CINXE.COM

Jonathan Burdette - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Jonathan Burdette - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="AjOIsRIL56CDGSZCHeC7xPObeZdnDFItTka2trG/L9xkmOL13godF5bO5NunE0Io3a+gAGcxlIw1ysk9KASPoA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="jonathan burdette" /> <meta name="description" content="Jonathan Burdette: 6 Followers, 2 Following, 102 Research papers. Research interests: Deception / Lying (Deception Lying), Positron Emission Tomography, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '04eca283cd87f77be92866d598a6d757659962b2'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15265,"monthly_visitors":"113 million","monthly_visitor_count":113657801,"monthly_visitor_count_in_millions":113,"user_count":277967824,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733259063000); window.Aedu.timeDifference = new Date().getTime() - 1733259063000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bad3fa1257b860f4633ff1db966aa3ae7dfe1980708675f3e2488742c1a0d941.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-34a3460a4873b743570e35df99c7839e3ddd9a3d06ef96c9fe38311a96a8a24e.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/JonathanBurdette" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-d50db999ccdab527b1e040b4cc8af62d4a8254a0385f5004e234635ba055442a.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":10395,"name":"Deception / Lying (Deception Lying)","url":"https://www.academia.edu/Documents/in/Deception_Lying_Deception_Lying_"},{"id":23518,"name":"Positron Emission Tomography","url":"https://www.academia.edu/Documents/in/Positron_Emission_Tomography"},{"id":32384,"name":"Neurolaw","url":"https://www.academia.edu/Documents/in/Neurolaw"},{"id":9240,"name":"Neuroethics","url":"https://www.academia.edu/Documents/in/Neuroethics"},{"id":8538,"name":"Working Memory","url":"https://www.academia.edu/Documents/in/Working_Memory"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/JonathanBurdette&quot;,&quot;location&quot;:&quot;/JonathanBurdette&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JonathanBurdette&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-cee4960c-ab38-4615-b1aa-6fd8fa812e11"></div> <div id="ProfileCheckPaperUpdate-react-component-cee4960c-ab38-4615-b1aa-6fd8fa812e11"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Jonathan Burdette</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Jonathan" data-follow-user-id="39420980" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="39420980"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="39420980" href="https://www.academia.edu/Documents/in/Deception_Lying_Deception_Lying_"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/JonathanBurdette&quot;,&quot;location&quot;:&quot;/JonathanBurdette&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JonathanBurdette&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Deception / Lying (Deception Lying)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-380fca0b-0573-4d27-8075-ad520e58e712"></div> <div id="Pill-react-component-380fca0b-0573-4d27-8075-ad520e58e712"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="39420980" href="https://www.academia.edu/Documents/in/Positron_Emission_Tomography"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Positron Emission Tomography&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f0414fb1-59a9-4901-8fe0-a134ac0c5f1b"></div> <div id="Pill-react-component-f0414fb1-59a9-4901-8fe0-a134ac0c5f1b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="39420980" href="https://www.academia.edu/Documents/in/Neurolaw"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Neurolaw&quot;]}" data-trace="false" data-dom-id="Pill-react-component-280bfd65-bb93-488a-8805-7ebc5c736d82"></div> <div id="Pill-react-component-280bfd65-bb93-488a-8805-7ebc5c736d82"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="39420980" href="https://www.academia.edu/Documents/in/Neuroethics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Neuroethics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-027c2193-79af-4242-9126-36dc6428c37a"></div> <div id="Pill-react-component-027c2193-79af-4242-9126-36dc6428c37a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="39420980" href="https://www.academia.edu/Documents/in/Working_Memory"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Working Memory&quot;]}" data-trace="false" data-dom-id="Pill-react-component-17c6a9e1-e8f0-4a12-94af-52a429b5e6f5"></div> <div id="Pill-react-component-17c6a9e1-e8f0-4a12-94af-52a429b5e6f5"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Jonathan Burdette</h3></div><div class="js-work-strip profile--work_container" data-work-id="124721126"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124721126/The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain"><img alt="Research paper thumbnail of The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain" class="work-thumbnail" src="https://attachments.academia-assets.com/118894166/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124721126/The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain">The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain</a></div><div class="wp-workCard_item"><span>Brain connectivity</span><span>, Oct 1, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="893511bc786a37432cf1a38e5aacea49" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118894166,&quot;asset_id&quot;:124721126,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118894166/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124721126"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124721126"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124721126; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124721126]").text(description); $(".js-view-count[data-work-id=124721126]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124721126; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124721126']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124721126, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "893511bc786a37432cf1a38e5aacea49" } } $('.js-work-strip[data-work-id=124721126]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124721126,"title":"The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain","translated_title":"","metadata":{"publisher":"Mary Ann Liebert, Inc.","grobid_abstract":"Although graph theory has been around since the 18th century, the field of network science is more recent and continues to gain popularity, particularly in the field of neuroimaging. The field was propelled forward when Watts and Strogatz introduced their small-world network model, which described a network that provided regional specialization with efficient global information transfer. This model is appealing to the study of brain connectivity, as the brain can be viewed as a system with various interacting regions that produce complex behaviors. In practice, graph metrics such as clustering coefficient, path length, and efficiency measures are often used to characterize system properties. Centrality metrics such as degree, betweenness, closeness, and eigenvector centrality determine critical areas within the network. Community structure is also essential for understanding network organization and topology. Network science has led to a paradigm shift in the neuroscientific community, but it should be viewed as more than a simple ''tool du jour.'' To fully appreciate the utility of network science, a greater understanding of how network models apply to the brain is needed. An integrated appraisal of multiple network analyses should be performed to better understand network structure rather than focusing on univariate comparisons to find significant group differences; indeed, such comparisons, popular with traditional functional magnetic resonance imaging analyses, are arguably no longer relevant with graph-theory based approaches. These methods necessitate a philosophical shift toward complexity science. In this context, when correctly applied and interpreted, network scientific methods have a chance to revolutionize the understanding of brain function.","publication_date":{"day":1,"month":10,"year":2011,"errors":{}},"publication_name":"Brain connectivity","grobid_abstract_attachment_id":118894166},"translated_abstract":null,"internal_url":"https://www.academia.edu/124721126/The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain","translated_internal_url":"","created_at":"2024-10-14T10:21:18.590-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118894166,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118894166/thumbnails/1.jpg","file_name":"pmc3621511.pdf","download_url":"https://www.academia.edu/attachments/118894166/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Brain_as_a_Complex_System_Using_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118894166/pmc3621511-libre.pdf?1728927349=\u0026response-content-disposition=attachment%3B+filename%3DThe_Brain_as_a_Complex_System_Using_Netw.pdf\u0026Expires=1733262662\u0026Signature=OZXG-wQJHwTMPltwOmRwiCTuRcDY4t5S5vktw~R2cyR-sWt8ooF-mqBGt7~U0DHc-zeexgv4wTT0xZ9GEMbFSufGp934xcajVSYAWEZu8gMFNudQil0A0jhzB7Hn17FTyhrdY-Ix1lVdQCOqexrjEVFZyWkUa-2JRkdbpVPJZGmSbdqQ3felKVaPlumsVL-vV45g0TpEg~ogRsF66rKfBO-EmXSng9a89ZqOYPZFfhG1Il3d0pqO3iNQ008ohY7OX1cnALTq14KBvPjGeBOajn~5GXtgDQuE~rMmCEK2pSF5GRlJgfHC1N2zhA-mR49nAzNGC2VdW6VFrnL06PMziA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":118894166,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118894166/thumbnails/1.jpg","file_name":"pmc3621511.pdf","download_url":"https://www.academia.edu/attachments/118894166/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Brain_as_a_Complex_System_Using_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118894166/pmc3621511-libre.pdf?1728927349=\u0026response-content-disposition=attachment%3B+filename%3DThe_Brain_as_a_Complex_System_Using_Netw.pdf\u0026Expires=1733262662\u0026Signature=OZXG-wQJHwTMPltwOmRwiCTuRcDY4t5S5vktw~R2cyR-sWt8ooF-mqBGt7~U0DHc-zeexgv4wTT0xZ9GEMbFSufGp934xcajVSYAWEZu8gMFNudQil0A0jhzB7Hn17FTyhrdY-Ix1lVdQCOqexrjEVFZyWkUa-2JRkdbpVPJZGmSbdqQ3felKVaPlumsVL-vV45g0TpEg~ogRsF66rKfBO-EmXSng9a89ZqOYPZFfhG1Il3d0pqO3iNQ008ohY7OX1cnALTq14KBvPjGeBOajn~5GXtgDQuE~rMmCEK2pSF5GRlJgfHC1N2zhA-mR49nAzNGC2VdW6VFrnL06PMziA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118894167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118894167/thumbnails/1.jpg","file_name":"pmc3621511.pdf","download_url":"https://www.academia.edu/attachments/118894167/download_file","bulk_download_file_name":"The_Brain_as_a_Complex_System_Using_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118894167/pmc3621511-libre.pdf?1728927352=\u0026response-content-disposition=attachment%3B+filename%3DThe_Brain_as_a_Complex_System_Using_Netw.pdf\u0026Expires=1733262662\u0026Signature=NlDolVV4W5NZFKyt8IvOcqZF-bWND3Y~YVZM30c7rTAiW98huqx8YCFIIqvKSj1Y-gLejSmBcdh4fqKnS02LwK6XET7pxaI9lGX5~gk03l-tnz6DOUBba5c-qEQlC9zMY8xVLr9aIKZVFndvqN2fuGvdMfn36JR0abe2IUk5x~4cJIdz2YZoLEAJ3k46fm~v9ZKCIyqwnPcz7FIBVFS2ign0il9a2AVvDD75hgE7aSPNHoSiFfs5kFy59asu6hhd0z64KNM84qzmLSwOGeAy1nXMrrv6GVgYoGtv51rJ43WQ9WpoomyGTOP~Mmd1CBybxF32x3l5xwgLjP6VSW9k~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory"},{"id":2639,"name":"Neuroimaging","url":"https://www.academia.edu/Documents/in/Neuroimaging"},{"id":9191,"name":"Network Analysis","url":"https://www.academia.edu/Documents/in/Network_Analysis"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36812,"name":"Network science","url":"https://www.academia.edu/Documents/in/Network_science"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":97252,"name":"Comprehension","url":"https://www.academia.edu/Documents/in/Comprehension"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":188264,"name":"Brain Connectivity","url":"https://www.academia.edu/Documents/in/Brain_Connectivity"},{"id":191087,"name":"Centrality","url":"https://www.academia.edu/Documents/in/Centrality"},{"id":320532,"name":"Clustering Coefficient","url":"https://www.academia.edu/Documents/in/Clustering_Coefficient"},{"id":401305,"name":"Betweenness Centrality","url":"https://www.academia.edu/Documents/in/Betweenness_Centrality"}],"urls":[{"id":45149363,"url":"https://europepmc.org/articles/pmc3621511?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960711"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960711/Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications"><img alt="Research paper thumbnail of Arterial Spin-Labeled MR Perfusion Imaging: Clinical Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/84493836/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960711/Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications">Arterial Spin-Labeled MR Perfusion Imaging: Clinical Applications</a></div><div class="wp-workCard_item"><span>Magnetic Resonance Imaging Clinics of North America</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="10bdd72c9b1cc7b41aed6069092860f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84493836,&quot;asset_id&quot;:76960711,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84493836/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960711"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960711"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960711; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960711]").text(description); $(".js-view-count[data-work-id=76960711]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960711; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960711']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960711, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "10bdd72c9b1cc7b41aed6069092860f0" } } $('.js-work-strip[data-work-id=76960711]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960711,"title":"Arterial Spin-Labeled MR Perfusion Imaging: Clinical Applications","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Magnetic Resonance Imaging Clinics of North America"},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960711/Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications","translated_internal_url":"","created_at":"2022-04-19T07:37:02.545-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84493836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493836/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493836/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Arterial_Spin_Labeled_MR_Perfusion_Imagi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493836/pdf-libre.pdf?1650401344=\u0026response-content-disposition=attachment%3B+filename%3DArterial_Spin_Labeled_MR_Perfusion_Imagi.pdf\u0026Expires=1733262662\u0026Signature=EQskkU1lg3icv0p7XV~~UBAIb6J9ZB3w6eO0Kn0vOX-NXjUzGIwvegLE-CqGRxuouu1SU6DT-qTG~461Mv~GVx9ctZXWN4RVSlykMhcFuFUJfyALGi-YeehxgoII40qGnX3dJ3ryYTWCY2drPhaETPoMu~-dzEDDEY-DbdSk~CRpTcsl8E2eDAAfgy0Z2okgEtecR5L9IGSIs-szO0s7V03FjusfWtMRquLNcGs3ThhO0-pvZHvQ2oY710fYJfY6VOrGQvGDEvzumHrGDSWHkFygiSz3KrRxbLdmm~Tw6l7q74asyxP~~ZvLxVqAjYU9MsfOzeJKub~W89oIaVclxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84493836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493836/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493836/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Arterial_Spin_Labeled_MR_Perfusion_Imagi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493836/pdf-libre.pdf?1650401344=\u0026response-content-disposition=attachment%3B+filename%3DArterial_Spin_Labeled_MR_Perfusion_Imagi.pdf\u0026Expires=1733262662\u0026Signature=EQskkU1lg3icv0p7XV~~UBAIb6J9ZB3w6eO0Kn0vOX-NXjUzGIwvegLE-CqGRxuouu1SU6DT-qTG~461Mv~GVx9ctZXWN4RVSlykMhcFuFUJfyALGi-YeehxgoII40qGnX3dJ3ryYTWCY2drPhaETPoMu~-dzEDDEY-DbdSk~CRpTcsl8E2eDAAfgy0Z2okgEtecR5L9IGSIs-szO0s7V03FjusfWtMRquLNcGs3ThhO0-pvZHvQ2oY710fYJfY6VOrGQvGDEvzumHrGDSWHkFygiSz3KrRxbLdmm~Tw6l7q74asyxP~~ZvLxVqAjYU9MsfOzeJKub~W89oIaVclxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":161534,"name":"Perfusion","url":"https://www.academia.edu/Documents/in/Perfusion"},{"id":372581,"name":"Image Enhancement","url":"https://www.academia.edu/Documents/in/Image_Enhancement"},{"id":1122411,"name":"Mr Imaging","url":"https://www.academia.edu/Documents/in/Mr_Imaging"},{"id":1148465,"name":"ASL (Arterial Spin Labeling)","url":"https://www.academia.edu/Documents/in/ASL_Arterial_Spin_Labeling_"},{"id":1205102,"name":"Cerebrovascular Disorders","url":"https://www.academia.edu/Documents/in/Cerebrovascular_Disorders"},{"id":1275886,"name":"Clinical Application","url":"https://www.academia.edu/Documents/in/Clinical_Application"},{"id":1407305,"name":"Contrast Media","url":"https://www.academia.edu/Documents/in/Contrast_Media"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960708"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960708/An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets"><img alt="Research paper thumbnail of An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets" class="work-thumbnail" src="https://attachments.academia-assets.com/84493832/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960708/An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets">An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets</a></div><div class="wp-workCard_item"><span>NeuroImage</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc53b9f5c0c1f2ae78b53d6ae94f52ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84493832,&quot;asset_id&quot;:76960708,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84493832/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960708"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960708"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960708; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960708]").text(description); $(".js-view-count[data-work-id=76960708]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960708; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960708']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960708, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc53b9f5c0c1f2ae78b53d6ae94f52ef" } } $('.js-work-strip[data-work-id=76960708]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960708,"title":"An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Analysis and interpretation of functional MRI (fMRI) data have traditionally been based on identifying areas of significance on a thresholded statistical map of the entire imaged brain volume. This form of analysis can be likened to a \"fishing expedition.\" As we become more knowledgeable about the structure-function relationships of different brain regions, tools for a priori hypothesis testing are needed. These tools must be able to generate region of interest masks for a priori hypothesis testing consistently and with minimal effort. Current tools that generate region of interest masks required for a priori hypothesis testing can be time-consuming and are often laboratory specific. In this paper we demonstrate a method of hypothesis-driven data analysis using an automated atlas-based masking technique. We provide a powerful method of probing fMRI data using automatically generated masks based on lobar anatomy, cortical and subcortical anatomy, and Brodmann areas. Hemisphere, lobar, anatomic label, tissue type, and Brodmann area atlases were generated in MNI space based on the Talairach Daemon. Additionally, we interfaced these multivolume atlases to a widely used fMRI software package, SPM99, and demonstrate the use of the atlas tool with representative fMRI data. This tool represents a necessary evolution in fMRI data analysis for testing of more spatially complex hypotheses.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"NeuroImage","grobid_abstract_attachment_id":84493832},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960708/An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets","translated_internal_url":"","created_at":"2022-04-19T07:37:02.372-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84493832,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493832/thumbnails/1.jpg","file_name":"s1053-8119_2803_2900169-120220419-1-1thjyo.pdf","download_url":"https://www.academia.edu/attachments/84493832/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_automated_method_for_neuroanatomic_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493832/s1053-8119_2803_2900169-120220419-1-1thjyo-libre.pdf?1650399694=\u0026response-content-disposition=attachment%3B+filename%3DAn_automated_method_for_neuroanatomic_an.pdf\u0026Expires=1733262662\u0026Signature=UPX-8KlVPIf~g8l1fstfIwg6gCfGkLm1QwCXhjIdlvhiIR7alKLjX~UeqLSw8AmAjLfesmJxhAY~8lMGBHXjL5UFamdAO49fKnQELx-eLKMk7AvcdDwphtkWaKT8NiWH4wY4jwHJzqGKe9owd3RlR-uhbMJ72~~xpDIWfg63Mew-H-UeIij3IRIYf5CKI5cGUigvAzfI-2ObH~hFbrB6A0JnwVrOCBMaczSZJN4wVaZpwK1oLY1gZrJLZSoPkLeU2bnZ4lRZ2YCMraWv7DAxQKoNeV2vHBJaoGoybTgWUOEJGVqe3OZiqeMEXPZAByvpMkU8hwUofhtD3CSEKGgGwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84493832,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493832/thumbnails/1.jpg","file_name":"s1053-8119_2803_2900169-120220419-1-1thjyo.pdf","download_url":"https://www.academia.edu/attachments/84493832/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_automated_method_for_neuroanatomic_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493832/s1053-8119_2803_2900169-120220419-1-1thjyo-libre.pdf?1650399694=\u0026response-content-disposition=attachment%3B+filename%3DAn_automated_method_for_neuroanatomic_an.pdf\u0026Expires=1733262662\u0026Signature=UPX-8KlVPIf~g8l1fstfIwg6gCfGkLm1QwCXhjIdlvhiIR7alKLjX~UeqLSw8AmAjLfesmJxhAY~8lMGBHXjL5UFamdAO49fKnQELx-eLKMk7AvcdDwphtkWaKT8NiWH4wY4jwHJzqGKe9owd3RlR-uhbMJ72~~xpDIWfg63Mew-H-UeIij3IRIYf5CKI5cGUigvAzfI-2ObH~hFbrB6A0JnwVrOCBMaczSZJN4wVaZpwK1oLY1gZrJLZSoPkLeU2bnZ4lRZ2YCMraWv7DAxQKoNeV2vHBJaoGoybTgWUOEJGVqe3OZiqeMEXPZAByvpMkU8hwUofhtD3CSEKGgGwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":9224,"name":"Functional MRI","url":"https://www.academia.edu/Documents/in/Functional_MRI"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":103260,"name":"Neuroimage","url":"https://www.academia.edu/Documents/in/Neuroimage"},{"id":387125,"name":"Automatic code generation","url":"https://www.academia.edu/Documents/in/Automatic_code_generation"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":1372278,"name":"Region of Interest","url":"https://www.academia.edu/Documents/in/Region_of_Interest"},{"id":2057366,"name":"Software Package","url":"https://www.academia.edu/Documents/in/Software_Package"},{"id":2226477,"name":"Automatic data processing","url":"https://www.academia.edu/Documents/in/Automatic_data_processing"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3519354,"name":"Hypothesis Test","url":"https://www.academia.edu/Documents/in/Hypothesis_Test"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960706"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960706/Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load"><img alt="Research paper thumbnail of Changes in global and regional modularity associated with increasing working memory load" class="work-thumbnail" src="https://attachments.academia-assets.com/84493796/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960706/Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load">Changes in global and regional modularity associated with increasing working memory load</a></div><div class="wp-workCard_item"><span>Frontiers in Human Neuroscience</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eb1642763e4f65e72091d88edff982a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84493796,&quot;asset_id&quot;:76960706,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84493796/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960706"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960706"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960706; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960706]").text(description); $(".js-view-count[data-work-id=76960706]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960706; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960706']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960706, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eb1642763e4f65e72091d88edff982a4" } } $('.js-work-strip[data-work-id=76960706]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960706,"title":"Changes in global and regional modularity associated with increasing working memory load","translated_title":"","metadata":{"publisher":"Frontiers Media SA","grobid_abstract":"Using graph theory measures common to complex network analyses of neuroimaging data, the objective of this study was to explore the effects of increasing working memory processing load on functional brain network topology in a cohort of young adults. Measures of modularity in complex brain networks quantify how well a network is organized into densely interconnected communities. We investigated changes in both the large-scale modular organization of the functional brain network as a whole and regional changes in modular organization as demands on working memory increased from n = 1 to n = 2 on the standard n-back task. We further investigated the relationship between modular properties across working memory load conditions and behavioral performance. Our results showed that regional modular organization within the default mode and working memory circuits significantly changed from 1-back to 2-back task conditions. However, the regional modular organization was not associated with behavioral performance. Global measures of modular organization did not change with working memory load but were associated with individual variability in behavioral performance. These findings indicate that regional and global network properties are modulated by different aspects of working memory under increasing load conditions. These findings highlight the importance of assessing multiple features of functional brain network topology at both global and regional scales rather than focusing on a single network property.