CINXE.COM

Search results for: Sam Lewis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sam Lewis</title> <meta name="description" content="Search results for: Sam Lewis"> <meta name="keywords" content="Sam Lewis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sam Lewis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sam Lewis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 104</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sam Lewis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Macrocycles Enable Tuning of Uranyl Electrochemistry by Lewis Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar">Amit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Lionetti"> Davide Lionetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Day"> Victor Day</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Blakemore"> James Blakemore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Capture and activation of the water-soluble uranyl dication (UO22+) remains a challenging problem, as few rational approaches are available for modulating the reactivity of this species. Here, we report the divergent synthesis of heterobimetallic complexes in which UO22+ is held in close proximity to a range of redox-inactive metals by tailored macrocyclic ligands. Crystallographic and spectroscopic studies confirm assembly of homologous UVI(μ-OAr)2Mn+ cores with a range of mono-, di-, and trivalent Lewis acids (Mn+). X-ray diffraction (XRD) and cyclic voltammetry (CV) data suggest preferential binding of K+ in an 18-crown-6-like cavity and Na+ in a 15-crown-5-like cavity, both appended to Schiff-base type sites that selectively bind UO22+. CV data demonstrate that the UVI/UV reduction potential in these complexes shifts positive and the rate of electron transfer decreases with increasing Lewis acidity of the incorporated redox-inactive metals. Moreover, spectroelectrochemical studies confirm the formation of [UV] species in the case of monometallic UO22+ complex, consistent with results from prior studies. However, unique features were observed during spectroelectrochemical studies in the presence of the K+ ion, suggesting new insights into electronic structure may be accessible with the heterobimetallic complexes. Overall, these findings suggest that interactions with Lewis acids could be effectively leveraged for rational tuning of the electronic and thermochemical properties of the 5f elements, reminiscent of strategies more commonly employed with 3d transition metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title="electrochemistry">electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Lewis%20acid" title=" Lewis acid"> Lewis acid</a>, <a href="https://publications.waset.org/abstracts/search?q=macrocycle" title=" macrocycle"> macrocycle</a>, <a href="https://publications.waset.org/abstracts/search?q=uranyl" title=" uranyl"> uranyl</a> </p> <a href="https://publications.waset.org/abstracts/128337/macrocycles-enable-tuning-of-uranyl-electrochemistry-by-lewis-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Lewis Turning Point in China: Interviewing Perceptions of Fertility Policies by Unmarried Female Millennials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunqi%20Wang">Yunqi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benefiting from the demographic dividend, China has enjoyed export-led economic growth since 1978. While Lewis's model marks the structural transformation from the low-wage 'subsistence' sector to the 'modern sector' as the end of labour surplus, the Chinese government seems eager to extend such benefit by promoting a series of fertility encouragement policies, contrasting to its firm and strict birth control since last century. Based on a Attride-Stirling’s thematic analysis of interviews with unmarried female millennials in China, this paper argues that the young female generation responded to current fertility policies negatively, where the policy ineffectiveness and irresponsiveness have further worsened their marriage and childbirth reluctance. Instead of focusing on changes in wage level, this research contributes a qualitative perspective to the existing theoretical debate on the Lewis turning point, implying an inevitable end of demographic dividend in China. Highlighting the greater focus on female consciousness among the younger generation, it also suggests a policy orientation towards resolving outdated social norms to accommodate the rising female consciousness since millennials will become the childbirth mainstay in forthcoming years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lewis%20model" title="lewis model">lewis model</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility%20policy" title=" fertility policy"> fertility policy</a>, <a href="https://publications.waset.org/abstracts/search?q=demographic%20dividend" title=" demographic dividend"> demographic dividend</a>, <a href="https://publications.waset.org/abstracts/search?q=one-child%20policy" title=" one-child policy"> one-child policy</a> </p> <a href="https://publications.waset.org/abstracts/152052/lewis-turning-point-in-china-interviewing-perceptions-of-fertility-policies-by-unmarried-female-millennials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fujio%20Akagi">Fujio Akagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Ito"> Hiroaki Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Ichi%20Inage"> Shin-Ichi Inage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20model" title="combustion model">combustion model</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flame" title=" laminar flame"> laminar flame</a>, <a href="https://publications.waset.org/abstracts/search?q=Lewis%20number" title=" Lewis number"> Lewis number</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flame" title=" turbulent flame"> turbulent flame</a> </p> <a href="https://publications.waset.org/abstracts/147954/a-proposal-for-a-combustion-model-considering-the-lewis-number-and-its-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Origin of Hydrogen Bonding: Natural Bond Orbital Electron Donor-Acceptor Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ayoub">Mohamed Ayoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We perform computational