CINXE.COM
monad in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> monad in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> monad </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/1563/#Item_102" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <blockquote> <p>This entry is about the notion of <em>monad</em> in <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a> and <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical algebra</a>. For other notions see <em><a class="existingWikiWord" href="/nlab/show/monad+%28disambiguation%29">monad (disambiguation)</a></em>.</p> </blockquote> <hr /> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="categorical_algebra">Categorical algebra</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>+<a class="existingWikiWord" href="/nlab/show/algebra">algebra</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/internalization">internalization</a> and <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+object">group object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+object">algebra object</a> (associative, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+object">Lie</a>, …)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+object">module object</a>/<a class="existingWikiWord" href="/nlab/show/action+object">action object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+locale">internal locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/internal+infinity-categories+contents">more</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+groupoid">internal groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+site">internal site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+diagram">internal diagram</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+Lawvere+theory">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/algebraic+theories">algebraic theories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/monads">monads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/operads">operads</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a>, <a class="existingWikiWord" href="/nlab/show/internal+language">internal language</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+category+theory+and+type+theory">relation between category theory and type theory</a></p> </li> </ul> </div></div> <h4 id="2category_theory">2-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/2-category+theory">2-category theory</a></strong></p> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-category">2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+2-category">strict 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+bicategory">enriched bicategory</a></p> </li> </ul> <p><strong>Transfors between 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+functor">lax functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+of+2-categories">equivalence of 2-categories</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-natural+transformation">2-natural transformation</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+natural+transformation">lax natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/icon">icon</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modification">modification</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+bicategories">Yoneda lemma for bicategories</a></p> </li> </ul> <p><strong>Morphisms in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fully+faithful+morphism">fully faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/faithful+morphism">faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conservative+morphism">conservative morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonic+morphism">pseudomonic morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+morphism">discrete morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/eso+morphism">eso morphism</a></p> </li> </ul> <p><strong>Structures in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mate">mate</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+object">cartesian object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibration+in+a+2-category">fibration in a 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/codiscrete+cofibration">codiscrete cofibration</a></p> </li> </ul> <p><strong>Limits in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> </ul> <p><strong>Structures on 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax-idempotent+2-monad">lax-idempotent 2-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonad">pseudomonad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudoalgebra+for+a+2-monad">pseudoalgebra for a 2-monad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gray+tensor+product">Gray tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proarrow+equipment">proarrow equipment</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#Idea'>Idea</a></li> <li><a href='#Etymology'>Etymology</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#monads'>Monads</a></li> <li><a href='#BicategoryOfMonads'>The 2-category of monads</a></li> <li><a href='#Algebras'>Algebras/modules over a monad</a></li> </ul> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#RelationBetweenAdjunctionsAndMonads'>Relation between adjunctions and monads</a></li> <ul> <li><a href='#MonadInducedByAnAdjunction'>Monad induced by an adjunction</a></li> <li><a href='#CategoryOfAdjunctionResolutionsOfAMonad'>Category of adjunction-resolutions of a monad</a></li> <li><a href='#SemanticsStructureAdjunction'>Semantics-structure adjunction</a></li> </ul> </ul> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#monads_on_'>Monads on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math></a></li> <li><a href='#algebra'>Algebra</a></li> <li><a href='#topology'>Topology</a></li> <li><a href='#monads_in_cat'>Monads in Cat</a></li> <li><a href='#other_examples'>Other examples</a></li> </ul> <li><a href='#monads_in_higher_category_theory'>Monads in higher category theory</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#References'>References</a></li> </ul> </div> <h2 id="Idea">Idea</h2> <p>In <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>, the notion of <em><a class="existingWikiWord" href="/nlab/show/monad">monad</a></em> (earlier: “<em>standard construction</em>” or “<em>triple</em>”) is a kind of <a class="existingWikiWord" href="/nlab/show/categorification">categorification</a> of that of <em><a class="existingWikiWord" href="/nlab/show/monoid">monoid</a></em>: In their default incarnation monads are <a class="existingWikiWord" href="/nlab/show/endofunctors">endofunctors</a> on some <a class="existingWikiWord" href="/nlab/show/category">category</a> which are equipped with a <a class="existingWikiWord" href="/nlab/show/unitality">unital</a> <a class="existingWikiWord" href="/nlab/show/associativity">associative</a> <a class="existingWikiWord" href="/nlab/show/binary+operation">binary operation</a> under <a class="existingWikiWord" href="/nlab/show/composition">composition</a>. More generally this notion makes sense for <a class="existingWikiWord" href="/nlab/show/endomorphism">endo-</a> <a class="existingWikiWord" href="/nlab/show/1-morphisms">1-morphisms</a> on any <a class="existingWikiWord" href="/nlab/show/object">object</a> in any <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> beyond <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>: Monads are <a class="existingWikiWord" href="/nlab/show/monoid+objects">monoid objects</a> <a class="existingWikiWord" href="/nlab/show/internalization">internal to</a> <a class="existingWikiWord" href="/nlab/show/endofunctor">endo</a>-<a class="existingWikiWord" href="/nlab/show/hom-categories">hom-categories</a>.</p> <p>Together with the <a class="existingWikiWord" href="/nlab/show/adjunctions">adjunctions</a> (<a class="existingWikiWord" href="/nlab/show/adjoint+functors">adjoint functors</a>) that they correspond to (see <a href="#RelationBetweenAdjunctionsAndMonads">below</a>) monads are among the most pervasive structures in <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a> (where they form the basis of <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical</a> and <a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a>, whence one speaks of <em><a class="existingWikiWord" href="/nlab/show/algebras+over+a+monad">algebras over a monad</a></em>) and in <a class="existingWikiWord" href="/nlab/show/mathematics">mathematics</a> more generally (certainly in fields like <a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a>, <a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a> and <a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a>, where the notion originates in the guise of “<a class="existingWikiWord" href="/nlab/show/canonical+resolutions">canonical resolutions</a>”).</p> <p>Last not least, monads play a central role in <a class="existingWikiWord" href="/nlab/show/formal+logic">formal logic</a> (cf. <a class="existingWikiWord" href="/nlab/show/modal+logic">modal logic</a> and <a class="existingWikiWord" href="/nlab/show/modal+type+theory">modal type theory</a>) and in <a class="existingWikiWord" href="/nlab/show/computer+science">computer science</a>, where they are understood (cf. the “<a class="existingWikiWord" href="/nlab/show/computational+trilogy">computational trilogy</a>”) as encoding “notions of computation” with “computational effects” in the framework of <a class="existingWikiWord" href="/nlab/show/functional+programming">functional programming</a>: see at <em><a class="existingWikiWord" href="/nlab/show/monad+%28computer+science%29">monads in computer science</a></em>.</p> <h2 id="Etymology">Etymology</h2> <p>The terminology “monad” was introduced in <a href="#Bénabou67">Bénabou 1967, Def. 5.4.1</a>, where, after observing (Exp. 5.4.1) that monads in 1-object 2-categories (<a href="delooping#DeloopingOfHigherCategoricalStructures">deloopings of</a> <a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a>) are <em><a class="existingWikiWord" href="/nlab/show/monoids">monoids</a></em>:</p> <div style="margin: -20px 0px 20px 10px"> <img src="/nlab/files/Benabou-MonoidsAsMonads.jpg" width="700px" /> </div> <p id="BenabouFootnote"> it says in a footnote:</p> <div style="margin: -20px 0px 20px 10px"> <figure style="margin: 0 0 0 0"> <img src="/nlab/files/Benabou-FootnoteOnMonadTerminology.jpg" width="700px" /> <figcaption style="text-align: center">(from <a href="#Bénabou67">Bénabou 1967, p. 40</a>)</figcaption> </figure> </div> <p>Beyond this footnote, the only contemporary account that seems to exist of the terminological genesis, <a href="#Barr09">Barr 2009</a>, recalls the following exchange, on the backdrop of a widely felt dissatisfaction with the earlier terminology of “standard construction” and “triple”:</p> <blockquote> <p>In the summer (or maybe late spring, the Oberwohlfach records will show this) of 1966, there was a category meeting there. […] One day at lunch or dinner I happened to be sitting next to Jean Bénabou and he turned to me and said something like “How about `monad'?" I thought about and said it sounded pretty good to me. So Jean proposed it to the general audience and there was general agreement. It suggested "monoid" of course and it is a monoid in a functor category.</p> </blockquote> <p id="MonadTerminologyFurtherDiscussion"> Further discussion on the issue in 2023 has recollections by <a class="existingWikiWord" href="/nlab/show/Jir%C3%AD+Ad%C3%A1mek">Jirí Adámek</a> of recollections by <a class="existingWikiWord" href="/nlab/show/Bill+Lawvere">Bill Lawvere</a> to the extent that:</p> <blockquote> <p>it was in the common room of the old castle at Oberwolfach when Sammy [<a class="existingWikiWord" href="/nlab/show/Samuel+Eilenberg">Samuel Eilenberg</a>] came out from behind the piano and announced the change.</p> </blockquote> <p>But <a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a> clarifies that:</p> <blockquote> <p>I am more than willing to believe that it was Bénabou sitting next to me who proposed monad. It is entirely possible that Sammy came down and pronounced it “official”. And it was certainly in the old castle.</p> </blockquote> <p>Interestingly Bénabou’s footnote <a href="#BenabouFootnote">above</a> gives a second motivation for “monad”:</p> <div class="float_right_image" style="margin: -20px 0px 20px 10px"> <figure style="margin: 0 0 0 0"> <img src="/nlab/files/Benabou-MonadDefinition.jpg" width="650px" /> <figcaption style="text-align: center">(from <a href="#Bénabou67">Bénabou 1967, p. 39</a>)</figcaption> </figure> </div> <p id="ItIsStriking"> It is striking that <a href="#Bénabou67">Bénabou 1967, Def. 5.4.1</a> <em>defines</em> a monad to be a <a class="existingWikiWord" href="/nlab/show/lax+2-functor">lax 2-functor</a> from the <a class="existingWikiWord" href="/nlab/show/terminal+category">terminal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/Cat">2-category of categories</a> (and more generally to whatever given ambient <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> “<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><munder><mi>S</mi><mo>̲</mo></munder></mrow><annotation encoding="application/x-tex">\underline{S}</annotation></semantics></math>”) and then proceeds to unwind the equivalence of this definition to the traditional one:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Monads</mi><mo stretchy="false">(</mo><munder><mi>S</mi><mo>̲</mo></munder><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo maxsize="1.8em" minsize="1.8em">{</mo><mn>1</mn><mover><mo>→</mo><mrow><mspace width="thickmathspace"></mspace><mi>lax</mi><mspace width="thickmathspace"></mspace></mrow></mover><munder><mi>S</mi><mo>̲</mo></munder><mo maxsize="1.8em" minsize="1.8em">}</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Monads(\underline{S}) \;\;\; \simeq \;\;\; \Big\{ 1 \xrightarrow{\; lax \;} \underline{S} \Big\} \,. </annotation></semantics></math></div> <p>In this sense, monads are <em><a class="existingWikiWord" href="/nlab/show/global+element">point-like elements</a></em> in a <a class="existingWikiWord" href="/nlab/show/2-category+theory">2-category theoretic</a> sense (say in the <a class="existingWikiWord" href="/nlab/show/2-topos">2-topos</a> <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>), which squares well with <a href="monad+terminology#HistoricalOrigins">Euclid’s ancient notion of monads</a> as indivisible building blocks. In fact, as discussed there, “monad” (both in ancient and still in modern Greek) just means “unit” in the sense of the unit <a class="existingWikiWord" href="/nlab/show/natural+number">natural number</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>, and <a href="#Bénabou67">Bénabou 1967, Def. 5.4.1</a> literally identifies monads with the (lax) units <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>→</mo><munder><mi>S</mi><mo>̲</mo></munder></mrow><annotation encoding="application/x-tex">1 \to \underline{S}</annotation></semantics></math> in the ambient 2-category.</p> <p>In generalization of this situation, one may consider lax functors out of <a class="existingWikiWord" href="/nlab/show/codiscrete+groupoids">codiscrete groupoids</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>CoDisc</mi><mo stretchy="false">(</mo><msup><mn>1</mn> <mrow><msub><mo>⊔</mo> <mi>n</mi></msub></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">CoDisc(1^{\sqcup_n})</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> objects, which <a href="#Bénabou67">Bénabou 1967, Def. 5.5</a> calls <em>polyads</em>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Polyads</mi><mo stretchy="false">(</mo><munder><mi>S</mi><mo>̲</mo></munder><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo maxsize="1.8em" minsize="1.8em">{</mo><mi>CoDisc</mi><mo stretchy="false">(</mo><msup><mn>1</mn> <mrow><msub><mo>⊔</mo> <mi>n</mi></msub></mrow></msup><mo stretchy="false">)</mo><mover><mo>→</mo><mrow><mspace width="thickmathspace"></mspace><mi>lax</mi><mspace width="thickmathspace"></mspace></mrow></mover><munder><mi>S</mi><mo>̲</mo></munder><mo maxsize="1.8em" minsize="1.8em">}</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Polyads(\underline{S}) \;\;\; \simeq \;\;\; \Big\{ CoDisc(1^{\sqcup_n}) \xrightarrow{\; lax \;} \underline{S} \Big\} \,. </annotation></semantics></math></div> <p>On the other hand (as maybe alluded to in the first line of <a href="#Barr09">Barr 2009</a>), just a few years earlier the ancient <a class="existingWikiWord" href="/nlab/show/monad+terminology">monad terminology</a> had already been adopted in <a class="existingWikiWord" href="/nlab/show/nonstandard+analysis">nonstandard analysis</a> as the term for <em><a class="existingWikiWord" href="/nlab/show/infinitesimal+neighbourhoods">infinitesimal neighbourhoods</a></em> (<a href="infinitesimal+neighborhood#Robinson66">Robinson 1966, p. 57</a> and <a href="#infinitesimal+neighborhood#Luxemburg66">Luxembourg 1966</a>, compare also <a href="infinitesimal+neighborhood#Keisler76">Keisler 1976, Def. 1.2</a>, <a href="infinitesimal+neighborhood#Kutateladze11">Kutateladze 2011</a> and, speaking <a class="existingWikiWord" href="/nlab/show/synthetic+differential+geometry">synthetically</a>: <a href="infinitesimal+neighborhood#Kock80">Kock 1980</a>).</p> <p>Now it so happens — in the <a class="existingWikiWord" href="/nlab/show/topos+theory">topos theoretic</a> formulation of <a class="existingWikiWord" href="/nlab/show/infinitesimals">infinitesimals</a> via <a class="existingWikiWord" href="/nlab/show/differential+cohesion">differential cohesion</a> — that the construction of <a class="existingWikiWord" href="/nlab/show/infinitesimal+neighbourhoods">infinitesimal neighbourhoods</a> <em>is</em> (see <a href="infinitesimal+disk+bundle#MonadicityAdjointToJetBundles">here</a>) a monad in the sense of <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>! – namely the <a class="existingWikiWord" href="/nlab/show/left+adjoint">left</a> <a class="existingWikiWord" href="/nlab/show/adjoint+monad">adjoint monad</a> to the <a class="existingWikiWord" href="/nlab/show/jet+comonad">jet comonad</a> (<a href="infinitesimal+disk+bundle#KhavkineSchreiber17">Khavkine & Schreiber 2017, p. 23</a>).</p> <h2 id="definition">Definition</h2> <h3 id="monads">Monads</h3> <p>A <strong>monad</strong> in a <a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> is given by</p> <ol> <li> <p>an <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></p> </li> <li> <p>an <a class="existingWikiWord" href="/nlab/show/endomorphism">endomorphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi><mo lspace="verythinmathspace">:</mo><mi>a</mi><mo>→</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">t \colon a \to a</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></p> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thickmathspace"></mspace><mi>η</mi><mo lspace="verythinmathspace">:</mo><msub><mn>1</mn> <mi>a</mi></msub><mo>→</mo><mi>t</mi></mrow><annotation encoding="application/x-tex">\;\eta \colon 1_a \to t</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></p> <p>(the <em><a class="existingWikiWord" href="/nlab/show/unit+of+a+monad">unit</a></em> or <em>return</em> operation)</p> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>μ</mi><mo lspace="verythinmathspace">:</mo><mi>t</mi><mo>∘</mo><mi>t</mi><mo>→</mo><mi>t</mi></mrow><annotation encoding="application/x-tex">\mu \colon t \circ t \to t</annotation></semantics></math></p> <p>(the <em>multiplication</em> or <em>join</em> operation)</p> </li> </ol> <p>such that the diagrams <a href="https://q.uiver.app/#q=WzAsNCxbMCwwLCJ0Il0sWzEsMCwidHQiXSxbMiwwLCJ0Il0sWzEsMSwidCJdLFswLDEsIlxcZXRhIHQiXSxbMiwxLCJ0XFxldGEiLDJdLFswLDMsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsMywiIiwwLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSwzLCJcXG11IiwxXV0="><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="172.118pt" height="86.275pt" viewBox="0 0 172.118 86.275" version="1.2"> <defs> <g> <symbol overflow="visible" id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph0-1"> <path style="stroke:none;" d="M 2.984375 -5.953125 L 4.34375 -5.953125 C 4.625 -5.953125 4.765625 -5.953125 4.765625 -6.21875 C 4.765625 -6.390625 4.6875 -6.390625 4.390625 -6.390625 L 3.078125 -6.390625 L 3.625 -8.546875 C 3.6875 -8.75 3.6875 -8.78125 3.6875 -8.890625 C 3.6875 -9.125 3.5 -9.25 3.296875 -9.25 C 3.1875 -9.25 2.84375 -9.21875 2.71875 -8.734375 L 2.140625 -6.390625 L 0.75 -6.390625 C 0.453125 -6.390625 0.328125 -6.390625 0.328125 -6.109375 C 0.328125 -5.953125 0.421875 -5.953125 0.71875 -5.953125 L 2.03125 -5.953125 L 1.046875 -2.046875 C 0.9375 -1.53125 0.890625 -1.375 0.890625 -1.1875 C 0.890625 -0.484375 1.375 0.140625 2.203125 0.140625 C 3.703125 0.140625 4.5 -2.015625 4.5 -2.125 C 4.5 -2.203125 4.4375 -2.25 4.359375 -2.25 C 4.328125 -2.25 4.265625 -2.25 4.234375 -2.1875 C 4.21875 -2.171875 4.203125 -2.15625 4.109375 -1.921875 C 3.796875 -1.1875 3.109375 -0.140625 2.25 -0.140625 C 1.8125 -0.140625 1.78125 -0.515625 1.78125 -0.84375 C 1.78125 -0.859375 1.78125 -1.140625 1.828125 -1.3125 Z M 2.984375 -5.953125 "></path> </symbol> <symbol overflow="visible" id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-1"> <path style="stroke:none;" d="M 5.140625 -2.71875 C 5.1875 -2.875 5.21875 -3.046875 5.21875 -3.265625 C 5.21875 -4 4.703125 -4.359375 4 -4.359375 C 3.203125 -4.359375 2.6875 -3.875 2.40625 -3.5 C 2.328125 -4.03125 1.890625 -4.359375 1.390625 -4.359375 C 1.03125 -4.359375 0.796875 -4.125 0.625 -3.828125 C 0.40625 -3.375 0.296875 -2.875 0.296875 -2.84375 C 0.296875 -2.75 0.359375 -2.71875 0.4375 -2.71875 C 0.578125 -2.71875 0.578125 -2.75 0.65625 -3.015625 C 0.78125 -3.515625 0.953125 -4.078125 1.359375 -4.078125 C 1.609375 -4.078125 1.671875 -3.84375 1.671875 -3.609375 C 1.671875 -3.4375 1.625 -3.25 1.546875 -2.921875 C 1.53125 -2.84375 1.375 -2.265625 1.34375 -2.125 L 0.984375 -0.640625 C 0.9375 -0.5 0.875 -0.25 0.875 -0.203125 C 0.875 0.015625 1.0625 0.09375 1.1875 0.09375 C 1.375 0.09375 1.515625 -0.015625 1.59375 -0.140625 C 1.625 -0.203125 1.703125 -0.53125 1.75 -0.734375 L 1.96875 -1.625 C 2 -1.765625 2.109375 -2.140625 2.140625 -2.296875 C 2.265625 -2.828125 2.265625 -2.828125 2.5 -3.15625 C 2.828125 -3.640625 3.28125 -4.078125 3.953125 -4.078125 C 4.3125 -4.078125 4.515625 -3.875 4.515625 -3.40625 C 4.515625 -3.21875 4.4375 -2.859375 4.4375 -2.84375 L 3.3125 1.59375 C 3.28125 1.734375 3.28125 1.796875 3.28125 1.8125 C 3.28125 2.0625 3.46875 2.125 3.59375 2.125 C 3.9375 2.125 4.015625 1.796875 4.046875 1.671875 Z M 5.140625 -2.71875 "></path> </symbol> <symbol overflow="visible" id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-2"> <path style="stroke:none;" d="M 2.1875 -3.9375 L 3.15625 -3.9375 C 3.34375 -3.9375 3.453125 -3.9375 3.453125 -4.125 C 3.453125 -4.25 3.328125 -4.25 3.15625 -4.25 L 2.265625 -4.25 L 2.609375 -5.65625 C 2.65625 -5.8125 2.65625 -5.859375 2.65625 -5.859375 C 2.65625 -6.078125 2.5 -6.171875 2.328125 -6.171875 C 2 -6.171875 1.921875 -5.90625 1.8125 -5.453125 L 1.515625 -4.25 L 0.5625 -4.25 C 0.375 -4.25 0.25 -4.25 0.25 -4.0625 C 0.25 -3.9375 0.375 -3.9375 0.546875 -3.9375 L 1.4375 -3.9375 L 0.84375 -1.5625 C 0.78125 -1.3125 0.6875 -0.96875 0.6875 -0.828125 C 0.6875 -0.234375 1.171875 0.09375 1.703125 0.09375 C 2.75 0.09375 3.359375 -1.296875 3.359375 -1.40625 C 3.359375 -1.515625 3.265625 -1.546875 3.203125 -1.546875 C 3.09375 -1.546875 3.09375 -1.5 3.015625 -1.359375 C 2.828125 -0.875 2.328125 -0.171875 1.734375 -0.171875 C 1.515625 -0.171875 1.40625 -0.3125 1.40625 -0.640625 C 1.40625 -0.828125 1.4375 -0.9375 1.46875 -1.0625 Z M 2.1875 -3.9375 "></path> </symbol> <symbol overflow="visible" id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-3"> <path style="stroke:none;" d="M 2.390625 -3.484375 C 2.4375 -3.671875 2.515625 -4 2.515625 -4.046875 C 2.515625 -4.25 2.359375 -4.359375 2.1875 -4.359375 C 1.859375 -4.359375 1.78125 -4.03125 1.734375 -3.890625 L 0.359375 1.59375 C 0.328125 1.75 0.328125 1.796875 0.328125 1.8125 C 0.328125 2.0625 0.515625 2.125 0.640625 2.125 C 0.6875 2.125 0.921875 2.109375 1.046875 1.859375 C 1.078125 1.78125 1.359375 0.609375 1.5625 -0.1875 C 1.734375 -0.0625 2.0625 0.09375 2.5625 0.09375 C 3.375 0.09375 3.90625 -0.5625 3.9375 -0.609375 C 4.125 0.078125 4.796875 0.09375 4.90625 0.09375 C 5.359375 0.09375 5.59375 -0.28125 5.671875 -0.4375 C 5.859375 -0.796875 6 -1.375 6 -1.40625 C 6 -1.46875 5.96875 -1.546875 5.84375 -1.546875 C 5.734375 -1.546875 5.703125 -1.484375 5.65625 -1.234375 C 5.515625 -0.6875 5.328125 -0.171875 4.9375 -0.171875 C 4.703125 -0.171875 