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Frontiers in Human Neuroscience","grobid_abstract_attachment_id":84493796},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960706/Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load","translated_internal_url":"","created_at":"2022-04-19T07:37:02.183-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84493796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493796/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493796/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Changes_in_global_and_regional_modularit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493796/pdf-libre.pdf?1650399225=\u0026response-content-disposition=attachment%3B+filename%3DChanges_in_global_and_regional_modularit.pdf\u0026Expires=1733262662\u0026Signature=VIzVEoj1CA1BpqMIKwDjuLX2JXUl19WScJmPcBqJEGVn6IAnvMrSXv3ZqU~zF6T3Mv56gCJ6rVmr~li9SoBA814VSIu2cFp0zXgpV3B1FeeGh2cwqiY7CtjxUYleRVWo50fZqZSNEgtRu9g~Dm0QQFWiRyp19-jWJaXHwoMc1~MmLqD4wzyHsHq-m-dw3SU42yUFeap0D2U--39Nr5TWMCTPst1PWAkKDFUihy~wox8m~tXa771j2zT352-Z0GMLvoE~vzQ705Q--7rdrfuKoDEH5yyUp05LbuBsPLIs8MVaEm3wiZX-nGUffZaG8Fpp92q2J6CruKcm8WVaXnM9zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84493796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493796/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493796/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Changes_in_global_and_regional_modularit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493796/pdf-libre.pdf?1650399225=\u0026response-content-disposition=attachment%3B+filename%3DChanges_in_global_and_regional_modularit.pdf\u0026Expires=1733262662\u0026Signature=VIzVEoj1CA1BpqMIKwDjuLX2JXUl19WScJmPcBqJEGVn6IAnvMrSXv3ZqU~zF6T3Mv56gCJ6rVmr~li9SoBA814VSIu2cFp0zXgpV3B1FeeGh2cwqiY7CtjxUYleRVWo50fZqZSNEgtRu9g~Dm0QQFWiRyp19-jWJaXHwoMc1~MmLqD4wzyHsHq-m-dw3SU42yUFeap0D2U--39Nr5TWMCTPst1PWAkKDFUihy~wox8m~tXa771j2zT352-Z0GMLvoE~vzQ705Q--7rdrfuKoDEH5yyUp05LbuBsPLIs8MVaEm3wiZX-nGUffZaG8Fpp92q2J6CruKcm8WVaXnM9zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory"},{"id":8538,"name":"Working Memory","url":"https://www.academia.edu/Documents/in/Working_Memory"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36812,"name":"Network science","url":"https://www.academia.edu/Documents/in/Network_science"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":154234,"name":"Modularity","url":"https://www.academia.edu/Documents/in/Modularity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960704"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960704/Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults"><img alt="Research paper thumbnail of Using network science to evaluate exercise-associated brain changes in older adults" class="work-thumbnail" src="https://attachments.academia-assets.com/84506999/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960704/Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults">Using network science to evaluate exercise-associated brain changes in older adults</a></div><div class="wp-workCard_item"><span>Frontiers in Aging Neuroscience</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d93324eacd0fa0bad93bee59d6306c6e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84506999,&quot;asset_id&quot;:76960704,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84506999/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960704"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960704"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960704; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960704]").text(description); $(".js-view-count[data-work-id=76960704]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960704; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960704']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960704, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d93324eacd0fa0bad93bee59d6306c6e" } } $('.js-work-strip[data-work-id=76960704]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960704,"title":"Using network science to evaluate exercise-associated brain changes in older adults","translated_title":"","metadata":{"publisher":"Frontiers Media SA","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Frontiers in Aging Neuroscience"},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960704/Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults","translated_internal_url":"","created_at":"2022-04-19T07:37:02.008-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84506999,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84506999/thumbnails/1.jpg","file_name":"pmc2893375.pdf","download_url":"https://www.academia.edu/attachments/84506999/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_network_science_to_evaluate_exerci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84506999/pmc2893375-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DUsing_network_science_to_evaluate_exerci.pdf\u0026Expires=1733262662\u0026Signature=RvIRi6Uofi4aWJsdKzkQvkNP08qai20Z6gtHEvTvR3P0OkJZEzoSs8t-mUbTjCpJQMZ3dfDfeqHBh4aZHahwKLc6~ZsC~PtFtndAOQU0UJWNtZEEyYCaNBJBZ~cl43MHmWcUbeOFjE7viZL5tMgdm9D1TjoqXRVrA~jWR7lsiFvkmydVJfLX9hj8BkWOeYXnYsqq0Xk95mAtttaO9WO9-UoClZunlgqsyZKGhkYRyIDuHA9B7vWR7dryC-ki69rvBw4JdDipOKRlFrXff4iHFtPH-xZrL1zZ9DCEoUMwANX~rC71Cvo6LJBPDxgbGSgpb643cG5zkD~Y5JDsNWXU0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84506999,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84506999/thumbnails/1.jpg","file_name":"pmc2893375.pdf","download_url":"https://www.academia.edu/attachments/84506999/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_network_science_to_evaluate_exerci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84506999/pmc2893375-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DUsing_network_science_to_evaluate_exerci.pdf\u0026Expires=1733262662\u0026Signature=RvIRi6Uofi4aWJsdKzkQvkNP08qai20Z6gtHEvTvR3P0OkJZEzoSs8t-mUbTjCpJQMZ3dfDfeqHBh4aZHahwKLc6~ZsC~PtFtndAOQU0UJWNtZEEyYCaNBJBZ~cl43MHmWcUbeOFjE7viZL5tMgdm9D1TjoqXRVrA~jWR7lsiFvkmydVJfLX9hj8BkWOeYXnYsqq0Xk95mAtttaO9WO9-UoClZunlgqsyZKGhkYRyIDuHA9B7vWR7dryC-ki69rvBw4JdDipOKRlFrXff4iHFtPH-xZrL1zZ9DCEoUMwANX~rC71Cvo6LJBPDxgbGSgpb643cG5zkD~Y5JDsNWXU0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":437852,"name":"FRONTIERS","url":"https://www.academia.edu/Documents/in/FRONTIERS"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960702/Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS"><img alt="Research paper thumbnail of Fully Automated Processing of fMRI Data in SPM: from MRI Scanner to PACS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960702/Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS">Fully Automated Processing of fMRI Data in SPM: from MRI Scanner to PACS</a></div><div class="wp-workCard_item"><span>Neuroinformatics</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we describe the Wake Forest University Pipeline, a fully automated method for the processing...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960702]").text(description); $(".js-view-count[data-work-id=76960702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76960702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960702,"title":"Fully Automated Processing of fMRI Data in SPM: from MRI Scanner to PACS","translated_title":"","metadata":{"abstract":"Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Neuroinformatics"},"translated_abstract":"Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.","internal_url":"https://www.academia.edu/76960702/Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS","translated_internal_url":"","created_at":"2022-04-19T07:37:01.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4492,"name":"Neuroinformatics","url":"https://www.academia.edu/Documents/in/Neuroinformatics"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":9224,"name":"Functional MRI","url":"https://www.academia.edu/Documents/in/Functional_MRI"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":45090,"name":"Database Management Systems","url":"https://www.academia.edu/Documents/in/Database_Management_Systems"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":186890,"name":"Spm","url":"https://www.academia.edu/Documents/in/Spm"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":277283,"name":"Data transfer","url":"https://www.academia.edu/Documents/in/Data_transfer"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":386115,"name":"Automated","url":"https://www.academia.edu/Documents/in/Automated"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1280806,"name":"Error Recovery","url":"https://www.academia.edu/Documents/in/Error_Recovery"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":2226477,"name":"Automatic data processing","url":"https://www.academia.edu/Documents/in/Automatic_data_processing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960700"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960700/A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI"><img alt="Research paper thumbnail of A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI" class="work-thumbnail" src="https://attachments.academia-assets.com/84507005/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960700/A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI">A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI</a></div><div class="wp-workCard_item"><span>Journal of Magnetic Resonance Imaging</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="260b890cef8f0d3295031ab551309268" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84507005,&quot;asset_id&quot;:76960700,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84507005/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960700"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960700"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960700; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960700]").text(description); $(".js-view-count[data-work-id=76960700]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960700; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960700']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960700, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "260b890cef8f0d3295031ab551309268" } } $('.js-work-strip[data-work-id=76960700]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960700,"title":"A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI","translated_title":"","metadata":{"publisher":"Wiley","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Magnetic Resonance Imaging"},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960700/A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI","translated_internal_url":"","created_at":"2022-04-19T07:37:01.678-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84507005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507005/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/84507005/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fast_effective_filtering_method_for_im.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507005/ptpmcrender-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DA_fast_effective_filtering_method_for_im.pdf\u0026Expires=1733262662\u0026Signature=M53fzXNXn6zmeOu26cbLnlonNhdOqSKTz4hlAqT365NwXob479d5lwd-TSv0YGN8hPf-KYgjSxOvTTel6au4VhWf5cxLySooD6gkrN8TuBcYdaFlDXVqcP1WhSM4w4sPbc4CG~y7ug4273L8VoW9~xezjtVuXr7bw-qGIqvMhwoWrjti1Uzt2JLaRPzBvipKOeHpp15sDXbjnuk9UoMcRPEd9Sr3OarLSYtM52pHcwJCFVeDomxJvQQSKldMYEepPs2NeVtHpGPdcwpWzYcaaUd6B21Fw3Qd9sFZ7glraNzCLvDCdDXcuy~hmT4x0BYcgSf7aZ0dnHaX-cR~nCt8EA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84507005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507005/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/84507005/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fast_effective_filtering_method_for_im.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507005/ptpmcrender-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DA_fast_effective_filtering_method_for_im.pdf\u0026Expires=1733262662\u0026Signature=M53fzXNXn6zmeOu26cbLnlonNhdOqSKTz4hlAqT365NwXob479d5lwd-TSv0YGN8hPf-KYgjSxOvTTel6au4VhWf5cxLySooD6gkrN8TuBcYdaFlDXVqcP1WhSM4w4sPbc4CG~y7ug4273L8VoW9~xezjtVuXr7bw-qGIqvMhwoWrjti1Uzt2JLaRPzBvipKOeHpp15sDXbjnuk9UoMcRPEd9Sr3OarLSYtM52pHcwJCFVeDomxJvQQSKldMYEepPs2NeVtHpGPdcwpWzYcaaUd6B21Fw3Qd9sFZ7glraNzCLvDCdDXcuy~hmT4x0BYcgSf7aZ0dnHaX-cR~nCt8EA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":22506,"name":"Adolescent","url":"https://www.academia.edu/Documents/in/Adolescent"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":64933,"name":"Child","url":"https://www.academia.edu/Documents/in/Child"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":134346,"name":"Infant","url":"https://www.academia.edu/Documents/in/Infant"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":465866,"name":"Magnetic","url":"https://www.academia.edu/Documents/in/Magnetic"},{"id":1157501,"name":"Blood Flow Velocity","url":"https://www.academia.edu/Documents/in/Blood_Flow_Velocity"},{"id":1765793,"name":"Brain Diseases","url":"https://www.academia.edu/Documents/in/Brain_Diseases"},{"id":2489700,"name":"Child preschool","url":"https://www.academia.edu/Documents/in/Child_preschool"},{"id":2562018,"name":"Arteries","url":"https://www.academia.edu/Documents/in/Arteries"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960699/Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults"><img alt="Research paper thumbnail of Acute Effect of a High Nitrate Diet on Brain Perfusion in Older Adults" class="work-thumbnail" src="https://attachments.academia-assets.com/84507016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960699/Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults">Acute Effect of a High Nitrate Diet on Brain Perfusion in Older Adults</a></div><div class="wp-workCard_item"><span>Free Radical Biology and Medicine</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7fc3efca45abf79a2190fe9b6829caca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84507016,&quot;asset_id&quot;:76960699,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84507016/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960699]").text(description); $(".js-view-count[data-work-id=76960699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7fc3efca45abf79a2190fe9b6829caca" } } $('.js-work-strip[data-work-id=76960699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960699,"title":"Acute Effect of a High Nitrate Diet on Brain Perfusion in Older Adults","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Aims-Poor blood flow and hypoxia/ischemia contribute to many disease states and may also be a factor in the decline of physical and cognitive function in aging. Nitrite has been discovered to be a vasodilator that is preferentially harnessed in hypoxia. Thus, both infused and inhaled nitrite are being studied as therapeutic agents for a variety of diseases. In addition, nitrite derived from nitrate in the diet has been shown to decrease blood pressure and improve exercise performance. Thus, dietary nitrate may also be important when increased blood flow in hypoxic or ischemic areas is indicated. These conditions could include age-associated dementia and cognitive decline. The goal of this study was to determine if dietary nitrate would increase cerebral blood flow in older adults.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Free Radical Biology and Medicine","grobid_abstract_attachment_id":84507016},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960699/Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults","translated_internal_url":"","created_at":"2022-04-19T07:37:01.527-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84507016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507016/thumbnails/1.jpg","file_name":"12.pdf","download_url":"https://www.academia.edu/attachments/84507016/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Acute_Effect_of_a_High_Nitrate_Diet_on_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507016/12-libre.pdf?1650414067=\u0026response-content-disposition=attachment%3B+filename%3DAcute_Effect_of_a_High_Nitrate_Diet_on_B.pdf\u0026Expires=1733262662\u0026Signature=JJ-1BYjN49IaXIyU7hVAaW5xZvyIRzjAq~9kpgA0SJPYhhHiWu6pmsVGnnKpqJk5-4W2U48aoesC5YJErUqX1YttXyggjB~gbEFBsj2j6Jd9KG1gU-~WNfJSDq10E5~jy0SmPzYh7HwaFvcyOg42cgcrYBgToAO-Pi9LijOcFkcbkWzamvZkFU705iWdTk5yYaSk35aZFCtd79sn8XhCCvOCeVp0HFdr6uiMZI7wUoDYmpycXdNQbhxDhJ4bMf8wqCXHguIfQhnm8j8TIIjyQzKTympdOtH6JZBUrJa~m1kxlFmv8x33k798VrTjgSO9i2GY9UzJQcm~3BXxVAKg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84507016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507016/thumbnails/1.jpg","file_name":"12.pdf","download_url":"https://www.academia.edu/attachments/84507016/download_file?st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Acute_Effect_of_a_High_Nitrate_Diet_on_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507016/12-libre.pdf?1650414067=\u0026response-content-disposition=attachment%3B+filename%3DAcute_Effect_of_a_High_Nitrate_Diet_on_B.pdf\u0026Expires=1733262662\u0026Signature=JJ-1BYjN49IaXIyU7hVAaW5xZvyIRzjAq~9kpgA0SJPYhhHiWu6pmsVGnnKpqJk5-4W2U48aoesC5YJErUqX1YttXyggjB~gbEFBsj2j6Jd9KG1gU-~WNfJSDq10E5~jy0SmPzYh7HwaFvcyOg42cgcrYBgToAO-Pi9LijOcFkcbkWzamvZkFU705iWdTk5yYaSk35aZFCtd79sn8XhCCvOCeVp0HFdr6uiMZI7wUoDYmpycXdNQbhxDhJ4bMf8wqCXHguIfQhnm8j8TIIjyQzKTympdOtH6JZBUrJa~m1kxlFmv8x33k798VrTjgSO9i2GY9UzJQcm~3BXxVAKg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":122402,"name":"Nitrates","url":"https://www.academia.edu/Documents/in/Nitrates"},{"id":152562,"name":"Dietary Supplements","url":"https://www.academia.edu/Documents/in/Dietary_Supplements"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":413194,"name":"Analysis of Variance","url":"https://www.academia.edu/Documents/in/Analysis_of_Variance"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":546419,"name":"Age Factors","url":"https://www.academia.edu/Documents/in/Age_Factors"},{"id":891140,"name":"Cognitive Decline","url":"https://www.academia.edu/Documents/in/Cognitive_Decline"},{"id":970066,"name":"Cerebral Blood Flow","url":"https://www.academia.edu/Documents/in/Cerebral_Blood_Flow"},{"id":1654024,"name":"Nitrites","url":"https://www.academia.edu/Documents/in/Nitrites"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960697"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960697/Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance"><img alt="Research paper thumbnail of Semantic congruence is a critical factor in multisensory behavioral performance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960697/Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance">Semantic congruence is a critical factor in multisensory behavioral performance</a></div><div class="wp-workCard_item"><span>Experimental Brain Research</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It has repeatedly been demonstrated that the presence of multiple cues in different sensory modal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It has repeatedly been demonstrated that the presence of multiple cues in different sensory modalities can enhance behavioral performance by speeding responses, increasing accuracy, and/or improving stimulus detection. Despite an extensive knowledge base as to how the spatial, temporal, and physical (eg., intensity) characteristics of multisensory stimuli influence such enhancements, little is known about the role of semantic or contextual congruence. Our hypothesis was that semantically congruent multisensory stimuli would result in enhanced behavioral performance, and that semantically incongruent multisensory stimuli would result in either no enhancement or a decrement in behavioral performance. The results from a redundant cue feature discrimination task clearly demonstrate that congruent cross-modal stimulation improves behavioral performance. This effect is specific to the multisensory stimuli, as no improvements are seen in the presence of redundant unimodal stimulus pairs. In contrast, incongruent stimulus pairs result in behavioral decrements for both multisensory and paired unimodal stimuli. These results highlight that in addition to such simple stimulus features as space, time and relative effectiveness, the semantic content of a multisensory stimulus plays a critical role in determining how it is processed by the nervous system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960697"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960697"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960697; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960697]").text(description); $(".js-view-count[data-work-id=76960697]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960697; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960697']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960697, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76960697]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960697,"title":"Semantic congruence is a critical factor in multisensory behavioral performance","translated_title":"","metadata":{"abstract":"It has repeatedly been demonstrated that the presence of multiple cues in different sensory modalities can enhance behavioral performance by speeding responses, increasing accuracy, and/or improving stimulus detection. Despite an extensive knowledge base as to how the spatial, temporal, and physical (eg., intensity) characteristics of multisensory stimuli influence such enhancements, little is known about the role of semantic or contextual congruence. Our hypothesis was that semantically congruent multisensory stimuli would result in enhanced behavioral performance, and that semantically incongruent multisensory stimuli would result in either no enhancement or a decrement in behavioral performance. The results from a redundant cue feature discrimination task clearly demonstrate that congruent cross-modal stimulation improves behavioral performance. This effect is specific to the multisensory stimuli, as no improvements are seen in the presence of redundant unimodal stimulus pairs. In contrast, incongruent stimulus pairs result in behavioral decrements for both multisensory and paired unimodal stimuli. These results highlight that in addition to such simple stimulus features as space, time and relative effectiveness, the semantic content of a multisensory stimulus plays a critical role in determining how it is processed by the nervous system.