investigation using density functional theory, B3LYP with aug-cc-pVTZ basis set followed by natural bond orbital analysis (NBO), which provides best single “natural Lewis structure” (NLS) representation of chosen wavefunction (Ψ) with natural resonance theory (NRT) to provide an analysis of molecular electron density in terms of resonance structures (RS) and weights (w). We selected for the study a wide range of gas phase dimers (B…HA), with hydrogen bond dissociation energies (ΔEB…H) that span more than two orders of magnitude. We demonstrate that charge transfer from a donor Lewis-type NBO (nB:) to an acceptor non-Lewis-type NBO (σHA*) is the primary cause for H-bonding not classical electrostatic (dipole-dipole or ionic). We provide a variety of structure, and spectroscopic descriptors to support the conclusion, such as IR frequency shift (ΔνHA), H-bond penetration distance (ΔRB..H), bond order (bB..H), charge-transfer (CTB→HA) and the corresponding donor-acceptor stabilization energy (ΔE(2)). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20bond%20orbital" title="natural bond orbital">natural bond orbital</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title=" hydrogen bonding"> hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20donor" title=" electron donor"> electron donor</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20acceptor" title=" electron acceptor"> electron acceptor</a> </p> <a href="https://publications.waset.org/abstracts/17444/origin-of-hydrogen-bonding-natural-bond-orbital-electron-donor-acceptor-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haseen%20Siddiqui">Haseen Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20M.%20Mahajani"> Sanjay M. Mahajani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effectiveness%20factor" title="effectiveness factor">effectiveness factor</a>, <a href="https://publications.waset.org/abstracts/search?q=G-factor" title=" G-factor"> G-factor</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20model" title=" homogeneous model"> homogeneous model</a>, <a href="https://publications.waset.org/abstracts/search?q=lewis%20number" title=" lewis number"> lewis number</a>, <a href="https://publications.waset.org/abstracts/search?q=non-catalytic" title=" non-catalytic"> non-catalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20core%20model" title=" shrinking core model"> shrinking core model</a> </p> <a href="https://publications.waset.org/abstracts/116222/effectiveness-factor-for-non-catalytic-gas-solid-pyrolysis-reaction-for-biomass-pellet-under-power-law-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Regioselective Nucleophilic Substitution of the Baylis-Hillman Adducts with Iodine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Shafiq">Zahid Shafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liu"> Li Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wang"> Dong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Chen"> Yong-Jun Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As synthetic organic methods are increasingly concerned with the growing importance of sustainable chemistry, iodine recently has emerged as an inexpensive, non-toxic, readily available and environmentally benign catalyst for various organic transformations to afford the corresponding products in high yields with high regio- and chemoselectivity. Iodine has found widespread applications in various organic synthesis such as Michael addition, coupling reaction and also in the multicomponent synthesis where it can efficiently activate C=C, C=O, C=N, and so forth. Iodine not only has been shown to be an efficient mild Lewis acid in various processes, but also due to its moderate nature, and water tolerance, reactions catalyzed by iodine can be effectively carried out in neutral media under very mild conditions. We have successfully described an efficient procedure for the nucleophilic substitution of the Baylis-Hillman (BH) adducts and their corresponding acetates with indoles to get α-substitution product using catalytic Silver Triflate (AgOTf) as Lewis acid. At this point, we were interested to develop an environmentally benign catalytic system to effect this substitution reaction and to avoid the use of metal Lewis acid as a catalyst. Since, we observed the formation of -product during the course of the reaction, we also became interested to explore the reaction conditions in order to control regioselectivity and to obtain both regioisomers. The developed methodology resulted in regioselective substitution products with controlled selectivity. Further, the substitution products were used to synthesize various Tri- and Tetracyclo Azepino indole derivatives via reductive amination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indole" title="indole">indole</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselective" title=" regioselective"> regioselective</a>, <a href="https://publications.waset.org/abstracts/search?q=Baylis-Hillman" title=" Baylis-Hillman"> Baylis-Hillman</a>, <a href="https://publications.waset.org/abstracts/search?q=substitution" title=" substitution"> substitution</a> </p> <a href="https://publications.waset.org/abstracts/110900/regioselective-nucleophilic-substitution-of-the-baylis-hillman-adducts-with-iodine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Boulechfar">Hichem Boulechfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Djezzar"> Mahfoud Djezzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20diffusive" title="double diffusive">double diffusive</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20annulus" title=" elliptical annulus"> elliptical annulus</a> </p> <a href="https://publications.waset.org/abstracts/38246/double-diffusive-natural-convection-in-horizontal-elliptical-annulus-containing-a-fluid-saturated-porous-medium-effects-of-lewis-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Numerical Study of Laminar Natural Flow Transitions in Rectangular Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Nouri">Sabrina Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderahmane%20Ghezal"> Abderahmane Ghezal</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Abboudi"> Said Abboudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Spiteri"> Pierre