4.625 -0.359375 4.625 -0.640625 C 4.625 -0.8125 4.734375 -1.234375 4.796875 -1.515625 L 5.0625 -2.53125 C 5.109375 -2.78125 5.171875 -2.984375 5.25 -3.28125 C 5.296875 -3.5 5.390625 -3.890625 5.390625 -3.953125 C 5.390625 -4.203125 5.1875 -4.25 5.078125 -4.25 C 4.734375 -4.25 4.671875 -4.015625 4.5625 -3.5625 L 4.359375 -2.75 L 4.046875 -1.515625 L 3.953125 -1.109375 C 3.9375 -1.0625 3.65625 -0.6875 3.4375 -0.5 C 3.265625 -0.359375 2.984375 -0.171875 2.609375 -0.171875 C 2.15625 -0.171875 1.84375 -0.421875 1.84375 -1.03125 C 1.84375 -1.296875 1.921875 -1.59375 1.96875 -1.828125 Z M 2.390625 -3.484375 "></path> </symbol> </g> <clipPath id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip1"> <path d="M 0.28125 0 L 116 0 L 116 85.554688 L 0.28125 85.554688 Z M 0.28125 0 "></path> </clipPath> <clipPath id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip2"> <path d="M 0.28125 0 L 103 0 L 103 85.554688 L 0.28125 85.554688 Z M 0.28125 0 "></path> </clipPath> <clipPath id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip3"> <path d="M 55 0 L 170.964844 0 L 170.964844 85.554688 L 55 85.554688 Z M 55 0 "></path> </clipPath> <clipPath id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip4"> <path d="M 69 0 L 170.964844 0 L 170.964844 85.554688 L 69 85.554688 Z M 69 0 "></path> </clipPath> </defs> <g id="sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph0-1" x="6.660217" y="18.37955"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph0-1" x="80.381708" y="18.37955"></use> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph0-1" x="85.621872" y="18.37955"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph0-1" x="159.343167" y="18.37955"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph0-1" x="83.001692" y="80.132617"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -67.658149 30.274893 L -12.444126 30.274893 " transform="matrix(0.991667,0,0,-0.991667,85.621675,44.698383)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486888 2.870219 C -2.033895 1.148843 -1.021552 0.333454 -0.00133151 -0.00136714 C -1.021552 -0.336189 -2.033895 -1.147638 -2.486888 -2.869014 " transform="matrix(0.991667,0,0,-0.991667,73.516945,14.674425)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-1" x="41.434992" y="9.267125"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-2" x="47.058462" y="9.267125"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 67.656977 30.274893 L 12.446893 30.274893 " transform="matrix(0.991667,0,0,-0.991667,85.621675,44.698383)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485696 2.869014 C -2.032702 1.147638 -1.02036 0.336189 -0.000139244 0.00136714 C -1.02036 -0.333454 -2.032702 -1.148843 -2.485696 -2.870219 " transform="matrix(-0.991667,0,0,0.991667,97.726424,14.674425)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-2" x="120.39645" y="9.267125"></use> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-1" x="124.187254" y="9.267125"></use> </g> <g clip-path="url(#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip1)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -67.658149 22.739441 L -9.324378 -24.458563 " transform="matrix(0.991667,0,0,-0.991667,85.621675,44.698383)"></path> </g> <g clip-path="url(#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip2)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -67.658149 22.739441 L -9.324378 -24.458563 " transform="matrix(0.991667,0,0,-0.991667,85.621675,44.698383)"></path> </g> <g clip-path="url(#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip3)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 67.656977 22.731563 L 9.327145 -24.458563 " transform="matrix(0.991667,0,0,-0.991667,85.621675,44.698383)"></path> </g> <g clip-path="url(#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-clip4)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 67.656977 22.731563 L 9.327145 -24.458563 " transform="matrix(0.991667,0,0,-0.991667,85.621675,44.698383)"></path> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.000586134 20.821111 L -0.000586134 -20.342229 " transform="matrix(0.991667,0,0,-0.991667,85.621675,44.698383)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485964 2.871 C -2.03297 1.145685 -1.020628 0.334235 -0.000407395 -0.000586134 C -1.020628 -0.335408 -2.03297 -1.146857 -2.485964 -2.868233 " transform="matrix(0,0.991667,0.991667,0,85.621675,65.109779)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 91.96875 38.421875 L 79.273438 38.421875 L 79.273438 50.976562 L 91.96875 50.976562 Z M 91.96875 38.421875 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#sJqlTENp9Pd-bJG6d9XuHSnUSwQ=-glyph1-3" x="82.464208" y="45.864583"></use> </g> </g> </svg></a> <a href="https://q.uiver.app/#q=WzAsNCxbMCwwLCJ0dHQiXSxbMSwwLCJ0dCJdLFswLDEsInR0Il0sWzEsMSwidCJdLFsxLDMsIlxcbXUiXSxbMiwzLCJcXG11IiwyXSxbMCwyLCJcXG11IHQiLDJdLFswLDEsInRcXG11Il1d"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="112.291pt" height="90.029pt" viewBox="0 0 112.291 90.029" version="1.2"> <defs> <g> <symbol overflow="visible" id="ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1"> <path style="stroke:none;" d="M 2.96875 -5.9375 L 4.328125 -5.9375 C 4.609375 -5.9375 4.765625 -5.9375 4.765625 -6.203125 C 4.765625 -6.375 4.671875 -6.375 4.375 -6.375 L 3.078125 -6.375 L 3.625 -8.53125 C 3.6875 -8.734375 3.6875 -8.765625 3.6875 -8.875 C 3.6875 -9.109375 3.484375 -9.234375 3.296875 -9.234375 C 3.171875 -9.234375 2.84375 -9.1875 2.71875 -8.71875 L 2.140625 -6.375 L 0.75 -6.375 C 0.453125 -6.375 0.328125 -6.375 0.328125 -6.09375 C 0.328125 -5.9375 0.421875 -5.9375 0.703125 -5.9375 L 2.03125 -5.9375 L 1.046875 -2.046875 C 0.9375 -1.515625 0.890625 -1.375 0.890625 -1.1875 C 0.890625 -0.484375 1.375 0.140625 2.203125 0.140625 C 3.6875 0.140625 4.5 -2.015625 4.5 -2.109375 C 4.5 -2.203125 4.4375 -2.25 4.34375 -2.25 C 4.3125 -2.25 4.25 -2.25 4.234375 -2.1875 C 4.21875 -2.171875 4.203125 -2.15625 4.09375 -1.921875 C 3.78125 -1.1875 3.109375 -0.140625 2.25 -0.140625 C 1.796875 -0.140625 1.78125 -0.515625 1.78125 -0.84375 C 1.78125 -0.859375 1.78125 -1.140625 1.8125 -1.3125 Z M 2.96875 -5.9375 "></path> </symbol> <symbol overflow="visible" id="ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-1"> <path style="stroke:none;" d="M 2.390625 -3.484375 C 2.4375 -3.671875 2.515625 -4 2.515625 -4.046875 C 2.515625 -4.25 2.359375 -4.34375 2.1875 -4.34375 C 1.859375 -4.34375 1.78125 -4.015625 1.734375 -3.890625 L 0.359375 1.59375 C 0.328125 1.75 0.328125 1.796875 0.328125 1.8125 C 0.328125 2.0625 0.515625 2.125 0.640625 2.125 C 0.6875 2.125 0.921875 2.109375 1.046875 1.859375 C 1.078125 1.78125 1.359375 0.59375 1.5625 -0.1875 C 1.71875 -0.0625 2.0625 0.09375 2.5625 0.09375 C 3.375 0.09375 3.90625 -0.5625 3.9375 -0.59375 C 4.109375 0.078125 4.78125 0.09375 4.90625 0.09375 C 5.359375 0.09375 5.578125 -0.28125 5.65625 -0.4375 C 5.859375 -0.796875 6 -1.375 6 -1.40625 C 6 -1.46875 5.953125 -1.53125 5.84375 -1.53125 C 5.71875 -1.53125 5.703125 -1.484375 5.640625 -1.234375 C 5.5 -0.6875 5.3125 -0.171875 4.921875 -0.171875 C 4.703125 -0.171875 4.609375 -0.359375 4.609375 -0.640625 C 4.609375 -0.8125 4.71875 -1.234375 4.796875 -1.515625 L 5.046875 -2.53125 C 5.109375 -2.78125 5.15625 -2.984375 5.234375 -3.28125 C 5.28125 -3.5 5.390625 -3.890625 5.390625 -3.9375 C 5.390625 -4.1875 5.1875 -4.25 5.0625 -4.25 C 4.71875 -4.25 4.65625 -4 4.5625 -3.5625 L 4.34375 -2.734375 L 4.046875 -1.515625 L 3.9375 -1.109375 C 3.921875 -1.0625 3.65625 -0.6875 3.4375 -0.5 C 3.265625 -0.359375 2.984375 -0.171875 2.609375 -0.171875 C 2.15625 -0.171875 1.828125 -0.421875 1.828125 -1.03125 C 1.828125 -1.296875 1.90625 -1.59375 1.96875 -1.828125 Z M 2.390625 -3.484375 "></path> </symbol> <symbol overflow="visible" id="ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-2"> <path style="stroke:none;" d="M 2.171875 -3.921875 L 3.140625 -3.921875 C 3.328125 -3.921875 3.453125 -3.921875 3.453125 -4.109375 C 3.453125 -4.25 3.328125 -4.25 3.15625 -4.25 L 2.25 -4.25 L 2.609375 -5.65625 C 2.65625 -5.796875 2.65625 -5.84375 2.65625 -5.859375 C 2.65625 -6.0625 2.5 -6.15625 2.328125 -6.15625 C 1.984375 -6.15625 1.921875 -5.890625 1.8125 -5.453125 L 1.515625 -4.25 L 0.5625 -4.25 C 0.375 -4.25 0.25 -4.25 0.25 -4.0625 C 0.25 -3.921875 0.375 -3.921875 0.546875 -3.921875 L 1.421875 -3.921875 L 0.84375 -1.5625 C 0.78125 -1.3125 0.6875 -0.96875 0.6875 -0.828125 C 0.6875 -0.234375 1.171875 0.09375 1.703125 0.09375 C 2.75 0.09375 3.359375 -1.296875 3.359375 -1.40625 C 3.359375 -1.515625 3.265625 -1.53125 3.203125 -1.53125 C 3.09375 -1.53125 3.09375 -1.5 3.015625 -1.34375 C 2.8125 -0.875 2.328125 -0.171875 1.71875 -0.171875 C 1.515625 -0.171875 1.40625 -0.3125 1.40625 -0.640625 C 1.40625 -0.828125 1.421875 -0.9375 1.453125 -1.0625 Z M 2.171875 -3.921875 "></path> </symbol> </g> </defs> <g id="ZisIvSfgTlrsxSOw2xCmRtB9ybo=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="9.149373" y="18.336236"></use> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="14.377187" y="18.336236"></use> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="19.605001" y="18.336236"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="93.152366" y="18.336236"></use> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="98.38018" y="18.336236"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="11.763182" y="79.942784"></use> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="16.990996" y="79.942784"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph0-1" x="95.766175" y="79.942784"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.456859 20.823047 L 42.456859 -20.342768 " transform="matrix(0.98933,0,0,-0.98933,56.378982,44.593046)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48678 2.868354 C -2.032716 1.14686 -1.021931 0.333493 0.000699698 0.00182938 C -1.021931 -0.333783 -2.032716 -1.147149 -2.48678 -2.868643 " transform="matrix(0,0.98933,0.98933,0,98.381003,64.956339)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-1" x="101.858467" y="45.756497"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -27.844056 -31.994439 L 32.653031 -31.994439 " transform="matrix(0.98933,0,0,-0.98933,56.378982,44.593046)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488126 2.868115 C -2.034063 1.146621 -1.019329 0.333255 -0.00064662 0.00159059 C -1.019329 -0.334022 -2.034063 -1.147388 -2.488126 -2.868882 " transform="matrix(0.98933,0,0,-0.98933,88.918608,76.247667)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-1" x="55.842765" y="83.969356"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -39.811597 20.823047 L -39.811597 -20.342768 " transform="matrix(0.98933,0,0,-0.98933,56.378982,44.593046)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48678 2.867807 C -2.032716 1.146313 -1.021931 0.332947 0.000699698 0.00128283 C -1.021931 -0.33433 -2.032716 -1.147696 -2.48678 -2.86919 " transform="matrix(0,0.98933,0.98933,0,16.990918,64.956339)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-1" x="3.431047" y="46.665691"></use> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-2" x="9.731207" y="46.665691"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -25.202589 30.27547 L 30.007616 30.27547 " transform="matrix(0.98933,0,0,-0.98933,56.378982,44.593046)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487583 2.869682 C -2.033519 1.148189 -1.018785 0.334822 -0.000103189 -0.000790196 C -1.018785 -0.336403 -2.033519 -1.145821 -2.487583 -2.867314 " transform="matrix(0.98933,0,0,-0.98933,86.30479,14.639843)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-2" x="53.951167" y="9.245286"></use> <use xlink:href="#ZisIvSfgTlrsxSOw2xCmRtB9ybo=-glyph1-1" x="57.733037" y="9.245286"></use> </g> </g> </svg></a> commute (where certain <a class="existingWikiWord" href="/nlab/show/coherence">coherence</a> <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>s have been omitted).</p> <p>The name “monad” and the terms “unit”, “multiplication” and “associativity” bear a clear analogy with <a class="existingWikiWord" href="/nlab/show/monoids">monoids</a> (but see also at <em><a class="existingWikiWord" href="/nlab/show/monad+%28disambiguation%29">monad (disambiguation)</a></em>). Indeed, one can define a monad on an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> of a <a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> as just a <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a> in the endomorphism category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K(a,a)</annotation></semantics></math>. Alternatively, monads can be taken as more fundamental, and a <a class="existingWikiWord" href="/nlab/show/monoid+in+a+monoidal+category">monoid in a monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> can be defined as a monad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>C</mi></mrow><annotation encoding="application/x-tex">\mathbf{B} C</annotation></semantics></math>, the one-object bicategory corresponding to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> <p>A third and somewhat less obvious definition says that a monad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> is a <strong><a class="existingWikiWord" href="/nlab/show/lax+2-functor">lax 2-functor</a></strong> from the terminal bicategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>: the unique object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">\ast</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math> is sent to the object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math>, the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mi>a</mi></msub></mrow><annotation encoding="application/x-tex">1_a</annotation></semantics></math> becomes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi></mrow><annotation encoding="application/x-tex">\eta</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>μ</mi></mrow><annotation encoding="application/x-tex">\mu</annotation></semantics></math> arise from the coherent 2-cells expressing lax functoriality. This in turn is equivalent to saying that a monad is a <a class="existingWikiWord" href="/nlab/show/category+enriched+in+a+bicategory">category enriched in a bicategory</a> with a single object and single morphism. Among higher-category theorists, it’s tempting to suggest that this is the most fundamental definition, and the most basic reason for the ubiquity and importance of monads. Regardless of this, however, the earlier more elementary definitions are both practically and pedagogically essential.</p> <p>Finally, a monad can be defined in terms of the “Kleisli operation” taking any map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>→</mo><mi>T</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">a \to T b</annotation></semantics></math> to a map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>a</mi><mo>→</mo><mi>T</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">T a \to T b</annotation></semantics></math>; see <a class="existingWikiWord" href="/nlab/show/extension+system">extension system</a>.</p> <p>We can picture a monad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> as an image of the <a class="existingWikiWord" href="/nlab/show/oriental">third oriental</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>. See the remarks at <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>.</p> <p>The data of and axioms for a monad can be expressed graphically as <a class="existingWikiWord" href="/nlab/show/string+diagrams">string diagrams</a>. Writing <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo lspace="verythinmathspace">:</mo><mi>C</mi><mo>→</mo><mi>C</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>μ</mi></mrow><annotation encoding="application/x-tex">T \colon C \to C, \eta, \mu</annotation></semantics></math> for the monad in question (this notation being the standard one when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo>=</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">K = Cat</annotation></semantics></math>), these data can be represented as</p> <p><img src="/nlab/files/monad-data-labeled.png" alt="String diagrams of the monad data (for "Monad")" /></p> <p>Thanks to the distinctive shapes, one can usually omit the labels:</p> <p><img src="/nlab/files/monad-data-unlabeled.png" alt="String diagrams of the monad data, unlabeled (for "Monad")" /></p> <p>The axioms then appear as:</p> <p><img src="/nlab/files/monad-axioms-unlabeled.png" alt="String diagrams of the monad axioms, unlabeled (for "Monad")" /></p> <h3 id="BicategoryOfMonads">The 2-category of monads</h3> <p>Given the equivalence between monads in a <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/lax+functors">lax functors</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>→</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">1 \to K</annotation></semantics></math> [<a href="#Bénabou67">Bénabou 1967, pp. 39</a>] it is straightforward to define the <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Mnd</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Mnd(K)</annotation></semantics></math> of monads in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> to be the <a class="existingWikiWord" href="/nlab/show/lax+functor">lax</a> <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>1</mn><mo>,</mo><mi>K</mi><msub><mo stretchy="false">]</mo> <mi>ℓ</mi></msub></mrow><annotation encoding="application/x-tex">[1,K]_\ell</annotation></semantics></math>, which consists of <a class="existingWikiWord" href="/nlab/show/lax+functors">lax functors</a>, <a class="existingWikiWord" href="/nlab/show/lax+transformations">lax transformations</a> and their<a class="existingWikiWord" href="/nlab/show/modifications">modifications</a>.</p> <p>Spelling this out [<a href="#Maranda66">Maranda 1966</a>, <a href="#Maranda68">Maranda 1968</a>, <a href="#Frei69">Frei 1969 p. 269</a>, <a href="#Pumplün70">Pumplün 1970 p 330 & 334</a>, <a href="#Coppey70">Coppey 1970</a>, <a href="#Street72">Street 1972 p. 150-151</a>, review in <a href="#Leinster04">Leinster 2004 pp. 148</a>]:</p> <p> <div class='num_defn' id='TwoCategoryOfMonads'> <h6>Definition</h6> <p><strong>(2-category of monads)</strong> <br /> Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>.</p> <ol> <li> <p>An <a class="existingWikiWord" href="/nlab/show/object">object</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Mnd</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Mnd(K)</annotation></semantics></math> is a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>μ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,t,\eta,\mu)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>;</p> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/1-morphism">1-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,t) \to (b,s)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Mnd</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Mnd(K)</annotation></semantics></math> (“monad functor” or “<a class="existingWikiWord" href="/nlab/show/monad+transformation">monad transformation</a>”)</p> <p>is given by</p> <ol> <li> <p>a <a class="existingWikiWord" href="/nlab/show/1-morphism">1-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo lspace="verythinmathspace">:</mo><mi>a</mi><mo>→</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">x \colon a \to b</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></p> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mo lspace="verythinmathspace">:</mo><mi>s</mi><mi>x</mi><mo>→</mo><mi>x</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\lambda \colon s x \to x t</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></p> </li> </ol> <p>making the following <a class="existingWikiWord" href="/nlab/show/commuting+diagram">diagrams commute</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>x</mi></mtd> <mtd><mover><mo>→</mo><mrow><msup><mi>η</mi> <mi>s</mi></msup><mi>x</mi></mrow></mover></mtd> <mtd><mi>s</mi><mi>x</mi></mtd></mtr> <mtr><mtd><mpadded width="0" lspace="-100%width"><mrow><mi>x</mi><msup><mi>η</mi> <mi>t</mi></msup></mrow></mpadded><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mpadded width="0"><mi>λ</mi></mpadded></mtd></mtr> <mtr><mtd><mi>x</mi><mi>t</mi></mtd> <mtd><mover><mo>⟶</mo><mn>1</mn></mover></mtd> <mtd><mi>x</mi><mi>t</mi></mtd></mtr></mtable></mrow><mspace width="2em"></mspace><mspace width="2em"></mspace><mrow><mtable><mtr><mtd><mi>s</mi><mi>s</mi><mi>x</mi></mtd> <mtd><mover><mo>→</mo><mrow><mi>s</mi><mi>λ</mi></mrow></mover></mtd> <mtd><mi>s</mi><mi>x</mi><mi>t</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mi>λ</mi><mi>t</mi></mrow></mover></mtd> <mtd><mi>x</mi><mi>t</mi><mi>t</mi></mtd></mtr> <mtr><mtd><mpadded width="0" lspace="-100%width"><mrow><msup><mi>μ</mi> <mi>s</mi></msup><mi>x</mi></mrow></mpadded><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mpadded width="0"><mrow><mi>x</mi><msup><mi>μ</mi> <mi>t</mi></msup></mrow></mpadded></mtd></mtr> <mtr><mtd><mi>s</mi><mi>x</mi></mtd> <mtd></mtd> <mtd><mover><mo>⟶</mo><mi>λ</mi></mover></mtd> <mtd></mtd> <mtd><mi>x</mi><mi>t</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ x & \stackrel{\eta^s x}{\to} & s x \\ \mathllap{x \eta^t} \big\downarrow & & \big\downarrow \mathrlap{\lambda} \\ x t & \overset{1}{\longrightarrow} & x t } \qquad \qquad \array{ s s x & \overset{s \lambda}{\to} & s x t & \overset{\lambda t}{\longrightarrow} & x t t \\ \mathllap{\mu^s x} \big\downarrow & & & & \big\downarrow \mathrlap{x \mu^t} \\ s x & & \overset{\lambda}{\longrightarrow} & & x t } </annotation></semantics></math></div></li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>λ</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><mi>y</mi><mo>,</mo><mi>κ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x,\lambda) \Rightarrow (y, \kappa)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Mnd</mi><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Mnd(K)</annotation></semantics></math> is given by</p> <ul> <li>a <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo lspace="verythinmathspace">:</mo><mi>x</mi><mo>⇒</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">m \colon x \Rightarrow y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></li> </ul> <p>making the following <a class="existingWikiWord" href="/nlab/show/commuting+diagram">diagram commute</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>s</mi><mi>x</mi></mtd> <mtd><mover><mo>→</mo><mrow><mi>s</mi><mi>m</mi></mrow></mover></mtd> <mtd><mi>s</mi><mi>y</mi></mtd></mtr> <mtr><mtd><mpadded width="0" lspace="-100%width"><mi>λ</mi></mpadded><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo><mpadded width="0"><mi>κ</mi></mpadded></mtd></mtr> <mtr><mtd><mi>x</mi><mi>t</mi></mtd> <mtd><mover><mo>→</mo><mrow><mi>m</mi><mi>t</mi></mrow></mover></mtd> <mtd><mi>y</mi><mi>t</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ s x & \stackrel{s m}{\to} & s y \\ \mathllap{\lambda} \downarrow & & \downarrow \mathrlap{\kappa} \\ x t & \stackrel{m t}{\to} & y t } </annotation></semantics></math></div></li> </ol> <p></p> </div> </p> <p> <div class='num_remark' id='HandednessOfMonadMorphism'> <h6>Remark</h6> <p><strong>(handedness of the underlying natural transformation)</strong> <br /> Beware that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math> in Def. <a class="maruku-ref" href="#TwoCategoryOfMonads"></a> is oriented oppositely to what one might expect. This need not be so but is a possible choice, see <a href="#Pumplün70">Pumplün 1970 p 334</a>, <a href="#Street72">Street 1972 pp 158</a>.</p> <p>One issue is that the functor between <a class="existingWikiWord" href="/nlab/show/Kleisli+categories">Kleisli categories</a> induced by a monad morphism goes in the direction <em>opposite</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math> as defined above (as generally for <a class="existingWikiWord" href="/nlab/show/extension+of+scalars">extension of scalars</a> of <a class="existingWikiWord" href="/nlab/show/module+objects">module objects</a> along a <a class="existingWikiWord" href="/nlab/show/homomorphism">homomorphism</a> of <a class="existingWikiWord" href="/nlab/show/monoids">monoids</a>), so that for authors who adopt the opposite of the above convention (such as <a href="#Frei69">Frei 1969 p. 269</a>, <a href="#Pumplün70">Pumplün 1970 p 330</a>, <a href="#BarrWells85">Barr & Wells 1985 §6.1</a> and in our Exp. <a class="maruku-ref" href="#TransformationOfMonadsOnFixedCategory"></a> below) the association of monad morphisms to functors between Kleisli catgeories is contravariant (eg. <a href="#Frei69">Frei 1969, Thm. 2</a>, <a href="#BarrWells85">Barr & Wells 1985 Thm. 6.3</a>).