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Experimental Brain Research"},"translated_abstract":"It has repeatedly been demonstrated that the presence of multiple cues in different sensory modalities can enhance behavioral performance by speeding responses, increasing accuracy, and/or improving stimulus detection. Despite an extensive knowledge base as to how the spatial, temporal, and physical (eg., intensity) characteristics of multisensory stimuli influence such enhancements, little is known about the role of semantic or contextual congruence. Our hypothesis was that semantically congruent multisensory stimuli would result in enhanced behavioral performance, and that semantically incongruent multisensory stimuli would result in either no enhancement or a decrement in behavioral performance. The results from a redundant cue feature discrimination task clearly demonstrate that congruent cross-modal stimulation improves behavioral performance. This effect is specific to the multisensory stimuli, as no improvements are seen in the presence of redundant unimodal stimulus pairs. In contrast, incongruent stimulus pairs result in behavioral decrements for both multisensory and paired unimodal stimuli. These results highlight that in addition to such simple stimulus features as space, time and relative effectiveness, the semantic content of a multisensory stimulus plays a critical role in determining how it is processed by the nervous system.","internal_url":"https://www.academia.edu/76960697/Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance","translated_internal_url":"","created_at":"2022-04-19T07:37:01.385-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":4307,"name":"Behavior","url":"https://www.academia.edu/Documents/in/Behavior"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99915,"name":"Integration","url":"https://www.academia.edu/Documents/in/Integration"},{"id":220049,"name":"Accuracy","url":"https://www.academia.edu/Documents/in/Accuracy"},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base"},{"id":413194,"name":"Analysis of Variance","url":"https://www.academia.edu/Documents/in/Analysis_of_Variance"},{"id":637718,"name":"Nervous System","url":"https://www.academia.edu/Documents/in/Nervous_System"},{"id":638808,"name":"Precision","url":"https://www.academia.edu/Documents/in/Precision"},{"id":978828,"name":"Congruence","url":"https://www.academia.edu/Documents/in/Congruence"},{"id":2428413,"name":"Acoustic Stimulation","url":"https://www.academia.edu/Documents/in/Acoustic_Stimulation"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960695"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960695/Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study"><img alt="Research paper thumbnail of Brain MRI predictors of global and domain specific cognitive function at 10 years follow up: ARIC brain MRI study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960695/Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study">Brain MRI predictors of global and domain specific cognitive function at 10 years follow up: ARIC brain MRI study</a></div><div class="wp-workCard_item"><span>Alzheimer&#39;s &amp; Dementia</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The total acquisition time is roughly 15 minutes. The AAL (Automated Anatomical Labeling) template was registered with 12 degree of freedom affine transformation and 2 stage of B-Spline mutual information based non-rigid registration of the grid size of 5mm and 2.5mm deformed to our AD subject spatial space[4]. The AD subject selection is complied with the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th) criteria. There are total 12 AD subjects with age of 78.92 6 6.07,MMSE of 146 6.90 and education of 2.56 4.58 yrs. In eachmedial temporal ROI, we calculate the FA, MD and AD. Results: The calculation of FA andMD can be found in [5]. The AD is the largest eigen-value ?1. The AD can avoid the situation like when?1€ Eœ?2€ Eœ?3 the magnitude of FA is still large. Table 1 shows the correlation results between brain regions with age and regions with MMSE. In correlation with age, the MD of right of amygdala, right thalamus, right of hippocampus and left of parahippocampal correlate to age well (p &amp;lt; 0.05). The FA-age correlations in the right of post cingulum, left of parahippocampal and right of amygdala are well. The AD-age correlations in the right of hippocampus, left of parahippocampus, right of amygdala, right of thalamus are strongly correlated. In MMSE and DTI metrics correlations, the cingulum is strongly correlated with both AD and MD. The Amygdala, parahippocampus and temporal pole are in good correlations with FA, MD and AD. Conclusions: The DTI metrics on hippocampus correlate both age and MMSE well. In the correlation between MMSE, AD and MD, cingulum shows strong correlation. The quantitative DTI metrics results demonstrate the possibility of using these metrics as the clinical criteria of discriminating the progression of AD.References: [1]M. D. Denis Le Bihan, “Diffusion Tensor Imaging: Concepts and Applications,” Journal of Magnetic Resonance Imaging, vol. 13, p. 534, 2001. [2] I. N. C. Lawes, et al., “Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection,” Neuroimage, vol. 39, pp. 62-79, 2008. [3] S. S. Mori and P. C. P. C. M. van Zijl, “Fiber tracking: principles and strategies a technical review,” NMR in Biomedicine, vol. 15, pp. 468-80, 2002. [4] G. K. Rohde, et al., “The adaptive bases algorithm for intensity-based nonrigid image registration,” Medical Imaging, IEEE Transactions, vol. 22, pp. 1470-1479, 2003. [5] C. F. Westin, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, p. 93, 2002.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960695"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960695"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960695; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960695]").text(description); $(".js-view-count[data-work-id=76960695]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960695; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960695']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960695, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76960695]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960695,"title":"Brain MRI predictors of global and domain specific cognitive function at 10 years follow up: ARIC brain MRI study","translated_title":"","metadata":{"abstract":"are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The total acquisition time is roughly 15 minutes. The AAL (Automated Anatomical Labeling) template was registered with 12 degree of freedom affine transformation and 2 stage of B-Spline mutual information based non-rigid registration of the grid size of 5mm and 2.5mm deformed to our AD subject spatial space[4]. The AD subject selection is complied with the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th) criteria. There are total 12 AD subjects with age of 78.92 6 6.07,MMSE of 146 6.90 and education of 2.56 4.58 yrs. In eachmedial temporal ROI, we calculate the FA, MD and AD. Results: The calculation of FA andMD can be found in [5]. The AD is the largest eigen-value ?1. The AD can avoid the situation like when?1€ Eœ?2€ Eœ?3 the magnitude of FA is still large. Table 1 shows the correlation results between brain regions with age and regions with MMSE. In correlation with age, the MD of right of amygdala, right thalamus, right of hippocampus and left of parahippocampal correlate to age well (p \u0026lt; 0.05). The FA-age correlations in the right of post cingulum, left of parahippocampal and right of amygdala are well. The AD-age correlations in the right of hippocampus, left of parahippocampus, right of amygdala, right of thalamus are strongly correlated. In MMSE and DTI metrics correlations, the cingulum is strongly correlated with both AD and MD. The Amygdala, parahippocampus and temporal pole are in good correlations with FA, MD and AD. Conclusions: The DTI metrics on hippocampus correlate both age and MMSE well. In the correlation between MMSE, AD and MD, cingulum shows strong correlation. The quantitative DTI metrics results demonstrate the possibility of using these metrics as the clinical criteria of discriminating the progression of AD.References: [1]M. D. Denis Le Bihan, “Diffusion Tensor Imaging: Concepts and Applications,” Journal of Magnetic Resonance Imaging, vol. 13, p. 534, 2001. [2] I. N. C. Lawes, et al., “Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection,” Neuroimage, vol. 39, pp. 62-79, 2008. [3] S. S. Mori and P. C. P. C. M. van Zijl, “Fiber tracking: principles and strategies a technical review,” NMR in Biomedicine, vol. 15, pp. 468-80, 2002. [4] G. K. Rohde, et al., “The adaptive bases algorithm for intensity-based nonrigid image registration,” Medical Imaging, IEEE Transactions, vol. 22, pp. 1470-1479, 2003. [5] C. F. Westin, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, p. 93, 2002.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Alzheimer's \u0026 Dementia"},"translated_abstract":"are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The total acquisition time is roughly 15 minutes. The AAL (Automated Anatomical Labeling) template was registered with 12 degree of freedom affine transformation and 2 stage of B-Spline mutual information based non-rigid registration of the grid size of 5mm and 2.5mm deformed to our AD subject spatial space[4]. The AD subject selection is complied with the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th) criteria. There are total 12 AD subjects with age of 78.92 6 6.07,MMSE of 146 6.90 and education of 2.56 4.58 yrs. In eachmedial temporal ROI, we calculate the FA, MD and AD. Results: The calculation of FA andMD can be found in [5]. The AD is the largest eigen-value ?1. The AD can avoid the situation like when?1€ Eœ?2€ Eœ?3 the magnitude of FA is still large. Table 1 shows the correlation results between brain regions with age and regions with MMSE. In correlation with age, the MD of right of amygdala, right thalamus, right of hippocampus and left of parahippocampal correlate to age well (p \u0026lt; 0.05). The FA-age correlations in the right of post cingulum, left of parahippocampal and right of amygdala are well. The AD-age correlations in the right of hippocampus, left of parahippocampus, right of amygdala, right of thalamus are strongly correlated. In MMSE and DTI metrics correlations, the cingulum is strongly correlated with both AD and MD. The Amygdala, parahippocampus and temporal pole are in good correlations with FA, MD and AD. Conclusions: The DTI metrics on hippocampus correlate both age and MMSE well. In the correlation between MMSE, AD and MD, cingulum shows strong correlation. The quantitative DTI metrics results demonstrate the possibility of using these metrics as the clinical criteria of discriminating the progression of AD.References: [1]M. D. Denis Le Bihan, “Diffusion Tensor Imaging: Concepts and Applications,” Journal of Magnetic Resonance Imaging, vol. 13, p. 534, 2001. [2] I. N. C. Lawes, et al., “Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection,” Neuroimage, vol. 39, pp. 62-79, 2008. [3] S. S. Mori and P. C. P. C. M. van Zijl, “Fiber tracking: principles and strategies a technical review,” NMR in Biomedicine, vol. 15, pp. 468-80, 2002. [4] G. K. Rohde, et al., “The adaptive bases algorithm for intensity-based nonrigid image registration,” Medical Imaging, IEEE Transactions, vol. 22, pp. 1470-1479, 2003. [5] C. F. Westin, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, p. 93, 2002.","internal_url":"https://www.academia.edu/76960695/Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study","translated_internal_url":"","created_at":"2022-04-19T07:37:01.231-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":386576,"name":"Domain Specificity","url":"https://www.academia.edu/Documents/in/Domain_Specificity"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960650/A_Pianists_Recovery_From_Stroke"><img alt="Research paper thumbnail of A Pianist&#39;s Recovery From Stroke" class="work-thumbnail" src="https://attachments.academia-assets.com/84507002/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960650/A_Pianists_Recovery_From_Stroke">A Pianist&#39;s Recovery From Stroke</a></div><div class="wp-workCard_item"><span>Archives of Neurology</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="550aec4a9f5bd3f101f59b57beee4661" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84507002,&quot;asset_id&quot;:76960650,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84507002/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960650]").text(description); $(".js-view-count[data-work-id=76960650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "550aec4a9f5bd3f101f59b57beee4661" } } $('.js-work-strip[data-work-id=76960650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960650,"title":"A Pianist's Recovery From Stroke","translated_title":"","metadata":{"publisher":"American Medical Association (AMA)","grobid_abstract":"To determine alternative neural pathways for restitution of piano playing after right hemispheric infarction causing left arm and hand paralysis. Design: Case report testing coordinated bimanual skills using structured motor skills tests and neuroimaging. Setting: A professional pianist sustained a lacunar infarction in the posterior limb of his right internal capsule, which resulted in left hemiparesis with immobilized left-hand and-finger movements persisting for 13 weeks. After 6 months, he had recovered bimanual coordinated piano skills by \"ignoring\" his left hand while concentrating or discussing subjects other than music while playing.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Archives of Neurology","grobid_abstract_attachment_id":84507002},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960650/A_Pianists_Recovery_From_Stroke","translated_internal_url":"","created_at":"2022-04-19T07:36:42.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84507002,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507002/thumbnails/1.jpg","file_name":"nob70009_1184_1188.pdf","download_url":"https://www.academia.edu/attachments/84507002/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Pianists_Recovery_From_Stroke.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507002/nob70009_1184_1188.pdf?1650413626=\u0026response-content-disposition=attachment%3B+filename%3DA_Pianists_Recovery_From_Stroke.pdf\u0026Expires=1733262663\u0026Signature=OqJTGsWhHjawQPO6b3sF9ySyDcsaBkrpZuGSKla3gZ2HziPGNTBXIEjltTalm2-xfYmfye-z0uGkfLCrhlH6Qu5VBCXjg-5sI27jFRz1bgdHnQhmYnDnKB1MZqkWVzRY-kn2fIK9koeXi3598uC98iiM~FBgFN1EySFqkP-W4iNB6Uc-R-UbiQBhaAY2s8dkD1ylA5PnIs8yqUaJ6HGIYVwV61eAhjVf1y1yfNvX50V5HXOVhWln2z1DU5yPaMi6E0IcLK2~8HZ5YPlfkYTBVsJ3D2G3oHfqoC5W3AohYSdaenNGkHsT9iLKBqAe3kod8YdFcCKJhdIc5x9Juld6Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Pianists_Recovery_From_Stroke","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84507002,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507002/thumbnails/1.jpg","file_name":"nob70009_1184_1188.pdf","download_url":"https://www.academia.edu/attachments/84507002/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Pianists_Recovery_From_Stroke.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507002/nob70009_1184_1188.pdf?1650413626=\u0026response-content-disposition=attachment%3B+filename%3DA_Pianists_Recovery_From_Stroke.pdf\u0026Expires=1733262663\u0026Signature=OqJTGsWhHjawQPO6b3sF9ySyDcsaBkrpZuGSKla3gZ2HziPGNTBXIEjltTalm2-xfYmfye-z0uGkfLCrhlH6Qu5VBCXjg-5sI27jFRz1bgdHnQhmYnDnKB1MZqkWVzRY-kn2fIK9koeXi3598uC98iiM~FBgFN1EySFqkP-W4iNB6Uc-R-UbiQBhaAY2s8dkD1ylA5PnIs8yqUaJ6HGIYVwV61eAhjVf1y1yfNvX50V5HXOVhWln2z1DU5yPaMi6E0IcLK2~8HZ5YPlfkYTBVsJ3D2G3oHfqoC5W3AohYSdaenNGkHsT9iLKBqAe3kod8YdFcCKJhdIc5x9Juld6Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":671,"name":"Music","url":"https://www.academia.edu/Documents/in/Music"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":65615,"name":"Cerebellum","url":"https://www.academia.edu/Documents/in/Cerebellum"},{"id":84745,"name":"Movement","url":"https://www.academia.edu/Documents/in/Movement"},{"id":119238,"name":"Hemiplegia","url":"https://www.academia.edu/Documents/in/Hemiplegia"},{"id":121291,"name":"Recovery","url":"https://www.academia.edu/Documents/in/Recovery"},{"id":128538,"name":"Arm","url":"https://www.academia.edu/Documents/in/Arm"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":441660,"name":"Motor Function","url":"https://www.academia.edu/Documents/in/Motor_Function"},{"id":500368,"name":"Hand","url":"https://www.academia.edu/Documents/in/Hand"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1028516,"name":"Fingers","url":"https://www.academia.edu/Documents/in/Fingers"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1685089,"name":"Cerebral Infarction","url":"https://www.academia.edu/Documents/in/Cerebral_Infarction"},{"id":1756573,"name":"Motor Skills","url":"https://www.academia.edu/Documents/in/Motor_Skills"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71997492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71997492/Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity"><img alt="Research paper thumbnail of Functional Brain Networks: Unique Patterns with Hedonic Appetite and Confidence to Resist Eating in Older Adults with Obesity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71997492/Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity">Functional Brain Networks: Unique Patterns with Hedonic Appetite and Confidence to Resist Eating in Older Adults with Obesity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power of Food Scale—and self‐control for food consumption—the Weight Efficacy Lifestyle Questionnaire—were associated with network topology within two sets of brain regions (regions of interest [ROIs] 1 and 2) in a group of older adults with obesity. These previously identified brain regions were shown in a different cohort of older adults to be critical for discriminating weight loss success and failure.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71997492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71997492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71997492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71997492]").text(description); $(".js-view-count[data-work-id=71997492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71997492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71997492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71997492, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71997492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71997492,"title":"Functional Brain Networks: Unique Patterns with Hedonic Appetite and Confidence to Resist Eating in Older Adults with Obesity","translated_title":"","metadata":{"abstract":"The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power of Food Scale—and self‐control for food consumption—the Weight Efficacy Lifestyle Questionnaire—were associated with network topology within two sets of brain regions (regions of interest [ROIs] 1 and 2) in a group of older adults with obesity. These previously identified brain regions were shown in a different cohort of older adults to be critical for discriminating weight loss success and failure.","publisher":"Obesity","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power of Food Scale—and self‐control for food consumption—the Weight Efficacy Lifestyle Questionnaire—were associated with network topology within two sets of brain regions (regions of interest [ROIs] 1 and 2) in a group of older adults with obesity. These previously identified brain regions were shown in a different cohort of older adults to be critical for discriminating weight loss success and failure.","internal_url":"https://www.academia.edu/71997492/Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity","translated_internal_url":"","created_at":"2022-02-20T12:31:24.517-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":3851,"name":"Obesity","url":"https://www.academia.edu/Documents/in/Obesity"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67145583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67145583/Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study"><img alt="Research paper thumbnail of Effects of a Motor Imagery Task on Functional Brain Network Community Structure in Older Adults: Data from the Brain Networks and Mobility Function (B-NET) Study" class="work-thumbnail" src="https://attachments.academia-assets.com/78073476/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67145583/Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study">Effects of a Motor Imagery Task on Functional Brain Network Community Structure in Older Adults: Data from the Brain Networks and Mobility Function (B-NET) Study</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Elucidating the neural correlates of mobility is critical given the increasing population of olde...