adce8f580e87a3c79b62f0e12d5349e1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.866ex; height:2.509ex;" alt="{\displaystyle a,b\in R}"></span> takové, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3af62231520b97c6d875f2198c70744e10e0b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.919ex; height:2.176ex;" alt="{\displaystyle a\cdot b\in I}"></span>, je buďto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06736171fb6cabbf6888f6c07cfc4630cd799ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.242ex; height:2.176ex;" alt="{\displaystyle a\in I}"></span> nebo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4535d2ecfbd140eb8908c10eba1d79f17bd7c0ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.01ex; height:2.176ex;" alt="{\displaystyle b\in I}"></span>.</li> <li>Jsou-li <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1},a_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1},a_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3483c81917a179212dbac7cd49e52581085da3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.249ex; height:2.009ex;" alt="{\displaystyle a_{1},a_{2},}"></span> … , <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e256a120c3ab9f8958de71acdf81cd75065e3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.319ex; height:2.009ex;" alt="{\displaystyle a_{k}}"></span> libovolné prvky z ideálu <i>I</i> v okruhu <i>R</i>, je každá jejich lineární kombinace s koeficienty z <i>R</i> prvkem ideálu <i>I</i>, tj. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall r_{1},r_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall r_{1},r_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/110393a17fbc4d626ff0b7bb7a4eb5ca92e53423" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.084ex; height:2.843ex;" alt="{\displaystyle (\forall r_{1},r_{2},}"></span>… , <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}\in R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{k}\in R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/673c15f80a77523139e597dae00411bbdcea9df4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.647ex; height:2.843ex;" alt="{\displaystyle r_{k}\in R)}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}r_{1}+a_{2}r_{2}+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}r_{1}+a_{2}r_{2}+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52f791244000191c9fd0b6e1df9367379743e035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.422ex; height:2.343ex;" alt="{\displaystyle a_{1}r_{1}+a_{2}r_{2}+}"></span>… <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +a_{k}r_{k}\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +a_{k}r_{k}\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb3e5d9b7b62c77674b2c61809b53ef43c59265" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.276ex; height:2.509ex;" alt="{\displaystyle +a_{k}r_{k}\in I}"></span>.</li></ul> <p><b>Příklad:</b> </p><p>V okruhu celých čísel <b>Z</b> máme určit ideál <i>I</i> = [96, 14]. Snažíme se v tomto ideálu najít nenulové číslo s co nejmenší <a href="/wiki/Absolutn%C3%AD_hodnota" title="Absolutní hodnota">absolutní hodnotou</a>. Musí být 1 • 96 + (- 6) •14 = 12 ∈ <i>I</i> a též 1 • 14 + (- 1) •12 = 2 ∈ <i>I</i> . Podle druhé podmínky (viz výše) obsahuje <i>I</i> všechny celočíselné násobky čísla 2, tj. všechna sudá čísla. Protože podle definice ideálu (Podmnožina <i>I</i> okruhu <b>R</b> je ideálem v právě tehdy, když je neprázdná a platí pro ni podmínky viz výše) množina všech sudých čísel tvoří zřejmě ideál v <b>Z</b>, je <i>I</i> = {..., -6, -4, -2, 0, 2, 4, 6, ...}. </p><p>Týž ideál může mít různé systémy generátorů. Např. ideál <i>I</i> z předchozího příkladu je generován číslem 2, tj. <i>I</i> = [2], a též například <i>I</i> = [6, 8, -10]. </p><p>Platí věta: <i>Každý maximální ideál je prvoideál.</i> Opačné tvrzení v obecném případě neplatí, tj. existují prvoideály, které nejsou maximální. Pokud však <i>R</i> je číselný okruh (tj. podokruh okruhu <a href="/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo">komplexních</a> algebraických celých čísel), je každý prvoideál v <i>R</i> maximálním ideálem. </p> <ul><li>Ideály jsou právě ty množiny, <a href="/wiki/Faktorizace" title="Faktorizace">faktorizací</a> podle nichž vznikne z okruhu opět <a href="/wiki/Okruh_(algebra)" title="Okruh (algebra)">okruh</a>.</li> <li>Prvoideály jsou právě ty množiny, faktorizací podle nichž vznikne z okruhu <a href="/wiki/Obor_integrity" title="Obor integrity">obor integrity</a>.</li> <li>Maximální ideály jsou právě ty množiny, faktorizací podle nichž vznikne <a href="/wiki/T%C4%9Bleso_(algebra)" title="Těleso (algebra)">těleso</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Věta"><span id="V.C4.9Bta"></span>Věta</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=5" title="Editace sekce: Věta" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=5" title="Editovat zdrojový kód sekce Věta"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nechť <i>R</i> je okruh s jednotkovým prvkem a nechť <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=\{a_{1},a_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=\{a_{1},a_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15083e099e7a54ef4886d5500db73260af122c6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.952ex; height:2.843ex;" alt="{\displaystyle M=\{a_{1},a_{2},}"></span>… <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ,a_{k}\subseteq R\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⊆<!