Spiteri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the numerical study of heat and mass transfer of laminar flow transition at low Prandtl numbers. The model includes the two-directional momentum, the energy and mass transfer equations. These equations are discretized by the finite volume method and solved by a self-made simpler like Fortran code. The effect of governing parameters, namely the Lewis and Prandtl numbers, on the transition of the flow and solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are derived for of Prandtl [10⁻²-10¹] and Lewis numbers [1-10⁴]. The results show unicell and multi-cell flow. Solute and flow boundary layers appear for low Prandtl number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Prandtl%20number" title=" low Prandtl number"> low Prandtl number</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a> </p> <a href="https://publications.waset.org/abstracts/88099/numerical-study-of-laminar-natural-flow-transitions-in-rectangular-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Talha">M. A. Talha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Osman%20Gani"> M. Osman Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter &gamma;, power constant &lambda;, Prandtl number P<sub>r</sub>, magnetic field parameter M, Peclet number P<sub>e</sub>, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant &sigma; are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection%20flow" title="convection flow">convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity" title=" similarity"> similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a>, <a href="https://publications.waset.org/abstracts/search?q=Williamson%20nanofluid" title=" Williamson nanofluid"> Williamson nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20heat%20generation" title=" internal heat generation"> internal heat generation</a> </p> <a href="https://publications.waset.org/abstracts/85582/numerical-solution-of-steady-magnetohydrodynamic-boundary-layer-flow-due-to-gyrotactic-microorganism-for-williamson-nanofluid-over-stretched-surface-in-the-presence-of-exponential-internal-heat-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Preparation of Ternary Metal Oxide Aerogel Catalysts for Carbon Dioxide and Propylene Oxide Cycloaddition Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Lin">Y. J. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Lin"> Y. F. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO2 is the primary greenhouse gas which causes global warming in recent years. As the carbon capture and storage (CCS) getting maturing, the reuse of carbon dioxide which made from CCS is the important issue. In this way, the most common method is the synthesis of cyclic carbonate chemicals from the cycloaddition reaction of carbon dioxide and epoxide. The catalyst plays an important role in the CO2/epoxide cycloaddition reactions. The Lewis acid and base sites are both needed on the catalyst surface for the help of epoxide ring opening, leading to the synthesis of cyclic carbonate. Furthermore, the larger specific surface area and more active site of the catalyst are also needed to enhance the efficiency of the CO2/epoxide cycloaddition reactions. Aerogel is a mesoporous nanomaterial (pore size between 2~50 nm) with high specific surface area and porosity (at least 90%) and low density. In this study, the ternary metal oxide aerogels, Mg-doped Al2O3 aerogels, with higher specific surface area and Lewis acid and base sites on the aerogel surface are successfully prepared by using a facile sol-gel reaction. The as-prepared Mg-doped Al2O3 aerogels are also served as heterogenous catalyst for the CO2/propylene- oxide cycloaddition reaction. Compared to the pristine Al2O3 aerogels, the Mg-doped Al2O3 aerogels possessed both Lewis acid and base sites on the surface are able to enhance the efficiency of the CO2/propylene oxide cycloaddition reactions. As a result, the as-prepared Mg-doped Al2O3 aerogels are a promising and novel catalyst for the CO2/epoxide cycloaddition reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ternary" title="ternary">ternary</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20aerogel" title=" metal oxide aerogel"> metal oxide aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20reuse" title=" CO2 reuse"> CO2 reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title=" cycloaddition"> cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene%20oxide" title=" propylene oxide"> propylene oxide</a> </p> <a href="https://publications.waset.org/abstracts/63086/preparation-of-ternary-metal-oxide-aerogel-catalysts-for-carbon-dioxide-and-propylene-oxide-cycloaddition-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Magneto-Convective Instability in a Horizontal Power-Law Nanofluid Saturated Porous Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norazuwin%20Najihah%20Mat%20Tahir">Norazuwin Najihah Mat Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuziyah%20Ishak"> Fuziyah Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Seripah%20Awang%20Kechil"> Seripah Awang Kechil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The onset of the convective instability in the horizontal through flow of a power-law nanofluid saturated by porous layer heated from below under the influences of magnetic field are investigated in this study. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both traveling wave and oscillatory convection. The effects of the power-law index, Lewis number and Peclet number on the stability of the system were investigated. The Lewis number stabilizes while the power-law index and Peclet number destabilize the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection" title="convection">convection</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law" title=" power-law"> power-law</a> </p> <a href="https://publications.waset.org/abstracts/53532/magneto-convective-instability-in-a-horizontal-power-law-nanofluid-saturated-porous-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Unraveling the Threads of Madness: Henry Russell’s &#039;The Maniac&#039; as an Advocate for Deinstitutionalization in the Nineteenth Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Laws-Nicola">T. J. Laws-Nicola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Henry Russell was best known as a composer of more than 300 songs. Many of his compositions were popular for both their sentimental texts, as in ‘The Old Armchair,’ and those of a more political nature, such as ‘Woodsman, Spare That Tree!’ Indeed, Russell had written such songs of advocacy as those associated with abolitionism (‘The Slave Ship’) and environmentalism (‘Woodsman, Spare that Tree!’). ‘The Maniac’ is his only composition addressing the issue of institutionalization. The text is borrowed and adapted from the monodrama The Captive by M.G. ‘Monk’ Lewis. Through an analysis of form, harmony, melody, text, and thematic development and interactions between text and music we can approach a clearer understanding of ‘The Maniac’ and how the text and music interact. Select periodicals, such as The London Times, provide contemporary critical review for ‘The Maniac.’ Additional nineteenth century songs whose texts focus on madness and/or institutionalization will assist in building a stylistic and cultural context for ‘The Maniac.’ Through comparative analyses of ‘The Maniac’ with a body of songs that focus on similar topics, we can approach a clear understanding of the song as a vehicle for deinstitutionalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=19th%20century%20song" title="19th century song">19th century song</a>, <a href="https://publications.waset.org/abstracts/search?q=institutionalization" title=" institutionalization"> institutionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Lewis" title=" M. G. Lewis"> M. G. Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Russell" title=" Henry Russell"> Henry Russell</a> </p> <a href="https://publications.waset.org/abstracts/38248/unraveling-the-threads-of-madness-henry-russells-the-maniac-as-an-advocate-for-deinstitutionalization-in-the-nineteenth-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20C.%20Soares">D. S. C. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Costa"> D. G. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20T.%20S."> J. T. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20S.%20Abud"> A. K. S. Abud</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Nunes"> T. P. Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Oliveira%20J%C3%BAnior"> A. M. Oliveira Júnior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyse several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying" title="drying">drying</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models"> models</a>, <a href="https://publications.waset.org/abstracts/search?q=jackfruit" title=" jackfruit"> jackfruit</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/2648/the-use-of-performance-indicators-for-evaluating-models-of-drying-jackfruit-artocarpus-heterophyllus-l-page-midilli-and-lewis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Identification and Quantification of Acid Sites of M(X)X Zeolites (M= Cu2+ and/or Zn2+,X = Level of Exchange): An In situ FTIR Study Using Pyridine Adsorption/Desorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hammoudi">H. Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bendenia"> S. Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Batonneau-Gener"> I. Batonneau-Gener</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Comparot"> J. Comparot</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Marouf-Khelifa"> K. Marouf-Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelifa"> A. Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X zeolites were prepared by ion-exchange with Cu2+ and/or Zn2+ cations, at different concentrations of the exchange solution, and characterised by thermal analysis and nitrogen adsorption. The acidity of the samples was investigated by pyridine adsorption–desorption followed by in situ Fourier transform infrared (FTIR) spectroscopy. Desorption was carried out at 150, 250 and 350 °C. The objective is to estimate the nature and concentration of acid sites. A comparison between the binary (Cu(x)X, Zn(x)X) and ternary (CuZn(x)X) exchanges was also established (x = level of exchange) through the Cu(43)X, Zn(48)X and CuZn(50)X samples. Lewis acidity decreases overall with desorption temperature and the level of exchange. As the latter increases, there is a conversion of some Lewis sites into those of Brønsted during thermal treatment. In return, the concentration of Brønsted sites increases with the degree of exchange. The Brønsted acidity of CuZn(50)X at 350 °C is more important than the sum of those of Cu(43)X and Zn(48)X. The found values were 73, 32 and 15 μmol g-1, respectively. Besides, the concentration of Brønsted sites for CuZn(50)X increases with desorption temperature. These features indicate the presence of a synergistic effect amplifying the strength of these sites when Cu2+ and Zn2+ cations compete for the occupancy of sites distributed inside zeolitic cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidity" title="acidity">acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridine" title=" pyridine"> pyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolites" title=" zeolites"> zeolites</a> </p> <a href="https://publications.waset.org/abstracts/43779/identification-and-quantification-of-acid-sites-of-mxx-zeolites-m-cu2-andor-zn2x-level-of-exchange-an-in-situ-ftir-study-using-pyridine-adsorptiondesorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Psychotherapeutic Narratives and the Importance of Truth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spencer%20Jay%20Knafelc">Spencer Jay Knafelc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some mental health practitioners and theorists have suggested that we approach remedying psychological problems by centering and intervening upon patients’ narrations. Such theorists and their corresponding therapeutic approaches see persons as narrators of their lives, where the stories they tell constitute and reflect their sense-making of the world. Psychological problems, according to these approaches to therapy, are often the result of problematic narratives. The solution is the construction of more salubrious narratives through therapy. There is trouble lurking within the history