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a8c2b058100bcff1a9a9ae06bb66ca4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78073476,&quot;asset_id&quot;:67145583,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78073476/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67145583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67145583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67145583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67145583]").text(description); $(".js-view-count[data-work-id=67145583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67145583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67145583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67145583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a8c2b058100bcff1a9a9ae06bb66ca4e" } } $('.js-work-strip[data-work-id=67145583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67145583,"title":"Effects of a Motor Imagery Task on Functional Brain Network Community Structure in Older Adults: Data from the Brain Networks and Mobility Function (B-NET) Study","translated_title":"","metadata":{"abstract":"Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the c...","publisher":"Brain sciences","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the c...","internal_url":"https://www.academia.edu/67145583/Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study","translated_internal_url":"","created_at":"2022-01-04T16:43:23.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78073476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78073476/thumbnails/1.jpg","file_name":"brainsci-11-00118.pdf","download_url":"https://www.academia.edu/attachments/78073476/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_a_Motor_Imagery_Task_on_Funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78073476/brainsci-11-00118-libre.pdf?1641343774=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_a_Motor_Imagery_Task_on_Funct.pdf\u0026Expires=1733262663\u0026Signature=CkVnkZ3WU~c6-y3HdLyNePLS1oJf6YmGbLg3xpSkuhgzTYV9evY5TYxIphw5e65Dyn-kQevFKcO3w258xyMG~ayKB~StM1dXi3XcYMZUodk5GN5LsBlrHUtDA1CiMwB10BY2llEof4BqVjrlNl4nCgZHus-v-KBsi-pfkojM2gk2E7-wX2KuvM6zakOF0vcp6Emm8hcWRo-xZ4V7JHL5LV5SA2YFMDCAA85jZeQHPTYKdaYQ-A86kzwlOJPNDwU4T1qdPutmnv2ks0DfVkmRiCt2ObDqpWlwJ12g-Ud9HX0HecF-ZOwIizsOR5pPgUZzu-NvuLBE-7780SRop9lYbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":78073476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78073476/thumbnails/1.jpg","file_name":"brainsci-11-00118.pdf","download_url":"https://www.academia.edu/attachments/78073476/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_a_Motor_Imagery_Task_on_Funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78073476/brainsci-11-00118-libre.pdf?1641343774=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_a_Motor_Imagery_Task_on_Funct.pdf\u0026Expires=1733262663\u0026Signature=CkVnkZ3WU~c6-y3HdLyNePLS1oJf6YmGbLg3xpSkuhgzTYV9evY5TYxIphw5e65Dyn-kQevFKcO3w258xyMG~ayKB~StM1dXi3XcYMZUodk5GN5LsBlrHUtDA1CiMwB10BY2llEof4BqVjrlNl4nCgZHus-v-KBsi-pfkojM2gk2E7-wX2KuvM6zakOF0vcp6Emm8hcWRo-xZ4V7JHL5LV5SA2YFMDCAA85jZeQHPTYKdaYQ-A86kzwlOJPNDwU4T1qdPutmnv2ks0DfVkmRiCt2ObDqpWlwJ12g-Ud9HX0HecF-ZOwIizsOR5pPgUZzu-NvuLBE-7780SRop9lYbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78073475,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78073475/thumbnails/1.jpg","file_name":"brainsci-11-00118.pdf","download_url":"https://www.academia.edu/attachments/78073475/download_file","bulk_download_file_name":"Effects_of_a_Motor_Imagery_Task_on_Funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78073475/brainsci-11-00118-libre.pdf?1641343774=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_a_Motor_Imagery_Task_on_Funct.pdf\u0026Expires=1733262663\u0026Signature=LDhBiB5mg7ElPqH21hVXprKZV9U7SygMrqi0TWJ3B70BKXJQvzQawV9diN3KDHB0nlGtS~nu1GHcdDuxUlFC~t6D5Z5PI2KlcjdDnZHx-ly~ZbHOih4ntsdz9wqknkj4J3FGJlWbFESvUHm1h8offzwe4eEb9NMPlmdcZeatl1pUQ~3drrhtz4ovo5OdpASa6CEzuOyHdfjDgLKut-gbmAGurXI2MzJ4T59UEHvK1~e7TR0pd6t0-n~jm2~7rysy0HUoX6o3bPY4JklyEgTbirhG594D4q59qV5MWig8uxzw7AQyOq4qu~37grFz-MbqZEGQxYNddqFrlOdXrKHPSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16081462,"url":"https://res.mdpi.com/d_attachment/brainsci/brainsci-11-00118/article_deploy/brainsci-11-00118.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789422/Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study"><img alt="Research paper thumbnail of Therapeutic Instrumental Music Training and Motor Imagery in Post-Stroke Upper-Extremity Rehabilitation: A Randomized-Controlled Pilot Study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789422/Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study">Therapeutic Instrumental Music Training and Motor Imagery in Post-Stroke Upper-Extremity Rehabilitation: A Randomized-Controlled Pilot Study</a></div><div class="wp-workCard_item"><span>Archives of Rehabilitation Research and Clinical Translation</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789422]").text(description); $(".js-view-count[data-work-id=61789422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789422, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789422,"title":"Therapeutic Instrumental Music Training and Motor Imagery in Post-Stroke Upper-Extremity Rehabilitation: A Randomized-Controlled Pilot Study","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Archives of Rehabilitation Research and Clinical Translation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/61789422/Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study","translated_internal_url":"","created_at":"2021-11-16T08:31:50.317-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[],"urls":[{"id":14277528,"url":"https://api.elsevier.com/content/article/PII:S2590109521000768?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789419/Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress"><img alt="Research paper thumbnail of Functional Brain Network Changes Following Use of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology for Military-Related Traumatic Stress" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789419/Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress">Functional Brain Network Changes Following Use of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology for Military-Related Traumatic Stress</a></div><div class="wp-workCard_item"><span>Journal of neuroimaging : official journal of the American Society of Neuroimaging</span><span>, Jan 10, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Post-traumatic stress disorder is associated with connectivity changes in the default mode, centr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sa...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789419]").text(description); $(".js-view-count[data-work-id=61789419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789419, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789419,"title":"Functional Brain Network Changes Following Use of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology for Military-Related Traumatic Stress","translated_title":"","metadata":{"abstract":"Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sa...","publication_date":{"day":10,"month":1,"year":2018,"errors":{}},"publication_name":"Journal of neuroimaging : official journal of the American Society of Neuroimaging"},"translated_abstract":"Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sa...","internal_url":"https://www.academia.edu/61789419/Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress","translated_internal_url":"","created_at":"2021-11-16T08:31:50.181-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":2639,"name":"Neuroimaging","url":"https://www.academia.edu/Documents/in/Neuroimaging"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789417"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789417/Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults"><img alt="Research paper thumbnail of Dynamic fMRI networks predict success in a behavioral weight loss program among older adults" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789417/Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults">Dynamic fMRI networks predict success in a behavioral weight loss program among older adults</a></div><div class="wp-workCard_item"><span>NeuroImage</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">More than one-third of adults in the United States are obese, with a higher prevalence among olde...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnet...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789417"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789417"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789417; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789417]").text(description); $(".js-view-count[data-work-id=61789417]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789417; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789417']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789417, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789417]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789417,"title":"Dynamic fMRI networks predict success in a behavioral weight loss program among older adults","translated_title":"","metadata":{"abstract":"More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnet...","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"NeuroImage"},"translated_abstract":"More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnet...","internal_url":"https://www.academia.edu/61789417/Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults","translated_internal_url":"","created_at":"2021-11-16T08:31:50.041-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":103260,"name":"Neuroimage","url":"https://www.academia.edu/Documents/in/Neuroimage"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789414/Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain"><img alt="Research paper thumbnail of Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain" class="work-thumbnail" src="https://attachments.academia-assets.com/74737385/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789414/Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain">Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain</a></div><div class="wp-workCard_item"><span>The journals of gerontology. Series A, Biological sciences and medical sciences</span><span>, Jan 9, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingest...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M =...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21b02380b3395894ca4b978b5dd147e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:74737385,&quot;asset_id&quot;:61789414,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/74737385/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789414]").text(description); $(".js-view-count[data-work-id=61789414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789414, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21b02380b3395894ca4b978b5dd147e6" } } $('.js-work-strip[data-work-id=61789414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789414,"title":"Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain","translated_title":"","metadata":{"abstract":"Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M =...","publication_date":{"day":9,"month":1,"year":2016,"errors":{}},"publication_name":"The journals of gerontology. Series A, Biological sciences and medical sciences"},"translated_abstract":"Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M =...","internal_url":"https://www.academia.edu/61789414/Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain","translated_internal_url":"","created_at":"2021-11-16T08:31:49.885-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":74737385,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/74737385/thumbnails/1.jpg","file_name":"glw219.pdf","download_url":"https://www.academia.edu/attachments/74737385/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Beet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/74737385/glw219-libre.pdf?1637080506=\u0026response-content-disposition=attachment%3B+filename%3DBeet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf\u0026Expires=1733262663\u0026Signature=QKeaiY1TioYXgIf2b4rdRj2ya189J5sWNzmAKhAlcpwbuZotNPyhqXa6KXbUljplcg8ofZ10THN76C~WG~K~DwzVwhDjYjiA60UcqPXOB6Xx0v0APFwn-ZmRA1QzwF~widbXg01cDfhrDhpk~DjZAX61XjSl~IB7fxEPLfjK6014BXYA39Ydu9WfEMCXmQNXp0t0~sbMZgeAczGqlEPQI~CyHK59bqt6aQHKP0rRG9LA9xWSoscw7-12ixxrZrh9G5GNWYbyCIQvrOiPcrp2vNSIvcJcIj1wTFc4voMekvixShNSWutFyOc6n6qAwcVDMxNfm3DEM4QYCEr5y7K9RA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":74737385,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/74737385/thumbnails/1.jpg","file_name":"glw219.pdf","download_url":"https://www.academia.edu/attachments/74737385/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Beet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/74737385/glw219-libre.pdf?1637080506=\u0026response-content-disposition=attachment%3B+filename%3DBeet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf\u0026Expires=1733262663\u0026Signature=QKeaiY1TioYXgIf2b4rdRj2ya189J5sWNzmAKhAlcpwbuZotNPyhqXa6KXbUljplcg8ofZ10THN76C~WG~K~DwzVwhDjYjiA60UcqPXOB6Xx0v0APFwn-ZmRA1QzwF~widbXg01cDfhrDhpk~DjZAX61XjSl~IB7fxEPLfjK6014BXYA39Ydu9WfEMCXmQNXp0t0~sbMZgeAczGqlEPQI~CyHK59bqt6aQHKP0rRG9LA9xWSoscw7-12ixxrZrh9G5GNWYbyCIQvrOiPcrp2vNSIvcJcIj1wTFc4voMekvixShNSWutFyOc6n6qAwcVDMxNfm3DEM4QYCEr5y7K9RA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":135185,"name":"Exercise","url":"https://www.academia.edu/Documents/in/Exercise"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":277717,"name":"Somatosensory Cortex","url":"https://www.academia.edu/Documents/in/Somatosensory_Cortex"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":1166928,"name":"Beta Vulgaris","url":"https://www.academia.edu/Documents/in/Beta_Vulgaris"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789411/The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers"><img alt="Research paper thumbnail of The Impacts of Pesticide and Nicotine Exposures on Functional Brain Networks in Latino Immigrant workers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789411/The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers">The Impacts of Pesticide and Nicotine Exposures on Functional Brain Networks in Latino Immigrant workers</a></div><div class="wp-workCard_item"><span>Neurotoxicology</span><span>, Jan 2, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, su...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789411]").text(description); $(".js-view-count[data-work-id=61789411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789411, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789411,"title":"The Impacts of Pesticide and Nicotine Exposures on Functional Brain Networks in Latino Immigrant workers","translated_title":"","metadata":{"abstract":"Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and ...","publication_date":{"day":2,"month":1,"year":2017,"errors":{}},"publication_name":"Neurotoxicology"},"translated_abstract":"Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and ...","internal_url":"https://www.academia.edu/61789411/The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers","translated_internal_url":"","created_at":"2021-11-16T08:31:49.748-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":51688,"name":"Neurotoxicology","url":"https://www.academia.edu/Documents/in/Neurotoxicology"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":85437,"name":"Pesticides","url":"https://www.academia.edu/Documents/in/Pesticides"},{"id":91360,"name":"Nicotine","url":"https://www.academia.edu/Documents/in/Nicotine"},{"id":120646,"name":"Acetylcholinesterase","url":"https://www.academia.edu/Documents/in/Acetylcholinesterase"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":396914,"name":"Occupational Exposure","url":"https://www.academia.edu/Documents/in/Occupational_Exposure"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1559335,"name":"Cotinine","url":"https://www.academia.edu/Documents/in/Cotinine"},{"id":2519258,"name":"Butyrylcholinesterase","url":"https://www.academia.edu/Documents/in/Butyrylcholinesterase"},{"id":3789884,"name":"Pharmacology and pharmaceutical sciences","url":"https://www.academia.edu/Documents/in/Pharmacology_and_pharmaceutical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789408"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789408/Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction"><img alt="Research paper thumbnail of Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789408/Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction">Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction</a></div><div class="wp-workCard_item"><span>Nitric oxide : biology and chemistry</span><span>, Jan 23, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in ind...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789408"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789408"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789408; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789408]").text(description); $(".js-view-count[data-work-id=61789408]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789408; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789408']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789408, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789408]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789408,"title":"Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction","translated_title":"","metadata":{"abstract":"Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFp...","publication_date":{"day":23,"month":1,"year":2017,"errors":{}},"publication_name":"Nitric oxide : biology and chemistry"},"translated_abstract":"Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFp...","internal_url":"https://www.academia.edu/61789408/Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction","translated_internal_url":"","created_at":"2021-11-16T08:31:49.611-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49633,"name":"Heart Failure","url":"https://www.academia.edu/Documents/in/Heart_Failure"},{"id":71399,"name":"Hypertension","url":"https://www.academia.edu/Documents/in/Hypertension"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":122402,"name":"Nitrates","url":"https://www.academia.edu/Documents/in/Nitrates"},{"id":135185,"name":"Exercise","url":"https://www.academia.edu/Documents/in/Exercise"},{"id":152562,"name":"Dietary Supplements","url":"https://www.academia.edu/Documents/in/Dietary_Supplements"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":1166928,"name":"Beta Vulgaris","url":"https://www.academia.edu/Documents/in/Beta_Vulgaris"},{"id":1654024,"name":"Nitrites","url":"https://www.academia.edu/Documents/in/Nitrites"},{"id":2183225,"name":"Physical Endurance","url":"https://www.academia.edu/Documents/in/Physical_Endurance"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789406"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789406/Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly"><img alt="Research paper thumbnail of Baseline gray- and white-matter volume predict successful weight loss in the elderly" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789406/Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly">Baseline gray- and white-matter volume predict successful weight loss in the elderly</a></div><div class="wp-workCard_item"><span>Obesity (Silver Spring, Md.)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this study was to investigate whether structural brain phenotypes could be used to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this study was to investigate whether structural brain phenotypes could be used to predict weight loss success following behavioral interventions in older adults with overweight or obesity and cardiometabolic dysfunction. A support vector machine with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter and white matter volume from 52 individuals who completed the intervention and a magnetic resonance imaging session. The support vector machine resulted in an average classification accuracy of 72.62% based on gray matter and white matter volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Findings suggest that baseline brain structure was able to predict weight loss success foll...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789406"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789406"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789406; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789406]").text(description); $(".js-view-count[data-work-id=61789406]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789406; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789406']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789406, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789406]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789406,"title":"Baseline gray- and white-matter volume predict successful weight loss in the elderly","translated_title":"","metadata":{"abstract":"The purpose of this study was to investigate whether structural brain phenotypes could be used to predict weight loss success following behavioral interventions in older adults with overweight or obesity and cardiometabolic dysfunction. A support vector machine with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter and white matter volume from 52 individuals who completed the intervention and a magnetic resonance imaging session. The support vector machine resulted in an average classification accuracy of 72.62% based on gray matter and white matter volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Findings suggest that baseline brain structure was able to predict weight loss success foll...","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Obesity (Silver Spring, Md.)"