</p> </div> </p> <p> <div class='num_remark' id='TransformationOfMonadsOnFixedCategory'> <h6>Example</h6> <p><strong>(transformation of monads on a fixed category)</strong> <br /> This example is the simpler but important special case of the general Def. <a class="maruku-ref" href="#TwoCategoryOfMonads"></a> where the monads all act on the same fixed object – in particular the same category if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo>=</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">K = Cat</annotation></semantics></math> (stated in this form for instance in <a href="#BarrWells85">Barr & Wells 1985 §6.1</a>), of relevance notably for <a class="existingWikiWord" href="/nlab/show/monads+in+computer+science">monads in computer science</a> (where this is <a href="monad+in+computer+science#Moggi89Abstract">Moggi 1989 Def. 4.0.11</a>) which typically all act on the same category of <a class="existingWikiWord" href="/nlab/show/data+types">data</a> <a class="existingWikiWord" href="/nlab/show/types">types</a>:</p> <p>For a pair of monads <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ℰ</mi><mo>,</mo><msup><mi>ret</mi> <mi>ℰ</mi></msup><mo>,</mo><msup><mi>join</mi> <mi>ℰ</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\mathcal{E}, ret^{\mathcal{E}}, join^{\mathcal{E}})</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ℰ</mi><mo>′</mo><mo>,</mo><msup><mi>ret</mi> <mrow><mi>ℰ</mi><mo>′</mo></mrow></msup><mo>,</mo><msup><mi>join</mi> <mrow><mi>ℰ</mi><mo>′</mo></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\mathcal{E}', ret^{\mathcal{E}'}, join^{\mathcal{E}'})</annotation></semantics></math> on a fixed category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ℰ</mi><mo>,</mo><mi>ℰ</mi><mo>′</mo><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mstyle mathvariant="bold"><mi>C</mi></mstyle><mo>⟶</mo><mstyle mathvariant="bold"><mi>C</mi></mstyle><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \mathcal{E}, \mathcal{E}' \;\colon\; \mathbf{C} \longrightarrow \mathbf{C} \,, </annotation></semantics></math></div> <p>a morphism between them is</p> <ul> <li>a <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>trans</mi> <mrow><mi>ℰ</mi><mo>→</mo><mi>ℰ</mi><mo>′</mo></mrow></msup><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>ℰ</mi><mo>→</mo><mi>ℰ</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">trans^{\mathcal{E} \to \mathcal{E}'} \,\colon\, \mathcal{E} \to \mathcal{E}'</annotation></semantics></math> between the <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/functors">functors</a></li> </ul> <p>such that it respects, in the evident way, the <a class="existingWikiWord" href="/nlab/show/monad+units">monad units</a></p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="104.278pt" height="62.392pt" viewBox="0 0 104.278 62.392" version="1.2"> <defs> <g> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph0-1"> <path style="stroke:none;" d="M 2.0625 -7.296875 C 2.0625 -7.609375 1.8125 -7.875 1.484375 -7.875 C 1.171875 -7.875 0.90625 -7.625 0.90625 -7.3125 C 0.90625 -6.953125 1.203125 -6.734375 1.484375 -6.734375 C 1.84375 -6.734375 2.0625 -7.03125 2.0625 -7.296875 Z M 0.421875 -5.09375 L 0.421875 -4.75 C 1.1875 -4.75 1.296875 -4.671875 1.296875 -4.09375 L 1.296875 -0.875 C 1.296875 -0.34375 1.15625 -0.34375 0.390625 -0.34375 L 0.390625 0 C 0.71875 -0.03125 1.296875 -0.03125 1.640625 -0.03125 C 1.765625 -0.03125 2.453125 -0.03125 2.859375 0 L 2.859375 -0.34375 C 2.078125 -0.34375 2.03125 -0.40625 2.03125 -0.859375 L 2.03125 -5.21875 Z M 0.421875 -5.09375 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph0-2"> <path style="stroke:none;" d="M 3.546875 -8.09375 L 3.546875 -7.75 C 4.359375 -7.75 4.453125 -7.65625 4.453125 -7.078125 L 4.453125 -4.46875 C 4.203125 -4.8125 3.6875 -5.21875 2.96875 -5.21875 C 1.59375 -5.21875 0.421875 -4.0625 0.421875 -2.546875 C 0.421875 -1.046875 1.546875 0.125 2.84375 0.125 C 3.75 0.125 4.265625 -0.46875 4.421875 -0.703125 L 4.421875 0.125 L 6.09375 0 L 6.09375 -0.34375 C 5.296875 -0.34375 5.203125 -0.421875 5.203125 -1 L 5.203125 -8.21875 Z M 4.421875 -1.390625 C 4.421875 -1.171875 4.421875 -1.140625 4.265625 -0.875 C 3.984375 -0.46875 3.5 -0.125 2.90625 -0.125 C 2.59375 -0.125 1.3125 -0.234375 1.3125 -2.53125 C 1.3125 -3.390625 1.453125 -3.859375 1.71875 -4.25 C 1.953125 -4.625 2.421875 -4.984375 3.015625 -4.984375 C 3.75 -4.984375 4.171875 -4.453125 4.28125 -4.265625 C 4.421875 -4.0625 4.421875 -4.03125 4.421875 -3.828125 Z M 4.421875 -1.390625 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph1-1"> <path style="stroke:none;" d="M 2.828125 -4.296875 C 0.46875 -3.015625 0.328125 -1.5 0.328125 -1.203125 C 0.328125 -0.3125 1.203125 0.265625 2.328125 0.265625 C 4.3125 0.265625 5.890625 -1.609375 5.890625 -1.859375 C 5.890625 -1.9375 5.84375 -1.9375 5.78125 -1.9375 C 5.640625 -1.9375 5.1875 -1.78125 4.921875 -1.421875 C 4.671875 -1.078125 4.171875 -0.390625 3.109375 -0.390625 C 2.28125 -0.390625 1.34375 -0.828125 1.34375 -1.71875 C 1.34375 -2.296875 2 -4.046875 3.875 -4.125 C 4.421875 -4.140625 4.84375 -4.5625 4.84375 -4.6875 C 4.84375 -4.765625 4.78125 -4.765625 4.71875 -4.765625 C 3.0625 -4.84375 2.71875 -5.65625 2.71875 -6.140625 C 2.71875 -6.40625 2.90625 -7.703125 4.5625 -7.703125 C 4.78125 -7.703125 5.6875 -7.65625 5.6875 -7.046875 C 5.6875 -6.859375 5.59375 -6.6875 5.546875 -6.625 C 5.515625 -6.578125 5.484375 -6.53125 5.484375 -6.484375 C 5.484375 -6.40625 5.5625 -6.40625 5.609375 -6.40625 C 5.953125 -6.40625 6.6875 -6.875 6.6875 -7.546875 C 6.6875 -8.25 5.875 -8.34375 5.34375 -8.34375 C 3.734375 -8.34375 1.71875 -7.078125 1.71875 -5.625 C 1.71875 -4.921875 2.25 -4.5 2.828125 -4.296875 Z M 2.828125 -4.296875 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph2-1"> <path style="stroke:none;" d="M 2.09375 -3.734375 C 2.125 -3.84375 2.15625 -3.890625 2.15625 -3.984375 C 2.15625 -4.234375 1.921875 -4.40625 1.703125 -4.40625 C 1.390625 -4.40625 1.296875 -4.140625 1.265625 -4.03125 L 0.265625 -0.625 C 0.234375 -0.53125 0.234375 -0.5 0.234375 -0.5 C 0.234375 -0.421875 0.28125 -0.40625 0.359375 -0.390625 C 0.5 -0.328125 0.515625 -0.328125 0.53125 -0.328125 C 0.5625 -0.328125 0.609375 -0.328125 0.65625 -0.453125 Z M 2.09375 -3.734375 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-1"> <path style="stroke:none;" d="M 1.453125 -1.796875 C 1.453125 -2.390625 1.703125 -3.25 2.453125 -3.265625 C 2.40625 -3.234375 2.328125 -3.171875 2.328125 -2.984375 C 2.328125 -2.734375 2.515625 -2.625 2.671875 -2.625 C 2.859375 -2.625 3.03125 -2.75 3.03125 -2.984375 C 3.03125 -3.265625 2.78125 -3.484375 2.4375 -3.484375 C 1.921875 -3.484375 1.5625 -3.09375 1.40625 -2.65625 L 1.390625 -2.65625 L 1.390625 -3.484375 L 0.28125 -3.390625 L 0.28125 -3.125 C 0.8125 -3.125 0.875 -3.078125 0.875 -2.6875 L 0.875 -0.609375 C 0.875 -0.265625 0.78125 -0.265625 0.28125 -0.265625 L 0.28125 0 C 0.578125 -0.03125 1.015625 -0.03125 1.203125 -0.03125 C 1.671875 -0.03125 1.6875 -0.03125 2.203125 0 L 2.203125 -0.265625 L 2.046875 -0.265625 C 1.46875 -0.265625 1.453125 -0.34375 1.453125 -0.625 Z M 1.453125 -1.796875 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-2"> <path style="stroke:none;" d="M 3.265625 -1.796875 C 3.4375 -1.796875 3.484375 -1.796875 3.484375 -1.984375 C 3.484375 -2.6875 3.09375 -3.515625 1.984375 -3.515625 C 1 -3.515625 0.234375 -2.703125 0.234375 -1.734375 C 0.234375 -0.703125 1.09375 0.078125 2.078125 0.078125 C 3.078125 0.078125 3.484375 -0.765625 3.484375 -0.953125 C 3.484375 -0.984375 3.453125 -1.0625 3.359375 -1.0625 C 3.265625 -1.0625 3.25 -1 3.234375 -0.953125 C 2.953125 -0.1875 2.265625 -0.171875 2.125 -0.171875 C 1.78125 -0.171875 1.40625 -0.328125 1.171875 -0.6875 C 0.9375 -1.0625 0.9375 -1.5625 0.9375 -1.796875 Z M 0.953125 -2 C 1.015625 -3.109375 1.6875 -3.296875 1.984375 -3.296875 C 2.90625 -3.296875 2.9375 -2.1875 2.9375 -2 Z M 0.953125 -2 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-3"> <path style="stroke:none;" d="M 1.46875 -3.140625 L 2.640625 -3.140625 L 2.640625 -3.40625 L 1.46875 -3.40625 L 1.46875 -4.859375 L 1.21875 -4.859375 C 1.21875 -4.140625 0.890625 -3.390625 0.15625 -3.359375 L 0.15625 -3.140625 L 0.875 -3.140625 L 0.875 -0.984375 C 0.875 -0.0625 1.578125 0.078125 1.9375 0.078125 C 2.46875 0.078125 2.78125 -0.390625 2.78125 -0.984375 L 2.78125 -1.421875 L 2.546875 -1.421875 L 2.546875 -1 C 2.546875 -0.453125 2.296875 -0.171875 2 -0.171875 C 1.46875 -0.171875 1.46875 -0.84375 1.46875 -0.96875 Z M 1.46875 -3.140625 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-4"> <path style="stroke:none;" d="M 1.53125 -4.859375 C 1.53125 -5.09375 1.359375 -5.296875 1.09375 -5.296875 C 0.875 -5.296875 0.65625 -5.125 0.65625 -4.875 C 0.65625 -4.59375 0.890625 -4.421875 1.09375 -4.421875 C 1.375 -4.421875 1.53125 -4.65625 1.53125 -4.859375 Z M 0.359375 -3.390625 L 0.359375 -3.125 C 0.859375 -3.125 0.9375 -3.078125 0.9375 -2.703125 L 0.9375 -0.609375 C 0.9375 -0.265625 0.84375 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.640625 -0.03125 1.078125 -0.03125 1.203125 -0.03125 C 1.296875 -0.03125 1.78125 -0.03125 2.046875 0 L 2.046875 -0.265625 C 1.53125 -0.265625 1.5 -0.296875 1.5 -0.609375 L 1.5 -3.484375 Z M 0.359375 -3.390625 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-5"> <path style="stroke:none;" d="M 2.59375 -5.390625 L 2.59375 -5.125 C 3.125 -5.125 3.203125 -5.078125 3.203125 -4.6875 L 3.203125 -3.015625 C 2.921875 -3.328125 2.546875 -3.484375 2.140625 -3.484375 C 1.15625 -3.484375 0.28125 -2.71875 0.28125 -1.703125 C 0.28125 -0.71875 1.0625 0.078125 2.0625 0.078125 C 2.53125 0.078125 2.90625 -0.140625 3.171875 -0.421875 L 3.171875 0.078125 L 4.375 0 L 4.375 -0.265625 C 3.828125 -0.265625 3.765625 -0.3125 3.765625 -0.703125 L 3.765625 -5.46875 Z M 3.171875 -0.984375 C 3.171875 -0.84375 3.171875 -0.8125 3.046875 -0.640625 C 2.828125 -0.328125 2.46875 -0.140625 2.09375 -0.140625 C 1.734375 -0.140625 1.421875 -0.328125 1.234375 -0.625 C 1.015625 -0.9375 0.984375 -1.3125 0.984375 -1.6875 C 0.984375 -2.140625 1.046875 -2.46875 1.234375 -2.75 C 1.421875 -3.03125 1.78125 -3.265625 2.171875 -3.265625 C 2.5625 -3.265625 2.9375 -3.0625 3.171875 -2.65625 Z M 3.171875 -0.984375 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-6"> <path style="stroke:none;" d="M 3.3125 -2.34375 C 3.3125 -3.125 2.5625 -3.515625 1.84375 -3.515625 C 1.1875 -3.515625 0.609375 -3.265625 0.609375 -2.75 C 0.609375 -2.515625 0.765625 -2.375 0.984375 -2.375 C 1.203125 -2.375 1.34375 -2.53125 1.34375 -2.734375 C 1.34375 -2.921875 1.234375 -3.0625 1.0625 -3.09375 C 1.34375 -3.296875 1.78125 -3.296875 1.828125 -3.296875 C 2.265625 -3.296875 2.71875 -2.984375 2.71875 -2.34375 L 2.71875 -2.09375 C 2.25 -2.078125 1.734375 -2.046875 1.171875 -1.828125 C 0.484375 -1.515625 0.34375 -1.0625 0.34375 -0.8125 C 0.34375 -0.125 1.140625 0.078125 1.6875 0.078125 C 2.265625 0.078125 2.625 -0.25 2.796875 -0.5625 C 2.828125 -0.265625 3.03125 0.046875 3.390625 0.046875 C 3.46875 0.046875 4.140625 0.015625 4.140625 -0.703125 L 4.140625 -1.140625 L 3.890625 -1.140625 L 3.890625 -0.703125 C 3.890625 -0.390625 3.765625 -0.265625 3.609375 -0.265625 C 3.3125 -0.265625 3.3125 -0.625 3.3125 -0.703125 Z M 2.71875 -1.109375 C 2.71875 -0.34375 2.0625 -0.140625 1.75 -0.140625 C 1.34375 -0.140625 1 -0.421875 1 -0.796875 C 1 -1.3125 1.484375 -1.859375 2.71875 -1.890625 Z M 2.71875 -1.109375 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-7"> <path style="stroke:none;" d="M 3.828125 -2.390625 C 3.828125 -3.046875 3.53125 -3.484375 2.703125 -3.484375 C 1.921875 -3.484375 1.5625 -2.90625 1.46875 -2.71875 L 1.46875 -3.484375 L 0.328125 -3.390625 L 0.328125 -3.125 C 0.859375 -3.125 0.921875 -3.078125 0.921875 -2.6875 L 0.921875 -0.609375 C 0.921875 -0.265625 0.828125 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.65625 -0.03125 1.015625 -0.03125 1.21875 -0.03125 C 1.453125 -0.03125 1.78125 -0.03125 2.125 0 L 2.125 -0.265625 C 1.625 -0.265625 1.515625 -0.265625 1.515625 -0.609375 L 1.515625 -2.046875 C 1.515625 -2.875 2.15625 -3.265625 2.640625 -3.265625 C 3.109375 -3.265625 3.234375 -2.921875 3.234375 -2.421875 L 3.234375 -0.609375 C 3.234375 -0.265625 3.140625 -0.265625 2.640625 -0.265625 L 2.640625 0 C 2.96875 -0.03125 3.328125 -0.03125 3.53125 -0.03125 C 3.765625 -0.03125 4.09375 -0.03125 4.4375 0 L 4.4375 -0.265625 C 3.921875 -0.265625 3.828125 -0.265625 3.828125 -0.609375 Z M 3.828125 -2.390625 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-8"> <path style="stroke:none;" d="M 2.8125 -3.3125 C 2.8125 -3.4375 2.8125 -3.515625 2.703125 -3.515625 C 2.671875 -3.515625 2.640625 -3.515625 2.515625 -3.390625 C 2.5 -3.390625 2.4375 -3.3125 2.40625 -3.3125 C 2.40625 -3.3125 2.390625 -3.3125 2.328125 -3.34375 C 2.203125 -3.4375 1.984375 -3.515625 1.625 -3.515625 C 0.515625 -3.515625 0.28125 -2.921875 0.28125 -2.546875 C 0.28125 -2.140625 0.5625 -1.921875 0.59375 -1.890625 C 0.90625 -1.65625 1.09375 -1.625 1.625 -1.53125 C 1.984375 -1.453125 2.59375 -1.34375 2.59375 -0.8125 C 2.59375 -0.5 2.390625 -0.140625 1.671875 -0.140625 C 0.875 -0.140625 0.640625 -0.75 0.53125 -1.171875 C 0.5 -1.28125 0.5 -1.3125 0.40625 -1.3125 C 0.28125 -1.3125 0.28125 -1.25 0.28125 -1.109375 L 0.28125 -0.125 C 0.28125 0 0.28125 0.078125 0.375 0.078125 C 0.421875 0.078125 0.4375 0.078125 0.578125 -0.078125 C 0.609375 -0.125 0.703125 -0.21875 0.734375 -0.265625 C 1.09375 0.0625 1.46875 0.078125 1.671875 0.078125 C 2.671875 0.078125 3.015625 -0.5 3.015625 -1.015625 C 3.015625 -1.390625 2.796875 -1.953125 1.859375 -2.125 C 1.796875 -2.140625 1.34375 -2.21875 1.3125 -2.21875 C 1.078125 -2.265625 0.703125 -2.4375 0.703125 -2.75 C 0.703125 -2.984375 0.875 -3.328125 1.625 -3.328125 C 2.515625 -3.328125 2.546875 -2.671875 2.5625 -2.453125 C 2.578125 -2.390625 2.625 -2.375 2.6875 -2.375 C 2.8125 -2.375 2.8125 -2.421875 2.8125 -2.578125 Z M 2.8125 -3.3125 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-1"> <path style="stroke:none;" d="M 1.65625 -2.140625 C 0.4375 -1.53125 0.359375 -0.78125 0.359375 -0.625 C 0.359375 -0.09375 0.984375 0.125 1.5625 0.125 C 2.703125 0.125 3.609375 -0.8125 3.609375 -0.9375 C 3.609375 -1 3.546875 -1 3.53125 -1 C 3.5 -1 3.296875 -1 3.0625 -0.75 C 2.953125 -0.625 2.609375 -0.265625 2.015625 -0.265625 C 1.640625 -0.265625 0.9375 -0.375 0.9375 -0.890625 C 0.9375 -1.109375 1.078125 -1.421875 1.296875 -1.640625 C 1.71875 -2.015625 2.296875 -2.03125 2.34375 -2.03125 C 2.484375 -2.03125 2.5625 -2.03125 2.71875 -2.125 C 2.828125 -2.203125 2.921875 -2.28125 2.921875 -2.359375 C 2.921875 -2.40625 2.875 -2.421875 2.796875 -2.421875 C 2.4375 -2.421875 1.640625 -2.515625 1.640625 -3.0625 C 1.640625 -3.15625 1.671875 -3.484375 1.984375 -3.640625 C 2.125 -3.71875 2.40625 -3.78125 2.6875 -3.78125 C 2.8125 -3.78125 2.96875 -3.765625 3.125 -3.71875 C 3.1875 -3.703125 3.359375 -3.671875 3.359375 -3.46875 C 3.359375 -3.40625 3.328125 -3.34375 3.296875 -3.296875 C 3.28125 -3.28125 3.265625 -3.25 3.265625 -3.234375 C 3.265625 -3.1875 3.296875 -3.171875 3.34375 -3.171875 C 3.515625 -3.171875 3.921875 -3.375 3.921875 -3.75 C 3.921875 -4.078125 3.546875 -4.171875 3.125 -4.171875 C 2.0625 -4.171875 1.078125 -3.5 1.078125 -2.796875 C 1.078125 -2.34375 1.546875 -2.171875 1.65625 -2.140625 Z M 1.65625 -2.140625 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-2"> <path style="stroke:none;" d="M 1.859375 -2.78125 C 1.90625 -2.875 1.90625 -2.9375 1.90625 -2.96875 C 1.90625 -3.15625 1.75 -3.3125 1.546875 -3.3125 C 1.3125 -3.3125 1.25 -3.109375 1.21875 -3.015625 L 0.390625 -0.484375 C 0.375 -0.453125 0.359375 -0.40625 0.359375 -0.375 C 0.359375 -0.28125 0.59375 -0.234375 0.609375 -0.234375 C 0.65625 -0.234375 0.6875 -0.28125 0.703125 -0.328125 Z M 1.859375 -2.78125 "></path> </symbol> <symbol overflow="visible" id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-3"> <path style="stroke:none;" d="M 5.75 -1.328125 C 5.046875 -0.8125 4.90625 -0.03125 4.90625 0 C 4.90625 0.09375 5 0.09375 5.0625 0.09375 C 5.1875 0.09375 5.1875 0.078125 5.234375 -0.09375 C 5.34375 -0.515625 5.609375 -0.8125 5.640625 -0.84375 C 6.03125 -1.234375 6.34375 -1.328125 6.609375 -1.390625 C 6.640625 -1.40625 6.6875 -1.4375 6.6875 -1.484375 C 6.6875 -1.546875 6.640625 -1.5625 6.59375 -1.5625 C 5.75 -1.78125 5.359375 -2.390625 5.21875 -2.90625 C 5.1875 -3.03125 5.1875 -3.046875 5.0625 -3.046875 C 4.984375 -3.046875 4.90625 -3.046875 4.90625 -2.953125 C 4.90625 -2.921875 5.046875 -2.140625 5.75 -1.640625 L 0.796875 -1.640625 C 0.703125 -1.640625 0.546875 -1.640625 0.546875 -1.484375 C 0.546875 -1.328125 0.703125 -1.328125 0.796875 -1.328125 Z M 5.75 -1.328125 "></path> </symbol> </g> </defs> <g id="Ml3VKnEQQNohmy6cbQj94_UWW1I=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph0-1" x="15.857557" y="13.775757"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph0-2" x="19.077989" y="13.775757"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph0-1" x="75.386457" y="13.775757"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph0-2" x="78.606889" y="13.775757"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph1-1" x="17.034092" y="50.856412"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph1-1" x="75.179474" y="50.856412"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph2-1" x="82.487261" y="46.560278"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -30.15999 9.996936 L -30.15999 -9.649701 " transform="matrix(0.990349,0,0,-0.990349,50.556422,28.205145)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487859 2.867588 C -2.034263 1.147866 -1.020574 0.335337 0.00100389 0.0000701936 C -1.020574 -0.335197 -2.034263 -1.147726 -2.487859 -2.867447 " transform="matrix(0,0.990349,0.990349,0,20.68743,37.999006)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-1" x="2.694826" y="31.686223"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-2" x="5.963392" y="31.686223"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-3" x="9.690553" y="31.686223"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-1" x="12.951872" y="28.900371"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -19.936323 17.55819 L 19.24651 17.55819 " transform="matrix(0.990349,0,0,-0.990349,50.556422,28.205145)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484986 2.870661 C -2.03139 1.146996 -1.021645 0.334466 -0.0000671129 -0.000800388 C -1.021645 -0.336067 -2.03139 -1.148596 -2.484986 -2.868318 " transform="matrix(0.990349,0,0,-0.990349,69.855535,10.815614)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-4" x="46.957493" y="8.030742"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-5" x="49.286771" y="8.030742"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 29.951383 9.996936 L 29.951383 -9.054109 " transform="matrix(0.990349,0,0,-0.990349,50.556422,28.205145)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486511 2.86838 C -2.032915 1.148659 -1.019226 0.336129 -0.00159211 0.000862645 C -1.019226 -0.334404 -2.032915 -1.146933 -2.486511 -2.870599 " transform="matrix(0,0.990349,0.990349,0,80.217896,37.407827)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-1" x="83.003233" y="32.254683"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-2" x="86.2718" y="32.254683"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-3" x="89.99896" y="32.254683"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-1" x="93.26028" y="29.468831"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-2" x="97.716851" y="26.985035"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -21.123562 -19.8852 L 19.037461 -19.8852 " transform="matrix(0.990349,0,0,-0.990349,50.556422,28.205145)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488429 2.869882 C -2.030888 1.146216 -1.021144 0.333687 0.000434151 -0.00158007 C -1.021144 -0.332903 -2.030888 -1.149376 -2.488429 -2.869098 " transform="matrix(0.990349,0,0,-0.990349,69.648008,47.896873)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-3" x="30.764293" y="59.240709"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-1" x="34.025756" y="59.240709"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-6" x="37.294323" y="59.240709"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-7" x="41.48797" y="59.240709"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph3-8" x="46.147316" y="59.240709"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-1" x="49.455154" y="56.454857"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-3" x="53.914623" y="56.454857"></use> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-1" x="61.149939" y="56.454857"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Ml3VKnEQQNohmy6cbQj94_UWW1I=-glyph4-2" x="65.603788" y="53.971061"></use> </g> </g> </svg> <p>and the joins:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="209.19pt" height="91.129pt" viewBox="0 0 209.19 91.129" version="1.2"> <defs> <g> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1"> <path style="stroke:none;" d="M 2.828125 -4.296875 C 0.46875 -3.015625 0.328125 -1.5 0.328125 -1.203125 C 0.328125 -0.3125 1.203125 0.265625 2.328125 0.265625 C 4.3125 0.265625 5.890625 -1.609375 5.890625 -1.859375 C 5.890625 -1.9375 5.84375 -1.9375 5.78125 -1.9375 C 5.640625 -1.9375 5.1875 -1.78125 4.921875 -1.421875 C 4.671875 -1.078125 4.171875 -0.390625 3.109375 -0.390625 C 2.28125 -0.390625 1.34375 -0.828125 1.34375 -1.71875 C 1.34375 -2.296875 2 -4.046875 3.875 -4.125 C 4.421875 -4.140625 4.84375 -4.5625 4.84375 -4.6875 C 4.84375 -4.765625 4.78125 -4.765625 4.71875 -4.765625 C 3.0625 -4.84375 2.71875 -5.65625 2.71875 -6.140625 C 2.71875 -6.40625 2.90625 -7.703125 4.5625 -7.703125 C 4.78125 -7.703125 5.6875 -7.65625 5.6875 -7.046875 C 5.6875 -6.859375 5.59375 -6.6875 5.546875 -6.625 C 5.515625 -6.578125 5.484375 -6.53125 5.484375 -6.484375 C 5.484375 -6.40625 5.5625 -6.40625 5.609375 -6.40625 C 5.953125 -6.40625 6.6875 -6.875 6.6875 -7.546875 C 6.6875 -8.25 5.875 -8.34375 5.34375 -8.34375 C 3.734375 -8.34375 1.71875 -7.078125 1.71875 -5.625 C 1.71875 -4.921875 2.25 -4.5 2.828125 -4.296875 Z M 2.828125 -4.296875 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-2"> <path style="stroke:none;" d="M 5.265625 -2.953125 C 5.265625 -4.234375 4.203125 -5.265625 2.953125 -5.265625 C 1.6875 -5.265625 0.65625 -4.203125 0.65625 -2.953125 C 0.65625 -1.703125 1.6875 -0.65625 2.953125 -0.65625 C 4.203125 -0.65625 5.265625 -1.6875 5.265625 -2.953125 Z M 2.953125 -1.140625 C 1.9375 -1.140625 1.125 -1.96875 1.125 -2.953125 C 1.125 -3.953125 1.9375 -4.78125 2.953125 -4.78125 C 3.9375 -4.78125 4.78125 -3.984375 4.78125 -2.953125 C 4.78125 -1.9375 3.9375 -1.140625 2.953125 -1.140625 Z M 2.953125 -1.140625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-1"> <path style="stroke:none;" d="M 2.09375 -3.734375 C 2.125 -3.84375 2.15625 -3.890625 2.15625 -3.984375 C 2.15625 -4.234375 1.921875 -4.40625 1.703125 -4.40625 C 1.390625 -4.40625 1.296875 -4.140625 1.265625 -4.03125 L 0.265625 -0.625 C 0.234375 -0.53125 0.234375 -0.5 0.234375 -0.5 C 0.234375 -0.421875 0.28125 -0.40625 0.359375 -0.390625 C 0.5 -0.328125 0.515625 -0.328125 0.53125 -0.328125 C 0.5625 -0.328125 0.609375 -0.328125 0.65625 -0.453125 Z M 2.09375 -3.734375 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-2"> <path style="stroke:none;" d="M 1.9375 -2.859375 C 0.71875 -2.28125 0.234375 -1.328125 0.234375 -0.828125 C 0.234375 -0.171875 0.921875 0.171875 1.671875 0.171875 C 3.046875 0.171875 4.171875 -1.078125 4.171875 -1.25 C 4.171875 -1.296875 4.140625 -1.3125 4.109375 -1.3125 C 4.0625 -1.3125 3.734375 -1.265625 3.484375 -0.9375 C 3.1875 -0.546875 2.796875 -0.296875 2.21875 -0.296875 C 1.6875 -0.296875 0.9375 -0.515625 0.9375 -1.171875 C 0.9375 -1.625 1.421875 -2.703125 2.703125 -2.734375 C 3.125 -2.75 3.390625 -3.046875 3.390625 -3.125 C 3.390625 -3.1875 3.34375 -3.203125 3.3125 -3.203125 C 2.078125 -3.25 1.875 -3.78125 1.875 -4.09375 C 1.875 -4.4375 2.078125 -5.09375 3.140625 -5.09375 C 3.296875 -5.09375 3.484375 -5.078125 3.671875 -5.015625 C 3.765625 -4.984375 3.96875 -4.921875 3.96875 -4.65625 C 3.96875 -4.546875 3.90625 -4.453125 3.875 -4.40625 C 3.859375 -4.375 3.828125 -4.34375 3.828125 -4.3125 C 3.828125 -4.28125 3.859375 -4.25 3.90625 -4.25 C 4.140625 -4.25 4.65625 -4.53125 4.65625 -5.015625 C 4.65625 -5.484375 4.046875 -5.5625 3.703125 -5.5625 C 2.53125 -5.5625 1.171875 -4.6875 1.171875 -3.734375 C 1.171875 -3.40625 1.375 -3.046875 1.9375 -2.859375 Z M 1.9375 -2.859375 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-1"> <path style="stroke:none;" d="M 1.796875 -4.859375 C 1.796875 -5.109375 1.59375 -5.296875 1.34375 -5.296875 C 1.109375 -5.296875 0.921875 -5.109375 0.921875 -4.875 C 0.921875 -4.59375 1.125 -4.421875 1.34375 -4.421875 C 1.609375 -4.421875 1.796875 -4.640625 1.796875 -4.859375 Z M 0.546875 -3.390625 L 0.546875 -3.125 C 1.140625 -3.125 1.21875 -3.078125 1.21875 -2.6875 L 1.21875 