of these narrative approaches. These thinkers tend to denigrate the importance of truth, insisting that narratives are not to be thought of as aiming at truth, and thus the truth of our self-narratives is not important. There are multiple motivations for the tendency to eschew truth’s importance within the tradition of narrative approaches to therapy. The most plausible and interesting motivation comes from the observation that, in general, all dominant approaches to therapy are equally effective. The theoretical commitments of each approach are quite different and are often ostensibly incompatible (psychodynamic therapists see psychological problems as resulting from unconscious conflict and repressed desires, Cognitive-Behavioral approaches see them as resulting from distorted cognitions). This strongly suggests that there must be some cases in which therapeutic efficacy does not depend on truth and that insisting that patient’s therapeutic narratives be true in all instances is a mistake. Lewis’ solution is to suggest that narratives are metaphors. Lewis’ account appreciates that there are many ways to tell a story and that many different approaches to mental health treatment can be appropriate without committing us to any contradictions, providing us with an ostensibly coherent way to treat narratives as non-literal, instead of seeing them as tools that can be more or less apt. Here, it is argued that Lewis’ metaphor approach fails. Narratives do not have the right kind of structure to be metaphors. Still, another way to understand Lewis’ view might be that self-narratives, especially when articulated in the language of any specific approach, should not be taken literally. This is an idea at the core of the narrative theorists’ tendency to eschew the importance of the ordinary understanding of truth. This very tendency will be critiqued. The view defended in this paper more accurately captures the nature of self-narratives. The truth of one’s self-narrative is important. Not only do people care about having the right conception of their abilities, who they are, and the way the world is, but self-narratives are composed of beliefs, and the nature of belief is to aim at truth. This view also allows the recognition of the importance of developing accurate representations of oneself and reality for one’s psychological well-being. It is also argued that in many cases, truth factors in as a mechanism of change over the course of therapy. Therapeutic benefit can be achieved by coming to have a better understanding of the nature of oneself and the world. Finally, the view defended here allows for the recognition of the nature of the tension between values: truth and efficacy. It is better to recognize this tension and develop strategies to navigate it as opposed to insisting that it doesn’t exist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=philosophy" title="philosophy">philosophy</a>, <a href="https://publications.waset.org/abstracts/search?q=narrative" title=" narrative"> narrative</a>, <a href="https://publications.waset.org/abstracts/search?q=psychotherapy" title=" psychotherapy"> psychotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=truth" title=" truth"> truth</a> </p> <a href="https://publications.waset.org/abstracts/151508/psychotherapeutic-narratives-and-the-importance-of-truth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Farahat">Mohsen Farahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Hirajima"> Tsuyoshi Hirajima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69&deg; to 38&deg; and the mineral&rsquo;s floatability decreased from 95% to 25% after the treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20megaterium" title="Bacillus megaterium">Bacillus megaterium</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomite" title=" dolomite"> dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion%20energy" title=" adhesion energy"> adhesion energy</a> </p> <a href="https://publications.waset.org/abstracts/36669/surface-characteristics-of-bacillus-megaterium-and-its-adsorption-behavior-onto-dolomite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Bahri">Shashank Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Divyanshu%20Arya"> Divyanshu Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Jain"> Rajni Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreedevi%20Upadhyayula"> Sreedevi Upadhyayula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesopourus" title="mesopourus">mesopourus</a>, <a href="https://publications.waset.org/abstracts/search?q=fischer%20tropsch%20reaction" title=" fischer tropsch reaction"> fischer tropsch reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridine%20adsorrption" title=" pyridine adsorrption"> pyridine adsorrption</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20study" title=" drift study"> drift study</a> </p> <a href="https://publications.waset.org/abstracts/14761/development-and-characterization-of-cobalt-metal-loaded-zsm-5-and-h-zsm-5-catalyst-for-fischer-tropsch-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Airy Wave Packet for a Particle in a Time-Dependant Linear Potential </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Berrehail">M. Berrehail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Benamira"> F. Benamira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the quantum motion of a particle in the presence of a time- dependent linear potential using an operator invariant that is quadratic in p and linear in q within the framework of the Lewis-Riesenfeld invariant, The special invariant operator proposed in this work is demonstrated to be an Hermitian operator which has an Airy wave packet as its Eigenfunction <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airy%20wave%20packet" title="airy wave packet">airy wave packet</a>, <a href="https://publications.waset.org/abstracts/search?q=ivariant" title=" ivariant"> ivariant</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20linear%20potential" title=" time-dependent linear potential"> time-dependent linear potential</a>, <a href="https://publications.waset.org/abstracts/search?q=unitary%20transformation" title=" unitary transformation"> unitary transformation</a> </p> <a href="https://publications.waset.org/abstracts/31077/airy-wave-packet-for-a-particle-in-a-time-dependant-linear-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Isolation and Transplantation of Hepatocytes in an Experimental Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inas%20Raafat">Inas Raafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20El%20Bassiouny"> Azza El Bassiouny</a>, <a href="https://publications.waset.org/abstracts/search?q=Waldemar%20L.