},"translated_abstract":"The purpose of this study was to investigate whether structural brain phenotypes could be used to predict weight loss success following behavioral interventions in older adults with overweight or obesity and cardiometabolic dysfunction. A support vector machine with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter and white matter volume from 52 individuals who completed the intervention and a magnetic resonance imaging session. The support vector machine resulted in an average classification accuracy of 72.62% based on gray matter and white matter volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Findings suggest that baseline brain structure was able to predict weight loss success foll...","internal_url":"https://www.academia.edu/61789406/Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly","translated_internal_url":"","created_at":"2021-11-16T08:31:49.474-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":3851,"name":"Obesity","url":"https://www.academia.edu/Documents/in/Obesity"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4181272" id="papers"><div class="js-work-strip profile--work_container" data-work-id="124721126"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124721126/The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain"><img alt="Research paper thumbnail of The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain" class="work-thumbnail" src="https://attachments.academia-assets.com/118894166/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124721126/The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain">The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain</a></div><div class="wp-workCard_item"><span>Brain connectivity</span><span>, Oct 1, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="893511bc786a37432cf1a38e5aacea49" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118894166,&quot;asset_id&quot;:124721126,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118894166/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124721126"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124721126"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124721126; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124721126]").text(description); $(".js-view-count[data-work-id=124721126]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124721126; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124721126']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124721126, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "893511bc786a37432cf1a38e5aacea49" } } $('.js-work-strip[data-work-id=124721126]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124721126,"title":"The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain","translated_title":"","metadata":{"publisher":"Mary Ann Liebert, Inc.","grobid_abstract":"Although graph theory has been around since the 18th century, the field of network science is more recent and continues to gain popularity, particularly in the field of neuroimaging. The field was propelled forward when Watts and Strogatz introduced their small-world network model, which described a network that provided regional specialization with efficient global information transfer. This model is appealing to the study of brain connectivity, as the brain can be viewed as a system with various interacting regions that produce complex behaviors. In practice, graph metrics such as clustering coefficient, path length, and efficiency measures are often used to characterize system properties. Centrality metrics such as degree, betweenness, closeness, and eigenvector centrality determine critical areas within the network. Community structure is also essential for understanding network organization and topology. Network science has led to a paradigm shift in the neuroscientific community, but it should be viewed as more than a simple ''tool du jour.'' To fully appreciate the utility of network science, a greater understanding of how network models apply to the brain is needed. An integrated appraisal of multiple network analyses should be performed to better understand network structure rather than focusing on univariate comparisons to find significant group differences; indeed, such comparisons, popular with traditional functional magnetic resonance imaging analyses, are arguably no longer relevant with graph-theory based approaches. These methods necessitate a philosophical shift toward complexity science. In this context, when correctly applied and interpreted, network scientific methods have a chance to revolutionize the understanding of brain function.","publication_date":{"day":1,"month":10,"year":2011,"errors":{}},"publication_name":"Brain connectivity","grobid_abstract_attachment_id":118894166},"translated_abstract":null,"internal_url":"https://www.academia.edu/124721126/The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain","translated_internal_url":"","created_at":"2024-10-14T10:21:18.590-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118894166,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118894166/thumbnails/1.jpg","file_name":"pmc3621511.pdf","download_url":"https://www.academia.edu/attachments/118894166/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Brain_as_a_Complex_System_Using_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118894166/pmc3621511-libre.pdf?1728927349=\u0026response-content-disposition=attachment%3B+filename%3DThe_Brain_as_a_Complex_System_Using_Netw.pdf\u0026Expires=1733262662\u0026Signature=OZXG-wQJHwTMPltwOmRwiCTuRcDY4t5S5vktw~R2cyR-sWt8ooF-mqBGt7~U0DHc-zeexgv4wTT0xZ9GEMbFSufGp934xcajVSYAWEZu8gMFNudQil0A0jhzB7Hn17FTyhrdY-Ix1lVdQCOqexrjEVFZyWkUa-2JRkdbpVPJZGmSbdqQ3felKVaPlumsVL-vV45g0TpEg~ogRsF66rKfBO-EmXSng9a89ZqOYPZFfhG1Il3d0pqO3iNQ008ohY7OX1cnALTq14KBvPjGeBOajn~5GXtgDQuE~rMmCEK2pSF5GRlJgfHC1N2zhA-mR49nAzNGC2VdW6VFrnL06PMziA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Brain_as_a_Complex_System_Using_Network_Science_as_a_Tool_for_Understanding_the_Brain","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":118894166,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118894166/thumbnails/1.jpg","file_name":"pmc3621511.pdf","download_url":"https://www.academia.edu/attachments/118894166/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Brain_as_a_Complex_System_Using_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118894166/pmc3621511-libre.pdf?1728927349=\u0026response-content-disposition=attachment%3B+filename%3DThe_Brain_as_a_Complex_System_Using_Netw.pdf\u0026Expires=1733262662\u0026Signature=OZXG-wQJHwTMPltwOmRwiCTuRcDY4t5S5vktw~R2cyR-sWt8ooF-mqBGt7~U0DHc-zeexgv4wTT0xZ9GEMbFSufGp934xcajVSYAWEZu8gMFNudQil0A0jhzB7Hn17FTyhrdY-Ix1lVdQCOqexrjEVFZyWkUa-2JRkdbpVPJZGmSbdqQ3felKVaPlumsVL-vV45g0TpEg~ogRsF66rKfBO-EmXSng9a89ZqOYPZFfhG1Il3d0pqO3iNQ008ohY7OX1cnALTq14KBvPjGeBOajn~5GXtgDQuE~rMmCEK2pSF5GRlJgfHC1N2zhA-mR49nAzNGC2VdW6VFrnL06PMziA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118894167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118894167/thumbnails/1.jpg","file_name":"pmc3621511.pdf","download_url":"https://www.academia.edu/attachments/118894167/download_file","bulk_download_file_name":"The_Brain_as_a_Complex_System_Using_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118894167/pmc3621511-libre.pdf?1728927352=\u0026response-content-disposition=attachment%3B+filename%3DThe_Brain_as_a_Complex_System_Using_Netw.pdf\u0026Expires=1733262662\u0026Signature=NlDolVV4W5NZFKyt8IvOcqZF-bWND3Y~YVZM30c7rTAiW98huqx8YCFIIqvKSj1Y-gLejSmBcdh4fqKnS02LwK6XET7pxaI9lGX5~gk03l-tnz6DOUBba5c-qEQlC9zMY8xVLr9aIKZVFndvqN2fuGvdMfn36JR0abe2IUk5x~4cJIdz2YZoLEAJ3k46fm~v9ZKCIyqwnPcz7FIBVFS2ign0il9a2AVvDD75hgE7aSPNHoSiFfs5kFy59asu6hhd0z64KNM84qzmLSwOGeAy1nXMrrv6GVgYoGtv51rJ43WQ9WpoomyGTOP~Mmd1CBybxF32x3l5xwgLjP6VSW9k~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory"},{"id":2639,"name":"Neuroimaging","url":"https://www.academia.edu/Documents/in/Neuroimaging"},{"id":9191,"name":"Network Analysis","url":"https://www.academia.edu/Documents/in/Network_Analysis"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36812,"name":"Network science","url":"https://www.academia.edu/Documents/in/Network_science"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":97252,"name":"Comprehension","url":"https://www.academia.edu/Documents/in/Comprehension"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":188264,"name":"Brain Connectivity","url":"https://www.academia.edu/Documents/in/Brain_Connectivity"},{"id":191087,"name":"Centrality","url":"https://www.academia.edu/Documents/in/Centrality"},{"id":320532,"name":"Clustering Coefficient","url":"https://www.academia.edu/Documents/in/Clustering_Coefficient"},{"id":401305,"name":"Betweenness Centrality","url":"https://www.academia.edu/Documents/in/Betweenness_Centrality"}],"urls":[{"id":45149363,"url":"https://europepmc.org/articles/pmc3621511?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960711"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960711/Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications"><img alt="Research paper thumbnail of Arterial Spin-Labeled MR Perfusion Imaging: Clinical Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/84493836/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960711/Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications">Arterial Spin-Labeled MR Perfusion Imaging: Clinical Applications</a></div><div class="wp-workCard_item"><span>Magnetic Resonance Imaging Clinics of North America</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="10bdd72c9b1cc7b41aed6069092860f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84493836,&quot;asset_id&quot;:76960711,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84493836/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960711"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960711"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960711; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960711]").text(description); $(".js-view-count[data-work-id=76960711]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960711; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960711']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960711, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "10bdd72c9b1cc7b41aed6069092860f0" } } $('.js-work-strip[data-work-id=76960711]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960711,"title":"Arterial Spin-Labeled MR Perfusion Imaging: Clinical Applications","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Magnetic Resonance Imaging Clinics of North America"},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960711/Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications","translated_internal_url":"","created_at":"2022-04-19T07:37:02.545-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84493836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493836/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493836/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Arterial_Spin_Labeled_MR_Perfusion_Imagi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493836/pdf-libre.pdf?1650401344=\u0026response-content-disposition=attachment%3B+filename%3DArterial_Spin_Labeled_MR_Perfusion_Imagi.pdf\u0026Expires=1733262662\u0026Signature=EQskkU1lg3icv0p7XV~~UBAIb6J9ZB3w6eO0Kn0vOX-NXjUzGIwvegLE-CqGRxuouu1SU6DT-qTG~461Mv~GVx9ctZXWN4RVSlykMhcFuFUJfyALGi-YeehxgoII40qGnX3dJ3ryYTWCY2drPhaETPoMu~-dzEDDEY-DbdSk~CRpTcsl8E2eDAAfgy0Z2okgEtecR5L9IGSIs-szO0s7V03FjusfWtMRquLNcGs3ThhO0-pvZHvQ2oY710fYJfY6VOrGQvGDEvzumHrGDSWHkFygiSz3KrRxbLdmm~Tw6l7q74asyxP~~ZvLxVqAjYU9MsfOzeJKub~W89oIaVclxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Arterial_Spin_Labeled_MR_Perfusion_Imaging_Clinical_Applications","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84493836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493836/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493836/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Arterial_Spin_Labeled_MR_Perfusion_Imagi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493836/pdf-libre.pdf?1650401344=\u0026response-content-disposition=attachment%3B+filename%3DArterial_Spin_Labeled_MR_Perfusion_Imagi.pdf\u0026Expires=1733262662\u0026Signature=EQskkU1lg3icv0p7XV~~UBAIb6J9ZB3w6eO0Kn0vOX-NXjUzGIwvegLE-CqGRxuouu1SU6DT-qTG~461Mv~GVx9ctZXWN4RVSlykMhcFuFUJfyALGi-YeehxgoII40qGnX3dJ3ryYTWCY2drPhaETPoMu~-dzEDDEY-DbdSk~CRpTcsl8E2eDAAfgy0Z2okgEtecR5L9IGSIs-szO0s7V03FjusfWtMRquLNcGs3ThhO0-pvZHvQ2oY710fYJfY6VOrGQvGDEvzumHrGDSWHkFygiSz3KrRxbLdmm~Tw6l7q74asyxP~~ZvLxVqAjYU9MsfOzeJKub~W89oIaVclxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":161534,"name":"Perfusion","url":"https://www.academia.edu/Documents/in/Perfusion"},{"id":372581,"name":"Image Enhancement","url":"https://www.academia.edu/Documents/in/Image_Enhancement"},{"id":1122411,"name":"Mr Imaging","url":"https://www.academia.edu/Documents/in/Mr_Imaging"},{"id":1148465,"name":"ASL (Arterial Spin Labeling)","url":"https://www.academia.edu/Documents/in/ASL_Arterial_Spin_Labeling_"},{"id":1205102,"name":"Cerebrovascular Disorders","url":"https://www.academia.edu/Documents/in/Cerebrovascular_Disorders"},{"id":1275886,"name":"Clinical Application","url":"https://www.academia.edu/Documents/in/Clinical_Application"},{"id":1407305,"name":"Contrast Media","url":"https://www.academia.edu/Documents/in/Contrast_Media"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960708"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960708/An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets"><img alt="Research paper thumbnail of An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets" class="work-thumbnail" src="https://attachments.academia-assets.com/84493832/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960708/An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets">An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets</a></div><div class="wp-workCard_item"><span>NeuroImage</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc53b9f5c0c1f2ae78b53d6ae94f52ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84493832,&quot;asset_id&quot;:76960708,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84493832/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960708"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960708"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960708; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960708]").text(description); $(".js-view-count[data-work-id=76960708]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960708; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960708']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960708, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc53b9f5c0c1f2ae78b53d6ae94f52ef" } } $('.js-work-strip[data-work-id=76960708]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960708,"title":"An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Analysis and interpretation of functional MRI (fMRI) data have traditionally been based on identifying areas of significance on a thresholded statistical map of the entire imaged brain volume. This form of analysis can be likened to a \"fishing expedition.\" As we become more knowledgeable about the structure-function relationships of different brain regions, tools for a priori hypothesis testing are needed. These tools must be able to generate region of interest masks for a priori hypothesis testing consistently and with minimal effort. Current tools that generate region of interest masks required for a priori hypothesis testing can be time-consuming and are often laboratory specific. In this paper we demonstrate a method of hypothesis-driven data analysis using an automated atlas-based masking technique. We provide a powerful method of probing fMRI data using automatically generated masks based on lobar anatomy, cortical and subcortical anatomy, and Brodmann areas. Hemisphere, lobar, anatomic label, tissue type, and Brodmann area atlases were generated in MNI space based on the Talairach Daemon. Additionally, we interfaced these multivolume atlases to a widely used fMRI software package, SPM99, and demonstrate the use of the atlas tool with representative fMRI data. This tool represents a necessary evolution in fMRI data analysis for testing of more spatially complex hypotheses.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"NeuroImage","grobid_abstract_attachment_id":84493832},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960708/An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets","translated_internal_url":"","created_at":"2022-04-19T07:37:02.372-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84493832,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493832/thumbnails/1.jpg","file_name":"s1053-8119_2803_2900169-120220419-1-1thjyo.pdf","download_url":"https://www.academia.edu/attachments/84493832/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_automated_method_for_neuroanatomic_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493832/s1053-8119_2803_2900169-120220419-1-1thjyo-libre.pdf?1650399694=\u0026response-content-disposition=attachment%3B+filename%3DAn_automated_method_for_neuroanatomic_an.pdf\u0026Expires=1733262662\u0026Signature=UPX-8KlVPIf~g8l1fstfIwg6gCfGkLm1QwCXhjIdlvhiIR7alKLjX~UeqLSw8AmAjLfesmJxhAY~8lMGBHXjL5UFamdAO49fKnQELx-eLKMk7AvcdDwphtkWaKT8NiWH4wY4jwHJzqGKe9owd3RlR-uhbMJ72~~xpDIWfg63Mew-H-UeIij3IRIYf5CKI5cGUigvAzfI-2ObH~hFbrB6A0JnwVrOCBMaczSZJN4wVaZpwK1oLY1gZrJLZSoPkLeU2bnZ4lRZ2YCMraWv7DAxQKoNeV2vHBJaoGoybTgWUOEJGVqe3OZiqeMEXPZAByvpMkU8hwUofhtD3CSEKGgGwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_automated_method_for_neuroanatomic_and_cytoarchitectonic_atlas_based_interrogation_of_fMRI_data_sets","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84493832,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493832/thumbnails/1.jpg","file_name":"s1053-8119_2803_2900169-120220419-1-1thjyo.pdf","download_url":"https://www.academia.edu/attachments/84493832/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_automated_method_for_neuroanatomic_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493832/s1053-8119_2803_2900169-120220419-1-1thjyo-libre.pdf?1650399694=\u0026response-content-disposition=attachment%3B+filename%3DAn_automated_method_for_neuroanatomic_an.pdf\u0026Expires=1733262662\u0026Signature=UPX-8KlVPIf~g8l1fstfIwg6gCfGkLm1QwCXhjIdlvhiIR7alKLjX~UeqLSw8AmAjLfesmJxhAY~8lMGBHXjL5UFamdAO49fKnQELx-eLKMk7AvcdDwphtkWaKT8NiWH4wY4jwHJzqGKe9owd3RlR-uhbMJ72~~xpDIWfg63Mew-H-UeIij3IRIYf5CKI5cGUigvAzfI-2ObH~hFbrB6A0JnwVrOCBMaczSZJN4wVaZpwK1oLY1gZrJLZSoPkLeU2bnZ4lRZ2YCMraWv7DAxQKoNeV2vHBJaoGoybTgWUOEJGVqe3OZiqeMEXPZAByvpMkU8hwUofhtD3CSEKGgGwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":9224,"name":"Functional MRI","url":"https://www.academia.edu/Documents/in/Functional_MRI"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":103260,"name":"Neuroimage","url":"https://www.academia.edu/Documents/in/Neuroimage"},{"id":387125,"name":"Automatic code generation","url":"https://www.academia.edu/Documents/in/Automatic_code_generation"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":1372278,"name":"Region of Interest","url":"https://www.academia.edu/Documents/in/Region_of_Interest"},{"id":2057366,"name":"Software Package","url":"https://www.academia.edu/Documents/in/Software_Package"},{"id":2226477,"name":"Automatic data processing","url":"https://www.academia.edu/Documents/in/Automatic_data_processing"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3519354,"name":"Hypothesis Test","url":"https://www.academia.edu/Documents/in/Hypothesis_Test"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960706"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960706/Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load"><img alt="Research paper thumbnail of Changes in global and regional modularity associated with increasing working memory load" class="work-thumbnail" src="https://attachments.academia-assets.com/84493796/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960706/Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load">Changes in global and regional modularity associated with increasing working memory load</a></div><div class="wp-workCard_item"><span>Frontiers in Human Neuroscience</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eb1642763e4f65e72091d88edff982a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84493796,&quot;asset_id&quot;:76960706,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84493796/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960706"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960706"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960706; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960706]").text(description); $(".js-view-count[data-work-id=76960706]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960706; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960706']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960706, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eb1642763e4f65e72091d88edff982a4" } } $('.js-work-strip[data-work-id=76960706]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960706,"title":"Changes in global and regional modularity associated with increasing working memory load","translated_title":"","metadata":{"publisher":"Frontiers Media SA","grobid_abstract":"Using graph theory measures common to complex network analyses of neuroimaging data, the objective of this study was to explore the effects of increasing working memory processing load on functional brain network topology in a cohort of young adults. Measures of modularity in complex brain networks quantify how well a network is organized into densely interconnected communities. We investigated changes in both the large-scale modular organization of the functional brain network as a whole and regional changes in modular organization as demands on working memory increased from n = 1 to n = 2 on the standard n-back task. We further investigated the relationship between modular properties across working memory load conditions and behavioral performance. Our results showed that regional modular organization within the default mode and working memory circuits significantly changed from 1-back to 2-back task conditions. However, the regional modular organization was not associated with behavioral performance. Global measures of modular organization did not change with working memory load but were associated with individual variability in behavioral performance. These findings indicate that regional and global network properties are modulated by different aspects of working memory under increasing load conditions. These findings highlight the importance of assessing multiple features of functional brain network topology at both global and regional scales rather than focusing on a single network property.