0.375 C 1.21875 0.59375 1.1875 1.390625 0.640625 1.390625 C 0.515625 1.390625 0.34375 1.359375 0.25 1.3125 C 0.296875 1.296875 0.453125 1.203125 0.453125 0.984375 C 0.453125 0.765625 0.3125 0.609375 0.09375 0.609375 C -0.109375 0.609375 -0.28125 0.734375 -0.28125 0.984375 C -0.28125 1.390625 0.15625 1.609375 0.640625 1.609375 C 1.28125 1.609375 1.796875 1.109375 1.796875 0.359375 L 1.796875 -3.484375 Z M 0.546875 -3.390625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-2"> <path style="stroke:none;" d="M 3.953125 -1.6875 C 3.953125 -2.671875 3.125 -3.515625 2.09375 -3.515625 C 1.046875 -3.515625 0.234375 -2.671875 0.234375 -1.6875 C 0.234375 -0.6875 1.078125 0.078125 2.09375 0.078125 C 3.109375 0.078125 3.953125 -0.6875 3.953125 -1.6875 Z M 2.09375 -0.171875 C 1.671875 -0.171875 1.328125 -0.375 1.15625 -0.640625 C 0.96875 -0.96875 0.9375 -1.359375 0.9375 -1.75 C 0.9375 -2.046875 0.9375 -2.53125 1.1875 -2.859375 C 1.390625 -3.140625 1.71875 -3.296875 2.09375 -3.296875 C 2.5 -3.296875 2.84375 -3.09375 3.015625 -2.828125 C 3.234375 -2.5 3.25 -2.0625 3.25 -1.75 C 3.25 -1.390625 3.234375 -0.953125 3 -0.625 C 2.796875 -0.3125 2.4375 -0.171875 2.09375 -0.171875 Z M 2.09375 -0.171875 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-3"> <path style="stroke:none;" d="M 1.53125 -4.859375 C 1.53125 -5.09375 1.359375 -5.296875 1.09375 -5.296875 C 0.875 -5.296875 0.65625 -5.125 0.65625 -4.875 C 0.65625 -4.59375 0.890625 -4.421875 1.09375 -4.421875 C 1.375 -4.421875 1.53125 -4.65625 1.53125 -4.859375 Z M 0.359375 -3.390625 L 0.359375 -3.125 C 0.859375 -3.125 0.9375 -3.078125 0.9375 -2.703125 L 0.9375 -0.609375 C 0.9375 -0.265625 0.84375 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.640625 -0.03125 1.078125 -0.03125 1.203125 -0.03125 C 1.296875 -0.03125 1.78125 -0.03125 2.046875 0 L 2.046875 -0.265625 C 1.53125 -0.265625 1.5 -0.296875 1.5 -0.609375 L 1.5 -3.484375 Z M 0.359375 -3.390625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-4"> <path style="stroke:none;" d="M 3.828125 -2.390625 C 3.828125 -3.046875 3.53125 -3.484375 2.703125 -3.484375 C 1.921875 -3.484375 1.5625 -2.90625 1.46875 -2.71875 L 1.46875 -3.484375 L 0.328125 -3.390625 L 0.328125 -3.125 C 0.859375 -3.125 0.921875 -3.078125 0.921875 -2.6875 L 0.921875 -0.609375 C 0.921875 -0.265625 0.828125 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.65625 -0.03125 1.015625 -0.03125 1.21875 -0.03125 C 1.453125 -0.03125 1.78125 -0.03125 2.125 0 L 2.125 -0.265625 C 1.625 -0.265625 1.515625 -0.265625 1.515625 -0.609375 L 1.515625 -2.046875 C 1.515625 -2.875 2.15625 -3.265625 2.640625 -3.265625 C 3.109375 -3.265625 3.234375 -2.921875 3.234375 -2.421875 L 3.234375 -0.609375 C 3.234375 -0.265625 3.140625 -0.265625 2.640625 -0.265625 L 2.640625 0 C 2.96875 -0.03125 3.328125 -0.03125 3.53125 -0.03125 C 3.765625 -0.03125 4.09375 -0.03125 4.4375 0 L 4.4375 -0.265625 C 3.921875 -0.265625 3.828125 -0.265625 3.828125 -0.609375 Z M 3.828125 -2.390625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-5"> <path style="stroke:none;" d="M 1.46875 -3.140625 L 2.640625 -3.140625 L 2.640625 -3.40625 L 1.46875 -3.40625 L 1.46875 -4.859375 L 1.21875 -4.859375 C 1.21875 -4.140625 0.890625 -3.390625 0.15625 -3.359375 L 0.15625 -3.140625 L 0.875 -3.140625 L 0.875 -0.984375 C 0.875 -0.0625 1.578125 0.078125 1.9375 0.078125 C 2.46875 0.078125 2.78125 -0.390625 2.78125 -0.984375 L 2.78125 -1.421875 L 2.546875 -1.421875 L 2.546875 -1 C 2.546875 -0.453125 2.296875 -0.171875 2 -0.171875 C 1.46875 -0.171875 1.46875 -0.84375 1.46875 -0.96875 Z M 1.46875 -3.140625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-6"> <path style="stroke:none;" d="M 1.453125 -1.796875 C 1.453125 -2.390625 1.703125 -3.25 2.453125 -3.265625 C 2.40625 -3.234375 2.328125 -3.171875 2.328125 -2.984375 C 2.328125 -2.734375 2.515625 -2.625 2.671875 -2.625 C 2.859375 -2.625 3.03125 -2.75 3.03125 -2.984375 C 3.03125 -3.265625 2.78125 -3.484375 2.4375 -3.484375 C 1.921875 -3.484375 1.5625 -3.09375 1.40625 -2.65625 L 1.390625 -2.65625 L 1.390625 -3.484375 L 0.28125 -3.390625 L 0.28125 -3.125 C 0.8125 -3.125 0.875 -3.078125 0.875 -2.6875 L 0.875 -0.609375 C 0.875 -0.265625 0.78125 -0.265625 0.28125 -0.265625 L 0.28125 0 C 0.578125 -0.03125 1.015625 -0.03125 1.203125 -0.03125 C 1.671875 -0.03125 1.6875 -0.03125 2.203125 0 L 2.203125 -0.265625 L 2.046875 -0.265625 C 1.46875 -0.265625 1.453125 -0.34375 1.453125 -0.625 Z M 1.453125 -1.796875 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-7"> <path style="stroke:none;" d="M 3.3125 -2.34375 C 3.3125 -3.125 2.5625 -3.515625 1.84375 -3.515625 C 1.1875 -3.515625 0.609375 -3.265625 0.609375 -2.75 C 0.609375 -2.515625 0.765625 -2.375 0.984375 -2.375 C 1.203125 -2.375 1.34375 -2.53125 1.34375 -2.734375 C 1.34375 -2.921875 1.234375 -3.0625 1.0625 -3.09375 C 1.34375 -3.296875 1.78125 -3.296875 1.828125 -3.296875 C 2.265625 -3.296875 2.71875 -2.984375 2.71875 -2.34375 L 2.71875 -2.09375 C 2.25 -2.078125 1.734375 -2.046875 1.171875 -1.828125 C 0.484375 -1.515625 0.34375 -1.0625 0.34375 -0.8125 C 0.34375 -0.125 1.140625 0.078125 1.6875 0.078125 C 2.265625 0.078125 2.625 -0.25 2.796875 -0.5625 C 2.828125 -0.265625 3.03125 0.046875 3.390625 0.046875 C 3.46875 0.046875 4.140625 0.015625 4.140625 -0.703125 L 4.140625 -1.140625 L 3.890625 -1.140625 L 3.890625 -0.703125 C 3.890625 -0.390625 3.765625 -0.265625 3.609375 -0.265625 C 3.3125 -0.265625 3.3125 -0.625 3.3125 -0.703125 Z M 2.71875 -1.109375 C 2.71875 -0.34375 2.0625 -0.140625 1.75 -0.140625 C 1.34375 -0.140625 1 -0.421875 1 -0.796875 C 1 -1.3125 1.484375 -1.859375 2.71875 -1.890625 Z M 2.71875 -1.109375 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-8"> <path style="stroke:none;" d="M 2.8125 -3.3125 C 2.8125 -3.4375 2.8125 -3.515625 2.703125 -3.515625 C 2.671875 -3.515625 2.640625 -3.515625 2.515625 -3.390625 C 2.5 -3.390625 2.4375 -3.3125 2.40625 -3.3125 C 2.40625 -3.3125 2.390625 -3.3125 2.328125 -3.34375 C 2.203125 -3.4375 1.984375 -3.515625 1.625 -3.515625 C 0.515625 -3.515625 0.28125 -2.921875 0.28125 -2.546875 C 0.28125 -2.140625 0.5625 -1.921875 0.59375 -1.890625 C 0.90625 -1.65625 1.09375 -1.625 1.625 -1.53125 C 1.984375 -1.453125 2.59375 -1.34375 2.59375 -0.8125 C 2.59375 -0.5 2.390625 -0.140625 1.671875 -0.140625 C 0.875 -0.140625 0.640625 -0.75 0.53125 -1.171875 C 0.5 -1.28125 0.5 -1.3125 0.40625 -1.3125 C 0.28125 -1.3125 0.28125 -1.25 0.28125 -1.109375 L 0.28125 -0.125 C 0.28125 0 0.28125 0.078125 0.375 0.078125 C 0.421875 0.078125 0.4375 0.078125 0.578125 -0.078125 C 0.609375 -0.125 0.703125 -0.21875 0.734375 -0.265625 C 1.09375 0.0625 1.46875 0.078125 1.671875 0.078125 C 2.671875 0.078125 3.015625 -0.5 3.015625 -1.015625 C 3.015625 -1.390625 2.796875 -1.953125 1.859375 -2.125 C 1.796875 -2.140625 1.34375 -2.21875 1.3125 -2.21875 C 1.078125 -2.265625 0.703125 -2.4375 0.703125 -2.75 C 0.703125 -2.984375 0.875 -3.328125 1.625 -3.328125 C 2.515625 -3.328125 2.546875 -2.671875 2.5625 -2.453125 C 2.578125 -2.390625 2.625 -2.375 2.6875 -2.375 C 2.8125 -2.375 2.8125 -2.421875 2.8125 -2.578125 Z M 2.8125 -3.3125 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1"> <path style="stroke:none;" d="M 1.65625 -2.140625 C 0.4375 -1.53125 0.359375 -0.78125 0.359375 -0.625 C 0.359375 -0.09375 0.984375 0.125 1.5625 0.125 C 2.703125 0.125 3.609375 -0.8125 3.609375 -0.9375 C 3.609375 -1 3.546875 -1 3.53125 -1 C 3.5 -1 3.296875 -1 3.0625 -0.75 C 2.953125 -0.625 2.609375 -0.265625 2.015625 -0.265625 C 1.640625 -0.265625 0.9375 -0.375 0.9375 -0.890625 C 0.9375 -1.109375 1.078125 -1.421875 1.296875 -1.640625 C 1.71875 -2.015625 2.296875 -2.03125 2.34375 -2.03125 C 2.484375 -2.03125 2.5625 -2.03125 2.71875 -2.125 C 2.828125 -2.203125 2.921875 -2.28125 2.921875 -2.359375 C 2.921875 -2.40625 2.875 -2.421875 2.796875 -2.421875 C 2.4375 -2.421875 1.640625 -2.515625 1.640625 -3.0625 C 1.640625 -3.15625 1.671875 -3.484375 1.984375 -3.640625 C 2.125 -3.71875 2.40625 -3.78125 2.6875 -3.78125 C 2.8125 -3.78125 2.96875 -3.765625 3.125 -3.71875 C 3.1875 -3.703125 3.359375 -3.671875 3.359375 -3.46875 C 3.359375 -3.40625 3.328125 -3.34375 3.296875 -3.296875 C 3.28125 -3.28125 3.265625 -3.25 3.265625 -3.234375 C 3.265625 -3.1875 3.296875 -3.171875 3.34375 -3.171875 C 3.515625 -3.171875 3.921875 -3.375 3.921875 -3.75 C 3.921875 -4.078125 3.546875 -4.171875 3.125 -4.171875 C 2.0625 -4.171875 1.078125 -3.5 1.078125 -2.796875 C 1.078125 -2.34375 1.546875 -2.171875 1.65625 -2.140625 Z M 1.65625 -2.140625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-2"> <path style="stroke:none;" d="M 5.75 -1.328125 C 5.046875 -0.8125 4.90625 -0.03125 4.90625 0 C 4.90625 0.09375 5 0.09375 5.0625 0.09375 C 5.1875 0.09375 5.1875 0.078125 5.234375 -0.09375 C 5.34375 -0.515625 5.609375 -0.8125 5.640625 -0.84375 C 6.03125 -1.234375 6.34375 -1.328125 6.609375 -1.390625 C 6.640625 -1.40625 6.6875 -1.4375 6.6875 -1.484375 C 6.6875 -1.546875 6.640625 -1.5625 6.59375 -1.5625 C 5.75 -1.78125 5.359375 -2.390625 5.21875 -2.90625 C 5.1875 -3.03125 5.1875 -3.046875 5.0625 -3.046875 C 4.984375 -3.046875 4.90625 -3.046875 4.90625 -2.953125 C 4.90625 -2.921875 5.046875 -2.140625 5.75 -1.640625 L 0.796875 -1.640625 C 0.703125 -1.640625 0.546875 -1.640625 0.546875 -1.484375 C 0.546875 -1.328125 0.703125 -1.328125 0.796875 -1.328125 Z M 5.75 -1.328125 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-3"> <path style="stroke:none;" d="M 1.859375 -2.78125 C 1.90625 -2.875 1.90625 -2.9375 1.90625 -2.96875 C 1.90625 -3.15625 1.75 -3.3125 1.546875 -3.3125 C 1.3125 -3.3125 1.25 -3.109375 1.21875 -3.015625 L 0.390625 -0.484375 C 0.375 -0.453125 0.359375 -0.40625 0.359375 -0.375 C 0.359375 -0.28125 0.59375 -0.234375 0.609375 -0.234375 C 0.65625 -0.234375 0.6875 -0.28125 0.703125 -0.328125 Z M 1.859375 -2.78125 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph4-1"> <path style="stroke:none;" d="M 4.578125 13.5625 C 2.796875 11.84375 2.171875 9.359375 2.171875 6.75 C 2.171875 4.484375 2.65625 1.78125 4.546875 -0.0625 C 4.578125 -0.09375 4.65625 -0.15625 4.6875 -0.1875 C 4.703125 -0.21875 4.703125 -0.234375 4.703125 -0.265625 C 4.703125 -0.359375 4.625 -0.359375 4.53125 -0.359375 C 4.4375 -0.359375 4.421875 -0.359375 4.359375 -0.3125 C 2.671875 1.0625 1.515625 3.515625 1.515625 6.734375 C 1.515625 9.421875 2.328125 12 4.1875 13.640625 C 4.296875 13.75 4.375 13.796875 4.375 13.8125 C 4.421875 13.84375 4.4375 13.84375 4.53125 13.84375 C 4.625 13.84375 4.703125 13.84375 4.703125 13.75 C 4.703125 13.734375 4.703125 13.71875 4.703125 13.703125 Z M 4.578125 13.5625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph4-2"> <path style="stroke:none;" d="M 3.484375 6.734375 C 3.484375 4.109375 2.703125 1.515625 0.828125 -0.15625 C 0.703125 -0.265625 0.625 -0.3125 0.625 -0.328125 C 0.578125 -0.359375 0.5625 -0.359375 0.46875 -0.359375 C 0.390625 -0.359375 0.296875 -0.359375 0.296875 -0.265625 C 0.296875 -0.234375 0.296875 -0.21875 0.421875 -0.078125 C 2.25 1.6875 2.828125 4.234375 2.828125 6.75 C 2.828125 8.984375 2.359375 11.703125 0.453125 13.546875 C 0.421875 13.578125 0.34375 13.65625 0.3125 13.671875 C 0.3125 13.6875 0.296875 13.71875 0.296875 13.75 C 0.296875 13.84375 0.390625 13.84375 0.46875 13.84375 C 0.5625 13.84375 0.578125 13.84375 0.640625 13.796875 C 2.296875 12.4375 3.484375 10.015625 3.484375 6.734375 Z M 3.484375 6.734375 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph5-1"> <path style="stroke:none;" d="M 2.359375 1.34375 C 1.703125 0.84375 1.171875 -0.09375 1.171875 -1.484375 C 1.171875 -2.84375 1.6875 -3.796875 2.359375 -4.296875 C 2.359375 -4.3125 2.375 -4.328125 2.375 -4.359375 C 2.375 -4.390625 2.34375 -4.4375 2.28125 -4.4375 C 2.171875 -4.4375 0.75 -3.515625 0.75 -1.484375 C 0.75 0.546875 2.171875 1.484375 2.28125 1.484375 C 2.34375 1.484375 2.375 1.4375 2.375 1.390625 C 2.375 1.375 2.359375 1.34375 2.359375 1.34375 Z M 2.359375 1.34375 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph5-2"> <path style="stroke:none;" d="M 2 -1.0625 L 2 -1.484375 L 0.15625 -1.484375 L 0.15625 -1.0625 Z M 2 -1.0625 "></path> </symbol> <symbol overflow="visible" id="WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph5-3"> <path style="stroke:none;" d="M 2.09375 -1.484375 C 2.09375 -3.5 0.671875 -4.4375 0.5625 -4.4375 C 0.484375 -4.4375 0.46875 -4.390625 0.46875 -4.359375 C 0.46875 -4.328125 0.484375 -4.3125 0.59375 -4.21875 C 1.125 -3.765625 1.671875 -2.890625 1.671875 -1.484375 C 1.671875 -0.21875 1.234375 0.71875 0.5625 1.28125 C 0.484375 1.359375 0.46875 1.359375 0.46875 1.390625 C 0.46875 1.421875 0.484375 1.484375 0.5625 1.484375 C 0.671875 1.484375 2.09375 0.546875 2.09375 -1.484375 Z M 2.09375 -1.484375 "></path> </symbol> </g> </defs> <g id="WCHIbF5aRNr5dJvByYStEkVrYy4=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="11.721672" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-2" x="21.666597" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="30.216532" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="87.194314" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-2" x="97.139238" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="105.689173" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-1" x="112.996698" y="18.208961"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="165.436484" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-1" x="172.745625" y="18.208961"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-2" x="178.145018" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="186.694953" y="22.506882"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-1" x="194.007407" y="18.208961"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="20.968294" y="79.330766"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph0-1" x="176.06688" y="79.330766"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-1" x="183.376021" y="75.033836"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -80.388287 19.724501 L -80.388287 -19.845435 " transform="matrix(0.990533,0,0,-0.990533,104.248314,46.576824)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486549 2.870493 C -2.033036 1.147146 -1.019535 0.334768 0.00185389 -0.000437208 C -1.019535 -0.335642 -2.033036 -1.148021 -2.486549 -2.867424 " transform="matrix(0,0.990533,0.990533,0,24.621527,66.47082)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-1" x="3.138707" y="49.555356"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-2" x="5.702098" y="49.555356"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-3" x="9.896522" y="49.555356"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-4" x="12.226232" y="49.555356"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="16.885319" y="46.700641"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -62.015123 27.288298 L -23.040667 27.288298 " transform="matrix(0.990533,0,0,-0.990533,104.248314,46.576824)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485441 2.869529 C -2.031929 1.146182 -1.018427 0.333803 -0.000982223 -0.00140168 C -1.018427 -0.336606 -2.031929 -1.148985 -2.485441 -2.868388 " transform="matrix(0.990533,0,0,-0.990533,81.661129,19.545487)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph1-2" x="35.795577" y="11.628853"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph4-1" x="40.905734" y="2.905232"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-5" x="45.914858" y="11.628853"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-6" x="49.176925" y="11.628853"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-7" x="52.446097" y="11.628853"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-4" x="56.640521" y="11.628853"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-8" x="61.300729" y="11.628853"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="64.60918" y="8.842485"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-2" x="69.069475" y="8.842485"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="76.30613" y="8.842485"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-3" x="80.760804" y="6.357238"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph4-2" x="83.91367" y="2.905232"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 16.974894 27.288298 L 55.94935 27.288298 " transform="matrix(0.990533,0,0,-0.990533,104.248314,46.576824)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485724 2.869529 C -2.032212 1.146182 -1.01871 0.333803 -0.00126532 -0.00140168 C -1.01871 -0.336606 -2.032212 -1.148985 -2.485724 -2.868388 " transform="matrix(0.990533,0,0,-0.990533,159.903597,19.545487)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-5" x="121.601454" y="11.655597"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-6" x="124.863521" y="11.655597"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-7" x="128.132693" y="11.655597"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-4" x="132.327118" y="11.655597"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-8" x="136.987326" y="11.655597"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="140.295776" y="8.87022"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-2" x="144.756071" y="8.87022"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="151.992727" y="8.87022"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-3" x="156.447401" y="6.384973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="140.295776" y="15.279956"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-3" x="144.753173" y="13.580202"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph5-1" x="147.411763" y="15.279956"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph5-2" x="150.262728" y="15.279956"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph5-3" x="152.730012" y="15.279956"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 77.591747 19.724501 L 77.591747 -19.249954 " transform="matrix(0.990533,0,0,-0.990533,104.248314,46.576824)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48507 2.869947 C -2.031558 1.1466 -1.018056 0.334221 -0.000611103 -0.00098341 C -1.018056 -0.336188 -2.031558 -1.148567 -2.48507 -2.86797 " transform="matrix(0,0.990533,0.990533,0,181.106443,65.879512)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-1" x="183.892088" y="50.123922"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-2" x="186.455479" y="50.123922"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-3" x="190.649903" y="50.123922"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-4" x="192.979613" y="50.123922"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="197.63969" y="47.269207"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-3" x="202.097087" y="44.784951"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -71.353533 -30.079039 L 66.679846 -30.079039 " transform="matrix(0.990533,0,0,-0.990533,104.248314,46.576824)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487848 2.870341 C -2.030392 1.146994 -1.020834 0.334615 0.000554317 -0.000589461 C -1.020834 -0.335794 -2.030392 -1.148173 -2.487848 -2.867576 " transform="matrix(0.990533,0,0,-0.990533,170.534607,76.37051)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-5" x="83.172751" y="87.716615"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-6" x="86.434818" y="87.716615"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-7" x="89.70399" y="87.716615"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-4" x="93.898415" y="87.716615"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph2-8" x="98.558623" y="87.716615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="101.867073" y="84.930247"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-2" x="106.327368" y="84.930247"></use> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-1" x="113.564024" y="84.930247"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#WCHIbF5aRNr5dJvByYStEkVrYy4=-glyph3-3" x="118.018698" y="82.445991"></use> </g> </g> </svg> <p>in that it makes these <a class="existingWikiWord" href="/nlab/show/commuting+square">squares commute</a>.</p> <p></p> </div> </p> <p> <div class='num_remark' id='ExtensionOfModalesAlongMonadTransformation'> <h6>Remark</h6> <p>A monad transformation as in Exp. <a class="maruku-ref" href="#TransformationOfMonadsOnFixedCategory"></a> <a class="existingWikiWord" href="/nlab/show/contravariant+functor">contravariantly</a> induces a <a class="existingWikiWord" href="/nlab/show/functor">functor</a> of <a class="existingWikiWord" href="/nlab/show/Eilenberg-Moore+categories">Eilenberg-Moore categories</a> of <a class="existingWikiWord" href="/nlab/show/module+over+a+monad">modales</a> by <a class="existingWikiWord" href="/nlab/show/extension+of+scalars">extension of scalars</a> [<a href="#Frei69">Frei 1969, Thm. 2</a>, <a href="#BarrWells85">Barr & Wells 1985 thm. 6.3</a>]:</p> <div style="margin: -20px 0px 20px 10px"> <img src="/nlab/files/FunctorOnModalesFromMonadMorphism-230924.jpg" width="450px" /> </div> <p>Since this <a class="existingWikiWord" href="/nlab/show/extension+of+scalars">extension of scalars</a> is the identity on <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/objects">objects</a>, it cannot in general restrict to a functor on <a class="existingWikiWord" href="/nlab/show/Kleisli+categories">Kleisli categories</a>.</p> <p id="ExtensionOfFreeModalesAlsoIsomorphicMonadTransformation"> However, when the <a class="existingWikiWord" href="/nlab/show/monad+transformation">monad transformation</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>tr</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>ℰ</mi><mo>→</mo><mi>ℰ</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">tr \,\colon\, \mathcal{E} \to \mathcal{E}'</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>tr</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">tr^\ast</annotation></semantics></math> does take <a href="algebra+over+a+monad#FreeAlgebras">free modales</a> to free modales up to <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>. This is seen from the following diagram:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>ℰ</mi><mi>ℰ</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>⟶</mo><mrow><mi>ℰ</mi><mo stretchy="false">(</mo><msub><mi>tr</mi> <mi>D</mi></msub><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>ℰ</mi><mi>ℰ</mi><mo>′</mo><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>⟶</mo><mrow><msubsup><mi>trans</mi> <mrow><mi>ℰ</mi><mo>′</mo><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow> <mrow><mi>ℰ</mi><mo>→</mo><mi>ℰ</mi><mo>′</mo></mrow></msubsup></mrow></mover></mtd> <mtd><mi>ℰ</mi><mo>′</mo><mi>ℰ</mi><mo>′</mo><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo maxsize="1.8em" minsize="1.8em">↓</mo><mpadded width="0"><mrow><msup><mrow></mrow> <mrow><msubsup><mi>join</mi> <mi>D</mi> <mi>ℰ</mi></msubsup></mrow></msup></mrow></mpadded></mtd> <mtd></mtd> <mtd><mo maxsize="1.8em" minsize="1.8em">↓</mo><mpadded width="0"><mrow><msup><mrow></mrow> <mrow><msup><mi>trans</mi> <mo>*</mo></msup><msubsup><mi>join</mi> <mi>D</mi> <mrow><mi>ℰ</mi><mo>′</mo></mrow></msubsup></mrow></msup></mrow></mpadded></mtd> <mtd></mtd> <mtd><mo maxsize="1.8em" minsize="1.8em">↓</mo><mpadded width="0"><mrow><msup><mrow></mrow> <mrow><msubsup><mi>join</mi> <mi>D</mi> <mrow><mi>ℰ</mi><mo>′</mo></mrow></msubsup></mrow></msup></mrow></mpadded></mtd></mtr> <mtr><mtd><mi>ℰ</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mtd> <mtd><munder><mo>⟶</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msubsup><mi>trans</mi> <mi>D</mi> <mrow><mi>ℰ</mi><mo>→</mo><mi>ℰ</mi><mo>′</mo></mrow></msubsup><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></munder></mtd> <mtd><mi>ℰ</mi><mo>′</mo><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><mi>ℰ</mi><mo>′</mo><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathcal{E} \mathcal{E}(D) & \overset{ \mathcal{E}(tr_D) }{\longrightarrow} & \mathcal{E} \mathcal{E}'(D) & \overset{ trans ^{\mathcal{E} \to \mathcal{E}'} _{\mathcal{E}'(D)} }{\longrightarrow} & \mathcal{E}' \mathcal{E}'(D) \\ \Big\downarrow\mathrlap{ {}^{ join^{\mathcal{E}}_D } } && \Big\downarrow\mathrlap{ {}^{ trans^\ast join^{\mathcal{E}'}_D } } && \Big\downarrow\mathrlap{ {}^{ join^{\mathcal{E}'}_D } } \\ \mathcal{E}(D) & \underset{ \;\; trans^{\mathcal{E} \to \mathcal{E}'}_D \;\; }{\longrightarrow} & \mathcal{E}'(D) &=& \mathcal{E}'(D) } </annotation></semantics></math></div> <p>Here the middle vertical morphism is the nominal image under extension of the free modale on the right along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>trans</mi> <mrow><mi>ℰ</mi><mo>→</mo><mi>ℰ</mi><mo>′</mo></mrow></msup></mrow><annotation encoding="application/x-tex">trans^{\mathcal{E} \to \mathcal{E}'}</annotation></semantics></math>, but the square on the left, which commutes by assumption on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>trans</mi> <mrow><mi>ℰ</mi><mo>→</mo><mi>ℰ</mi><mo>′</mo></mrow></msup></mrow><annotation encoding="application/x-tex">trans^{\mathcal{E} \to \mathcal{E}'}</annotation></semantics></math>, exhibits an isomorphism from the middle modale to the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">\mathcal{E}</annotation></semantics></math>-free modale on the left.