%20Olszewsky"> Waldemar L. Olszewsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagui%20E.%20Mikhail"> Nagui E. Mikhail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Nossier"> Mona Nossier</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20E.%20I.%20El-Bassiouni"> Nora E. I. El-Bassiouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Zoheiry"> Mona Zoheiry</a>, <a href="https://publications.waset.org/abstracts/search?q=Houda%20Abou%20Taleb"> Houda Abou Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20Abd%20El-Aal"> Noha Abd El-Aal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Baioumy"> Ali Baioumy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20Attia"> Shimaa Attia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lewis%20rats" title="Lewis rats">Lewis rats</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatocytes" title=" hepatocytes"> hepatocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=BMCs" title=" BMCs"> BMCs</a>, <a href="https://publications.waset.org/abstracts/search?q=transplantation" title=" transplantation"> transplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=AFP" title=" AFP"> AFP</a>, <a href="https://publications.waset.org/abstracts/search?q=Prox1" title=" Prox1"> Prox1</a> </p> <a href="https://publications.waset.org/abstracts/13866/isolation-and-transplantation-of-hepatocytes-in-an-experimental-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok">N. Bachok</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20L.%20Aleng"> N. L. Aleng</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin"> N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ishak"> A. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Senu"> N. Senu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20sheet" title=" shrinking sheet"> shrinking sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=Brownian%20motion" title=" Brownian motion"> Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophoresis" title=" thermophoresis"> thermophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20solution" title=" similarity solution"> similarity solution</a> </p> <a href="https://publications.waset.org/abstracts/13057/flow-and-heat-transfer-of-a-nanofluid-over-a-shrinking-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Answering the Call for Empirical Evidence: Burnout, Context and Remote Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clif%20P.%20Lewis">Clif P. Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ise-Lu%20M%C3%B6ller"> Ise-Lu Möller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic has had a profound impact on employment. The ‘future of work’ is now the ‘present of work’. Changes in the social context within which organisations are embedded necessitated drastic changes in how we work. Through the leveraging of technology and changes in mindset, we have seen exciting innovations in the world of work. This global shift in the context of employment offers a unique opportunity to examine a key unresolved issue in the study of Burnout, namely contextual antecedents. This study answers the call for deeper empirical insight into the contexts within which Burnout occur. We explore the emergence of Burnout within a remote work context by using survey data that incorporates the latest global work trends into the Areas of Worklife framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burnout" title="burnout">burnout</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20work" title=" remote work"> remote work</a>, <a href="https://publications.waset.org/abstracts/search?q=pandemic" title=" pandemic"> pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=wellness" title=" wellness"> wellness</a> </p> <a href="https://publications.waset.org/abstracts/144624/answering-the-call-for-empirical-evidence-burnout-context-and-remote-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C%20.D.%20Kulathilake">C. C .D. Kulathilake</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jayatilake"> M. Jayatilake</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Takahashi"> T. Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoradiographs" title="autoradiographs">autoradiographs</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar" title=" sugar"> sugar</a> </p> <a href="https://publications.waset.org/abstracts/33660/determination-of-myocardial-function-using-heart-accumulated-radiopharmaceuticals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Approaches To Counseling As Done By Traditional Cultural Healers In North America</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lewis%20Mehl-Madrona">Lewis Mehl-Madrona</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Mainguy"> Barbara Mainguy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe the type of counseling done by traditional cultural healers in North America. We follow an autoethnographic course development through the first author’s integration of mainstream training and Native-American heritage and study with traditional medicine people. We assemble traditional healing elders from North America and discuss with them their practices and their philosophies of healing. We draw parallels for their approaches in some European-based philosophies and religion, including the work of Heidegger, Levin, Fox, Kierkegaard, and others. An example of the treatment process with a depressed client is provided and similarities and differences with conventional psychotherapies are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indigenous%20approaches%20to%20counseling" title="indigenous approaches to counseling">indigenous approaches to counseling</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20bodywork" title=" indigenous bodywork"> indigenous bodywork</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20healing" title=" indigenous