-- ⊆ --></mo> <mi>R</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ,a_{k}\subseteq R\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2c25ce5c3ecff43adf6172ac2b1b9fb6bca7067" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.377ex; height:2.843ex;" alt="{\displaystyle ,a_{k}\subseteq R\}}"></span>. Pak ideál [<i>M</i>] se skládá právě ze všech prvků tvaru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\forall r_{1},r_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\forall r_{1},r_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/110393a17fbc4d626ff0b7bb7a4eb5ca92e53423" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.084ex; height:2.843ex;" alt="{\displaystyle (\forall r_{1},r_{2},}"></span>… , <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}\in R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{k}\in R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/673c15f80a77523139e597dae00411bbdcea9df4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.647ex; height:2.843ex;" alt="{\displaystyle r_{k}\in R)}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}r_{1}+a_{2}r_{2}+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}r_{1}+a_{2}r_{2}+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52f791244000191c9fd0b6e1df9367379743e035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.422ex; height:2.343ex;" alt="{\displaystyle a_{1}r_{1}+a_{2}r_{2}+}"></span>… <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +a_{k}r_{k}\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +a_{k}r_{k}\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb3e5d9b7b62c77674b2c61809b53ef43c59265" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.276ex; height:2.509ex;" alt="{\displaystyle +a_{k}r_{k}\in I}"></span>, tj. [<i>M</i>] = <i>I</i>, kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\{a_{1}r_{1}+a_{2}r_{2}+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\{a_{1}r_{1}+a_{2}r_{2}+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb2fdcd4437271069501c327cf8196e2d1b801f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.855ex; height:2.843ex;" alt="{\displaystyle I=\{a_{1}r_{1}+a_{2}r_{2}+}"></span>… <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +a_{k}r_{k};r_{1},r_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>;</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +a_{k}r_{k};r_{1},r_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df2f06150606a1803cf1ec8bfab1a9c3a19abf46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.185ex; height:2.343ex;" alt="{\displaystyle +a_{k}r_{k};r_{1},r_{2},}"></span>… <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ,r_{k}\in R\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>R</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ,r_{k}\in R\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8801f2bc198bebfa336154858208ae822f24b85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.938ex; height:2.843ex;" alt="{\displaystyle ,r_{k}\in R\}}"></span>. </p><p><b>Příklad užití této věty</b> </p><p>V okruhu <b>Z</b>[<i>x</i>] polynomů jedné neurčité s celočíselnými koeficienty máme sestrojit ideál [<i>x</i>, 2]. Podle věty výše (v <b>Z</b>[<i>x</i>] existuje jednotkový prvek) se tento ideál skládá ze všech prvků tvaru: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot f_{1}(x)+2\cdot f_{2}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot f_{1}(x)+2\cdot f_{2}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1af27d7f3180fb7a0f53043f446f378a89a84e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.356ex; height:2.843ex;" alt="{\displaystyle x\cdot f_{1}(x)+2\cdot f_{2}(x)}"></span> kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}(x),f_{2}(x)\in Z[x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mi>Z</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}(x),f_{2}(x)\in Z[x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d815586390247737c6bdde5ee5c51a17aebf5626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.843ex; height:2.843ex;" alt="{\displaystyle f_{1}(x),f_{2}(x)\in Z[x]}"></span>. </p><p>Tedy [<i>x</i>, 2] je množina všech polynomů <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}+a_{1}x+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}+a_{1}x+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b925abf7be5f263cf01906e8aab2158160c5038" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.546ex; height:2.343ex;" alt="{\displaystyle a_{0}+a_{1}x+}"></span>… <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +a_{x}x^{n}\in Z[x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>∈<!-- ∈ --></mo> <mi>Z</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +a_{x}x^{n}\in Z[x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e3c5a2f333514a0c6ae5d7ef67fbcacb4e6213f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.903ex; height:2.843ex;" alt="{\displaystyle +a_{x}x^{n}\in Z[x]}"></span>, jejíž člen <i>a</i><sub>0</sub> je sudé číslo. Ideál [<i>x</i>, 2] je tudíž vlastní podmnožina v <b>Z</b>[<i>x</i>]. </p> <div class="mw-heading mw-heading2"><h2 id="Odkazy">Odkazy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=6" title="Editace sekce: Odkazy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=6" title="Editovat zdrojový kód sekce Odkazy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Literatura">Literatura</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=7" title="Editace sekce: Literatura" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=7" title="Editovat zdrojový kód sekce Literatura"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>BLAŽEK, Jaroslav, KOMAN, Milan a VOJTÁŠKOVÁ, Blanka. <i>Algebra a teoretická aritmetika</i>. 