</p> </div> </p> <p> <div class='num_remark' id='MonadTransformers'> <h6>Remark</h6> <p><strong>(monad transfomers)</strong> <br /> When monads are used to model <a class="existingWikiWord" href="/nlab/show/computational+effects">computational effects</a> in <a class="existingWikiWord" href="/nlab/show/functional+programming">functional programming</a>, a common concern is to <em>combine</em> different effects, such that previous effects are subsumed among the newly combined effects. This is formalized by “<a class="existingWikiWord" href="/nlab/show/monad+transformers">monad transformers</a>” which are systems of morphisms of monads as in Exp. <a class="maruku-ref" href="#TransformationOfMonadsOnFixedCategory"></a>, forming a <a class="existingWikiWord" href="/nlab/show/pointed+endofunctor">pointed endofunctor</a> on the category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Mnd</mi></mrow><annotation encoding="application/x-tex">Mnd</annotation></semantics></math> of all monads.</p> </div> </p> <p> <div class='num_remark' id='IdentityMonadIsInitial'> <h6>Example</h6> <p>The <a class="existingWikiWord" href="/nlab/show/initial+object">initial object</a> in the category of monads on a fixed category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math> (Exp. <a class="maruku-ref" href="#TransformationOfMonadsOnFixedCategory"></a>) is the identity monad.</p> </div> <div class='proof'> <h6>Proof</h6> <p>We need to show that for every monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">\mathcal{E}</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math> there is a natural transformation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>trans</mi> <mrow><mi>Id</mi><mo>→</mo><mi>ℰ</mi></mrow></msup><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>Id</mi><mo>→</mo><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">trans^{Id \to \mathcal{E}} \,\colon\, Id \to \mathcal{E}</annotation></semantics></math> which makes, first of all, this square commute:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="157.752pt" height="105.475pt" viewBox="0 0 157.752 105.475" version="1.2"> <defs> <g> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-1"> <path style="stroke:none;" d="M 1.859375 -0.875 C 1.765625 -0.46875 1.734375 -0.34375 0.90625 -0.34375 C 0.671875 -0.34375 0.5625 -0.34375 0.5625 -0.125 C 0.5625 0 0.625 0 0.875 0 L 4.640625 0 C 7.046875 0 9.375 -2.484375 9.375 -5.140625 C 9.375 -6.84375 8.359375 -8.125 6.65625 -8.125 L 2.84375 -8.125 C 2.609375 -8.125 2.515625 -8.125 2.515625 -7.890625 C 2.515625 -7.78125 2.609375 -7.78125 2.796875 -7.78125 C 3.515625 -7.78125 3.515625 -7.6875 3.515625 -7.546875 C 3.515625 -7.53125 3.515625 -7.453125 3.46875 -7.28125 Z M 4.375 -7.3125 C 4.484375 -7.75 4.53125 -7.78125 5 -7.78125 L 6.296875 -7.78125 C 7.421875 -7.78125 8.4375 -7.171875 8.4375 -5.53125 C 8.4375 -4.9375 8.203125 -2.859375 7.046875 -1.5625 C 6.71875 -1.171875 5.8125 -0.34375 4.453125 -0.34375 L 3.09375 -0.34375 C 2.921875 -0.34375 2.90625 -0.34375 2.828125 -0.359375 C 2.703125 -0.375 2.6875 -0.390625 2.6875 -0.484375 C 2.6875 -0.578125 2.71875 -0.640625 2.734375 -0.75 Z M 4.375 -7.3125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-2"> <path style="stroke:none;" d="M 2.3125 0.046875 C 2.3125 -0.640625 2.09375 -1.15625 1.609375 -1.15625 C 1.21875 -1.15625 1.03125 -0.84375 1.03125 -0.578125 C 1.03125 -0.328125 1.21875 0 1.609375 0 C 1.765625 0 1.90625 -0.046875 2.015625 -0.15625 C 2.03125 -0.171875 2.046875 -0.171875 2.0625 -0.171875 C 2.078125 -0.171875 2.078125 -0.015625 2.078125 0.046875 C 2.078125 0.4375 2.015625 1.21875 1.3125 1.984375 C 1.1875 2.125 1.1875 2.15625 1.1875 2.171875 C 1.1875 2.234375 1.25 2.296875 1.3125 2.296875 C 1.40625 2.296875 2.3125 1.421875 2.3125 0.046875 Z M 2.3125 0.046875 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph1-1"> <path style="stroke:none;" d="M 2.84375 -4.3125 C 0.46875 -3.03125 0.328125 -1.5 0.328125 -1.21875 C 0.328125 -0.3125 1.21875 0.265625 2.34375 0.265625 C 4.328125 0.265625 5.921875 -1.609375 5.921875 -1.859375 C 5.921875 -1.9375 5.859375 -1.953125 5.796875 -1.953125 C 5.65625 -1.953125 5.203125 -1.796875 4.9375 -1.421875 C 4.6875 -1.078125 4.1875 -0.390625 3.125 -0.390625 C 2.28125 -0.390625 1.34375 -0.828125 1.34375 -1.71875 C 1.34375 -2.3125 2.015625 -4.0625 3.890625 -4.140625 C 4.453125 -4.15625 4.859375 -4.578125 4.859375 -4.703125 C 4.859375 -4.78125 4.796875 -4.796875 4.75 -4.796875 C 3.0625 -4.859375 2.734375 -5.6875 2.734375 -6.15625 C 2.734375 -6.4375 2.90625 -7.734375 4.578125 -7.734375 C 4.796875 -7.734375 5.703125 -7.6875 5.703125 -7.078125 C 5.703125 -6.890625 5.609375 -6.71875 5.5625 -6.640625 C 5.546875 -6.609375 5.5 -6.546875 5.5 -6.515625 C 5.5 -6.4375 5.59375 -6.4375 5.625 -6.4375 C 5.984375 -6.4375 6.71875 -6.890625 6.71875 -7.578125 C 6.71875 -8.28125 5.890625 -8.390625 5.359375 -8.390625 C 3.75 -8.390625 1.71875 -7.09375 1.71875 -5.640625 C 1.71875 -4.953125 2.265625 -4.515625 2.84375 -4.3125 Z M 2.84375 -4.3125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph2-1"> <path style="stroke:none;" d="M 3.859375 2.890625 C 3.859375 2.859375 3.859375 2.828125 3.65625 2.625 C 2.46875 1.421875 1.8125 -0.53125 1.8125 -2.953125 C 1.8125 -5.265625 2.359375 -7.25 3.75 -8.65625 C 3.859375 -8.765625 3.859375 -8.78125 3.859375 -8.828125 C 3.859375 -8.890625 3.8125 -8.921875 3.75 -8.921875 C 3.609375 -8.921875 2.625 -8.0625 2.046875 -6.890625 C 1.4375 -5.703125 1.171875 -4.421875 1.171875 -2.953125 C 1.171875 -1.90625 1.328125 -0.484375 1.953125 0.78125 C 2.65625 2.21875 3.625 2.984375 3.75 2.984375 C 3.8125 2.984375 3.859375 2.953125 3.859375 2.890625 Z M 3.859375 2.890625 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph2-2"> <path style="stroke:none;" d="M 3.359375 -2.953125 C 3.359375 -3.859375 3.234375 -5.34375 2.5625 -6.71875 C 1.859375 -8.140625 0.890625 -8.921875 0.765625 -8.921875 C 0.71875 -8.921875 0.65625 -8.890625 0.65625 -8.828125 C 0.65625 -8.78125 0.65625 -8.765625 0.859375 -8.5625 C 2.046875 -7.359375 2.71875 -5.390625 2.71875 -2.96875 C 2.71875 -0.671875 2.15625 1.3125 0.765625 2.71875 C 0.65625 2.828125 0.65625 2.859375 0.65625 2.890625 C 0.65625 2.953125 0.71875 2.984375 0.765625 2.984375 C 0.921875 2.984375 1.890625 2.125 2.46875 0.96875 C 3.078125 -0.25 3.359375 -1.53125 3.359375 -2.953125 Z M 3.359375 -2.953125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-1"> <path style="stroke:none;" d="M 1.46875 -3.15625 L 2.65625 -3.15625 L 2.65625 -3.421875 L 1.46875 -3.421875 L 1.46875 -4.875 L 1.234375 -4.875 C 1.21875 -4.15625 0.890625 -3.40625 0.15625 -3.375 L 0.15625 -3.15625 L 0.875 -3.15625 L 0.875 -0.984375 C 0.875 -0.0625 1.59375 0.078125 1.953125 0.078125 C 2.484375 0.078125 2.796875 -0.390625 2.796875 -0.984375 L 2.796875 -1.4375 L 2.5625 -1.4375 L 2.5625 -1.015625 C 2.5625 -0.453125 2.3125 -0.171875 2.015625 -0.171875 C 1.46875 -0.171875 1.46875 -0.84375 1.46875 -0.96875 Z M 1.46875 -3.15625 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-2"> <path style="stroke:none;" d="M 1.453125 -1.8125 C 1.453125 -2.40625 1.703125 -3.265625 2.46875 -3.28125 C 2.421875 -3.25 2.34375 -3.1875 2.34375 -3 C 2.34375 -2.75 2.53125 -2.640625 2.6875 -2.640625 C 2.875 -2.640625 3.046875 -2.765625 3.046875 -3 C 3.046875 -3.28125 2.796875 -3.5 2.4375 -3.5 C 1.921875 -3.5 1.578125 -3.109375 1.40625 -2.671875 L 1.40625 -3.5 L 0.28125 -3.40625 L 0.28125 -3.15625 C 0.8125 -3.15625 0.875 -3.09375 0.875 -2.703125 L 0.875 -0.625 C 0.875 -0.265625 0.78125 -0.265625 0.28125 -0.265625 L 0.28125 0 C 0.59375 -0.03125 1.03125 -0.03125 1.21875 -0.03125 C 1.6875 -0.03125 1.703125 -0.03125 2.21875 0 L 2.21875 -0.265625 L 2.0625 -0.265625 C 1.46875 -0.265625 1.453125 -0.34375 1.453125 -0.640625 Z M 1.453125 -1.8125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-3"> <path style="stroke:none;" d="M 3.328125 -2.359375 C 3.328125 -3.140625 2.578125 -3.546875 1.859375 -3.546875 C 1.203125 -3.546875 0.609375 -3.28125 0.609375 -2.765625 C 0.609375 -2.53125 0.78125 -2.375 0.984375 -2.375 C 1.203125 -2.375 1.359375 -2.546875 1.359375 -2.75 C 1.359375 -2.9375 1.234375 -3.078125 1.0625 -3.125 C 1.359375 -3.3125 1.78125 -3.3125 1.84375 -3.3125 C 2.28125 -3.3125 2.734375 -3.015625 2.734375 -2.359375 L 2.734375 -2.109375 C 2.265625 -2.09375 1.734375 -2.0625 1.1875 -1.828125 C 0.484375 -1.53125 0.34375 -1.078125 0.34375 -0.8125 C 0.34375 -0.125 1.15625 0.078125 1.703125 0.078125 C 2.28125 0.078125 2.640625 -0.25 2.8125 -0.5625 C 2.84375 -0.265625 3.0625 0.046875 3.40625 0.046875 C 3.484375 0.046875 4.15625 0.015625 4.15625 -0.71875 L 4.15625 -1.15625 L 3.90625 -1.15625 L 3.90625 -0.71875 C 3.90625 -0.390625 3.796875 -0.265625 3.625 -0.265625 C 3.328125 -0.265625 3.328125 -0.625 3.328125 -0.71875 Z M 2.734375 -1.125 C 2.734375 -0.34375 2.078125 -0.140625 1.765625 -0.140625 C 1.34375 -0.140625 1 -0.421875 1 -0.796875 C 1 -1.328125 1.5 -1.859375 2.734375 -1.90625 Z M 2.734375 -1.125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-4"> <path style="stroke:none;" d="M 3.859375 -2.40625 C 3.859375 -3.078125 3.5625 -3.5 2.71875 -3.5 C 1.9375 -3.5 1.578125 -2.921875 1.484375 -2.734375 L 1.46875 -2.734375 L 1.46875 -3.5 L 0.328125 -3.40625 L 0.328125 -3.15625 C 0.859375 -3.15625 0.921875 -3.09375 0.921875 -2.703125 L 0.921875 -0.625 C 0.921875 -0.265625 0.828125 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.671875 -0.03125 1.015625 -0.03125 1.234375 -0.03125 C 1.453125 -0.03125 1.796875 -0.03125 2.140625 0 L 2.140625 -0.265625 C 1.625 -0.265625 1.53125 -0.265625 1.53125 -0.625 L 1.53125 -2.0625 C 1.53125 -2.890625 2.171875 -3.28125 2.65625 -3.28125 C 3.140625 -3.28125 3.25 -2.9375 3.25 -2.4375 L 3.25 -0.625 C 3.25 -0.265625 3.15625 -0.265625 2.65625 -0.265625 L 2.65625 0 C 3 -0.03125 3.34375 -0.03125 3.5625 -0.03125 C 3.78125 -0.03125 4.125 -0.03125 4.453125 0 L 4.453125 -0.265625 C 3.953125 -0.265625 3.859375 -0.265625 3.859375 -0.625 Z M 3.859375 -2.40625 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-5"> <path style="stroke:none;" d="M 2.828125 -3.328125 C 2.828125 -3.453125 2.828125 -3.546875 2.71875 -3.546875 C 2.6875 -3.546875 2.65625 -3.546875 2.53125 -3.40625 C 2.515625 -3.40625 2.4375 -3.328125 2.421875 -3.328125 C 2.40625 -3.328125 2.390625 -3.328125 2.34375 -3.359375 C 2.21875 -3.453125 2 -3.546875 1.640625 -3.546875 C 0.53125 -3.546875 0.28125 -2.9375 0.28125 -2.5625 C 0.28125 -2.15625 0.578125 -1.921875 0.59375 -1.90625 C 0.90625 -1.671875 1.09375 -1.640625 1.625 -1.546875 C 2 -1.46875 2.609375 -1.359375 2.609375 -0.8125 C 2.609375 -0.515625 2.40625 -0.140625 1.671875 -0.140625 C 0.875 -0.140625 0.640625 -0.765625 0.546875 -1.1875 C 0.515625 -1.28125 0.5 -1.328125 0.40625 -1.328125 C 0.28125 -1.328125 0.28125 -1.265625 0.28125 -1.109375 L 0.28125 -0.125 C 0.28125 0 0.28125 0.078125 0.375 0.078125 C 0.421875 0.078125 0.4375 0.078125 0.578125 -0.078125 C 0.625 -0.125 0.703125 -0.21875 0.75 -0.265625 C 1.109375 0.0625 1.46875 0.078125 1.6875 0.078125 C 2.6875 0.078125 3.046875 -0.5 3.046875 -1.03125 C 3.046875 -1.40625 2.8125 -1.953125 1.859375 -2.140625 C 1.796875 -2.15625 1.359375 -2.234375 1.328125 -2.234375 C 1.078125 -2.28125 0.703125 -2.453125 0.703125 -2.765625 C 0.703125 -3.015625 0.875 -3.34375 1.640625 -3.34375 C 2.53125 -3.34375 2.5625 -2.6875 2.578125 -2.46875 C 2.59375 -2.40625 2.640625 -2.375 2.703125 -2.375 C 2.828125 -2.375 2.828125 -2.4375 2.828125 -2.59375 Z M 2.828125 -3.328125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-6"> <path style="stroke:none;" d="M 5.796875 -2.640625 C 5.921875 -2.640625 6.078125 -2.640625 6.078125 -2.828125 C 6.078125 -3.015625 5.890625 -3.015625 5.765625 -3.015625 L 0.78125 -3.015625 C 0.65625 -3.015625 0.46875 -3.015625 0.46875 -2.828125 C 0.46875 -2.640625 0.625 -2.640625 0.75 -2.640625 Z M 5.765625 -0.953125 C 5.890625 -0.953125 6.078125 -0.953125 6.078125 -1.140625 C 6.078125 -1.328125 5.921875 -1.328125 5.796875 -1.328125 L 0.75 -1.328125 C 0.625 -1.328125 0.46875 -1.328125 0.46875 -1.140625 C 0.46875 -0.953125 0.65625 -0.953125 0.78125 -0.953125 Z M 5.765625 -0.953125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-7"> <path style="stroke:none;" d="M 3.28125 -1.8125 C 3.453125 -1.8125 3.5 -1.8125 3.5 -2 C 3.5 -2.703125 3.109375 -3.546875 2 -3.546875 C 1.015625 -3.546875 0.234375 -2.71875 0.234375 -1.734375 C 0.234375 -0.71875 1.09375 0.078125 2.09375 0.078125 C 3.109375 0.078125 3.5 -0.765625 3.5 -0.953125 C 3.5 -0.984375 3.484375 -1.0625 3.375 -1.0625 C 3.28125 -1.0625 3.265625 -1.015625 3.25 -0.953125 C 2.96875 -0.1875 2.28125 -0.171875 2.140625 -0.171875 C 1.78125 -0.171875 1.421875 -0.328125 1.1875 -0.703125 C 0.9375 -1.0625 0.9375 -1.578125 0.9375 -1.8125 Z M 0.953125 -2.015625 C 1.03125 -3.125 1.703125 -3.3125 2 -3.3125 C 2.921875 -3.3125 2.953125 -2.203125 2.953125 -2.015625 Z M 0.953125 -2.015625 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph4-1"> <path style="stroke:none;" d="M 1.609375 -3.5625 C 1.609375 -3.765625 1.609375 -3.828125 2.109375 -3.828125 L 2.28125 -3.828125 L 2.28125 -4.0625 C 2.125 -4.0625 1.609375 -4.046875 1.3125 -4.046875 C 1.015625 -4.046875 0.515625 -4.0625 0.34375 -4.0625 L 0.34375 -3.828125 L 0.53125 -3.828125 C 1.015625 -3.828125 1.015625 -3.765625 1.015625 -3.5625 L 1.015625 -0.5 C 1.015625 -0.296875 1.015625 -0.234375 0.53125 -0.234375 L 0.34375 -0.234375 L 0.34375 0 C 0.515625 0 1.015625 -0.03125 1.3125 -0.03125 C 1.609375 -0.03125 2.109375 0 2.28125 0 L 2.28125 -0.234375 L 2.109375 -0.234375 C 1.609375 -0.234375 1.609375 -0.296875 1.609375 -0.5 Z M 1.609375 -3.5625 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph4-2"> <path style="stroke:none;" d="M 2.265625 -4.0625 L 2.265625 -3.828125 C 2.671875 -3.828125 2.734375 -3.796875 2.734375 -3.5 L 2.734375 -2.296875 C 2.46875 -2.53125 2.171875 -2.625 1.859375 -2.625 C 1.03125 -2.625 0.328125 -2.03125 0.328125 -1.28125 C 0.328125 -0.546875 0.984375 0.0625 1.78125 0.0625 C 2.140625 0.0625 2.453125 -0.078125 2.703125 -0.3125 L 2.703125 0.0625 L 3.671875 0 L 3.671875 -0.234375 C 3.25 -0.234375 3.203125 -0.28125 3.203125 -0.5625 L 3.203125 -4.125 Z M 2.703125 -0.765625 C 2.703125 -0.65625 2.703125 -0.625 2.609375 -0.515625 C 2.328125 -0.15625 1.9375 -0.125 1.828125 -0.125 C 1.578125 -0.125 1.3125 -0.21875 1.109375 -0.453125 C 0.921875 -0.6875 0.890625 -1.015625 0.890625 -1.28125 C 0.890625 -2.359375 1.6875 -2.4375 1.890625 -2.4375 C 2.09375 -2.4375 2.390625 -2.375 2.625 -2.109375 C 2.703125 -2 2.703125 -2 2.703125 -1.875 Z M 2.703125 -0.765625 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph5-1"> <path style="stroke:none;" d="M 5.78125 -1.328125 C 5.0625 -0.828125 4.921875 -0.03125 4.921875 0 C 4.921875 0.09375 5.03125 0.09375 5.078125 0.09375 C 5.21875 0.09375 5.21875 0.078125 5.265625 -0.09375 C 5.375 -0.515625 5.640625 -0.8125 5.671875 -0.84375 C 6.0625 -1.25 6.375 -1.328125 6.65625 -1.40625 C 6.671875 -1.40625 6.71875 -1.4375 6.71875 -1.484375 C 6.71875 -1.546875 6.671875 -1.5625 6.625 -1.578125 C 5.78125 -1.796875 5.390625 -2.40625 5.25 -2.921875 C 5.21875 -3.046875 5.21875 -3.0625 5.078125 -3.0625 C 5.015625 -3.0625 4.921875 -3.0625 4.921875 -2.96875 C 4.921875 -2.9375 5.0625 -2.15625 5.78125 -1.640625 L 0.796875 -1.640625 C 0.703125 -1.640625 0.546875 -1.640625 0.546875 -1.484375 C 0.546875 -1.328125 0.703125 -1.328125 0.796875 -1.328125 Z M 5.78125 -1.328125 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph5-2"> <path style="stroke:none;" d="M 1.65625 -2.15625 C 0.4375 -1.53125 0.375 -0.78125 0.375 -0.625 C 0.375 -0.09375 0.984375 0.125 1.5625 0.125 C 2.71875 0.125 3.625 -0.828125 3.625 -0.953125 C 3.625 -1 3.5625 -1 3.546875 -1 C 3.53125 -1 3.3125 -1 3.078125 -0.75 C 2.96875 -0.625 2.625 -0.265625 2.03125 -0.265625 C 1.640625 -0.265625 0.9375 -0.375 0.9375 -0.90625 C 0.9375 -1.109375 1.078125 -1.4375 1.3125 -1.640625 C 1.71875 -2.03125 2.3125 -2.046875 2.359375 -2.046875 C 2.5 -2.046875 2.578125 -2.046875 2.734375 -2.140625 C 2.84375 -2.203125 2.9375 -2.296875 2.9375 -2.375 C 2.9375 -2.421875 2.890625 -2.421875 2.8125 -2.421875 C 2.453125 -2.4375 1.65625 -2.53125 1.65625 -3.078125 C 1.65625 -3.171875 1.6875 -3.5 1.984375 -3.65625 C 2.140625 -3.734375 2.421875 -3.796875 2.703125 -3.796875 C 2.828125 -3.796875 2.984375 -3.78125 3.140625 -3.75 C 3.203125 -3.734375 3.375 -3.6875 3.375 -3.484375 C 3.375 -3.421875 3.34375 -3.359375 3.3125 -3.3125 C 3.296875 -3.296875 3.28125 -3.265625 3.28125 -3.25 C 3.28125 -3.203125 3.328125 -3.1875 3.359375 -3.1875 C 3.53125 -3.1875 3.9375 -3.390625 3.9375 -3.765625 C 3.9375 -4.109375 3.578125 -4.1875 3.15625 -4.1875 C 2.078125 -4.1875 1.078125 -3.53125 1.078125 -2.8125 C 1.078125 -2.34375 1.546875 -2.1875 1.65625 -2.15625 Z M 1.65625 -2.15625 "></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph6-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph6-1"> <path style="stroke:none;" d="M 1.25 -0.5 C 1.1875 -0.28125 1.171875 -0.234375 0.734375 -0.234375 C 0.59375 -0.234375 0.59375 -0.234375 0.5625 -0.21875 C 0.53125 -0.203125 0.515625 -0.125 0.515625 -0.078125 C 0.53125 0 0.578125 0 0.703125 0 L 2.9375 0 C 4.28125 0 5.625 -1.171875 5.625 -2.484375 C 5.625 -3.421875 4.921875 -4.0625 3.953125 -4.0625 L 1.671875 -4.0625 C 1.546875 -4.0625 1.46875 -4.0625 1.46875 -3.921875 C 1.46875 -3.828125 1.5625 -3.828125 1.671875 -3.828125 C 1.78125 -3.828125 1.921875 -3.828125 2.046875 -3.78125 C 2.046875 -3.734375 2.046875 -3.6875 2.03125 -3.59375 Z M 2.59375 -3.625 C 2.640625 -3.8125 2.640625 -3.828125 2.890625 -3.828125 L 3.734375 -3.828125 C 4.421875 -3.828125 5.03125 -3.5 5.03125 -2.671875 C 5.03125 -2.46875 4.953125 -1.53125 4.375 -0.890625 C 4.078125 -0.546875 3.53125 -0.234375 2.828125 -0.234375 L 1.953125 -0.234375 C 1.84375 -0.234375 1.828125 -0.234375 1.75 -0.25 Z M 2.59375 -3.625 "></path> </symbol> </g> <clipPath id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-clip1"> <path d="M 88 40 L 157.238281 40 L 157.238281 56 L 88 56 Z M 88 40 "></path> </clipPath> </defs> <g id="GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-1" x="5.388781" y="12.481872"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-1" x="117.69478" y="12.481872"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-1" x="5.388781" y="93.010044"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph1-1" x="109.493601" y="93.010044"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph2-1" x="116.836054" y="93.010044"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-1" x="121.365509" y="93.010044"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph2-2" x="131.360758" y="93.010044"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph0-2" x="137.872347" y="93.010044"></use> </g> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.185429 40.862863 L 41.942741 40.862863 " transform="matrix(0.995047,0,0,-0.995047,70.639995,50.168288)"></path> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.185429 40.862863 L 41.942741 40.862863 " transform="matrix(0.995047,0,0,-0.995047,70.639995,50.168288)"></path> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -60.553185 33.301977 L -60.553185 -30.309957 " transform="matrix(0.995047,0,0,-0.995047,70.639995,50.168288)"></path> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -60.553185 33.301977 L -60.553185 -30.309957 " transform="matrix(0.995047,0,0,-0.995047,70.639995,50.168288)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:3.34735,1.91277;stroke-miterlimit:10;" d="M 52.310497 33.301977 L 52.310497 -29.038032 " transform="matrix(0.995047,0,0,-0.995047,70.639995,50.168288)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48661 2.868318 C -2.03123 1.148865 -1.018401 0.336246 -0.00164617 -0.00136332 C -1.018401 -0.335047 -2.03123 -1.147666 -2.48661 -2.871045 " transform="matrix(0,0.995047,0.995047,0,122.692763,79.298513)"></path> <g clip-path="url(#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-clip1)" clip-rule="nonzero"> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 88.144531 55.65625 L 157.238281 55.65625 L 157.238281 40.914062 L 88.144531 40.914062 Z M 88.144531 55.65625 "></path> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-1" x="90.707111" y="50.403119"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-2" x="93.984045" y="50.403119"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-3" x="97.268117" y="50.403119"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-4" x="101.481659" y="50.403119"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-5" x="106.163107" y="50.403119"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph4-1" x="109.485641" y="47.604052"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph4-2" x="112.118223" y="47.604052"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph5-1" x="116.138526" y="47.604052"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph5-2" x="123.408165" y="47.604052"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph6-1" x="109.485641" y="53.096712"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-6" x="129.786593" y="50.403119"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-2" x="137.744183" y="50.403119"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-7" x="141.028255" y="50.403119"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-1" x="144.773096" y="50.403119"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph5-2" x="148.050684" y="47.604052"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph6-1" x="148.050684" y="53.096712"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.185429 -40.065305 L 33.223776 -40.065305 " transform="matrix(0.995047,0,0,-0.995047,70.639995,50.168288)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487486 2.870947 C -2.032106 1.147568 -1.019277 0.334949 0.00140319 0.00126531 C -1.019277 -0.336344 -2.032106 -1.148963 -2.487486 -2.868416 " transform="matrix(0.995047,0,0,-0.995047,103.936104,90.036415)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-2" x="53.972954" y="99.698751"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-7" x="57.257026" y="99.698751"></use> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph3-1" x="61.001868" y="99.698751"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph5-2" x="64.278658" y="96.899683"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#GoyIMVhmeM3K9O3iYNJ5rRzx-q8=-glyph6-1" x="64.278658" y="102.391349"></use> </g> </g> </svg> <p>and this already fixes the transformation to be the <a class="existingWikiWord" href="/nlab/show/monad+unit">monad unit</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">\mathcal{E}</annotation></semantics></math>, as shown – such that, secondly, this square commutes:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="280.889pt" height="116.987pt" viewBox="0 0 280.889 116.987" version="1.2"> <defs> <g> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph0-1"> <path style="stroke:none;" d="M 1.875 -0.890625 C 1.765625 -0.46875 1.75 -0.34375 0.90625 -0.34375 C 0.6875 -0.34375 0.5625 -0.34375 0.5625 -0.125 C 0.5625 0 0.640625 0 0.875 0 L 4.65625 0 C 7.078125 0 9.4375 -2.5 9.4375 -5.15625 C 9.4375 -6.890625 8.40625 -8.15625 6.6875 -8.15625 L 2.859375 -8.15625 C 2.625 -8.15625 2.515625 -8.15625 2.515625 -7.9375 C 2.515625 -7.8125 2.625 -7.8125 2.8125 -7.8125 C 3.53125 -7.8125 3.53125 -7.71875 3.53125 -7.59375 C 3.53125 -7.5625 3.53125 -7.5 3.484375 -7.3125 Z M 4.40625 -7.34375 C 4.5 -7.796875 4.546875 -7.8125 5.015625 -7.8125 L 6.328125 -7.8125 C 7.453125 -7.8125 8.484375 -7.203125 8.484375 -5.5625 C 8.484375 -4.953125 8.25 -2.875 7.09375 -1.5625 C 6.75 -1.171875 5.84375 -0.34375 4.46875 -0.34375 L 3.109375 -0.34375 C 2.9375 -0.34375 2.921875 -0.34375 2.84375 -0.359375 C 2.71875 -0.375 2.703125 -0.390625 2.703125 -0.484375 C 2.703125 -0.578125 2.71875 -0.640625 2.75 -0.75 Z M 4.40625 -7.34375 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph1-1"> <path style="stroke:none;" d="M 2.859375 -4.34375 C 0.46875 -3.046875 0.328125 -1.5 0.328125 -1.21875 C 0.328125 -0.3125 1.21875 0.265625 2.359375 0.265625 C 4.34375 0.265625 5.953125 -1.625 5.953125 -1.875 C 5.953125 -1.953125 5.890625 -1.953125 5.828125 -1.953125 C 5.6875 -1.953125 5.234375 -1.8125 4.953125 -1.4375 C 4.703125 -1.09375 4.203125 -0.390625 3.140625 -0.390625 C 2.296875 -0.390625 1.34375 -0.84375 1.34375 -1.734375 C 1.34375 -2.3125 2.015625 -4.09375 3.90625 -4.15625 C 4.46875 -4.1875 4.890625 -4.609375 4.890625 -4.734375 C 4.890625 -4.8125 4.828125 -4.8125 4.765625 -4.8125 C 3.078125 -4.890625 2.75 -5.71875 2.75 -6.1875 C 2.75 -6.46875 2.921875 -7.765625 4.609375 -7.765625 C 4.828125 -7.765625 5.734375 -7.734375 5.734375 -7.109375 C 5.734375 -6.921875 5.640625 -6.75 5.59375 -6.6875 C 5.5625 -6.640625 5.53125 -6.59375 5.53125 -6.546875 C 5.53125 -6.46875 5.625 -6.46875 5.65625 -6.46875 C 6.015625 -6.46875 6.75 -6.9375 6.75 -7.609375 C 6.75 -8.3125 5.921875 -8.421875 5.390625 -8.421875 C 3.765625 -8.421875 1.734375 -7.140625 1.734375 -5.671875 C 1.734375 -4.96875 2.265625 -4.546875 2.859375 -4.34375 Z M 2.859375 -4.34375 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-1"> <path style="stroke:none;" d="M 3.890625 2.90625 C 3.890625 2.875 3.890625 2.84375 3.6875 2.640625 C 2.484375 1.4375 1.8125 -0.53125 1.8125 -2.96875 C 1.8125 -5.296875 2.375 -7.296875 3.765625 -8.703125 C 3.890625 -8.8125 3.890625 -8.828125 3.890625 -8.875 C 3.890625 -8.9375 3.828125 -8.96875 3.78125 -8.96875 C 3.625 -8.96875 2.640625 -8.109375 2.0625 -6.9375 C 1.453125 -5.71875 1.171875 -4.453125 1.171875 -2.96875 C 1.171875 -1.90625 1.34375 -0.484375 1.953125 0.78125 C 2.671875 2.21875 3.640625 3 3.78125 3 C 3.828125 3 3.890625 2.96875 3.890625 2.90625 Z M 3.890625 2.90625 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-2"> <path style="stroke:none;" d="M 3.375 -2.96875 C 3.375 -3.890625 3.25 -5.359375 2.578125 -6.75 C 1.875 -8.1875 0.890625 -8.96875 0.765625 -8.96875 C 0.71875 -8.96875 0.65625 -8.9375 0.65625 -8.875 C 0.65625 -8.828125 0.65625 -8.8125 0.859375 -8.609375 C 2.0625 -7.40625 2.71875 -5.421875 2.71875 -2.984375 C 2.71875 -0.671875 2.15625 1.328125 0.78125 2.734375 C 0.65625 2.84375 0.65625 2.875 0.65625 2.90625 C 0.65625 2.96875 0.71875 3 0.765625 3 C 0.921875 3 1.90625 2.140625 2.484375 0.96875 C 3.09375 -0.25 3.375 -1.546875 3.375 -2.96875 Z M 3.375 -2.96875 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph3-1"> <path style="stroke:none;" d="M 4.9375 13.734375 C 4.9375 13.6875 4.90625 13.65625 4.890625 13.625 C 4.34375 13.046875 3.53125 12.078125 3.03125 10.125 C 2.75 9.03125 2.640625 7.8125 2.640625 6.6875 C 2.640625 3.546875 3.390625 1.34375 4.828125 -0.203125 C 4.9375 -0.3125 4.9375 -0.328125 4.9375 -0.359375 C 4.9375 -0.484375 4.84375 -0.484375 4.796875 -0.484375 C 4.609375 -0.484375 3.96875 0.234375 3.8125 0.421875 C 2.59375 1.859375 1.8125 4.015625 1.8125 6.6875 C 1.8125 8.375 2.109375 10.78125 3.6875 12.796875 C 3.796875 12.9375 4.578125 13.859375 4.796875 13.859375 C 4.84375 13.859375 4.9375 13.859375 4.9375 13.734375 Z M 4.9375 13.734375 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph3-2"> <path style="stroke:none;" d="M 3.640625 6.6875 C 3.640625 5 3.34375 2.59375 1.78125 0.578125 C 1.65625 0.4375 0.890625 -0.484375 0.671875 -0.484375 C 0.609375 -0.484375 0.53125 -0.453125 0.53125 -0.359375 C 0.53125 -0.3125 0.546875 -0.28125 0.59375 -0.234375 C 1.171875 0.375 1.953125 1.34375 2.4375 3.25 C 2.71875 4.34375 2.828125 5.5625 2.828125 6.6875 C 2.828125 7.890625 2.71875 9.109375 2.40625 10.28125 C 1.953125 11.953125 1.25 12.90625 0.640625 13.578125 C 0.53125 13.6875 0.53125 13.703125 0.53125 13.734375 C 0.53125 13.828125 0.609375 13.859375 0.671875 13.859375 C 0.84375 13.859375 1.5 13.125 1.65625 12.953125 C 2.875 11.515625 3.640625 9.359375 3.640625 6.6875 Z M 3.640625 6.6875 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-1"> <path style="stroke:none;" d="M 1.46875 -1.8125 C 1.46875 -2.421875 1.71875 -3.28125 2.484375 -3.296875 C 2.4375 -3.265625 2.34375 -3.203125 2.34375 -3.015625 C 2.34375 -2.765625 2.546875 -2.65625 2.703125 -2.65625 C 2.890625 -2.65625 3.0625 -2.78125 3.0625 -3.015625 C 3.0625 -3.296875 2.8125 -3.515625 2.453125 -3.515625 C 1.9375 -3.515625 1.578125 -3.125 1.421875 -2.671875 L 1.40625 -2.671875 L 1.40625 -3.515625 L 0.28125 -3.421875 L 0.28125 -3.15625 C 0.828125 -3.15625 0.890625 -3.109375 0.890625 -2.71875 L 0.890625 -0.625 C 0.890625 -0.265625 0.78125 -0.265625 0.28125 -0.265625 L 0.28125 0 C 0.59375 -0.03125 1.03125 -0.03125 1.21875 -0.03125 C 1.6875 -0.03125 1.703125 -0.03125 2.21875 0 L 2.21875 -0.265625 L 2.0625 -0.265625 C 1.484375 -0.265625 1.46875 -0.34375 1.46875 -0.640625 Z M 1.46875 -1.8125 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-2"> <path style="stroke:none;" d="M 3.296875 -1.8125 C 3.46875 -1.8125 3.515625 -1.8125 3.515625 -2 C 3.515625 -2.703125 3.125 -3.546875 2 -3.546875 C 1.015625 -3.546875 0.234375 -2.734375 0.234375 -1.75 C 0.234375 -0.71875 1.09375 0.078125 2.109375 0.078125 C 3.109375 0.078125 3.515625 -0.765625 3.515625 -0.953125 C 3.515625 -0.984375 3.484375 -1.0625 3.390625 -1.0625 C 3.296875 -1.0625 3.28125 -1.015625 3.265625 -0.96875 C 2.984375 -0.1875 2.296875 -0.171875 2.15625 -0.171875 C 1.796875 -0.171875 1.421875 -0.328125 1.1875 -0.703125 C 0.953125 -1.0625 0.953125 -1.578125 0.953125 -1.8125 Z M 0.953125 -2.03125 C 1.03125 -3.140625 1.703125 -3.328125 2 -3.328125 C 2.9375 -3.328125 2.96875 -2.203125 2.96875 -2.03125 Z M 0.953125 -2.03125 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-3"> <path style="stroke:none;" d="M 1.484375 -3.171875 L 2.671875 -3.171875 L 2.671875 -3.4375 L 1.484375 -3.4375 L 1.484375 -4.90625 L 1.234375 -4.90625 C 1.234375 -4.171875 0.90625 -3.421875 0.15625 -3.390625 L 0.15625 -3.171875 L 0.875 -3.171875 L 0.875 -1 C 0.875 -0.0625 1.59375 0.078125 1.953125 0.078125 C 2.5 0.078125 2.8125 -0.390625 2.8125 -1 L 2.8125 -1.4375 L 2.5625 -1.4375 L 2.5625 -1.015625 C 2.5625 -0.46875 2.3125 -0.171875 2.015625 -0.171875 C 1.484375 -0.171875 1.484375 -0.859375 1.484375 -0.984375 Z M 1.484375 -3.171875 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-4"> <path style="stroke:none;" d="M 1.8125 -4.90625 C 1.8125 -5.15625 1.609375 -5.359375 1.359375 -5.359375 C 1.125 -5.359375 0.921875 -5.15625 0.921875 -4.921875 C 0.921875 -4.640625 1.140625 -4.46875 1.359375 -4.46875 C 1.625 -4.46875 1.8125 -4.6875 1.8125 -4.90625 Z M 0.5625 -3.421875 L 0.5625 -3.15625 C 1.15625 -3.15625 1.234375 -3.109375 1.234375 -2.71875 L 1.234375 0.375 C 1.234375 0.59375 1.1875 1.40625 0.640625 1.40625 C 0.53125 1.40625 0.34375 1.375 0.25 1.328125 C 0.296875 1.3125 0.46875 1.21875 0.46875 0.984375 C 0.46875 0.765625 0.3125 0.609375 0.09375 0.609375 C -0.109375 0.609375 -0.28125 0.75 -0.28125 1 C -0.28125 1.40625 0.15625 1.625 0.65625 1.625 C 1.296875 1.625 1.8125 1.109375 1.8125 0.359375 L 1.8125 -3.515625 Z M 0.5625 -3.421875 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-5"> <path style="stroke:none;" d="M 3.984375 -1.703125 C 3.984375 -2.6875 3.15625 -3.546875 2.109375 -3.546875 C 1.0625 -3.546875 0.234375 -2.6875 0.234375 -1.703125 C 0.234375 -0.703125 1.09375 0.078125 2.109375 0.078125 C 3.140625 0.078125 3.984375 -0.703125 3.984375 -1.703125 Z M 2.109375 -0.171875 C 1.6875 -0.171875 1.34375 -0.375 1.171875 -0.65625 C 0.96875 -0.984375 0.953125 -1.375 0.953125 -1.765625 C 0.953125 -2.078125 0.953125 -2.546875 1.1875 -2.890625 C 1.40625 -3.171875 1.734375 -3.328125 2.109375 -3.328125 C 2.53125 -3.328125 2.875 -3.125 3.046875 -2.859375 C 3.265625 -2.515625 3.28125 -2.09375 3.28125 -1.765625 C 3.28125 -1.40625 3.265625 -0.96875 3.03125 -0.625 C 2.828125 -0.3125 2.46875 -0.171875 2.109375 -0.171875 Z M 2.109375 -0.171875 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-6"> <path style="stroke:none;" d="M 1.546875 -4.90625 C 1.546875 -5.140625 1.375 -5.359375 1.109375 -5.359375 C 0.875 -5.359375 0.671875 -5.171875 0.671875 -4.921875 C 0.671875 -4.640625 0.90625 -4.46875 1.109375 -4.46875 C 1.390625 -4.46875 1.546875 -4.703125 1.546875 -4.90625 Z M 0.359375 -3.421875 L 0.359375 -3.15625 C 0.875 -3.15625 0.9375 -3.109375 0.9375 -2.71875 L 0.9375 -0.625 C 0.9375 -0.265625 0.84375 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.640625 -0.03125 1.09375 -0.03125 1.21875 -0.03125 C 1.3125 -0.03125 1.796875 -0.03125 2.078125 0 L 2.078125 -0.265625 C 1.546875 -0.265625 1.515625 -0.296875 1.515625 -0.609375 L 1.515625 -3.515625 Z M 0.359375 -3.421875 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-7"> <path style="stroke:none;" d="M 3.875 -2.421875 C 3.875 -3.078125 3.5625 -3.515625 2.734375 -3.515625 C 1.9375 -3.515625 1.578125 -2.9375 1.484375 -2.75 L 1.484375 -3.515625 L 0.328125 -3.421875 L 0.328125 -3.15625 C 0.875 -3.15625 0.9375 -3.109375 0.9375 -2.71875 L 0.9375 -0.625 C 0.9375 -0.265625 0.84375 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.671875 -0.03125 1.015625 -0.03125 1.234375 -0.03125 C 1.46875 -0.03125 1.796875 -0.03125 2.140625 0 L 2.140625 -0.265625 C 1.640625 -0.265625 1.53125 -0.265625 1.53125 -0.625 L 1.53125 -2.0625 C 1.53125 -2.90625 2.171875 -3.296875 2.65625 -3.296875 C 3.140625 -3.296875 3.265625 -2.953125 3.265625 -2.453125 L 3.265625 -0.625 C 3.265625 -0.265625 3.171875 -0.265625 2.65625 -0.265625 L 2.65625 0 C 3 -0.03125 3.359375 -0.03125 3.5625 -0.03125 C 3.796875 -0.03125 4.140625 -0.03125 4.484375 0 L 4.484375 -0.265625 C 3.96875 -0.265625 3.875 -0.265625 3.875 -0.625 Z M 3.875 -2.421875 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph5-1"> <path style="stroke:none;" d="M 1.671875 -2.15625 C 0.4375 -1.546875 0.375 -0.78125 0.375 -0.625 C 0.375 -0.09375 0.984375 0.125 1.5625 0.125 C 2.734375 0.125 3.640625 -0.828125 3.640625 -0.953125 C 3.640625 -1.015625 3.5625 -1.015625 3.546875 -1.015625 C 3.53125 -1.015625 3.328125 -1 3.078125 -0.75 C 2.96875 -0.625 2.625 -0.265625 2.03125 -0.265625 C 1.640625 -0.265625 0.9375 -0.375 0.9375 -0.90625 C 0.9375 -1.109375 1.09375 -1.4375 1.3125 -1.640625 C 1.734375 -2.03125 2.328125 -2.046875 2.359375 -2.046875 C 2.5 -2.046875 2.59375 -2.046875 2.75 -2.15625 C 2.84375 -2.21875 2.953125 -2.296875 2.953125 -2.375 C 2.953125 -2.421875 2.890625 -2.4375 2.828125 -2.4375 C 2.453125 -2.453125 1.65625 -2.53125 1.65625 -3.09375 C 1.65625 -3.171875 1.6875 -3.515625 2 -3.671875 C 2.140625 -3.75 2.421875 -3.8125 2.703125 -3.8125 C 2.828125 -3.8125 2.984375 -3.796875 3.140625 -3.75 C 3.21875 -3.734375 3.375 -3.6875 3.375 -3.5 C 3.375 -3.4375 3.34375 -3.375 3.3125 -3.3125 C 3.3125 -3.296875 3.296875 -3.28125 3.296875 -3.25 C 3.296875 -3.21875 3.328125 -3.1875 3.375 -3.1875 C 3.546875 -3.1875 3.953125 -3.40625 3.953125 -3.765625 C 3.953125 -4.109375 3.578125 -4.203125 3.15625 -4.203125 C 2.078125 -4.203125 1.078125 -3.53125 1.078125 -2.8125 C 1.078125 -2.359375 1.5625 -2.1875 1.671875 -2.15625 Z M 1.671875 -2.15625 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph6-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph6-1"> <path style="stroke:none;" d="M 1.25 -0.5 C 1.1875 -0.28125 1.1875 -0.234375 0.734375 -0.234375 C 0.609375 -0.234375 0.59375 -0.234375 0.5625 -0.21875 C 0.53125 -0.203125 0.515625 -0.125 0.515625 -0.078125 C 0.53125 0 0.578125 0 0.703125 0 L 2.953125 0 C 4.296875 0 5.640625 -1.171875 5.640625 -2.484375 C 5.640625 -3.4375 4.9375 -4.078125 3.96875 -4.078125 L 1.671875 -4.078125 C 1.5625 -4.078125 1.46875 -4.078125 1.46875 -3.921875 C 1.46875 -3.84375 1.5625 -3.84375 1.671875 -3.84375 C 1.78125 -3.84375 1.921875 -3.84375 2.046875 -3.796875 C 2.046875 -3.734375 2.046875 -3.703125 2.03125 -3.609375 Z M 2.59375 -3.640625 C 2.640625 -3.828125 2.640625 -3.84375 2.90625 -3.84375 L 3.734375 -3.84375 C 4.4375 -3.84375 5.046875 -3.5 5.046875 -2.6875 C 5.046875 -2.484375 4.96875 -1.53125 4.390625 -0.890625 C 4.078125 -0.546875 3.546875 -0.234375 2.84375 -0.234375 L 1.953125 -0.234375 C 1.84375 -0.234375 1.828125 -0.234375 1.765625 -0.25 Z M 2.59375 -3.640625 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph7-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph7-1"> <path style="stroke:none;" d="M 2.375 1.34375 C 1.71875 0.84375 1.1875 -0.09375 1.1875 -1.5 C 1.1875 -2.875 1.703125 -3.828125 2.375 -4.328125 C 2.375 -4.34375 2.390625 -4.359375 2.390625 -4.390625 C 2.390625 -4.421875 2.375 -4.484375 2.296875 -4.484375 C 2.1875 -4.484375 0.75 -3.546875 0.75 -1.5 C 0.75 0.546875 2.1875 1.5 2.296875 1.5 C 2.375 1.5 2.390625 1.4375 2.390625 1.40625 C 2.390625 1.375 2.375 1.359375 2.375 1.34375 Z M 2.375 1.34375 "></path> </symbol> <symbol overflow="visible" id="hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph7-2"> <path style="stroke:none;" d="M 2.109375 -1.5 C 2.109375 -3.53125 0.6875 -4.484375 0.5625 -4.484375 C 0.5 -4.484375 0.484375 -4.421875 0.484375 -4.390625 C 0.484375 -4.359375 0.484375 -4.34375 0.59375 -4.25 C 1.125 -3.796875 1.6875 -2.90625 1.6875 -1.5 C 1.6875 -0.234375 1.234375 0.71875 0.5625 1.296875 C 0.484375 1.359375 0.484375 1.375 0.484375 1.40625 C 0.484375 1.4375 0.5 1.5 0.5625 1.5 C 0.671875 1.5 2.109375 0.5625 2.109375 -1.5 Z M 2.109375 -1.5 "></path> </symbol> </g> <clipPath id="hA3RXyIWM1mhP_srab2lPi3ExAg=-clip1"> <path d="M 99 0.015625 L 277 0.015625 L 277 116.957031 L 99 116.957031 Z M 99 0.015625 "></path> </clipPath> <clipPath id="hA3RXyIWM1mhP_srab2lPi3ExAg=-clip2"> <path d="M 113 1 L 264 1 L 264 116.957031 L 113 116.957031 Z M 113 1 "></path> </clipPath> </defs> <g id="hA3RXyIWM1mhP_srab2lPi3ExAg=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph0-1" x="5.144967" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph1-1" x="109.726639" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-1" x="117.102724" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph0-1" x="121.652926" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-2" x="131.693958" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph1-1" x="230.7848" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph3-1" x="238.160885" y="10.200584"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph1-1" x="243.637721" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-1" x="251.013806" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph0-1" x="255.565007" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-2" x="265.60504" y="19.880759"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph3-2" x="270.155242" y="10.200584"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph0-1" x="5.144967" y="104.960138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph1-1" x="239.950178" y="104.960138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-1" x="247.326263" y="104.960138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph0-1" x="251.876465" y="104.960138"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph2-2" x="261.917497" y="104.960138"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -119.909544 41.961315 L -36.501597 41.961315 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487548 2.870116 C -2.034244 1.146779 -1.018218 0.333958 0.00171645 0.00179537 C -1.018218 -0.334275 -2.034244 -1.147096 -2.487548 -2.870433 " transform="matrix(0.999605,0,0,-0.999605,104.142815,16.89242)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-1" x="53.95168" y="11.37612"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-2" x="57.250794" y="11.37612"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-3" x="61.012789" y="11.37612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph5-1" x="64.304589" y="8.564231"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph6-1" x="64.304589" y="14.081051"></use> </g> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -130.276921 34.395827 L -130.276921 -33.400485 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -130.276921 34.395827 L -130.276921 -33.400485 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1.200796 41.961315 L 84.608744 41.961315 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484797 2.870116 C -2.031493 1.146779 -1.019375 0.333958 0.000559396 0.00179537 C -1.019375 -0.334275 -2.031493 -1.147096 -2.484797 -2.870433 " transform="matrix(0.999605,0,0,-0.999605,225.202566,16.89242)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-1" x="169.883866" y="9.483867"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-2" x="173.182981" y="9.483867"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-3" x="176.944976" y="9.483867"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph5-1" x="180.236775" y="6.671979"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph5-1" x="180.236775" y="12.587641"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph7-1" x="184.734998" y="12.587641"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph6-1" x="187.611861" y="12.587641"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph7-2" x="193.770427" y="12.587641"></use> </g> <g clip-path="url(#hA3RXyIWM1mhP_srab2lPi3ExAg=-clip1)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(75%,75%,75%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.272837 31.406365 L 96.715089 -32.603295 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> </g> <g clip-path="url(#hA3RXyIWM1mhP_srab2lPi3ExAg=-clip2)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.272837 31.406365 L 96.715089 -32.603295 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 112.866 30.21058 L 112.866 -32.126544 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488085 2.86867 C -2.030873 1.149241 -1.018754 0.33642 0.00117982 0.000349852 C -1.018754 -0.33572 -2.030873 -1.148541 -2.488085 -2.867971 " transform="matrix(0,0.999605,0.999605,0,253.210588,91.186321)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-4" x="256.020827" y="62.194038"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-5" x="258.607696" y="62.194038"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-6" x="262.840538" y="62.194038"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-7" x="265.191585" y="62.194038"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph5-1" x="269.893345" y="59.313176"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph6-1" x="269.893345" y="64.830996"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -119.909544 -43.154338 L 93.776428 -43.154338 " transform="matrix(0.999605,0,0,-0.999605,140.389522,58.835365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486193 2.869072 C -2.032889 1.145735 -1.020771 0.332914 -0.000836706 0.000751923 C -1.020771 -0.335318 -2.032889 -1.148139 -2.486193 -2.867569 " transform="matrix(0.999605,0,0,-0.999605,234.368024,101.973408)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-1" x="119.062949" y="111.679482"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-2" x="122.362064" y="111.679482"></use> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph4-3" x="126.124059" y="111.679482"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph5-1" x="129.415858" y="108.867593"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#hA3RXyIWM1mhP_srab2lPi3ExAg=-glyph6-1" x="129.415858" y="114.384413"></use> </g> </g> </svg> <p>which is the case by the unitality clause on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">\mathcal{E}</annotation></semantics></math>, as indicated.</p> </div> </p> <p><br /></p> <h3 id="Algebras">Algebras/modules over a monad</h3> <p>Given that a monad in a bicategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi></mrow><annotation encoding="application/x-tex">\mathcal{B}</annotation></semantics></math> is nothing but a <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a> in a hom-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{B}(a,a)</annotation></semantics></math>, it is natural to consider a <a class="existingWikiWord" href="/nlab/show/module">module</a> over this monoid: a <a class="existingWikiWord" href="/nlab/show/module+for+a+monad">module for a monad</a>. This notion of module is more general than a module in a <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, however, since it need not live in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{B}(a,a)</annotation></semantics></math> but can be in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{B}(b,a)</annotation></semantics></math> (for left modules) or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℬ</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{B}(a,c)</annotation></semantics></math> (for right modules).</p> <p>In a <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>-like <a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a>, left modules over a monad are usually known as <em><a class="existingWikiWord" href="/nlab/show/algebras+over+a+monad">algebras over the monad</a></em>. This terminology is confusing from the point of view of monads as monoids, but is justified because in <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> itself, such algebras with domain <a class="existingWikiWord" href="/nlab/show/terminal+category">1</a> are just algebras for a monad in the classical sense. Such algebras are a powerful tool to encode general algebraic structures; this is the topic of <a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a>. The algebras over a monad form its <a class="existingWikiWord" href="/nlab/show/Eilenberg-Moore+category">Eilenberg-Moore category</a>, which is characterized by a <a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a>.</p> <p>Some monads arise from <a class="existingWikiWord" href="/nlab/show/operad">operad</a>s, in which case algebras for the monad are the same as algebras for the operad. A <a class="existingWikiWord" href="/nlab/show/Lawvere+theory">Lawvere theory</a> is another special sort of monad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Cat</annotation></semantics></math>.</p> <h2 id="properties">Properties</h2> <div> <h3 id="RelationBetweenAdjunctionsAndMonads">Relation between adjunctions and monads</h3> <p>There is a close relation between <a class="existingWikiWord" href="/nlab/show/adjunctions">adjunctions</a> (<a class="existingWikiWord" href="/nlab/show/adjoint+functors">adjoint functors</a>) and <a class="existingWikiWord" href="/nlab/show/monads">monads</a>:</p> <ul> <li> <p><a href="#MonadInducedByAnAdjunction">Monad induced by an adjunction</a></p> </li> <li> <p><a href="#CategoryOfAdjunctionResolutionsOfAMonad">Category of adjunction-resolutions of a monad</a></p> </li> <li> <p><a href="#SemanticsStructureAdjunction">Semantics-Structure adjunction</a></p> </li> </ul> <h4 id="MonadInducedByAnAdjunction">Monad induced by an adjunction</h4> <p>Every <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>L</mi><mo>⊣</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(L \dashv R)</annotation></semantics></math> induces a <a class="existingWikiWord" href="/nlab/show/monad">monad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>∘</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">R \circ L</annotation></semantics></math> and a <a class="existingWikiWord" href="/nlab/show/comonad">comonad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>∘</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">L \circ R</annotation></semantics></math>.</p> <p>(<a href="monad#Huber61">Huber 1961, §4</a>; see eg. <a href="monad#MacLane71">MacLane 1971, §VI.1 (p 134)</a>; <a href="monad#Borceux94">Borceux 1994, vol. 2, prop. 4.2.1</a>).</p> <p>In detail:</p> <p> <div class="num_prop"> <h6>Proposition</h6> <p></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>𝒞</mi><mo>,</mo><mi>𝒟</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>U</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>ϵ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\mathcal{C},\mathcal{D},F,U,\eta,\epsilon)</annotation></semantics></math> be a pair of <a class="existingWikiWord" href="/nlab/show/adjoint+functors">adjoint functors</a> ie <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>⊣</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">F \dashv U</annotation></semantics></math> are adjoint functors where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo lspace="verythinmathspace">:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">F \colon \mathcal{C} \rightarrow \mathcal{D}</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo lspace="verythinmathspace">:</mo><mi>𝒟</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">U \colon\mathcal{D} \rightarrow \mathcal{C}</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>η</mi> <mi>A</mi></msub><mo>:</mo><mi>A</mi><mo>→</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\eta_{A}:A \rightarrow U(F(A))</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/unit+of+an+adjunction">unit</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ϵ</mi> <mi>B</mi></msub><mo lspace="verythinmathspace">:</mo><mi>F</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">\epsilon_{B} \colon F(U(B)) \rightarrow B</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/counit+of+an+adjunction">counit</a>. Then:</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>∘</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">U \circ F</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/monad">monad</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, with <a class="existingWikiWord" href="/nlab/show/unit+of+a+monad">unit</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi></mrow><annotation encoding="application/x-tex">\eta</annotation></semantics></math> and multiplication <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><msub><mi>ϵ</mi> <mrow><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mo>:</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">U(\epsilon_{F(A)}):U(F(U(F(A)))) \rightarrow U(F(A))</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>∘</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">F \circ U</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/comonad">comonad</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math>, with <a class="existingWikiWord" href="/nlab/show/counit+of+a+comonad">counit</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi></mrow><annotation encoding="application/x-tex">\epsilon</annotation></semantics></math> and comultiplication <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><msub><mi>η</mi> <mrow><mi>U</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mo>:</mo><mi>F</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>F</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(\eta_{U(B)}):F(U(B)) \rightarrow F(U(F(U(B))))</annotation></semantics></math>.