healing"> indigenous healing</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20American%20indigenous%20people" title=" North American indigenous people"> North American indigenous people</a> </p> <a href="https://publications.waset.org/abstracts/134551/approaches-to-counseling-as-done-by-traditional-cultural-healers-in-north-america" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arian%20Ebneyamini">Arian Ebneyamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Azimi"> Hoda Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jules%20Thibaults"> Jules Thibaults</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Handan%20Tezel"> F. Handan Tezel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butanol" title="butanol">butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membranes" title=" mixed matrix membranes"> mixed matrix membranes</a> </p> <a href="https://publications.waset.org/abstracts/55658/modelling-of-pervaporation-separation-of-butanol-from-aqueous-solutions-using-polydimethylsiloxane-mixed-matrix-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ja">A. Ja</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Belabid"> J. Belabid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cheddadi"> A. Cheddadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the numerical simulation of double diffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=double-diffusion" title=" double-diffusion"> double-diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20geometry" title=" annular geometry"> annular geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20differences" title=" finite differences"> finite differences</a> </p> <a href="https://publications.waset.org/abstracts/21992/heat-and-mass-transfer-in-a-saturated-porous-medium-confined-in-cylindrical-annular-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Zero-Knowledge Proof-of-Reserve: A Confidential Approach to Cryptocurrency Asset Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Ng">Sam Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lewis%20Leighton"> Lewis Leighton</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Atkinson"> Sam Atkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Carson%20Yan"> Carson Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Landan%20Hu"> Landan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Leslie%20Cheung"> Leslie Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Yap"> Brian Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Kent%20Lung"> Kent Lung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ketat%20Sarakune"> Ketat Sarakune</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a method for verifying cryptocurrency reserves that balances the need for both transparency and data confidentiality. Our methodology employs cryptographic techniques, including Merkle Trees, Bulletproof, and zkSnark, to verify that total assets equal or exceed total liabilities, represented by customer funds. Importantly, this verification is achieved without disclosing sensitive information such as the total asset value, customer count, or cold wallet addresses. We delve into the construction and implementation of this methodology. While the system is robust and scalable, we also identify areas for potential enhancements to improve its efficiency and versatility. As the digital asset landscape continues to evolve, our approach provides a solid foundation for ensuring continued trust and security in digital asset platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptocurrency" title="cryptocurrency">cryptocurrency</a>, <a href="https://publications.waset.org/abstracts/search?q=crypto-currency" title=" crypto-currency"> crypto-currency</a>, <a href="https://publications.waset.org/abstracts/search?q=proof-of-reserve" title=" proof-of-reserve"> proof-of-reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=por" title=" por"> por</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-knowledge" title=" zero-knowledge"> zero-knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=ZKP" title=" ZKP"> ZKP</a> </p> <a href="https://publications.waset.org/abstracts/173727/zero-knowledge-proof-of-reserve-a-confidential-approach-to-cryptocurrency-asset-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Indigenous Influences on American Osteopathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lewis%20Mehl-Madrona">Lewis Mehl-Madrona</a>, <a href="https://publications.waset.org/abstracts/search?q=Josephine%20Conte"> Josephine Conte</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Mainguy"> Barbara Mainguy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We explore the historical connection of Andrew Taylor Still with the aboriginal nations placed in Missouri, notably the Shawnee, Pawnee, Kickapoo, Cherokee, and the Pottowattomy. Still was fluent in Shawnee and himself was part Native American (Lumbee). These nations had well-developed forms of hands-on healing as well as practicing lightning bone setting. They were more sophisticated than their European-derived neighbors in treating fractures and discolocations. We trace Still’s writings as evidence for his connectedness with these people and respect for their traditions. We explore the traditional hands-on therapies of these nations and discover that they are quite similar to osteopathy. We propose that Still was a translator of traditional manual medicine of the nations into the mainstream of American society. While, surely, he made his own personal contributions to manual medicine, he did not invent osteopathy de novo but relied on methods that were well-developed across centuries for his inspiration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indigenous%20healing" title="indigenous healing">indigenous healing</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20bodywork" title=" indigenous bodywork"> indigenous bodywork</a>, <a href="https://publications.waset.org/abstracts/search?q=American%20osteopathy" title=" American osteopathy"> American osteopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Taylor%20Still" title=" Andrew Taylor Still"> Andrew Taylor Still</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherokee" title=" Cherokee"> Cherokee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawnee" title=" Shawnee"> Shawnee</a> </p> <a href="https://publications.waset.org/abstracts/134446/indigenous-influences-on-american-osteopathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Drying Characteristics of Shrimp by Using the Traditional Method of Oven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Simsek">I. A. Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Dogan"> S. N. Dogan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Morodor%20Derun"> E. Morodor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the drying characteristics of shrimp are studied by using the traditional drying method of oven. Drying temperatures are selected between 60-80°C. Obtained experimental drying results are applied to eleven mathematical models of Alibas, Aghbashlo et al., Henderson and Pabis, Jena and Das, Lewis, Logaritmic, Midilli and Kucuk, Page, Parabolic, Wang and Singh and Weibull. The best model was selected as parabolic based on the highest coefficient of determination (R²) (0.999990 at 80°C) and the lowest χ² (0.000002 at 80°C), and the lowest root mean square error (RMSE) (0.000976 at 80°C) values are compared to other models. The effective moisture diffusivity (Deff) values were calculated using the Fick’s second law’s cylindrical coordinate approximation and are found between 6.61×10⁻⁸ and 6.66×10⁻⁷ m²/s. The activation energy (Ea) was calculated using modified form of Arrhenius equation and is found as 18.315 kW/kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20moisture%20diffusivity" title=" effective moisture diffusivity"> effective moisture diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=oven" title=" oven"> oven</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a> </p> <a href="https://publications.waset.org/abstracts/97915/drying-characteristics-of-shrimp-by-using-the-traditional-method-of-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> American Slavery and the Consciousness of Play</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janaka%20B.%20Lewis">Janaka B. Lewis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Narratives of Slavery and the Culture of Play” examines how play is discussed in early African American literature by both men and women to illustrate ways that they negotiated the hierarchy and oppression of enslavement. Reading narratives categorized as “slave narratives,” including those written by Frederick Douglass, Harriet Jacobs, and Olaudah Equiano, through the lens of play theory offers an illuminated analysis of the significance of play culture in these texts. It then reads late nineteenth-century play culture (or absence thereof) portrayed in literature as a lens for more contemporary African American oral and literary culture. These discussions of social constructions through literature bridge analyses of African American-authored texts and create a larger conversation about print media as a tool of activism and resistance. This essay also contributes to a larger body of analysis of nineteenth-century African American culture through literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=childhood" title="childhood">childhood</a>, <a href="https://publications.waset.org/abstracts/search?q=slavery" title=" slavery"> slavery</a>, <a href="https://publications.waset.org/abstracts/search?q=consciousness%20of%20play" title=" consciousness of play"> consciousness of play</a>, <a href="https://publications.waset.org/abstracts/search?q=19th%20century%20African%20American%20culture" title=" 19th century African American culture"> 19th century African American culture</a> </p> <a href="https://publications.waset.org/abstracts/29313/american-slavery-and-the-consciousness-of-play" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Technical Realization of Key Aesthetic Principles in Guzheng Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiongzi%20Zheng">Qiongzi Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lewis%20Cornwell"> Lewis Cornwell</a>, <a href="https://publications.waset.org/abstracts/search?q=Neal%20Peres%20Da%20Costa"> Neal Peres Da Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drawn on Confucian and Taoist philosophy and long-established tradition of aesthetic ideals, the Art of the Chinese Zither (Xishan Qinkuang), a classic work by Chinese music scholar Xu Shangyin in 1643, distilled twenty-four practicing principles for the Chinese zither. This work has influenced the practice of guzheng to the present day. Whilst the principles were described in detail, how they can actually be achieved on a technical level remains to be explored. This study focuses on three key practicing principles: yuan (roundness), liu (fluidness), and su (swiftness), and examines how the playing techniques developed by Master Zhao Manqin contribute to the implementation of the principles. The study concludes that knowledge of the technicality of fingering positioning before and after plucking motion is critical to the realization of these principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20music%20aesthetics" title="Chinese music aesthetics">Chinese music aesthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=practicing%20principles%20of%20the%20Chinese%20zither" title=" practicing principles of the Chinese zither"> practicing principles of the Chinese zither</a>, <a href="https://publications.waset.org/abstracts/search?q=guzheng%20playing%20techniques" title=" guzheng playing techniques"> guzheng playing techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Manqin%E2%80%99s%20fingering%20techniques" title=" Zhao Manqin’s fingering techniques"> Zhao Manqin’s fingering techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=Xishan%20Qinkuang" title=" Xishan Qinkuang"> Xishan Qinkuang</a> </p> <a href="https://publications.waset.org/abstracts/164771/technical-realization-of-key-aesthetic-principles-in-guzheng-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sam%20Lewis&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sam%20Lewis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sam%20Lewis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sam%20Lewis&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10