1. vyd. Praha: Státní pedagogické nakladatelství, 1985, 258 s. Učebnice pro vysoké školy (Státní pedagogické nakladatelství).</li></ul> <div class="mw-heading mw-heading3"><h3 id="Související_články"><span id="Souvisej.C3.ADc.C3.AD_.C4.8Dl.C3.A1nky"></span>Související články</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=8" title="Editace sekce: Související články" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=8" title="Editovat zdrojový kód sekce Související články"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Ide%C3%A1l_(teorie_uspo%C5%99%C3%A1d%C3%A1n%C3%AD)" title="Ideál (teorie uspořádání)">Ideál (teorie uspořádání)</a></li> <li><a href="/wiki/Ireducibiln%C3%AD_ide%C3%A1l" title="Ireducibilní ideál">Ireducibilní ideál</a></li> <li><a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">Normální podgrupa</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Externí_odkazy"><span id="Extern.C3.AD_odkazy"></span>Externí odkazy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&veaction=edit&section=9" title="Editace sekce: Externí odkazy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&action=edit&section=9" title="Editovat zdrojový kód sekce Externí odkazy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="wd"><span class="sisterproject sisterproject-commons"><span class="sisterproject_image"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons"><img alt="Logo Wikimedia Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></span> <span class="sisterproject_text">Obrázky, zvuky či videa k tématu <span class="sisterproject_text_target"><a href="https://commons.wikimedia.org/wiki/Category:Ideal_(ring_theory)" class="extiw" title="c:Category:Ideal (ring theory)">ideál</a></span> na <a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons">Wikimedia Commons</a></span></span></span><i> </i></li></ul> <style data-mw-deduplicate="TemplateStyles:r23078045">.mw-parser-output .navbox2{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox2 .navbox2{margin-top:0}.mw-parser-output .navbox2+.navbox2{margin-top:-1px}.mw-parser-output .navbox2-inner,.mw-parser-output .navbox2-subgroup{width:100%}.mw-parser-output .navbox2-group,.mw-parser-output .navbox2-title,.mw-parser-output .navbox2-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output th.navbox2-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox2,.mw-parser-output .navbox2-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox2-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output tr+tr>.navbox2-abovebelow,.mw-parser-output tr+tr>.navbox2-group,.mw-parser-output tr+tr>.navbox2-image,.mw-parser-output tr+tr>.navbox2-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox2 th,.mw-parser-output .navbox2-title{background-color:#e0e0e0}.mw-parser-output .navbox2-abovebelow,.mw-parser-output th.navbox2-group,.mw-parser-output .navbox2-subgroup .navbox2-title{background-color:#e7e7e7}.mw-parser-output .navbox2-subgroup .navbox2-title{font-size:88%}.mw-parser-output .navbox2-subgroup .navbox2-group,.mw-parser-output .navbox2-subgroup .navbox2-abovebelow{background-color:#f0f0f0}.mw-parser-output .navbox2-even{background-color:#f7f7f7}.mw-parser-output .navbox2-odd{background-color:transparent}.mw-parser-output .navbox2 .hlist td dl,.mw-parser-output .navbox2 .hlist td ol,.mw-parser-output .navbox2 .hlist td ul,.mw-parser-output .navbox2 td.hlist dl,.mw-parser-output .navbox2 td.hlist ol,.mw-parser-output .navbox2 td.hlist ul{padding:0.125em 0}</style><div role="navigation" class="navbox2" aria-labelledby="Autoritní_data_frameless_&#124;text-top_&#124;10px_&#124;alt=Editovat_na_Wikidatech_&#124;link=https&#58;//www.wikidata.org/wiki/Q44649#identifiers&#124;Editovat_na_Wikidatech" style="padding:2px"><table class="nowraplinks hlist navbox2-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Autoritní_data_frameless_&#124;text-top_&#124;10px_&#124;alt=Editovat_na_Wikidatech_&#124;link=https&#58;//www.wikidata.org/wiki/Q44649#identifiers&#124;Editovat_na_Wikidatech" scope="row" class="navbox2-group" style="width:1%"><a href="/wiki/Autoritn%C3%AD_kontrola" title="Autoritní kontrola">Autoritní data</a> <span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q44649#identifiers" title="Editovat na Wikidatech"><img alt="Editovat na Wikidatech" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox2-list navbox2-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/Francouzsk%C3%A1_n%C3%A1rodn%C3%AD_knihovna" title="Francouzská národní knihovna">BNF</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119794357">cb119794357</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119794357">(data)</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4161198-6">4161198-6</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85064134">sh85064134</a></span></span></li> <li><span