</p> </li> </ul> <p></p> </div> <div class="proof"> <h6>Proof</h6> <p></p> <p>We verify that we obtain a monad, the argument for the comonad is <a class="existingWikiWord" href="/nlab/show/formal+duality">formally dual</a>.</p> <p><strong>(1)</strong> We know that this diagram commutes:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="189.709pt" height="97.661pt" viewBox="0 0 189.709 97.661" version="1.1"> <defs> <g> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-1"> <path style="stroke:none;" d="M 4.4375 -4.875 L 5.875 -4.875 C 7 -4.875 7.09375 -4.609375 7.09375 -4.1875 C 7.09375 -3.984375 7.0625 -3.78125 6.984375 -3.453125 C 6.953125 -3.390625 6.953125 -3.3125 6.953125 -3.28125 C 6.953125 -3.1875 7 -3.125 7.109375 -3.125 C 7.234375 -3.125 7.25 -3.1875 7.296875 -3.421875 L 8.171875 -6.90625 C 8.171875 -6.953125 8.125 -7.046875 8.015625 -7.046875 C 7.890625 -7.046875 7.875 -6.984375 7.8125 -6.734375 C 7.5 -5.609375 7.203125 -5.296875 5.90625 -5.296875 L 4.546875 -5.296875 L 5.515625 -9.171875 C 5.640625 -9.6875 5.671875 -9.734375 6.28125 -9.734375 L 8.296875 -9.734375 C 10.15625 -9.734375 10.421875 -9.1875 10.421875 -8.125 C 10.421875 -8.03125 10.421875 -7.703125 10.375 -7.3125 C 10.359375 -7.265625 10.34375 -7.0625 10.34375 -7 C 10.34375 -6.890625 10.40625 -6.84375 10.5 -6.84375 C 10.609375 -6.84375 10.671875 -6.90625 10.6875 -7.171875 L 11.015625 -9.78125 C 11.015625 -9.828125 11.03125 -9.984375 11.03125 -10.015625 C 11.03125 -10.171875 10.90625 -10.171875 10.640625 -10.171875 L 3.5625 -10.171875 C 3.265625 -10.171875 3.125 -10.171875 3.125 -9.90625 C 3.125 -9.734375 3.21875 -9.734375 3.484375 -9.734375 C 4.40625 -9.734375 4.40625 -9.640625 4.40625 -9.46875 C 4.40625 -9.390625 4.390625 -9.328125 4.34375 -9.171875 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.828125 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.71875 -0.03125 C 4.046875 -0.03125 4.40625 0 4.734375 0 C 4.875 0 5.046875 0 5.046875 -0.265625 C 5.046875 -0.4375 4.953125 -0.4375 4.625 -0.4375 C 3.453125 -0.4375 3.421875 -0.53125 3.421875 -0.765625 C 3.421875 -0.84375 3.453125 -0.953125 3.484375 -1.0625 Z M 4.4375 -4.875 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-2"> <path style="stroke:none;" d="M 2.546875 -1.65625 C 2.015625 -0.78125 1.515625 -0.484375 0.796875 -0.4375 C 0.625 -0.421875 0.515625 -0.421875 0.515625 -0.15625 C 0.515625 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.625 -0.03125 1.890625 -0.03125 C 2.328125 -0.03125 2.8125 0 3.21875 0 C 3.3125 0 3.5 0 3.5 -0.28125 C 3.5 -0.421875 3.375 -0.4375 3.28125 -0.4375 C 2.9375 -0.46875 2.65625 -0.578125 2.65625 -0.9375 C 2.65625 -1.15625 2.75 -1.3125 2.9375 -1.640625 L 4.078125 -3.53125 L 7.890625 -3.53125 C 7.90625 -3.390625 7.90625 -3.265625 7.921875 -3.140625 C 7.96875 -2.75 8.140625 -1.1875 8.140625 -0.90625 C 8.140625 -0.46875 7.375 -0.4375 7.140625 -0.4375 C 6.96875 -0.4375 6.8125 -0.4375 6.8125 -0.171875 C 6.8125 0 6.953125 0 7.03125 0 C 7.296875 0 7.59375 -0.03125 7.84375 -0.03125 L 8.6875 -0.03125 C 9.609375 -0.03125 10.265625 0 10.28125 0 C 10.375 0 10.546875 0 10.546875 -0.28125 C 10.546875 -0.4375 10.40625 -0.4375 10.1875 -0.4375 C 9.359375 -0.4375 9.34375 -0.5625 9.3125 -1.015625 L 8.390625 -10.34375 C 8.359375 -10.640625 8.3125 -10.671875 8.140625 -10.671875 C 7.984375 -10.671875 7.90625 -10.640625 7.765625 -10.40625 Z M 4.328125 -3.953125 L 7.328125 -8.984375 L 7.84375 -3.953125 Z M 4.328125 -3.953125 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-3"> <path style="stroke:none;" d="M 7.5625 -3.4375 C 7.03125 -1.34375 5.296875 -0.125 3.90625 -0.125 C 2.828125 -0.125 2.09375 -0.84375 2.09375 -2.078125 C 2.09375 -2.140625 2.09375 -2.578125 2.25 -3.234375 L 3.71875 -9.109375 C 3.859375 -9.625 3.890625 -9.765625 4.9375 -9.765625 C 5.21875 -9.765625 5.359375 -9.765625 5.359375 -10.03125 C 5.359375 -10.203125 5.234375 -10.203125 5.140625 -10.203125 C 4.875 -10.203125 4.5625 -10.171875 4.265625 -10.171875 L 2.515625 -10.171875 C 2.21875 -10.171875 1.90625 -10.203125 1.625 -10.203125 C 1.53125 -10.203125 1.34375 -10.203125 1.34375 -9.921875 C 1.34375 -9.765625 1.453125 -9.765625 1.734375 -9.765625 C 2.625 -9.765625 2.625 -9.65625 2.625 -9.484375 C 2.625 -9.390625 2.53125 -8.96875 2.453125 -8.703125 L 1.15625 -3.484375 C 1.109375 -3.3125 1.015625 -2.90625 1.015625 -2.515625 C 1.015625 -0.859375 2.203125 0.3125 3.828125 0.3125 C 5.328125 0.3125 7 -0.875 7.765625 -2.78125 C 7.875 -3.03125 8 -3.5625 8.09375 -3.953125 C 8.25 -4.5 8.5625 -5.8125 8.65625 -6.203125 L 9.234375 -8.4375 C 9.421875 -9.21875 9.546875 -9.703125 10.859375 -9.765625 C 10.984375 -9.78125 11.03125 -9.90625 11.03125 -10.03125 C 11.03125 -10.203125 10.90625 -10.203125 10.84375 -10.203125 C 10.640625 -10.203125 10.359375 -10.171875 10.15625 -10.171875 L 9.453125 -10.171875 C 8.53125 -10.171875 8.046875 -10.203125 8.03125 -10.203125 C 7.953125 -10.203125 7.765625 -10.203125 7.765625 -9.921875 C 7.765625 -9.765625 7.890625 -9.765625 7.984375 -9.765625 C 8.890625 -9.734375 8.953125 -9.390625 8.953125 -9.125 C 8.953125 -9 8.953125 -8.953125 8.890625 -8.734375 Z M 7.5625 -3.4375 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-1"> <path style="stroke:none;" d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-2"> <path style="stroke:none;" d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph2-1"> <path style="stroke:none;" d="M 3.15625 -3.234375 L 4.1875 -3.234375 C 5 -3.234375 5.046875 -3.078125 5.046875 -2.78125 C 5.046875 -2.71875 5.046875 -2.609375 4.96875 -2.359375 C 4.96875 -2.3125 4.953125 -2.234375 4.953125 -2.203125 C 4.953125 -2.1875 4.953125 -2.0625 5.109375 -2.0625 C 5.21875 -2.0625 5.25 -2.15625 5.28125 -2.296875 L 5.8125 -4.421875 C 5.828125 -4.453125 5.859375 -4.578125 5.859375 -4.578125 C 5.859375 -4.625 5.828125 -4.71875 5.6875 -4.71875 C 5.578125 -4.71875 5.546875 -4.640625 5.515625 -4.515625 C 5.328125 -3.734375 5.09375 -3.5625 4.203125 -3.5625 L 3.234375 -3.5625 L 3.875 -6.078125 C 3.953125 -6.4375 3.96875 -6.453125 4.375 -6.453125 L 5.84375 -6.453125 C 7.03125 -6.453125 7.359375 -6.203125 7.359375 -5.34375 C 7.359375 -5.140625 7.3125 -4.875 7.3125 -4.6875 C 7.3125 -4.5625 7.390625 -4.515625 7.46875 -4.515625 C 7.609375 -4.515625 7.609375 -4.609375 7.640625 -4.78125 L 7.8125 -6.46875 C 7.828125 -6.515625 7.828125 -6.59375 7.828125 -6.640625 C 7.828125 -6.78125 7.703125 -6.78125 7.53125 -6.78125 L 2.40625 -6.78125 C 2.234375 -6.78125 2.109375 -6.78125 2.109375 -6.59375 C 2.109375 -6.453125 2.21875 -6.453125 2.390625 -6.453125 C 2.46875 -6.453125 2.609375 -6.453125 2.765625 -6.4375 C 2.984375 -6.40625 3.015625 -6.390625 3.015625 -6.296875 C 3.015625 -6.234375 3 -6.203125 2.96875 -6.09375 L 1.640625 -0.78125 C 1.5625 -0.40625 1.53125 -0.328125 0.796875 -0.328125 C 0.609375 -0.328125 0.484375 -0.328125 0.484375 -0.140625 C 0.484375 -0.09375 0.515625 0 0.640625 0 C 0.859375 0 1.09375 -0.03125 1.3125 -0.03125 L 2.6875 -0.03125 C 2.875 -0.015625 3.234375 0 3.421875 0 C 3.5 0 3.640625 0 3.640625 -0.1875 C 3.640625 -0.328125 3.515625 -0.328125 3.3125 -0.328125 C 3.09375 -0.328125 3.015625 -0.328125 2.796875 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.53125 C 2.5 -0.53125 2.5 -0.59375 2.53125 -0.75 Z M 3.15625 -3.234375 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph2-2"> <path style="stroke:none;" d="M 5.1875 -2.75 C 5.234375 -2.90625 5.28125 -3.078125 5.28125 -3.296875 C 5.28125 -4.03125 4.75 -4.390625 4.03125 -4.390625 C 3.234375 -4.390625 2.71875 -3.90625 2.421875 -3.53125 C 2.359375 -4.078125 1.90625 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.46875 1.640625 -3.28125 1.5625 -2.953125 C 1.546875 -2.875 1.390625 -2.28125 1.359375 -2.140625 L 0.984375 -0.640625 C 0.953125 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.390625 0.09375 1.53125 -0.015625 1.609375 -0.140625 C 1.640625 -0.203125 1.71875 -0.53125 1.765625 -0.75 L 2 -1.640625 C 2.03125 -1.78125 2.125 -2.15625 2.15625 -2.3125 C 2.296875 -2.84375 2.296875 -2.859375 2.515625 -3.1875 C 2.84375 -3.671875 3.3125 -4.109375 3.984375 -4.109375 C 4.34375 -4.109375 4.5625 -3.90625 4.5625 -3.4375 C 4.5625 -3.25 4.46875 -2.875 4.46875 -2.875 L 3.34375 1.609375 C 3.3125 1.75 3.3125 1.8125 3.3125 1.828125 C 3.3125 2.078125 3.515625 2.140625 3.625 2.140625 C 3.984375 2.140625 4.0625 1.8125 4.09375 1.6875 Z M 5.1875 -2.75 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph2-3"> <path style="stroke:none;" d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph3-1"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph3-2"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph3-3"> <path style="stroke:none;" d="M 7.28125 -3.3125 C 7.4375 -3.3125 7.640625 -3.3125 7.640625 -3.546875 C 7.640625 -3.78125 7.390625 -3.78125 7.25 -3.78125 L 0.984375 -3.78125 C 0.828125 -3.78125 0.59375 -3.78125 0.59375 -3.546875 C 0.59375 -3.3125 0.78125 -3.3125 0.9375 -3.3125 Z M 7.25 -1.203125 C 7.390625 -1.203125 7.640625 -1.203125 7.640625 -1.4375 C 7.640625 -1.671875 7.4375 -1.671875 7.28125 -1.671875 L 0.9375 -1.671875 C 0.78125 -1.671875 0.59375 -1.671875 0.59375 -1.4375 C 0.59375 -1.203125 0.828125 -1.203125 0.984375 -1.203125 Z M 7.25 -1.203125 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph4-1"> <path style="stroke:none;" d="M 1.6875 -0.90625 C 1.40625 -0.484375 1.15625 -0.328125 0.734375 -0.296875 C 0.625 -0.296875 0.53125 -0.28125 0.53125 -0.109375 C 0.53125 -0.03125 0.59375 0 0.65625 0 C 0.859375 0 1.109375 -0.03125 1.328125 -0.03125 C 1.5 -0.03125 1.9375 0 2.125 0 C 2.203125 0 2.28125 -0.03125 2.28125 -0.1875 C 2.28125 -0.296875 2.1875 -0.296875 2.15625 -0.296875 C 1.984375 -0.3125 1.8125 -0.34375 1.8125 -0.515625 C 1.8125 -0.609375 1.890625 -0.734375 1.921875 -0.78125 L 2.53125 -1.703125 L 4.78125 -1.703125 L 4.96875 -0.5 C 4.96875 -0.296875 4.546875 -0.296875 4.46875 -0.296875 C 4.375 -0.296875 4.25 -0.296875 4.25 -0.109375 C 4.25 -0.078125 4.28125 0 4.375 0 C 4.59375 0 5.140625 -0.03125 5.375 -0.03125 C 5.515625 -0.03125 5.65625 -0.015625 5.8125 -0.015625 C 5.953125 -0.015625 6.125 0 6.265625 0 C 6.3125 0 6.4375 0 6.4375 -0.1875 C 6.4375 -0.296875 6.328125 -0.296875 6.21875 -0.296875 C 5.765625 -0.296875 5.75 -0.34375 5.71875 -0.53125 L 4.96875 -5.125 C 4.953125 -5.265625 4.9375 -5.328125 4.78125 -5.328125 C 4.625 -5.328125 4.578125 -5.265625 4.515625 -5.171875 Z M 2.71875 -2 L 4.34375 -4.421875 L 4.734375 -2 Z M 2.71875 -2 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph4-2"> <path style="stroke:none;" d="M 2.71875 -2.390625 L 3.578125 -2.390625 C 4.171875 -2.390625 4.265625 -2.296875 4.265625 -2.046875 C 4.265625 -1.9375 4.234375 -1.71875 4.203125 -1.625 C 4.203125 -1.609375 4.21875 -1.515625 4.34375 -1.515625 C 4.4375 -1.515625 4.453125 -1.546875 4.484375 -1.6875 L 4.9375 -3.453125 C 4.9375 -3.46875 4.921875 -3.5625 4.796875 -3.5625 C 4.6875 -3.5625 4.671875 -3.515625 4.640625 -3.40625 C 4.484375 -2.828125 4.296875 -2.6875 3.59375 -2.6875 L 2.796875 -2.6875 L 3.25 -4.515625 C 3.3125 -4.75 3.328125 -4.765625 3.640625 -4.765625 L 4.859375 -4.765625 C 5.84375 -4.765625 6.109375 -4.578125 6.109375 -3.90625 C 6.109375 -3.734375 6.078125 -3.46875 6.078125 -3.453125 C 6.078125 -3.328125 6.1875 -3.328125 6.21875 -3.328125 C 6.34375 -3.328125 6.34375 -3.390625 6.359375 -3.515625 L 6.5 -4.84375 C 6.515625 -5.078125 6.453125 -5.078125 6.28125 -5.078125 L 2.078125 -5.078125 C 1.9375 -5.078125 1.828125 -5.078125 1.828125 -4.890625 C 1.828125 -4.765625 1.9375 -4.765625 2.0625 -4.765625 C 2.203125 -4.765625 2.390625 -4.765625 2.546875 -4.71875 C 2.546875 -4.640625 2.546875 -4.59375 2.515625 -4.484375 L 1.546875 -0.625 C 1.484375 -0.34375 1.46875 -0.296875 0.90625 -0.296875 C 0.734375 -0.296875 0.71875 -0.296875 0.6875 -0.28125 C 0.65625 -0.25 0.625 -0.15625 0.625 -0.109375 C 0.640625 -0.078125 0.640625 0 0.765625 0 C 0.921875 0 1.09375 -0.015625 1.265625 -0.015625 C 1.4375 -0.015625 1.609375 -0.03125 1.796875 -0.03125 C 2 -0.03125 2.203125 -0.015625 2.40625 -0.015625 C 2.59375 -0.015625 2.796875 0 2.984375 0 C 3.03125 0 3.15625 0 3.15625 -0.1875 C 3.15625 -0.296875 3.0625 -0.296875 2.890625 -0.296875 C 2.859375 -0.296875 2.671875 -0.296875 2.5 -0.3125 C 2.265625 -0.328125 2.234375 -0.34375 2.234375 -0.4375 C 2.234375 -0.4375 2.234375 -0.484375 2.265625 -0.59375 Z M 2.71875 -2.390625 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph5-1"> <path style="stroke:none;" d="M 2.96875 1.6875 C 2.15625 1.0625 1.484375 -0.125 1.484375 -1.859375 C 1.484375 -3.59375 2.140625 -4.78125 2.96875 -5.421875 C 2.96875 -5.4375 3 -5.453125 3 -5.5 C 3 -5.546875 2.96875 -5.59375 2.875 -5.59375 C 2.734375 -5.59375 0.9375 -4.421875 0.9375 -1.859375 C 0.9375 0.6875 2.734375 1.859375 2.875 1.859375 C 2.96875 1.859375 3 1.8125 3 1.765625 C 3 1.71875 2.96875 1.703125 2.96875 1.6875 Z M 2.96875 1.6875 "></path> </symbol> <symbol overflow="visible" id="6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph5-2"> <path style="stroke:none;" d="M 2.640625 -1.859375 C 2.640625 -4.421875 0.84375 -5.59375 0.703125 -5.59375 C 0.625 -5.59375 0.59375 -5.53125 0.59375 -5.5 C 0.59375 -5.453125 0.609375 -5.4375 0.734375 -5.328125 C 1.40625 -4.75 2.109375 -3.640625 2.109375 -1.859375 C 2.109375 -0.28125 1.546875 0.90625 0.703125 1.609375 C 0.609375 1.703125 0.59375 1.71875 0.59375 1.765625 C 0.59375 1.796875 0.625 1.859375 0.703125 1.859375 C 0.84375 1.859375 2.640625 0.6875 2.640625 -1.859375 Z M 2.640625 -1.859375 "></path> </symbol> </g> </defs> <g id="6LFu8Ju15STMSdfwxekX4iJ4afM=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-1" x="6.434" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-1" x="17.939" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-2" x="23.629" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-2" x="34.59775" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-1" x="109.346" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-1" x="120.84975" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-3" x="126.541" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-1" x="138.03975" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-1" x="143.72975" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-1" x="155.23475" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-2" x="160.92475" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-2" x="171.8935" y="20.432"></use> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-2" x="177.584175" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-1" x="129.383" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-1" x="140.888" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph0-2" x="146.578" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph1-2" x="157.54675" y="88.456"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -47.882344 34.012688 L 7.328594 34.012688 " transform="matrix(1,0,0,-1,94.855,50.708)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48653 2.867575 C -2.033405 1.148825 -1.021686 0.336325 0.00175125 0.0003875 C -1.021686 -0.33555 -2.033405 -1.14805 -2.48653 -2.870706 " transform="matrix(1,0,0,-1,102.42403,16.6957)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph2-1" x="60.197" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph3-1" x="68.36575" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph2-2" x="72.482" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph4-1" x="77.7945" y="12.36375"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph3-2" x="85.32075" y="10.69"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -47.882344 20.954094 L 27.42625 -20.7295 " transform="matrix(1,0,0,-1,94.855,50.708)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486393 2.867358 C -2.033747 1.147421 -1.018583 0.336209 0.00112465 0.0000661042 C -1.02192 -0.334349 -2.033604 -1.148405 -2.485273 -2.869558 " transform="matrix(0.87622,0.48497,0.48497,-0.87622,122.49117,71.5542)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph3-3" x="73.087" y="57.995"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 51.4575 20.821281 L 51.4575 -20.342781 " transform="matrix(1,0,0,-1,94.855,50.708)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48627 2.867578 C -2.03311 1.148837 -1.021375 0.336357 -0.00183751 0.000439963 C -1.021362 -0.335518 -2.033065 -1.148038 -2.486155 -2.870703 " transform="matrix(-0.00002,1,1,0.00002,146.31206,71.2909)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph2-3" x="149.828" y="50.833"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph4-2" x="154.10675" y="53.00425"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph5-1" x="161.108" y="53.00425"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph4-1" x="164.7055" y="53.00425"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#6LFu8Ju15STMSdfwxekX4iJ4afM=-glyph5-2" x="171.6105" y="53.00425"></use> </g> </g> </svg> <p>By applying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math>, we obtain the first part of the unitaly of the monad: <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="235.468pt" height="97.661pt" viewBox="0 0 235.468 97.661" version="1.1"> <defs> <g> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-1"> <path style="stroke:none;" d="M 7.5625 -3.4375 C 7.03125 -1.34375 5.296875 -0.125 3.90625 -0.125 C 2.828125 -0.125 2.09375 -0.84375 2.09375 -2.078125 C 2.09375 -2.140625 2.09375 -2.578125 2.25 -3.234375 L 3.71875 -9.109375 C 3.859375 -9.625 3.890625 -9.765625 4.9375 -9.765625 C 5.21875 -9.765625 5.359375 -9.765625 5.359375 -10.03125 C 5.359375 -10.203125 5.234375 -10.203125 5.140625 -10.203125 C 4.875 -10.203125 4.5625 -10.171875 4.265625 -10.171875 L 2.515625 -10.171875 C 2.21875 -10.171875 1.90625 -10.203125 1.625 -10.203125 C 1.53125 -10.203125 1.34375 -10.203125 1.34375 -9.921875 C 1.34375 -9.765625 1.453125 -9.765625 1.734375 -9.765625 C 2.625 -9.765625 2.625 -9.65625 2.625 -9.484375 C 2.625 -9.390625 2.53125 -8.96875 2.453125 -8.703125 L 1.15625 -3.484375 C 1.109375 -3.3125 1.015625 -2.90625 1.015625 -2.515625 C 1.015625 -0.859375 2.203125 0.3125 3.828125 0.3125 C 5.328125 0.3125 7 -0.875 7.765625 -2.78125 C 7.875 -3.03125 8 -3.5625 8.09375 -3.953125 C 8.25 -4.5 8.5625 -5.8125 8.65625 -6.203125 L 9.234375 -8.4375 C 9.421875 -9.21875 9.546875 -9.703125 10.859375 -9.765625 C 10.984375 -9.78125 11.03125 -9.90625 11.03125 -10.03125 C 11.03125 -10.203125 10.90625 -10.203125 10.84375 -10.203125 C 10.640625 -10.203125 10.359375 -10.171875 10.15625 -10.171875 L 9.453125 -10.171875 C 8.53125 -10.171875 8.046875 -10.203125 8.03125 -10.203125 C 7.953125 -10.203125 7.765625 -10.203125 7.765625 -9.921875 C 7.765625 -9.765625 7.890625 -9.765625 7.984375 -9.765625 C 8.890625 -9.734375 8.953125 -9.390625 8.953125 -9.125 C 8.953125 -9 8.953125 -8.953125 8.890625 -8.734375 Z M 7.5625 -3.4375 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-2"> <path style="stroke:none;" d="M 4.4375 -4.875 L 5.875 -4.875 C 7 -4.875 7.09375 -4.609375 7.09375 -4.1875 C 7.09375 -3.984375 7.0625 -3.78125 6.984375 -3.453125 C 6.953125 -3.390625 6.953125 -3.3125 6.953125 -3.28125 C 6.953125 -3.1875 7 -3.125 7.109375 -3.125 C 7.234375 -3.125 7.25 -3.1875 7.296875 -3.421875 L 8.171875 -6.90625 C 8.171875 -6.953125 8.125 -7.046875 8.015625 -7.046875 C 7.890625 -7.046875 7.875 -6.984375 7.8125 -6.734375 C 7.5 -5.609375 7.203125 -5.296875 5.90625 -5.296875 L 4.546875 -5.296875 L 5.515625 -9.171875 C 5.640625 -9.6875 5.671875 -9.734375 6.28125 -9.734375 L 8.296875 -9.734375 C 10.15625 -9.734375 10.421875 -9.1875 10.421875 -8.125 C 10.421875 -8.03125 10.421875 -7.703125 10.375 -7.3125 C 10.359375 -7.265625 10.34375 -7.0625 10.34375 -7 C 10.34375 -6.890625 10.40625 -6.84375 10.5 -6.84375 C 10.609375 -6.84375 10.671875 -6.90625 10.6875 -7.171875 L 11.015625 -9.78125 C 11.015625 -9.828125 11.03125 -9.984375 11.03125 -10.015625 C 11.03125 -10.171875 10.90625 -10.171875 10.640625 -10.171875 L 3.5625 -10.171875 C 3.265625 -10.171875 3.125 -10.171875 3.125 -9.90625 C 3.125 -9.734375 3.21875 -9.734375 3.484375 -9.734375 C 4.40625 -9.734375 4.40625 -9.640625 4.40625 -9.46875 C 4.40625 -9.390625 4.390625 -9.328125 4.34375 -9.171875 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.828125 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.71875 -0.03125 C 4.046875 -0.03125 4.40625 0 4.734375 0 C 4.875 0 5.046875 0 5.046875 -0.265625 C 5.046875 -0.4375 4.953125 -0.4375 4.625 -0.4375 C 3.453125 -0.4375 3.421875 -0.53125 3.421875 -0.765625 C 3.421875 -0.84375 3.453125 -0.953125 3.484375 -1.0625 Z M 4.4375 -4.875 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-3"> <path style="stroke:none;" d="M 2.546875 -1.65625 C 2.015625 -0.78125 1.515625 -0.484375 0.796875 -0.4375 C 0.625 -0.421875 0.515625 -0.421875 0.515625 -0.15625 C 0.515625 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.625 -0.03125 1.890625 -0.03125 C 2.328125 -0.03125 2.8125 0 3.21875 0 C 3.3125 0 3.5 0 3.5 -0.28125 C 3.5 -0.421875 3.375 -0.4375 3.28125 -0.4375 C 2.9375 -0.46875 2.65625 -0.578125 2.65625 -0.9375 C 2.65625 -1.15625 2.75 -1.3125 2.9375 -1.640625 L 4.078125 -3.53125 L 7.890625 -3.53125 C 7.90625 -3.390625 7.90625 -3.265625 7.921875 -3.140625 C 7.96875 -2.75 8.140625 -1.1875 8.140625 -0.90625 C 8.140625 -0.46875 7.375 -0.4375 7.140625 -0.4375 C 6.96875 -0.4375 6.8125 -0.4375 6.8125 -0.171875 C 6.8125 0 6.953125 0 7.03125 0 C 7.296875 0 7.59375 -0.03125 7.84375 -0.03125 L 8.6875 -0.03125 C 9.609375 -0.03125 10.265625 0 10.28125 0 C 10.375 0 10.546875 0 10.546875 -0.28125 C 10.546875 -0.4375 10.40625 -0.4375 10.1875 -0.4375 C 9.359375 -0.4375 9.34375 -0.5625 9.3125 -1.015625 L 8.390625 -10.34375 C 8.359375 -10.640625 8.3125 -10.671875 8.140625 -10.671875 C 7.984375 -10.671875 7.90625 -10.640625 7.765625 -10.40625 Z M 4.328125 -3.953125 L 7.328125 -8.984375 L 7.84375 -3.953125 Z M 4.328125 -3.953125 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1"> <path style="stroke:none;" d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2"> <path style="stroke:none;" d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-1"> <path style="stroke:none;" d="M 6.65625 -5.71875 C 6.765625 -6.203125 7 -6.453125 7.703125 -6.484375 C 7.8125 -6.484375 7.890625 -6.546875 7.890625 -6.671875 C 7.890625 -6.734375 7.828125 -6.8125 7.734375 -6.8125 C 7.6875 -6.8125 7.46875 -6.78125 6.75 -6.78125 C 5.953125 -6.78125 5.828125 -6.8125 5.734375 -6.8125 C 5.578125 -6.8125 5.546875 -6.703125 5.546875 -6.625 C 5.546875 -6.484375 5.671875 -6.484375 5.765625 -6.484375 C 6.375 -6.453125 6.375 -6.1875 6.375 -6.046875 C 6.375 -5.984375 6.359375 -5.9375 6.34375 -5.875 C 6.328125 -5.8125 5.5 -2.46875 5.46875 -2.34375 C 5.109375 -0.90625 3.84375 -0.125 2.859375 -0.125 C 2.171875 -0.125 1.5625 -0.53125 1.5625 -1.453125 C 1.5625 -1.609375 1.578125 -1.890625 1.625 -2.046875 L 2.625 -6.03125 C 2.71875 -6.390625 2.734375 -6.484375 3.453125 -6.484375 C 3.65625 -6.484375 3.78125 -6.484375 3.78125 -6.671875 C 3.78125 -6.671875 3.765625 -6.8125 3.609375 -6.8125 C 3.421875 -6.8125 3.1875 -6.78125 2.984375 -6.78125 L 2.359375 -6.78125 C 1.40625 -6.78125 1.140625 -6.8125 1.078125 -6.8125 C 1.03125 -6.8125 0.875 -6.8125 0.875 -6.625 C 0.875 -6.484375 1 -6.484375 1.171875 -6.484375 C 1.5 -6.484375 1.78125 -6.484375 1.78125 -6.3125 C 1.78125 -6.265625 1.6875 -5.90625 1.640625 -5.703125 L 1.421875 -4.828125 L 0.890625 -2.71875 C 0.75 -2.15625 0.71875 -2.015625 0.71875 -1.75 C 0.71875 -0.578125 1.640625 0.203125 2.828125 0.203125 C 4.171875 0.203125 5.453125 -0.9375 5.765625 -2.21875 Z M 6.65625 -5.71875 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-2"> <path style="stroke:none;" d="M 