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Frontiers in Human Neuroscience","grobid_abstract_attachment_id":84493796},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960706/Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load","translated_internal_url":"","created_at":"2022-04-19T07:37:02.183-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84493796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493796/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493796/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Changes_in_global_and_regional_modularit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493796/pdf-libre.pdf?1650399225=\u0026response-content-disposition=attachment%3B+filename%3DChanges_in_global_and_regional_modularit.pdf\u0026Expires=1733262662\u0026Signature=VIzVEoj1CA1BpqMIKwDjuLX2JXUl19WScJmPcBqJEGVn6IAnvMrSXv3ZqU~zF6T3Mv56gCJ6rVmr~li9SoBA814VSIu2cFp0zXgpV3B1FeeGh2cwqiY7CtjxUYleRVWo50fZqZSNEgtRu9g~Dm0QQFWiRyp19-jWJaXHwoMc1~MmLqD4wzyHsHq-m-dw3SU42yUFeap0D2U--39Nr5TWMCTPst1PWAkKDFUihy~wox8m~tXa771j2zT352-Z0GMLvoE~vzQ705Q--7rdrfuKoDEH5yyUp05LbuBsPLIs8MVaEm3wiZX-nGUffZaG8Fpp92q2J6CruKcm8WVaXnM9zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Changes_in_global_and_regional_modularity_associated_with_increasing_working_memory_load","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84493796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84493796/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/84493796/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Changes_in_global_and_regional_modularit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84493796/pdf-libre.pdf?1650399225=\u0026response-content-disposition=attachment%3B+filename%3DChanges_in_global_and_regional_modularit.pdf\u0026Expires=1733262662\u0026Signature=VIzVEoj1CA1BpqMIKwDjuLX2JXUl19WScJmPcBqJEGVn6IAnvMrSXv3ZqU~zF6T3Mv56gCJ6rVmr~li9SoBA814VSIu2cFp0zXgpV3B1FeeGh2cwqiY7CtjxUYleRVWo50fZqZSNEgtRu9g~Dm0QQFWiRyp19-jWJaXHwoMc1~MmLqD4wzyHsHq-m-dw3SU42yUFeap0D2U--39Nr5TWMCTPst1PWAkKDFUihy~wox8m~tXa771j2zT352-Z0GMLvoE~vzQ705Q--7rdrfuKoDEH5yyUp05LbuBsPLIs8MVaEm3wiZX-nGUffZaG8Fpp92q2J6CruKcm8WVaXnM9zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory"},{"id":8538,"name":"Working Memory","url":"https://www.academia.edu/Documents/in/Working_Memory"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36812,"name":"Network science","url":"https://www.academia.edu/Documents/in/Network_science"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":154234,"name":"Modularity","url":"https://www.academia.edu/Documents/in/Modularity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960704"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960704/Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults"><img alt="Research paper thumbnail of Using network science to evaluate exercise-associated brain changes in older adults" class="work-thumbnail" src="https://attachments.academia-assets.com/84506999/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960704/Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults">Using network science to evaluate exercise-associated brain changes in older adults</a></div><div class="wp-workCard_item"><span>Frontiers in Aging Neuroscience</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d93324eacd0fa0bad93bee59d6306c6e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84506999,&quot;asset_id&quot;:76960704,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84506999/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960704"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960704"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960704; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960704]").text(description); $(".js-view-count[data-work-id=76960704]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960704; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960704']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960704, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d93324eacd0fa0bad93bee59d6306c6e" } } $('.js-work-strip[data-work-id=76960704]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960704,"title":"Using network science to evaluate exercise-associated brain changes in older adults","translated_title":"","metadata":{"publisher":"Frontiers Media SA","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Frontiers in Aging Neuroscience"},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960704/Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults","translated_internal_url":"","created_at":"2022-04-19T07:37:02.008-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84506999,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84506999/thumbnails/1.jpg","file_name":"pmc2893375.pdf","download_url":"https://www.academia.edu/attachments/84506999/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_network_science_to_evaluate_exerci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84506999/pmc2893375-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DUsing_network_science_to_evaluate_exerci.pdf\u0026Expires=1733262662\u0026Signature=RvIRi6Uofi4aWJsdKzkQvkNP08qai20Z6gtHEvTvR3P0OkJZEzoSs8t-mUbTjCpJQMZ3dfDfeqHBh4aZHahwKLc6~ZsC~PtFtndAOQU0UJWNtZEEyYCaNBJBZ~cl43MHmWcUbeOFjE7viZL5tMgdm9D1TjoqXRVrA~jWR7lsiFvkmydVJfLX9hj8BkWOeYXnYsqq0Xk95mAtttaO9WO9-UoClZunlgqsyZKGhkYRyIDuHA9B7vWR7dryC-ki69rvBw4JdDipOKRlFrXff4iHFtPH-xZrL1zZ9DCEoUMwANX~rC71Cvo6LJBPDxgbGSgpb643cG5zkD~Y5JDsNWXU0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_network_science_to_evaluate_exercise_associated_brain_changes_in_older_adults","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84506999,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84506999/thumbnails/1.jpg","file_name":"pmc2893375.pdf","download_url":"https://www.academia.edu/attachments/84506999/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_network_science_to_evaluate_exerci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84506999/pmc2893375-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DUsing_network_science_to_evaluate_exerci.pdf\u0026Expires=1733262662\u0026Signature=RvIRi6Uofi4aWJsdKzkQvkNP08qai20Z6gtHEvTvR3P0OkJZEzoSs8t-mUbTjCpJQMZ3dfDfeqHBh4aZHahwKLc6~ZsC~PtFtndAOQU0UJWNtZEEyYCaNBJBZ~cl43MHmWcUbeOFjE7viZL5tMgdm9D1TjoqXRVrA~jWR7lsiFvkmydVJfLX9hj8BkWOeYXnYsqq0Xk95mAtttaO9WO9-UoClZunlgqsyZKGhkYRyIDuHA9B7vWR7dryC-ki69rvBw4JdDipOKRlFrXff4iHFtPH-xZrL1zZ9DCEoUMwANX~rC71Cvo6LJBPDxgbGSgpb643cG5zkD~Y5JDsNWXU0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":437852,"name":"FRONTIERS","url":"https://www.academia.edu/Documents/in/FRONTIERS"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960702/Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS"><img alt="Research paper thumbnail of Fully Automated Processing of fMRI Data in SPM: from MRI Scanner to PACS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960702/Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS">Fully Automated Processing of fMRI Data in SPM: from MRI Scanner to PACS</a></div><div class="wp-workCard_item"><span>Neuroinformatics</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we describe the Wake Forest University Pipeline, a fully automated method for the processing...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960702]").text(description); $(".js-view-count[data-work-id=76960702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76960702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960702,"title":"Fully Automated Processing of fMRI Data in SPM: from MRI Scanner to PACS","translated_title":"","metadata":{"abstract":"Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Neuroinformatics"},"translated_abstract":"Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.","internal_url":"https://www.academia.edu/76960702/Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS","translated_internal_url":"","created_at":"2022-04-19T07:37:01.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fully_Automated_Processing_of_fMRI_Data_in_SPM_from_MRI_Scanner_to_PACS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4492,"name":"Neuroinformatics","url":"https://www.academia.edu/Documents/in/Neuroinformatics"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":9224,"name":"Functional MRI","url":"https://www.academia.edu/Documents/in/Functional_MRI"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":45090,"name":"Database Management Systems","url":"https://www.academia.edu/Documents/in/Database_Management_Systems"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":186890,"name":"Spm","url":"https://www.academia.edu/Documents/in/Spm"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":277283,"name":"Data transfer","url":"https://www.academia.edu/Documents/in/Data_transfer"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":386115,"name":"Automated","url":"https://www.academia.edu/Documents/in/Automated"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1280806,"name":"Error Recovery","url":"https://www.academia.edu/Documents/in/Error_Recovery"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":2226477,"name":"Automatic data processing","url":"https://www.academia.edu/Documents/in/Automatic_data_processing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960700"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960700/A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI"><img alt="Research paper thumbnail of A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI" class="work-thumbnail" src="https://attachments.academia-assets.com/84507005/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960700/A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI">A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI</a></div><div class="wp-workCard_item"><span>Journal of Magnetic Resonance Imaging</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="260b890cef8f0d3295031ab551309268" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84507005,&quot;asset_id&quot;:76960700,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84507005/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960700"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960700"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960700; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960700]").text(description); $(".js-view-count[data-work-id=76960700]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960700; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960700']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960700, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "260b890cef8f0d3295031ab551309268" } } $('.js-work-strip[data-work-id=76960700]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960700,"title":"A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI","translated_title":"","metadata":{"publisher":"Wiley","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of Magnetic Resonance Imaging"},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960700/A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI","translated_internal_url":"","created_at":"2022-04-19T07:37:01.678-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84507005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507005/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/84507005/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fast_effective_filtering_method_for_im.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507005/ptpmcrender-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DA_fast_effective_filtering_method_for_im.pdf\u0026Expires=1733262662\u0026Signature=M53fzXNXn6zmeOu26cbLnlonNhdOqSKTz4hlAqT365NwXob479d5lwd-TSv0YGN8hPf-KYgjSxOvTTel6au4VhWf5cxLySooD6gkrN8TuBcYdaFlDXVqcP1WhSM4w4sPbc4CG~y7ug4273L8VoW9~xezjtVuXr7bw-qGIqvMhwoWrjti1Uzt2JLaRPzBvipKOeHpp15sDXbjnuk9UoMcRPEd9Sr3OarLSYtM52pHcwJCFVeDomxJvQQSKldMYEepPs2NeVtHpGPdcwpWzYcaaUd6B21Fw3Qd9sFZ7glraNzCLvDCdDXcuy~hmT4x0BYcgSf7aZ0dnHaX-cR~nCt8EA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_fast_effective_filtering_method_for_improving_clinical_pulsed_arterial_spin_labeling_MRI","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84507005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507005/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/84507005/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_fast_effective_filtering_method_for_im.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507005/ptpmcrender-libre.pdf?1650414069=\u0026response-content-disposition=attachment%3B+filename%3DA_fast_effective_filtering_method_for_im.pdf\u0026Expires=1733262662\u0026Signature=M53fzXNXn6zmeOu26cbLnlonNhdOqSKTz4hlAqT365NwXob479d5lwd-TSv0YGN8hPf-KYgjSxOvTTel6au4VhWf5cxLySooD6gkrN8TuBcYdaFlDXVqcP1WhSM4w4sPbc4CG~y7ug4273L8VoW9~xezjtVuXr7bw-qGIqvMhwoWrjti1Uzt2JLaRPzBvipKOeHpp15sDXbjnuk9UoMcRPEd9Sr3OarLSYtM52pHcwJCFVeDomxJvQQSKldMYEepPs2NeVtHpGPdcwpWzYcaaUd6B21Fw3Qd9sFZ7glraNzCLvDCdDXcuy~hmT4x0BYcgSf7aZ0dnHaX-cR~nCt8EA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":22506,"name":"Adolescent","url":"https://www.academia.edu/Documents/in/Adolescent"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":64933,"name":"Child","url":"https://www.academia.edu/Documents/in/Child"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":134346,"name":"Infant","url":"https://www.academia.edu/Documents/in/Infant"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":465866,"name":"Magnetic","url":"https://www.academia.edu/Documents/in/Magnetic"},{"id":1157501,"name":"Blood Flow Velocity","url":"https://www.academia.edu/Documents/in/Blood_Flow_Velocity"},{"id":1765793,"name":"Brain Diseases","url":"https://www.academia.edu/Documents/in/Brain_Diseases"},{"id":2489700,"name":"Child preschool","url":"https://www.academia.edu/Documents/in/Child_preschool"},{"id":2562018,"name":"Arteries","url":"https://www.academia.edu/Documents/in/Arteries"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960699/Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults"><img alt="Research paper thumbnail of Acute Effect of a High Nitrate Diet on Brain Perfusion in Older Adults" class="work-thumbnail" src="https://attachments.academia-assets.com/84507016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960699/Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults">Acute Effect of a High Nitrate Diet on Brain Perfusion in Older Adults</a></div><div class="wp-workCard_item"><span>Free Radical Biology and Medicine</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7fc3efca45abf79a2190fe9b6829caca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84507016,&quot;asset_id&quot;:76960699,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84507016/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960699]").text(description); $(".js-view-count[data-work-id=76960699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7fc3efca45abf79a2190fe9b6829caca" } } $('.js-work-strip[data-work-id=76960699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960699,"title":"Acute Effect of a High Nitrate Diet on Brain Perfusion in Older Adults","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Aims-Poor blood flow and hypoxia/ischemia contribute to many disease states and may also be a factor in the decline of physical and cognitive function in aging. Nitrite has been discovered to be a vasodilator that is preferentially harnessed in hypoxia. Thus, both infused and inhaled nitrite are being studied as therapeutic agents for a variety of diseases. In addition, nitrite derived from nitrate in the diet has been shown to decrease blood pressure and improve exercise performance. Thus, dietary nitrate may also be important when increased blood flow in hypoxic or ischemic areas is indicated. These conditions could include age-associated dementia and cognitive decline. The goal of this study was to determine if dietary nitrate would increase cerebral blood flow in older adults.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Free Radical Biology and Medicine","grobid_abstract_attachment_id":84507016},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960699/Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults","translated_internal_url":"","created_at":"2022-04-19T07:37:01.527-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84507016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507016/thumbnails/1.jpg","file_name":"12.pdf","download_url":"https://www.academia.edu/attachments/84507016/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Acute_Effect_of_a_High_Nitrate_Diet_on_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507016/12-libre.pdf?1650414067=\u0026response-content-disposition=attachment%3B+filename%3DAcute_Effect_of_a_High_Nitrate_Diet_on_B.pdf\u0026Expires=1733262662\u0026Signature=JJ-1BYjN49IaXIyU7hVAaW5xZvyIRzjAq~9kpgA0SJPYhhHiWu6pmsVGnnKpqJk5-4W2U48aoesC5YJErUqX1YttXyggjB~gbEFBsj2j6Jd9KG1gU-~WNfJSDq10E5~jy0SmPzYh7HwaFvcyOg42cgcrYBgToAO-Pi9LijOcFkcbkWzamvZkFU705iWdTk5yYaSk35aZFCtd79sn8XhCCvOCeVp0HFdr6uiMZI7wUoDYmpycXdNQbhxDhJ4bMf8wqCXHguIfQhnm8j8TIIjyQzKTympdOtH6JZBUrJa~m1kxlFmv8x33k798VrTjgSO9i2GY9UzJQcm~3BXxVAKg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Acute_Effect_of_a_High_Nitrate_Diet_on_Brain_Perfusion_in_Older_Adults","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84507016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507016/thumbnails/1.jpg","file_name":"12.pdf","download_url":"https://www.academia.edu/attachments/84507016/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Acute_Effect_of_a_High_Nitrate_Diet_on_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507016/12-libre.pdf?1650414067=\u0026response-content-disposition=attachment%3B+filename%3DAcute_Effect_of_a_High_Nitrate_Diet_on_B.pdf\u0026Expires=1733262662\u0026Signature=JJ-1BYjN49IaXIyU7hVAaW5xZvyIRzjAq~9kpgA0SJPYhhHiWu6pmsVGnnKpqJk5-4W2U48aoesC5YJErUqX1YttXyggjB~gbEFBsj2j6Jd9KG1gU-~WNfJSDq10E5~jy0SmPzYh7HwaFvcyOg42cgcrYBgToAO-Pi9LijOcFkcbkWzamvZkFU705iWdTk5yYaSk35aZFCtd79sn8XhCCvOCeVp0HFdr6uiMZI7wUoDYmpycXdNQbhxDhJ4bMf8wqCXHguIfQhnm8j8TIIjyQzKTympdOtH6JZBUrJa~m1kxlFmv8x33k798VrTjgSO9i2GY9UzJQcm~3BXxVAKg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":122402,"name":"Nitrates","url":"https://www.academia.edu/Documents/in/Nitrates"},{"id":152562,"name":"Dietary Supplements","url":"https://www.academia.edu/Documents/in/Dietary_Supplements"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":413194,"name":"Analysis of Variance","url":"https://www.academia.edu/Documents/in/Analysis_of_Variance"},{"id":426588,"name":"Blood Flow","url":"https://www.academia.edu/Documents/in/Blood_Flow"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":546419,"name":"Age Factors","url":"https://www.academia.edu/Documents/in/Age_Factors"},{"id":891140,"name":"Cognitive Decline","url":"https://www.academia.edu/Documents/in/Cognitive_Decline"},{"id":970066,"name":"Cerebral Blood Flow","url":"https://www.academia.edu/Documents/in/Cerebral_Blood_Flow"},{"id":1654024,"name":"Nitrites","url":"https://www.academia.edu/Documents/in/Nitrites"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960697"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960697/Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance"><img alt="Research paper thumbnail of Semantic congruence is a critical factor in multisensory behavioral performance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960697/Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance">Semantic congruence is a critical factor in multisensory behavioral performance</a></div><div class="wp-workCard_item"><span>Experimental Brain Research</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It has repeatedly been demonstrated that the presence of multiple cues in different sensory modal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It has repeatedly been demonstrated that the presence of multiple cues in different sensory modalities can enhance behavioral performance by speeding responses, increasing accuracy, and/or improving stimulus detection. Despite an extensive knowledge base as to how the spatial, temporal, and physical (eg., intensity) characteristics of multisensory stimuli influence such enhancements, little is known about the role of semantic or contextual congruence. Our hypothesis was that semantically congruent multisensory stimuli would result in enhanced behavioral performance, and that semantically incongruent multisensory stimuli would result in either no enhancement or a decrement in behavioral performance. The results from a redundant cue feature discrimination task clearly demonstrate that congruent cross-modal stimulation improves behavioral performance. This effect is specific to the multisensory stimuli, as no improvements are seen in the presence of redundant unimodal stimulus pairs. In contrast, incongruent stimulus pairs result in behavioral decrements for both multisensory and paired unimodal stimuli. These results highlight that in addition to such simple stimulus features as space, time and relative effectiveness, the semantic content of a multisensory stimulus plays a critical role in determining how it is processed by the nervous system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960697"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960697"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960697; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960697]").text(description); $(".js-view-count[data-work-id=76960697]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960697; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960697']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960697, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76960697]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960697,"title":"Semantic congruence is a critical factor in multisensory behavioral performance","translated_title":"","metadata":{"abstract":"It has repeatedly been demonstrated that the presence of multiple cues in different sensory modalities can enhance behavioral performance by speeding responses, increasing accuracy, and/or improving stimulus detection. Despite an extensive knowledge base as to how the spatial, temporal, and physical (eg., intensity) characteristics of multisensory stimuli influence such enhancements, little is known about the role of semantic or contextual congruence. Our hypothesis was that semantically congruent multisensory stimuli would result in enhanced behavioral performance, and that semantically incongruent multisensory stimuli would result in either no enhancement or a decrement in behavioral performance. The results from a redundant cue feature discrimination task clearly demonstrate that congruent cross-modal stimulation improves behavioral performance. This effect is specific to the multisensory stimuli, as no improvements are seen in the presence of redundant unimodal stimulus pairs. In contrast, incongruent stimulus pairs result in behavioral decrements for both multisensory and paired unimodal stimuli. These results highlight that in addition to such simple stimulus features as space, time and relative effectiveness, the semantic content of a multisensory stimulus plays a critical role in determining how it is processed by the nervous system.