class="nowrap"><a href="/wiki/N%C3%A1rodn%C3%AD_knihovna_Izraele" title="Národní knihovna Izraele">NLI</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007538412305171">987007538412305171</a></span></span></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r16915398">.mw-parser-output div/**/#portallinks a{font-weight:bold}</style><div id="portallinks" class="catlinks"><a href="/wiki/Port%C3%A1l:Obsah" title="Portál:Obsah">Portály</a>: <a href="/wiki/Port%C3%A1l:Matematika" title="Portál:Matematika">Matematika</a> </div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐5cf7d5b8cd‐c65nb Cached time: 20241129030748 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.126 seconds Real time usage: 0.267 seconds Preprocessor visited node count: 366/1000000 Post‐expand include size: 5376/2097152 bytes Template argument size: 41/2097152 bytes Highest expansion depth: 7/100 Expensive parser function count: 4/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 3536/5000000 bytes Lua time usage: 0.043/10.000 seconds Lua memory usage: 1578224/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 135.098 1 -total 58.86% 79.515 1 Šablona:Commonscat 37.65% 50.866 1 Šablona:Autoritní_data 3.36% 4.543 1 Šablona:Portály --> <!-- Saved in parser cache with key cswiki:pcache:idhash:132028-0!canonical and timestamp 20241129030748 and revision id 24300469. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Citováno z „<a dir="ltr" href="https://cs.wikipedia.org/w/index.php?title=Ideál_(teorie_okruhů)&oldid=24300469">https://cs.wikipedia.org/w/index.php?title=Ideál_(teorie_okruhů)&oldid=24300469</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/N%C3%A1pov%C4%9Bda:Kategorie" title="Nápověda:Kategorie">Kategorie</a>: <ul><li><a href="/wiki/Kategorie:Algebraick%C3%A9_struktury" title="Kategorie:Algebraické struktury">Algebraické struktury</a></li><li><a href="/wiki/Kategorie:Teorie_okruh%C5%AF" title="Kategorie:Teorie okruhů">Teorie okruhů</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skryté kategorie: <ul><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_BNF" title="Kategorie:Monitoring:Články s identifikátorem BNF">Monitoring:Články s identifikátorem BNF</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_GND" title="Kategorie:Monitoring:Články s identifikátorem GND">Monitoring:Články s identifikátorem GND</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_LCCN" title="Kategorie:Monitoring:Články s identifikátorem LCCN">Monitoring:Články s identifikátorem LCCN</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_NLI" title="Kategorie:Monitoring:Články s identifikátorem NLI">Monitoring:Články s identifikátorem NLI</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Stránka byla naposledy editována 8. 10. 2024 v 11:28.</li> <li id="footer-info-copyright">Text je dostupný pod <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cs">licencí Creative Commons Uveďte původ – Zachovejte licenci</a>, případně za dalších podmínek. Podrobnosti naleznete na stránce <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/cs">Podmínky užití</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Ochrana osobních údajů</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedie">O Wikipedii</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedie:Vylou%C4%8Den%C3%AD_odpov%C4%9Bdnosti">Vyloučení odpovědnosti</a></li> <li id="footer-places-contact"><a href="//cs.wikipedia.org/wiki/Wikipedie:Kontakt">Kontaktujte Wikipedii</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodex chování</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Vývojáři</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/cs.wikipedia.org">Statistiky</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Prohlášení o cookies</a></li> <li id="footer-places-mobileview"><a href="//cs.m.wikipedia.org/w/index.php?title=Ide%C3%A1l_(teorie_okruh%C5%AF)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilní verze</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-7w877","wgBackendResponseTime":158,"wgPageParseReport":{"limitreport":{"cputime":"0.126","walltime":"0.267","ppvisitednodes":{"value":366,"limit":1000000},"postexpandincludesize":{"value":5376,"limit":2097152},"templateargumentsize":{"value":41,"limit":2097152},"expansiondepth":{"value":7,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":3536,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 135.098 1 -total"," 58.86% 79.515 1 Šablona:Commonscat"," 37.65% 50.866 1 Šablona:Autoritní_data"," 3.36% 4.543 1 Šablona:Portály"]},"scribunto":{"limitreport-timeusage":{"value":"0.043","limit":"10.000"},"limitreport-memusage":{"value":1578224,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.eqiad.main-5cf7d5b8cd-c65nb","timestamp":"20241129030748","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ide\u00e1l (teorie okruh\u016f)","url":"https:\/\/cs.wikipedia.org\/wiki\/Ide%C3%A1l_(teorie_okruh%C5%AF)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q44649","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q44649","author":{"@type":"Organization","name":"P\u0159isp\u011bvatel\u00e9 projekt\u016f Wikimedia"},"publisher":{"@type":"Organization","name":"nadace Wikimedia","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-10-03T13:34:51Z","dateModified":"2024-10-08T10:28:58Z"}</script> </body> </html>