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Experimental Brain Research"},"translated_abstract":"It has repeatedly been demonstrated that the presence of multiple cues in different sensory modalities can enhance behavioral performance by speeding responses, increasing accuracy, and/or improving stimulus detection. Despite an extensive knowledge base as to how the spatial, temporal, and physical (eg., intensity) characteristics of multisensory stimuli influence such enhancements, little is known about the role of semantic or contextual congruence. Our hypothesis was that semantically congruent multisensory stimuli would result in enhanced behavioral performance, and that semantically incongruent multisensory stimuli would result in either no enhancement or a decrement in behavioral performance. The results from a redundant cue feature discrimination task clearly demonstrate that congruent cross-modal stimulation improves behavioral performance. This effect is specific to the multisensory stimuli, as no improvements are seen in the presence of redundant unimodal stimulus pairs. In contrast, incongruent stimulus pairs result in behavioral decrements for both multisensory and paired unimodal stimuli. These results highlight that in addition to such simple stimulus features as space, time and relative effectiveness, the semantic content of a multisensory stimulus plays a critical role in determining how it is processed by the nervous system.","internal_url":"https://www.academia.edu/76960697/Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance","translated_internal_url":"","created_at":"2022-04-19T07:37:01.385-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semantic_congruence_is_a_critical_factor_in_multisensory_behavioral_performance","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":4307,"name":"Behavior","url":"https://www.academia.edu/Documents/in/Behavior"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues"},{"id":99915,"name":"Integration","url":"https://www.academia.edu/Documents/in/Integration"},{"id":220049,"name":"Accuracy","url":"https://www.academia.edu/Documents/in/Accuracy"},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base"},{"id":413194,"name":"Analysis of Variance","url":"https://www.academia.edu/Documents/in/Analysis_of_Variance"},{"id":637718,"name":"Nervous System","url":"https://www.academia.edu/Documents/in/Nervous_System"},{"id":638808,"name":"Precision","url":"https://www.academia.edu/Documents/in/Precision"},{"id":978828,"name":"Congruence","url":"https://www.academia.edu/Documents/in/Congruence"},{"id":2428413,"name":"Acoustic Stimulation","url":"https://www.academia.edu/Documents/in/Acoustic_Stimulation"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960695"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960695/Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study"><img alt="Research paper thumbnail of Brain MRI predictors of global and domain specific cognitive function at 10 years follow up: ARIC brain MRI study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960695/Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study">Brain MRI predictors of global and domain specific cognitive function at 10 years follow up: ARIC brain MRI study</a></div><div class="wp-workCard_item"><span>Alzheimer&#39;s &amp; Dementia</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The total acquisition time is roughly 15 minutes. The AAL (Automated Anatomical Labeling) template was registered with 12 degree of freedom affine transformation and 2 stage of B-Spline mutual information based non-rigid registration of the grid size of 5mm and 2.5mm deformed to our AD subject spatial space[4]. The AD subject selection is complied with the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th) criteria. There are total 12 AD subjects with age of 78.92 6 6.07,MMSE of 146 6.90 and education of 2.56 4.58 yrs. In eachmedial temporal ROI, we calculate the FA, MD and AD. Results: The calculation of FA andMD can be found in [5]. The AD is the largest eigen-value ?1. The AD can avoid the situation like when?1€ Eœ?2€ Eœ?3 the magnitude of FA is still large. Table 1 shows the correlation results between brain regions with age and regions with MMSE. In correlation with age, the MD of right of amygdala, right thalamus, right of hippocampus and left of parahippocampal correlate to age well (p &amp;lt; 0.05). The FA-age correlations in the right of post cingulum, left of parahippocampal and right of amygdala are well. The AD-age correlations in the right of hippocampus, left of parahippocampus, right of amygdala, right of thalamus are strongly correlated. In MMSE and DTI metrics correlations, the cingulum is strongly correlated with both AD and MD. The Amygdala, parahippocampus and temporal pole are in good correlations with FA, MD and AD. Conclusions: The DTI metrics on hippocampus correlate both age and MMSE well. In the correlation between MMSE, AD and MD, cingulum shows strong correlation. The quantitative DTI metrics results demonstrate the possibility of using these metrics as the clinical criteria of discriminating the progression of AD.References: [1]M. D. Denis Le Bihan, “Diffusion Tensor Imaging: Concepts and Applications,” Journal of Magnetic Resonance Imaging, vol. 13, p. 534, 2001. [2] I. N. C. Lawes, et al., “Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection,” Neuroimage, vol. 39, pp. 62-79, 2008. [3] S. S. Mori and P. C. P. C. M. van Zijl, “Fiber tracking: principles and strategies a technical review,” NMR in Biomedicine, vol. 15, pp. 468-80, 2002. [4] G. K. Rohde, et al., “The adaptive bases algorithm for intensity-based nonrigid image registration,” Medical Imaging, IEEE Transactions, vol. 22, pp. 1470-1479, 2003. [5] C. F. Westin, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, p. 93, 2002.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960695"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960695"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960695; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960695]").text(description); $(".js-view-count[data-work-id=76960695]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960695; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960695']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960695, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76960695]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960695,"title":"Brain MRI predictors of global and domain specific cognitive function at 10 years follow up: ARIC brain MRI study","translated_title":"","metadata":{"abstract":"are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The total acquisition time is roughly 15 minutes. The AAL (Automated Anatomical Labeling) template was registered with 12 degree of freedom affine transformation and 2 stage of B-Spline mutual information based non-rigid registration of the grid size of 5mm and 2.5mm deformed to our AD subject spatial space[4]. The AD subject selection is complied with the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th) criteria. There are total 12 AD subjects with age of 78.92 6 6.07,MMSE of 146 6.90 and education of 2.56 4.58 yrs. In eachmedial temporal ROI, we calculate the FA, MD and AD. Results: The calculation of FA andMD can be found in [5]. The AD is the largest eigen-value ?1. The AD can avoid the situation like when?1€ Eœ?2€ Eœ?3 the magnitude of FA is still large. Table 1 shows the correlation results between brain regions with age and regions with MMSE. In correlation with age, the MD of right of amygdala, right thalamus, right of hippocampus and left of parahippocampal correlate to age well (p \u0026lt; 0.05). The FA-age correlations in the right of post cingulum, left of parahippocampal and right of amygdala are well. The AD-age correlations in the right of hippocampus, left of parahippocampus, right of amygdala, right of thalamus are strongly correlated. In MMSE and DTI metrics correlations, the cingulum is strongly correlated with both AD and MD. The Amygdala, parahippocampus and temporal pole are in good correlations with FA, MD and AD. Conclusions: The DTI metrics on hippocampus correlate both age and MMSE well. In the correlation between MMSE, AD and MD, cingulum shows strong correlation. The quantitative DTI metrics results demonstrate the possibility of using these metrics as the clinical criteria of discriminating the progression of AD.References: [1]M. D. Denis Le Bihan, “Diffusion Tensor Imaging: Concepts and Applications,” Journal of Magnetic Resonance Imaging, vol. 13, p. 534, 2001. [2] I. N. C. Lawes, et al., “Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection,” Neuroimage, vol. 39, pp. 62-79, 2008. [3] S. S. Mori and P. C. P. C. M. van Zijl, “Fiber tracking: principles and strategies a technical review,” NMR in Biomedicine, vol. 15, pp. 468-80, 2002. [4] G. K. Rohde, et al., “The adaptive bases algorithm for intensity-based nonrigid image registration,” Medical Imaging, IEEE Transactions, vol. 22, pp. 1470-1479, 2003. [5] C. F. Westin, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, p. 93, 2002.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Alzheimer's \u0026 Dementia"},"translated_abstract":"are total 16 gradient direction images and 1 b0 image for DTI reconstruction and b0 1⁄4 1000. The total acquisition time is roughly 15 minutes. The AAL (Automated Anatomical Labeling) template was registered with 12 degree of freedom affine transformation and 2 stage of B-Spline mutual information based non-rigid registration of the grid size of 5mm and 2.5mm deformed to our AD subject spatial space[4]. The AD subject selection is complied with the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th) criteria. There are total 12 AD subjects with age of 78.92 6 6.07,MMSE of 146 6.90 and education of 2.56 4.58 yrs. In eachmedial temporal ROI, we calculate the FA, MD and AD. Results: The calculation of FA andMD can be found in [5]. The AD is the largest eigen-value ?1. The AD can avoid the situation like when?1€ Eœ?2€ Eœ?3 the magnitude of FA is still large. Table 1 shows the correlation results between brain regions with age and regions with MMSE. In correlation with age, the MD of right of amygdala, right thalamus, right of hippocampus and left of parahippocampal correlate to age well (p \u0026lt; 0.05). The FA-age correlations in the right of post cingulum, left of parahippocampal and right of amygdala are well. The AD-age correlations in the right of hippocampus, left of parahippocampus, right of amygdala, right of thalamus are strongly correlated. In MMSE and DTI metrics correlations, the cingulum is strongly correlated with both AD and MD. The Amygdala, parahippocampus and temporal pole are in good correlations with FA, MD and AD. Conclusions: The DTI metrics on hippocampus correlate both age and MMSE well. In the correlation between MMSE, AD and MD, cingulum shows strong correlation. The quantitative DTI metrics results demonstrate the possibility of using these metrics as the clinical criteria of discriminating the progression of AD.References: [1]M. D. Denis Le Bihan, “Diffusion Tensor Imaging: Concepts and Applications,” Journal of Magnetic Resonance Imaging, vol. 13, p. 534, 2001. [2] I. N. C. Lawes, et al., “Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection,” Neuroimage, vol. 39, pp. 62-79, 2008. [3] S. S. Mori and P. C. P. C. M. van Zijl, “Fiber tracking: principles and strategies a technical review,” NMR in Biomedicine, vol. 15, pp. 468-80, 2002. [4] G. K. Rohde, et al., “The adaptive bases algorithm for intensity-based nonrigid image registration,” Medical Imaging, IEEE Transactions, vol. 22, pp. 1470-1479, 2003. [5] C. F. Westin, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, p. 93, 2002.","internal_url":"https://www.academia.edu/76960695/Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study","translated_internal_url":"","created_at":"2022-04-19T07:37:01.231-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Brain_MRI_predictors_of_global_and_domain_specific_cognitive_function_at_10_years_follow_up_ARIC_brain_MRI_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":386576,"name":"Domain Specificity","url":"https://www.academia.edu/Documents/in/Domain_Specificity"},{"id":441653,"name":"Cognitive Function","url":"https://www.academia.edu/Documents/in/Cognitive_Function"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="76960650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/76960650/A_Pianists_Recovery_From_Stroke"><img alt="Research paper thumbnail of A Pianist&#39;s Recovery From Stroke" class="work-thumbnail" src="https://attachments.academia-assets.com/84507002/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/76960650/A_Pianists_Recovery_From_Stroke">A Pianist&#39;s Recovery From Stroke</a></div><div class="wp-workCard_item"><span>Archives of Neurology</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="550aec4a9f5bd3f101f59b57beee4661" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84507002,&quot;asset_id&quot;:76960650,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84507002/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76960650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76960650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76960650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76960650]").text(description); $(".js-view-count[data-work-id=76960650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76960650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76960650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 76960650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "550aec4a9f5bd3f101f59b57beee4661" } } $('.js-work-strip[data-work-id=76960650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76960650,"title":"A Pianist's Recovery From Stroke","translated_title":"","metadata":{"publisher":"American Medical Association (AMA)","grobid_abstract":"To determine alternative neural pathways for restitution of piano playing after right hemispheric infarction causing left arm and hand paralysis. Design: Case report testing coordinated bimanual skills using structured motor skills tests and neuroimaging. Setting: A professional pianist sustained a lacunar infarction in the posterior limb of his right internal capsule, which resulted in left hemiparesis with immobilized left-hand and-finger movements persisting for 13 weeks. After 6 months, he had recovered bimanual coordinated piano skills by \"ignoring\" his left hand while concentrating or discussing subjects other than music while playing.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Archives of Neurology","grobid_abstract_attachment_id":84507002},"translated_abstract":null,"internal_url":"https://www.academia.edu/76960650/A_Pianists_Recovery_From_Stroke","translated_internal_url":"","created_at":"2022-04-19T07:36:42.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84507002,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507002/thumbnails/1.jpg","file_name":"nob70009_1184_1188.pdf","download_url":"https://www.academia.edu/attachments/84507002/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Pianists_Recovery_From_Stroke.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507002/nob70009_1184_1188.pdf?1650413626=\u0026response-content-disposition=attachment%3B+filename%3DA_Pianists_Recovery_From_Stroke.pdf\u0026Expires=1733262663\u0026Signature=OqJTGsWhHjawQPO6b3sF9ySyDcsaBkrpZuGSKla3gZ2HziPGNTBXIEjltTalm2-xfYmfye-z0uGkfLCrhlH6Qu5VBCXjg-5sI27jFRz1bgdHnQhmYnDnKB1MZqkWVzRY-kn2fIK9koeXi3598uC98iiM~FBgFN1EySFqkP-W4iNB6Uc-R-UbiQBhaAY2s8dkD1ylA5PnIs8yqUaJ6HGIYVwV61eAhjVf1y1yfNvX50V5HXOVhWln2z1DU5yPaMi6E0IcLK2~8HZ5YPlfkYTBVsJ3D2G3oHfqoC5W3AohYSdaenNGkHsT9iLKBqAe3kod8YdFcCKJhdIc5x9Juld6Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Pianists_Recovery_From_Stroke","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":84507002,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84507002/thumbnails/1.jpg","file_name":"nob70009_1184_1188.pdf","download_url":"https://www.academia.edu/attachments/84507002/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Pianists_Recovery_From_Stroke.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84507002/nob70009_1184_1188.pdf?1650413626=\u0026response-content-disposition=attachment%3B+filename%3DA_Pianists_Recovery_From_Stroke.pdf\u0026Expires=1733262663\u0026Signature=OqJTGsWhHjawQPO6b3sF9ySyDcsaBkrpZuGSKla3gZ2HziPGNTBXIEjltTalm2-xfYmfye-z0uGkfLCrhlH6Qu5VBCXjg-5sI27jFRz1bgdHnQhmYnDnKB1MZqkWVzRY-kn2fIK9koeXi3598uC98iiM~FBgFN1EySFqkP-W4iNB6Uc-R-UbiQBhaAY2s8dkD1ylA5PnIs8yqUaJ6HGIYVwV61eAhjVf1y1yfNvX50V5HXOVhWln2z1DU5yPaMi6E0IcLK2~8HZ5YPlfkYTBVsJ3D2G3oHfqoC5W3AohYSdaenNGkHsT9iLKBqAe3kod8YdFcCKJhdIc5x9Juld6Bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":671,"name":"Music","url":"https://www.academia.edu/Documents/in/Music"},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":65615,"name":"Cerebellum","url":"https://www.academia.edu/Documents/in/Cerebellum"},{"id":84745,"name":"Movement","url":"https://www.academia.edu/Documents/in/Movement"},{"id":119238,"name":"Hemiplegia","url":"https://www.academia.edu/Documents/in/Hemiplegia"},{"id":121291,"name":"Recovery","url":"https://www.academia.edu/Documents/in/Recovery"},{"id":128538,"name":"Arm","url":"https://www.academia.edu/Documents/in/Arm"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":441660,"name":"Motor Function","url":"https://www.academia.edu/Documents/in/Motor_Function"},{"id":500368,"name":"Hand","url":"https://www.academia.edu/Documents/in/Hand"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1028516,"name":"Fingers","url":"https://www.academia.edu/Documents/in/Fingers"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1685089,"name":"Cerebral Infarction","url":"https://www.academia.edu/Documents/in/Cerebral_Infarction"},{"id":1756573,"name":"Motor Skills","url":"https://www.academia.edu/Documents/in/Motor_Skills"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71997492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71997492/Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity"><img alt="Research paper thumbnail of Functional Brain Networks: Unique Patterns with Hedonic Appetite and Confidence to Resist Eating in Older Adults with Obesity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71997492/Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity">Functional Brain Networks: Unique Patterns with Hedonic Appetite and Confidence to Resist Eating in Older Adults with Obesity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power of Food Scale—and self‐control for food consumption—the Weight Efficacy Lifestyle Questionnaire—were associated with network topology within two sets of brain regions (regions of interest [ROIs] 1 and 2) in a group of older adults with obesity. These previously identified brain regions were shown in a different cohort of older adults to be critical for discriminating weight loss success and failure.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71997492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71997492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71997492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71997492]").text(description); $(".js-view-count[data-work-id=71997492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71997492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71997492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71997492, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=71997492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71997492,"title":"Functional Brain Networks: Unique Patterns with Hedonic Appetite and Confidence to Resist Eating in Older Adults with Obesity","translated_title":"","metadata":{"abstract":"The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power of Food Scale—and self‐control for food consumption—the Weight Efficacy Lifestyle Questionnaire—were associated with network topology within two sets of brain regions (regions of interest [ROIs] 1 and 2) in a group of older adults with obesity. These previously identified brain regions were shown in a different cohort of older adults to be critical for discriminating weight loss success and failure.","publisher":"Obesity","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"The purpose of this study was to determine whether baseline measures of hedonic hunger—the Power of Food Scale—and self‐control for food consumption—the Weight Efficacy Lifestyle Questionnaire—were associated with network topology within two sets of brain regions (regions of interest [ROIs] 1 and 2) in a group of older adults with obesity. These previously identified brain regions were shown in a different cohort of older adults to be critical for discriminating weight loss success and failure.","internal_url":"https://www.academia.edu/71997492/Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity","translated_internal_url":"","created_at":"2022-02-20T12:31:24.517-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Functional_Brain_Networks_Unique_Patterns_with_Hedonic_Appetite_and_Confidence_to_Resist_Eating_in_Older_Adults_with_Obesity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":3851,"name":"Obesity","url":"https://www.academia.edu/Documents/in/Obesity"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67145583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67145583/Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study"><img alt="Research paper thumbnail of Effects of a Motor Imagery Task on Functional Brain Network Community Structure in Older Adults: Data from the Brain Networks and Mobility Function (B-NET) Study" class="work-thumbnail" src="https://attachments.academia-assets.com/78073476/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67145583/Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study">Effects of a Motor Imagery Task on Functional Brain Network Community Structure in Older Adults: Data from the Brain Networks and Mobility Function (B-NET) Study</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Elucidating the neural correlates of mobility is critical given the increasing population of olde...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a8c2b058100bcff1a9a9ae06bb66ca4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78073476,&quot;asset_id&quot;:67145583,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78073476/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67145583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67145583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67145583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67145583]").text(description); $(".js-view-count[data-work-id=67145583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67145583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67145583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67145583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a8c2b058100bcff1a9a9ae06bb66ca4e" } } $('.js-work-strip[data-work-id=67145583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67145583,"title":"Effects of a Motor Imagery Task on Functional Brain Network Community Structure in Older Adults: Data from the Brain Networks and Mobility Function (B-NET) Study","translated_title":"","metadata":{"abstract":"Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the c...","publisher":"Brain sciences","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the c...","internal_url":"https://www.academia.edu/67145583/Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study","translated_internal_url":"","created_at":"2022-01-04T16:43:23.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78073476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78073476/thumbnails/1.jpg","file_name":"brainsci-11-00118.pdf","download_url":"https://www.academia.edu/attachments/78073476/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_a_Motor_Imagery_Task_on_Funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78073476/brainsci-11-00118-libre.pdf?1641343774=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_a_Motor_Imagery_Task_on_Funct.pdf\u0026Expires=1733262663\u0026Signature=CkVnkZ3WU~c6-y3HdLyNePLS1oJf6YmGbLg3xpSkuhgzTYV9evY5TYxIphw5e65Dyn-kQevFKcO3w258xyMG~ayKB~StM1dXi3XcYMZUodk5GN5LsBlrHUtDA1CiMwB10BY2llEof4BqVjrlNl4nCgZHus-v-KBsi-pfkojM2gk2E7-wX2KuvM6zakOF0vcp6Emm8hcWRo-xZ4V7JHL5LV5SA2YFMDCAA85jZeQHPTYKdaYQ-A86kzwlOJPNDwU4T1qdPutmnv2ks0DfVkmRiCt2ObDqpWlwJ12g-Ud9HX0HecF-ZOwIizsOR5pPgUZzu-NvuLBE-7780SRop9lYbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effects_of_a_Motor_Imagery_Task_on_Functional_Brain_Network_Community_Structure_in_Older_Adults_Data_from_the_Brain_Networks_and_Mobility_Function_B_NET_Study","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":78073476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78073476/thumbnails/1.jpg","file_name":"brainsci-11-00118.pdf","download_url":"https://www.academia.edu/attachments/78073476/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effects_of_a_Motor_Imagery_Task_on_Funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78073476/brainsci-11-00118-libre.pdf?1641343774=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_a_Motor_Imagery_Task_on_Funct.pdf\u0026Expires=1733262663\u0026Signature=CkVnkZ3WU~c6-y3HdLyNePLS1oJf6YmGbLg3xpSkuhgzTYV9evY5TYxIphw5e65Dyn-kQevFKcO3w258xyMG~ayKB~StM1dXi3XcYMZUodk5GN5LsBlrHUtDA1CiMwB10BY2llEof4BqVjrlNl4nCgZHus-v-KBsi-pfkojM2gk2E7-wX2KuvM6zakOF0vcp6Emm8hcWRo-xZ4V7JHL5LV5SA2YFMDCAA85jZeQHPTYKdaYQ-A86kzwlOJPNDwU4T1qdPutmnv2ks0DfVkmRiCt2ObDqpWlwJ12g-Ud9HX0HecF-ZOwIizsOR5pPgUZzu-NvuLBE-7780SRop9lYbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78073475,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78073475/thumbnails/1.jpg","file_name":"brainsci-11-00118.pdf","download_url":"https://www.academia.edu/attachments/78073475/download_file","bulk_download_file_name":"Effects_of_a_Motor_Imagery_Task_on_Funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78073475/brainsci-11-00118-libre.pdf?1641343774=\u0026response-content-disposition=attachment%3B+filename%3DEffects_of_a_Motor_Imagery_Task_on_Funct.pdf\u0026Expires=1733262663\u0026Signature=LDhBiB5mg7ElPqH21hVXprKZV9U7SygMrqi0TWJ3B70BKXJQvzQawV9diN3KDHB0nlGtS~nu1GHcdDuxUlFC~t6D5Z5PI2KlcjdDnZHx-ly~ZbHOih4ntsdz9wqknkj4J3FGJlWbFESvUHm1h8offzwe4eEb9NMPlmdcZeatl1pUQ~3drrhtz4ovo5OdpASa6CEzuOyHdfjDgLKut-gbmAGurXI2MzJ4T59UEHvK1~e7TR0pd6t0-n~jm2~7rysy0HUoX6o3bPY4JklyEgTbirhG594D4q59qV5MWig8uxzw7AQyOq4qu~37grFz-MbqZEGQxYNddqFrlOdXrKHPSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16081462,"url":"https://res.mdpi.com/d_attachment/brainsci/brainsci-11-00118/article_deploy/brainsci-11-00118.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789422/Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study"><img alt="Research paper thumbnail of Therapeutic Instrumental Music Training and Motor Imagery in Post-Stroke Upper-Extremity Rehabilitation: A Randomized-Controlled Pilot Study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789422/Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study">Therapeutic Instrumental Music Training and Motor Imagery in Post-Stroke Upper-Extremity Rehabilitation: A Randomized-Controlled Pilot Study</a></div><div class="wp-workCard_item"><span>Archives of Rehabilitation Research and Clinical Translation</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789422]").text(description); $(".js-view-count[data-work-id=61789422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789422, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789422,"title":"Therapeutic Instrumental Music Training and Motor Imagery in Post-Stroke Upper-Extremity Rehabilitation: A Randomized-Controlled Pilot Study","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Archives of Rehabilitation Research and Clinical Translation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/61789422/Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study","translated_internal_url":"","created_at":"2021-11-16T08:31:50.317-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Therapeutic_Instrumental_Music_Training_and_Motor_Imagery_in_Post_Stroke_Upper_Extremity_Rehabilitation_A_Randomized_Controlled_Pilot_Study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[],"urls":[{"id":14277528,"url":"https://api.elsevier.com/content/article/PII:S2590109521000768?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789419/Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress"><img alt="Research paper thumbnail of Functional Brain Network Changes Following Use of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology for Military-Related Traumatic Stress" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789419/Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress">Functional Brain Network Changes Following Use of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology for Military-Related Traumatic Stress</a></div><div class="wp-workCard_item"><span>Journal of neuroimaging : official journal of the American Society of Neuroimaging</span><span>, Jan 10, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Post-traumatic stress disorder is associated with connectivity changes in the default mode, centr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sa...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789419]").text(description); $(".js-view-count[data-work-id=61789419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789419, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789419,"title":"Functional Brain Network Changes Following Use of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology for Military-Related Traumatic Stress","translated_title":"","metadata":{"abstract":"Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sa...","publication_date":{"day":10,"month":1,"year":2018,"errors":{}},"publication_name":"Journal of neuroimaging : official journal of the American Society of Neuroimaging"},"translated_abstract":"Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sa...","internal_url":"https://www.academia.edu/61789419/Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress","translated_internal_url":"","created_at":"2021-11-16T08:31:50.181-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Functional_Brain_Network_Changes_Following_Use_of_an_Allostatic_Closed_Loop_Acoustic_Stimulation_Neurotechnology_for_Military_Related_Traumatic_Stress","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":2639,"name":"Neuroimaging","url":"https://www.academia.edu/Documents/in/Neuroimaging"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789417"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789417/Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults"><img alt="Research paper thumbnail of Dynamic fMRI networks predict success in a behavioral weight loss program among older adults" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789417/Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults">Dynamic fMRI networks predict success in a behavioral weight loss program among older adults</a></div><div class="wp-workCard_item"><span>NeuroImage</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">More than one-third of adults in the United States are obese, with a higher prevalence among olde...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnet...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789417"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789417"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789417; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789417]").text(description); $(".js-view-count[data-work-id=61789417]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789417; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789417']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789417, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789417]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789417,"title":"Dynamic fMRI networks predict success in a behavioral weight loss program among older adults","translated_title":"","metadata":{"abstract":"More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnet...","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"NeuroImage"},"translated_abstract":"More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnet...","internal_url":"https://www.academia.edu/61789417/Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults","translated_internal_url":"","created_at":"2021-11-16T08:31:50.041-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dynamic_fMRI_networks_predict_success_in_a_behavioral_weight_loss_program_among_older_adults","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":103260,"name":"Neuroimage","url":"https://www.academia.edu/Documents/in/Neuroimage"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789414/Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain"><img alt="Research paper thumbnail of Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain" class="work-thumbnail" src="https://attachments.academia-assets.com/74737385/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789414/Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain">Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain</a></div><div class="wp-workCard_item"><span>The journals of gerontology. Series A, Biological sciences and medical sciences</span><span>, Jan 9, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingest...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M =...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21b02380b3395894ca4b978b5dd147e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:74737385,&quot;asset_id&quot;:61789414,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/74737385/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789414]").text(description); $(".js-view-count[data-work-id=61789414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789414, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21b02380b3395894ca4b978b5dd147e6" } } $('.js-work-strip[data-work-id=61789414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789414,"title":"Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain","translated_title":"","metadata":{"abstract":"Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M =...","publication_date":{"day":9,"month":1,"year":2016,"errors":{}},"publication_name":"The journals of gerontology. Series A, Biological sciences and medical sciences"},"translated_abstract":"Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M =...","internal_url":"https://www.academia.edu/61789414/Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain","translated_internal_url":"","created_at":"2021-11-16T08:31:49.885-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":74737385,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/74737385/thumbnails/1.jpg","file_name":"glw219.pdf","download_url":"https://www.academia.edu/attachments/74737385/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Beet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/74737385/glw219-libre.pdf?1637080506=\u0026response-content-disposition=attachment%3B+filename%3DBeet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf\u0026Expires=1733262663\u0026Signature=QKeaiY1TioYXgIf2b4rdRj2ya189J5sWNzmAKhAlcpwbuZotNPyhqXa6KXbUljplcg8ofZ10THN76C~WG~K~DwzVwhDjYjiA60UcqPXOB6Xx0v0APFwn-ZmRA1QzwF~widbXg01cDfhrDhpk~DjZAX61XjSl~IB7fxEPLfjK6014BXYA39Ydu9WfEMCXmQNXp0t0~sbMZgeAczGqlEPQI~CyHK59bqt6aQHKP0rRG9LA9xWSoscw7-12ixxrZrh9G5GNWYbyCIQvrOiPcrp2vNSIvcJcIj1wTFc4voMekvixShNSWutFyOc6n6qAwcVDMxNfm3DEM4QYCEr5y7K9RA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Beet_Root_Juice_An_Ergogenic_Aid_for_Exercise_and_the_Aging_Brain","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[{"id":74737385,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/74737385/thumbnails/1.jpg","file_name":"glw219.pdf","download_url":"https://www.academia.edu/attachments/74737385/download_file?st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&st=MTczMzI1OTA2Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Beet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/74737385/glw219-libre.pdf?1637080506=\u0026response-content-disposition=attachment%3B+filename%3DBeet_Root_Juice_An_Ergogenic_Aid_for_Exe.pdf\u0026Expires=1733262663\u0026Signature=QKeaiY1TioYXgIf2b4rdRj2ya189J5sWNzmAKhAlcpwbuZotNPyhqXa6KXbUljplcg8ofZ10THN76C~WG~K~DwzVwhDjYjiA60UcqPXOB6Xx0v0APFwn-ZmRA1QzwF~widbXg01cDfhrDhpk~DjZAX61XjSl~IB7fxEPLfjK6014BXYA39Ydu9WfEMCXmQNXp0t0~sbMZgeAczGqlEPQI~CyHK59bqt6aQHKP0rRG9LA9xWSoscw7-12ixxrZrh9G5GNWYbyCIQvrOiPcrp2vNSIvcJcIj1wTFc4voMekvixShNSWutFyOc6n6qAwcVDMxNfm3DEM4QYCEr5y7K9RA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":135185,"name":"Exercise","url":"https://www.academia.edu/Documents/in/Exercise"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":277717,"name":"Somatosensory Cortex","url":"https://www.academia.edu/Documents/in/Somatosensory_Cortex"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":1166928,"name":"Beta Vulgaris","url":"https://www.academia.edu/Documents/in/Beta_Vulgaris"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789411/The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers"><img alt="Research paper thumbnail of The Impacts of Pesticide and Nicotine Exposures on Functional Brain Networks in Latino Immigrant workers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789411/The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers">The Impacts of Pesticide and Nicotine Exposures on Functional Brain Networks in Latino Immigrant workers</a></div><div class="wp-workCard_item"><span>Neurotoxicology</span><span>, Jan 2, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, su...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789411]").text(description); $(".js-view-count[data-work-id=61789411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789411, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789411,"title":"The Impacts of Pesticide and Nicotine Exposures on Functional Brain Networks in Latino Immigrant workers","translated_title":"","metadata":{"abstract":"Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and ...","publication_date":{"day":2,"month":1,"year":2017,"errors":{}},"publication_name":"Neurotoxicology"},"translated_abstract":"Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and ...","internal_url":"https://www.academia.edu/61789411/The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers","translated_internal_url":"","created_at":"2021-11-16T08:31:49.748-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Impacts_of_Pesticide_and_Nicotine_Exposures_on_Functional_Brain_Networks_in_Latino_Immigrant_workers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":51688,"name":"Neurotoxicology","url":"https://www.academia.edu/Documents/in/Neurotoxicology"},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain"},{"id":85437,"name":"Pesticides","url":"https://www.academia.edu/Documents/in/Pesticides"},{"id":91360,"name":"Nicotine","url":"https://www.academia.edu/Documents/in/Nicotine"},{"id":120646,"name":"Acetylcholinesterase","url":"https://www.academia.edu/Documents/in/Acetylcholinesterase"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":396914,"name":"Occupational Exposure","url":"https://www.academia.edu/Documents/in/Occupational_Exposure"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1559335,"name":"Cotinine","url":"https://www.academia.edu/Documents/in/Cotinine"},{"id":2519258,"name":"Butyrylcholinesterase","url":"https://www.academia.edu/Documents/in/Butyrylcholinesterase"},{"id":3789884,"name":"Pharmacology and pharmaceutical sciences","url":"https://www.academia.edu/Documents/in/Pharmacology_and_pharmaceutical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789408"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789408/Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction"><img alt="Research paper thumbnail of Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789408/Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction">Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction</a></div><div class="wp-workCard_item"><span>Nitric oxide : biology and chemistry</span><span>, Jan 23, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in ind...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789408"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789408"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789408; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789408]").text(description); $(".js-view-count[data-work-id=61789408]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789408; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789408']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789408, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789408]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789408,"title":"Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction","translated_title":"","metadata":{"abstract":"Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFp...","publication_date":{"day":23,"month":1,"year":2017,"errors":{}},"publication_name":"Nitric oxide : biology and chemistry"},"translated_abstract":"Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFp...","internal_url":"https://www.academia.edu/61789408/Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction","translated_internal_url":"","created_at":"2021-11-16T08:31:49.611-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effects_of_supervised_exercise_and_dietary_nitrate_in_older_adults_with_controlled_hypertension_and_or_heart_failure_with_preserved_ejection_fraction","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49633,"name":"Heart Failure","url":"https://www.academia.edu/Documents/in/Heart_Failure"},{"id":71399,"name":"Hypertension","url":"https://www.academia.edu/Documents/in/Hypertension"},{"id":88321,"name":"Blood Pressure","url":"https://www.academia.edu/Documents/in/Blood_Pressure"},{"id":93922,"name":"Nitric oxide","url":"https://www.academia.edu/Documents/in/Nitric_oxide"},{"id":122402,"name":"Nitrates","url":"https://www.academia.edu/Documents/in/Nitrates"},{"id":135185,"name":"Exercise","url":"https://www.academia.edu/Documents/in/Exercise"},{"id":152562,"name":"Dietary Supplements","url":"https://www.academia.edu/Documents/in/Dietary_Supplements"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":1166928,"name":"Beta Vulgaris","url":"https://www.academia.edu/Documents/in/Beta_Vulgaris"},{"id":1654024,"name":"Nitrites","url":"https://www.academia.edu/Documents/in/Nitrites"},{"id":2183225,"name":"Physical Endurance","url":"https://www.academia.edu/Documents/in/Physical_Endurance"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="61789406"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/61789406/Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly"><img alt="Research paper thumbnail of Baseline gray- and white-matter volume predict successful weight loss in the elderly" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/61789406/Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly">Baseline gray- and white-matter volume predict successful weight loss in the elderly</a></div><div class="wp-workCard_item"><span>Obesity (Silver Spring, Md.)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this study was to investigate whether structural brain phenotypes could be used to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this study was to investigate whether structural brain phenotypes could be used to predict weight loss success following behavioral interventions in older adults with overweight or obesity and cardiometabolic dysfunction. A support vector machine with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter and white matter volume from 52 individuals who completed the intervention and a magnetic resonance imaging session. The support vector machine resulted in an average classification accuracy of 72.62% based on gray matter and white matter volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Findings suggest that baseline brain structure was able to predict weight loss success foll...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="61789406"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="61789406"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61789406; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61789406]").text(description); $(".js-view-count[data-work-id=61789406]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61789406; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='61789406']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 61789406, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=61789406]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":61789406,"title":"Baseline gray- and white-matter volume predict successful weight loss in the elderly","translated_title":"","metadata":{"abstract":"The purpose of this study was to investigate whether structural brain phenotypes could be used to predict weight loss success following behavioral interventions in older adults with overweight or obesity and cardiometabolic dysfunction. A support vector machine with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter and white matter volume from 52 individuals who completed the intervention and a magnetic resonance imaging session. The support vector machine resulted in an average classification accuracy of 72.62% based on gray matter and white matter volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Findings suggest that baseline brain structure was able to predict weight loss success foll...","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Obesity (Silver Spring, Md.)"},"translated_abstract":"The purpose of this study was to investigate whether structural brain phenotypes could be used to predict weight loss success following behavioral interventions in older adults with overweight or obesity and cardiometabolic dysfunction. A support vector machine with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter and white matter volume from 52 individuals who completed the intervention and a magnetic resonance imaging session. The support vector machine resulted in an average classification accuracy of 72.62% based on gray matter and white matter volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Findings suggest that baseline brain structure was able to predict weight loss success foll...","internal_url":"https://www.academia.edu/61789406/Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly","translated_internal_url":"","created_at":"2021-11-16T08:31:49.474-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":39420980,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Baseline_gray_and_white_matter_volume_predict_successful_weight_loss_in_the_elderly","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":39420980,"first_name":"Jonathan","middle_initials":null,"last_name":"Burdette","page_name":"JonathanBurdette","domain_name":"independent","created_at":"2015-11-29T17:24:07.587-08:00","display_name":"Jonathan Burdette","url":"https://independent.academia.edu/JonathanBurdette"},"attachments":[],"research_interests":[{"id":3851,"name":"Obesity","url":"https://www.academia.edu/Documents/in/Obesity"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "857d873e47cf60d95fd9e6363b58f5f4b6dd59a55e7b4fd631a522f8807cc5d5", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="MBHRXbLKIjcKsqh5AUvO1F03wjG9ScSMsLHcmzrz7P5WursZfsvYgB9lauC7uDc4cwMbpr10Ai3LPaMQo0hMgg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/JonathanBurdette" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="hnZ/ffksWgvDPxxDXTOuCpkFq4kNVwhn9FEiV/6y9qfg3RU5NS2gvNbo3trnwFfmtzFyHg1qzsaP3V3cZwlW2w==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10