3.15625 -3.234375 L 4.1875 -3.234375 C 5 -3.234375 5.046875 -3.078125 5.046875 -2.78125 C 5.046875 -2.71875 5.046875 -2.609375 4.96875 -2.359375 C 4.96875 -2.3125 4.953125 -2.234375 4.953125 -2.203125 C 4.953125 -2.1875 4.953125 -2.0625 5.109375 -2.0625 C 5.21875 -2.0625 5.25 -2.15625 5.28125 -2.296875 L 5.8125 -4.421875 C 5.828125 -4.453125 5.859375 -4.578125 5.859375 -4.578125 C 5.859375 -4.625 5.828125 -4.71875 5.6875 -4.71875 C 5.578125 -4.71875 5.546875 -4.640625 5.515625 -4.515625 C 5.328125 -3.734375 5.09375 -3.5625 4.203125 -3.5625 L 3.234375 -3.5625 L 3.875 -6.078125 C 3.953125 -6.4375 3.96875 -6.453125 4.375 -6.453125 L 5.84375 -6.453125 C 7.03125 -6.453125 7.359375 -6.203125 7.359375 -5.34375 C 7.359375 -5.140625 7.3125 -4.875 7.3125 -4.6875 C 7.3125 -4.5625 7.390625 -4.515625 7.46875 -4.515625 C 7.609375 -4.515625 7.609375 -4.609375 7.640625 -4.78125 L 7.8125 -6.46875 C 7.828125 -6.515625 7.828125 -6.59375 7.828125 -6.640625 C 7.828125 -6.78125 7.703125 -6.78125 7.53125 -6.78125 L 2.40625 -6.78125 C 2.234375 -6.78125 2.109375 -6.78125 2.109375 -6.59375 C 2.109375 -6.453125 2.21875 -6.453125 2.390625 -6.453125 C 2.46875 -6.453125 2.609375 -6.453125 2.765625 -6.4375 C 2.984375 -6.40625 3.015625 -6.390625 3.015625 -6.296875 C 3.015625 -6.234375 3 -6.203125 2.96875 -6.09375 L 1.640625 -0.78125 C 1.5625 -0.40625 1.53125 -0.328125 0.796875 -0.328125 C 0.609375 -0.328125 0.484375 -0.328125 0.484375 -0.140625 C 0.484375 -0.09375 0.515625 0 0.640625 0 C 0.859375 0 1.09375 -0.03125 1.3125 -0.03125 L 2.6875 -0.03125 C 2.875 -0.015625 3.234375 0 3.421875 0 C 3.5 0 3.640625 0 3.640625 -0.1875 C 3.640625 -0.328125 3.515625 -0.328125 3.3125 -0.328125 C 3.09375 -0.328125 3.015625 -0.328125 2.796875 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.53125 C 2.5 -0.53125 2.5 -0.59375 2.53125 -0.75 Z M 3.15625 -3.234375 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-3"> <path style="stroke:none;" d="M 5.1875 -2.75 C 5.234375 -2.90625 5.28125 -3.078125 5.28125 -3.296875 C 5.28125 -4.03125 4.75 -4.390625 4.03125 -4.390625 C 3.234375 -4.390625 2.71875 -3.90625 2.421875 -3.53125 C 2.359375 -4.078125 1.90625 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.46875 1.640625 -3.28125 1.5625 -2.953125 C 1.546875 -2.875 1.390625 -2.28125 1.359375 -2.140625 L 0.984375 -0.640625 C 0.953125 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.390625 0.09375 1.53125 -0.015625 1.609375 -0.140625 C 1.640625 -0.203125 1.71875 -0.53125 1.765625 -0.75 L 2 -1.640625 C 2.03125 -1.78125 2.125 -2.15625 2.15625 -2.3125 C 2.296875 -2.84375 2.296875 -2.859375 2.515625 -3.1875 C 2.84375 -3.671875 3.3125 -4.109375 3.984375 -4.109375 C 4.34375 -4.109375 4.5625 -3.90625 4.5625 -3.4375 C 4.5625 -3.25 4.46875 -2.875 4.46875 -2.875 L 3.34375 1.609375 C 3.3125 1.75 3.3125 1.8125 3.3125 1.828125 C 3.3125 2.078125 3.515625 2.140625 3.625 2.140625 C 3.984375 2.140625 4.0625 1.8125 4.09375 1.6875 Z M 5.1875 -2.75 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-4"> <path style="stroke:none;" d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-1"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-2"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-3"> <path style="stroke:none;" d="M 7.28125 -3.3125 C 7.4375 -3.3125 7.640625 -3.3125 7.640625 -3.546875 C 7.640625 -3.78125 7.390625 -3.78125 7.25 -3.78125 L 0.984375 -3.78125 C 0.828125 -3.78125 0.59375 -3.78125 0.59375 -3.546875 C 0.59375 -3.3125 0.78125 -3.3125 0.9375 -3.3125 Z M 7.25 -1.203125 C 7.390625 -1.203125 7.640625 -1.203125 7.640625 -1.4375 C 7.640625 -1.671875 7.4375 -1.671875 7.28125 -1.671875 L 0.9375 -1.671875 C 0.78125 -1.671875 0.59375 -1.671875 0.59375 -1.4375 C 0.59375 -1.203125 0.828125 -1.203125 0.984375 -1.203125 Z M 7.25 -1.203125 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph4-1"> <path style="stroke:none;" d="M 1.6875 -0.90625 C 1.40625 -0.484375 1.15625 -0.328125 0.734375 -0.296875 C 0.625 -0.296875 0.53125 -0.28125 0.53125 -0.109375 C 0.53125 -0.03125 0.59375 0 0.65625 0 C 0.859375 0 1.109375 -0.03125 1.328125 -0.03125 C 1.5 -0.03125 1.9375 0 2.125 0 C 2.203125 0 2.28125 -0.03125 2.28125 -0.1875 C 2.28125 -0.296875 2.1875 -0.296875 2.15625 -0.296875 C 1.984375 -0.3125 1.8125 -0.34375 1.8125 -0.515625 C 1.8125 -0.609375 1.890625 -0.734375 1.921875 -0.78125 L 2.53125 -1.703125 L 4.78125 -1.703125 L 4.96875 -0.5 C 4.96875 -0.296875 4.546875 -0.296875 4.46875 -0.296875 C 4.375 -0.296875 4.25 -0.296875 4.25 -0.109375 C 4.25 -0.078125 4.28125 0 4.375 0 C 4.59375 0 5.140625 -0.03125 5.375 -0.03125 C 5.515625 -0.03125 5.65625 -0.015625 5.8125 -0.015625 C 5.953125 -0.015625 6.125 0 6.265625 0 C 6.3125 0 6.4375 0 6.4375 -0.1875 C 6.4375 -0.296875 6.328125 -0.296875 6.21875 -0.296875 C 5.765625 -0.296875 5.75 -0.34375 5.71875 -0.53125 L 4.96875 -5.125 C 4.953125 -5.265625 4.9375 -5.328125 4.78125 -5.328125 C 4.625 -5.328125 4.578125 -5.265625 4.515625 -5.171875 Z M 2.71875 -2 L 4.34375 -4.421875 L 4.734375 -2 Z M 2.71875 -2 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph4-2"> <path style="stroke:none;" d="M 2.71875 -2.390625 L 3.578125 -2.390625 C 4.171875 -2.390625 4.265625 -2.296875 4.265625 -2.046875 C 4.265625 -1.9375 4.234375 -1.71875 4.203125 -1.625 C 4.203125 -1.609375 4.21875 -1.515625 4.34375 -1.515625 C 4.4375 -1.515625 4.453125 -1.546875 4.484375 -1.6875 L 4.9375 -3.453125 C 4.9375 -3.46875 4.921875 -3.5625 4.796875 -3.5625 C 4.6875 -3.5625 4.671875 -3.515625 4.640625 -3.40625 C 4.484375 -2.828125 4.296875 -2.6875 3.59375 -2.6875 L 2.796875 -2.6875 L 3.25 -4.515625 C 3.3125 -4.75 3.328125 -4.765625 3.640625 -4.765625 L 4.859375 -4.765625 C 5.84375 -4.765625 6.109375 -4.578125 6.109375 -3.90625 C 6.109375 -3.734375 6.078125 -3.46875 6.078125 -3.453125 C 6.078125 -3.328125 6.1875 -3.328125 6.21875 -3.328125 C 6.34375 -3.328125 6.34375 -3.390625 6.359375 -3.515625 L 6.5 -4.84375 C 6.515625 -5.078125 6.453125 -5.078125 6.28125 -5.078125 L 2.078125 -5.078125 C 1.9375 -5.078125 1.828125 -5.078125 1.828125 -4.890625 C 1.828125 -4.765625 1.9375 -4.765625 2.0625 -4.765625 C 2.203125 -4.765625 2.390625 -4.765625 2.546875 -4.71875 C 2.546875 -4.640625 2.546875 -4.59375 2.515625 -4.484375 L 1.546875 -0.625 C 1.484375 -0.34375 1.46875 -0.296875 0.90625 -0.296875 C 0.734375 -0.296875 0.71875 -0.296875 0.6875 -0.28125 C 0.65625 -0.25 0.625 -0.15625 0.625 -0.109375 C 0.640625 -0.078125 0.640625 0 0.765625 0 C 0.921875 0 1.09375 -0.015625 1.265625 -0.015625 C 1.4375 -0.015625 1.609375 -0.03125 1.796875 -0.03125 C 2 -0.03125 2.203125 -0.015625 2.40625 -0.015625 C 2.59375 -0.015625 2.796875 0 2.984375 0 C 3.03125 0 3.15625 0 3.15625 -0.1875 C 3.15625 -0.296875 3.0625 -0.296875 2.890625 -0.296875 C 2.859375 -0.296875 2.671875 -0.296875 2.5 -0.3125 C 2.265625 -0.328125 2.234375 -0.34375 2.234375 -0.4375 C 2.234375 -0.4375 2.234375 -0.484375 2.265625 -0.59375 Z M 2.71875 -2.390625 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph5-1"> <path style="stroke:none;" d="M 2.96875 1.6875 C 2.15625 1.0625 1.484375 -0.125 1.484375 -1.859375 C 1.484375 -3.59375 2.140625 -4.78125 2.96875 -5.421875 C 2.96875 -5.4375 3 -5.453125 3 -5.5 C 3 -5.546875 2.96875 -5.59375 2.875 -5.59375 C 2.734375 -5.59375 0.9375 -4.421875 0.9375 -1.859375 C 0.9375 0.6875 2.734375 1.859375 2.875 1.859375 C 2.96875 1.859375 3 1.8125 3 1.765625 C 3 1.71875 2.96875 1.703125 2.96875 1.6875 Z M 2.96875 1.6875 "></path> </symbol> <symbol overflow="visible" id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph5-2"> <path style="stroke:none;" d="M 2.640625 -1.859375 C 2.640625 -4.421875 0.84375 -5.59375 0.703125 -5.59375 C 0.625 -5.59375 0.59375 -5.53125 0.59375 -5.5 C 0.59375 -5.453125 0.609375 -5.4375 0.734375 -5.328125 C 1.40625 -4.75 2.109375 -3.640625 2.109375 -1.859375 C 2.109375 -0.28125 1.546875 0.90625 0.703125 1.609375 C 0.609375 1.703125 0.59375 1.71875 0.59375 1.765625 C 0.59375 1.796875 0.625 1.859375 0.703125 1.859375 C 0.84375 1.859375 2.640625 0.6875 2.640625 -1.859375 Z M 2.640625 -1.859375 "></path> </symbol> </g> </defs> <g id="Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-1" x="6.434" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="17.93275" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-2" x="23.624" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="35.12775" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-3" x="40.81775" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2" x="51.78775" y="20.432"></use> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2" x="57.478425" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-1" x="132.225" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="143.72375" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-2" x="149.415" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="160.91875" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-1" x="166.61" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="178.10875" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-2" x="183.79875" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="195.30375" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-3" x="200.99375" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2" x="211.9625" y="20.432"></use> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2" x="217.653175" y="20.432"></use> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2" x="223.34385" y="20.432"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-1" x="152.263" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="163.76175" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-2" x="169.45175" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-1" x="180.95675" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph0-3" x="186.64675" y="88.456"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2" x="197.6155" y="88.456"></use> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph1-2" x="203.306175" y="88.456"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -47.882438 34.012688 L 7.3285 34.012688 " transform="matrix(1,0,0,-1,117.734,50.708)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486644 2.867575 C -2.033519 1.148825 -1.0218 0.336325 0.0016375 0.0003875 C -1.0218 -0.33555 -2.033519 -1.14805 -2.486644 -2.870706 " transform="matrix(1,0,0,-1,125.30305,16.6957)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-1" x="74.848" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-1" x="83.0705" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-2" x="87.188" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-1" x="95.35675" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-3" x="99.473" y="10.69"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph4-1" x="104.7855" y="12.36375"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-2" x="112.31175" y="10.69"></use> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-2" x="116.428307" y="10.69"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -54.651969 20.821281 L 34.199594 -20.620125 " transform="matrix(1,0,0,-1,117.734,50.708)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486646 2.867774 C -2.033095 1.148781 -1.021478 0.335049 -0.000359699 -0.00128776 C -1.018772 -0.334437 -2.032797 -1.147103 -2.485782 -2.867583 " transform="matrix(0.9085,0.42377,0.42377,-0.9085,152.14931,71.42867)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-3" x="95.975" y="57.99"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 62.898812 20.821281 L 62.898812 -20.342781 " transform="matrix(1,0,0,-1,117.734,50.708)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48627 2.86834 C -2.03311 1.145693 -1.021375 0.333213 -0.00183752 0.00120246 C -1.021362 -0.334755 -2.033065 -1.147276 -2.486155 -2.869941 " transform="matrix(-0.00002,1,1,0.00002,180.63161,71.2909)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-1" x="184.148" y="52.424"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-1" x="192.3705" y="52.424"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph2-4" x="196.48675" y="52.424"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph4-2" x="200.7655" y="54.5965"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph5-1" x="207.76675" y="54.5965"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph4-1" x="211.36425" y="54.5965"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph5-2" x="218.26925" y="54.5965"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Zoj2yw7MRTL7CA7PdsnQ8iWxC-c=-glyph3-2" x="222.48925" y="52.424"></use> </g> </g> </svg></p> <p><strong>(2)</strong> We know that this diagram commutes: <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="197.19pt" height="96.028pt" viewBox="0 0 197.19 96.028" version="1.1"> <defs> <g> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-1"> <path style="stroke:none;" d="M 7.5625 -3.4375 C 7.03125 -1.34375 5.296875 -0.125 3.90625 -0.125 C 2.828125 -0.125 2.09375 -0.84375 2.09375 -2.078125 C 2.09375 -2.140625 2.09375 -2.578125 2.25 -3.234375 L 3.71875 -9.109375 C 3.859375 -9.625 3.890625 -9.765625 4.9375 -9.765625 C 5.21875 -9.765625 5.359375 -9.765625 5.359375 -10.03125 C 5.359375 -10.203125 5.234375 -10.203125 5.140625 -10.203125 C 4.875 -10.203125 4.5625 -10.171875 4.265625 -10.171875 L 2.515625 -10.171875 C 2.21875 -10.171875 1.90625 -10.203125 1.625 -10.203125 C 1.53125 -10.203125 1.34375 -10.203125 1.34375 -9.921875 C 1.34375 -9.765625 1.453125 -9.765625 1.734375 -9.765625 C 2.625 -9.765625 2.625 -9.65625 2.625 -9.484375 C 2.625 -9.390625 2.53125 -8.96875 2.453125 -8.703125 L 1.15625 -3.484375 C 1.109375 -3.3125 1.015625 -2.90625 1.015625 -2.515625 C 1.015625 -0.859375 2.203125 0.3125 3.828125 0.3125 C 5.328125 0.3125 7 -0.875 7.765625 -2.78125 C 7.875 -3.03125 8 -3.5625 8.09375 -3.953125 C 8.25 -4.5 8.5625 -5.8125 8.65625 -6.203125 L 9.234375 -8.4375 C 9.421875 -9.21875 9.546875 -9.703125 10.859375 -9.765625 C 10.984375 -9.78125 11.03125 -9.90625 11.03125 -10.03125 C 11.03125 -10.203125 10.90625 -10.203125 10.84375 -10.203125 C 10.640625 -10.203125 10.359375 -10.171875 10.15625 -10.171875 L 9.453125 -10.171875 C 8.53125 -10.171875 8.046875 -10.203125 8.03125 -10.203125 C 7.953125 -10.203125 7.765625 -10.203125 7.765625 -9.921875 C 7.765625 -9.765625 7.890625 -9.765625 7.984375 -9.765625 C 8.890625 -9.734375 8.953125 -9.390625 8.953125 -9.125 C 8.953125 -9 8.953125 -8.953125 8.890625 -8.734375 Z M 7.5625 -3.4375 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-2"> <path style="stroke:none;" d="M 5.46875 -9.1875 C 5.59375 -9.734375 5.65625 -9.765625 6.25 -9.765625 L 8.1875 -9.765625 C 9.875 -9.765625 9.875 -8.328125 9.875 -8.203125 C 9.875 -6.984375 8.65625 -5.453125 6.6875 -5.453125 L 4.546875 -5.453125 Z M 7.984375 -5.328125 C 9.625 -5.625 11.09375 -6.765625 11.09375 -8.140625 C 11.09375 -9.3125 10.0625 -10.203125 8.375 -10.203125 L 3.578125 -10.203125 C 3.296875 -10.203125 3.171875 -10.203125 3.171875 -9.921875 C 3.171875 -9.765625 3.296875 -9.765625 3.53125 -9.765625 C 4.4375 -9.765625 4.4375 -9.65625 4.4375 -9.484375 C 4.4375 -9.453125 4.4375 -9.359375 4.375 -9.140625 L 2.359375 -1.109375 C 2.21875 -0.578125 2.203125 -0.4375 1.15625 -0.4375 C 0.859375 -0.4375 0.71875 -0.4375 0.71875 -0.171875 C 0.71875 0 0.8125 0 1.109375 0 L 6.234375 0 C 8.515625 0 10.28125 -1.734375 10.28125 -3.234375 C 10.28125 -4.46875 9.203125 -5.21875 7.984375 -5.328125 Z M 5.875 -0.4375 L 3.859375 -0.4375 C 3.640625 -0.4375 3.609375 -0.4375 3.53125 -0.453125 C 3.359375 -0.46875 3.34375 -0.5 3.34375 -0.609375 C 3.34375 -0.71875 3.375 -0.8125 3.40625 -0.9375 L 4.453125 -5.15625 L 7.265625 -5.15625 C 9.015625 -5.15625 9.015625 -3.515625 9.015625 -3.390625 C 9.015625 -1.953125 7.71875 -0.4375 5.875 -0.4375 Z M 5.875 -0.4375 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-3"> <path style="stroke:none;" d="M 4.4375 -4.875 L 5.875 -4.875 C 7 -4.875 7.09375 -4.609375 7.09375 -4.1875 C 7.09375 -3.984375 7.0625 -3.78125 6.984375 -3.453125 C 6.953125 -3.390625 6.953125 -3.3125 6.953125 -3.28125 C 6.953125 -3.1875 7 -3.125 7.109375 -3.125 C 7.234375 -3.125 7.25 -3.1875 7.296875 -3.421875 L 8.171875 -6.90625 C 8.171875 -6.953125 8.125 -7.046875 8.015625 -7.046875 C 7.890625 -7.046875 7.875 -6.984375 7.8125 -6.734375 C 7.5 -5.609375 7.203125 -5.296875 5.90625 -5.296875 L 4.546875 -5.296875 L 5.515625 -9.171875 C 5.640625 -9.6875 5.671875 -9.734375 6.28125 -9.734375 L 8.296875 -9.734375 C 10.15625 -9.734375 10.421875 -9.1875 10.421875 -8.125 C 10.421875 -8.03125 10.421875 -7.703125 10.375 -7.3125 C 10.359375 -7.265625 10.34375 -7.0625 10.34375 -7 C 10.34375 -6.890625 10.40625 -6.84375 10.5 -6.84375 C 10.609375 -6.84375 10.671875 -6.90625 10.6875 -7.171875 L 11.015625 -9.78125 C 11.015625 -9.828125 11.03125 -9.984375 11.03125 -10.015625 C 11.03125 -10.171875 10.90625 -10.171875 10.640625 -10.171875 L 3.5625 -10.171875 C 3.265625 -10.171875 3.125 -10.171875 3.125 -9.90625 C 3.125 -9.734375 3.21875 -9.734375 3.484375 -9.734375 C 4.40625 -9.734375 4.40625 -9.640625 4.40625 -9.46875 C 4.40625 -9.390625 4.390625 -9.328125 4.34375 -9.171875 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.828125 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.71875 -0.03125 C 4.046875 -0.03125 4.40625 0 4.734375 0 C 4.875 0 5.046875 0 5.046875 -0.265625 C 5.046875 -0.4375 4.953125 -0.4375 4.625 -0.4375 C 3.453125 -0.4375 3.421875 -0.53125 3.421875 -0.765625 C 3.421875 -0.84375 3.453125 -0.953125 3.484375 -1.0625 Z M 4.4375 -4.875 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-1"> <path style="stroke:none;" d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-2"> <path style="stroke:none;" d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph2-1"> <path style="stroke:none;" d="M 5.1875 -2.75 C 5.234375 -2.90625 5.28125 -3.078125 5.28125 -3.296875 C 5.28125 -4.03125 4.75 -4.390625 4.03125 -4.390625 C 3.234375 -4.390625 2.71875 -3.90625 2.421875 -3.53125 C 2.359375 -4.078125 1.90625 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.46875 1.640625 -3.28125 1.5625 -2.953125 C 1.546875 -2.875 1.390625 -2.28125 1.359375 -2.140625 L 0.984375 -0.640625 C 0.953125 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.390625 0.09375 1.53125 -0.015625 1.609375 -0.140625 C 1.640625 -0.203125 1.71875 -0.53125 1.765625 -0.75 L 2 -1.640625 C 2.03125 -1.78125 2.125 -2.15625 2.15625 -2.3125 C 2.296875 -2.84375 2.296875 -2.859375 2.515625 -3.1875 C 2.84375 -3.671875 3.3125 -4.109375 3.984375 -4.109375 C 4.34375 -4.109375 4.5625 -3.90625 4.5625 -3.4375 C 4.5625 -3.25 4.46875 -2.875 4.46875 -2.875 L 3.34375 1.609375 C 3.3125 1.75 3.3125 1.8125 3.3125 1.828125 C 3.3125 2.078125 3.515625 2.140625 3.625 2.140625 C 3.984375 2.140625 4.0625 1.8125 4.09375 1.6875 Z M 5.1875 -2.75 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph2-2"> <path style="stroke:none;" d="M 6.65625 -5.71875 C 6.765625 -6.203125 7 -6.453125 7.703125 -6.484375 C 7.8125 -6.484375 7.890625 -6.546875 7.890625 -6.671875 C 7.890625 -6.734375 7.828125 -6.8125 7.734375 -6.8125 C 7.6875 -6.8125 7.46875 -6.78125 6.75 -6.78125 C 5.953125 -6.78125 5.828125 -6.8125 5.734375 -6.8125 C 5.578125 -6.8125 5.546875 -6.703125 5.546875 -6.625 C 5.546875 -6.484375 5.671875 -6.484375 5.765625 -6.484375 C 6.375 -6.453125 6.375 -6.1875 6.375 -6.046875 C 6.375 -5.984375 6.359375 -5.9375 6.34375 -5.875 C 6.328125 -5.8125 5.5 -2.46875 5.46875 -2.34375 C 5.109375 -0.90625 3.84375 -0.125 2.859375 -0.125 C 2.171875 -0.125 1.5625 -0.53125 1.5625 -1.453125 C 1.5625 -1.609375 1.578125 -1.890625 1.625 -2.046875 L 2.625 -6.03125 C 2.71875 -6.390625 2.734375 -6.484375 3.453125 -6.484375 C 3.65625 -6.484375 3.78125 -6.484375 3.78125 -6.671875 C 3.78125 -6.671875 3.765625 -6.8125 3.609375 -6.8125 C 3.421875 -6.8125 3.1875 -6.78125 2.984375 -6.78125 L 2.359375 -6.78125 C 1.40625 -6.78125 1.140625 -6.8125 1.078125 -6.8125 C 1.03125 -6.8125 0.875 -6.8125 0.875 -6.625 C 0.875 -6.484375 1 -6.484375 1.171875 -6.484375 C 1.5 -6.484375 1.78125 -6.484375 1.78125 -6.3125 C 1.78125 -6.265625 1.6875 -5.90625 1.640625 -5.703125 L 1.421875 -4.828125 L 0.890625 -2.71875 C 0.75 -2.15625 0.71875 -2.015625 0.71875 -1.75 C 0.71875 -0.578125 1.640625 0.203125 2.828125 0.203125 C 4.171875 0.203125 5.453125 -0.9375 5.765625 -2.21875 Z M 6.65625 -5.71875 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph2-3"> <path style="stroke:none;" d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph3-1"> <path style="stroke:none;" d="M 5.59375 -4.25 C 5.6875 -4.578125 5.8125 -4.78125 6.421875 -4.796875 C 6.515625 -4.796875 6.578125 -4.859375 6.578125 -4.984375 C 6.578125 -5.0625 6.53125 -5.09375 6.453125 -5.09375 C 6.28125 -5.09375 5.828125 -5.078125 5.65625 -5.078125 L 5.25 -5.078125 C 5.109375 -5.078125 4.953125 -5.09375 4.828125 -5.09375 C 4.703125 -5.09375 4.671875 -5 4.671875 -4.921875 C 4.671875 -4.796875 4.78125 -4.796875 4.84375 -4.796875 C 5.203125 -4.796875 5.34375 -4.703125 5.34375 -4.5 C 5.34375 -4.484375 5.34375 -4.4375 5.328125 -4.390625 L 4.65625 -1.71875 C 4.421875 -0.796875 3.5 -0.140625 2.609375 -0.140625 C 2.171875 -0.140625 1.515625 -0.328125 1.515625 -1.15625 C 1.515625 -1.328125 1.53125 -1.5 1.578125 -1.671875 L 2.28125 -4.5 C 2.34375 -4.75 2.359375 -4.796875 2.953125 -4.796875 C 3.09375 -4.796875 3.203125 -4.796875 3.203125 -4.984375 C 3.203125 -5.0625 3.140625 -5.09375 3.0625 -5.09375 C 2.90625 -5.09375 2.734375 -5.078125 2.5625 -5.078125 C 2.40625 -5.078125 2.234375 -5.078125 2.0625 -5.078125 C 1.890625 -5.078125 1.71875 -5.078125 1.546875 -5.078125 C 1.390625 -5.078125 1.203125 -5.09375 1.03125 -5.09375 C 1 -5.09375 0.859375 -5.09375 0.859375 -4.921875 C 0.859375 -4.796875 0.984375 -4.796875 1.109375 -4.796875 C 1.25 -4.796875 1.4375 -4.796875 1.59375 -4.75 L 1.578125 -4.609375 C 1.5625 -4.53125 1.5 -4.25 1.453125 -4.078125 L 1.28125 -3.421875 L 0.859375 -1.71875 C 0.8125 -1.53125 0.8125 -1.4375 0.8125 -1.34375 C 0.8125 -0.453125 1.5625 0.15625 2.5625 0.15625 C 3.578125 0.15625 4.6875 -0.59375 4.96875 -1.71875 Z M 5.59375 -4.25 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph3-2"> <path style="stroke:none;" d="M 1.5625 -0.625 C 1.5 -0.34375 1.484375 -0.296875 0.921875 -0.296875 C 0.765625 -0.296875 0.75 -0.296875 0.71875 -0.28125 C 0.671875 -0.25 0.65625 -0.15625 0.65625 -0.109375 C 0.671875 0 0.734375 0 0.890625 0 L 3.921875 0 C 5.21875 0 6.234375 -0.84375 6.234375 -1.59375 C 6.234375 -2.046875 5.828125 -2.546875 4.90625 -2.671875 C 5.765625 -2.8125 6.609375 -3.359375 6.609375 -4.03125 C 6.609375 -4.578125 6.015625 -5.09375 4.96875 -5.09375 L 2.109375 -5.09375 C 1.96875 -5.09375 1.859375 -5.09375 1.859375 -4.921875 C 1.859375 -4.796875 1.96875 -4.796875 2.09375 -4.796875 C 2.234375 -4.796875 2.421875 -4.796875 2.578125 -4.75 C 2.578125 -4.671875 2.578125 -4.625 2.546875 -4.515625 Z M 2.796875 -2.78125 L 3.234375 -4.546875 C 3.296875 -4.78125 3.296875 -4.796875 3.609375 -4.796875 L 4.84375 -4.796875 C 5.625 -4.796875 5.84375 -4.328125 5.84375 -4.015625 C 5.84375 -3.40625 5.078125 -2.78125 4.15625 -2.78125 Z M 2.4375 -0.296875 C 2.296875 -0.296875 2.28125 -0.296875 2.1875 -0.328125 L 2.71875 -2.53125 L 4.359375 -2.53125 C 5.296875 -2.53125 5.453125 -1.921875 5.453125 -1.625 C 5.453125 -0.90625 4.65625 -0.296875 3.734375 -0.296875 Z M 2.4375 -0.296875 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph4-1"> <path style="stroke:none;" d="M 2.96875 1.6875 C 2.15625 1.0625 1.484375 -0.125 1.484375 -1.859375 C 1.484375 -3.59375 2.140625 -4.78125 2.96875 -5.421875 C 2.96875 -5.4375 3 -5.453125 3 -5.5 C 3 -5.546875 2.96875 -5.59375 2.875 -5.59375 C 2.734375 -5.59375 0.9375 -4.421875 0.9375 -1.859375 C 0.9375 0.6875 2.734375 1.859375 2.875 1.859375 C 2.96875 1.859375 3 1.8125 3 1.765625 C 3 1.71875 2.96875 1.703125 2.96875 1.6875 Z M 2.96875 1.6875 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph4-2"> <path style="stroke:none;" d="M 2.640625 -1.859375 C 2.640625 -4.421875 0.84375 -5.59375 0.703125 -5.59375 C 0.625 -5.59375 0.59375 -5.53125 0.59375 -5.5 C 0.59375 -5.453125 0.609375 -5.4375 0.734375 -5.328125 C 1.40625 -4.75 2.109375 -3.640625 2.109375 -1.859375 C 2.109375 -0.28125 1.546875 0.90625 0.703125 1.609375 C 0.609375 1.703125 0.59375 1.71875 0.59375 1.765625 C 0.59375 1.796875 0.625 1.859375 0.703125 1.859375 C 0.84375 1.859375 2.640625 0.6875 2.640625 -1.859375 Z M 2.640625 -1.859375 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph5-1"> <path style="stroke:none;" d="M 7.28125 -3.3125 C 7.4375 -3.3125 7.640625 -3.3125 7.640625 -3.546875 C 7.640625 -3.78125 7.390625 -3.78125 7.25 -3.78125 L 0.984375 -3.78125 C 0.828125 -3.78125 0.59375 -3.78125 0.59375 -3.546875 C 0.59375 -3.3125 0.78125 -3.3125 0.9375 -3.3125 Z M 7.25 -1.203125 C 7.390625 -1.203125 7.640625 -1.203125 7.640625 -1.4375 C 7.640625 -1.671875 7.4375 -1.671875 7.28125 -1.671875 L 0.9375 -1.671875 C 0.78125 -1.671875 0.59375 -1.671875 0.59375 -1.4375 C 0.59375 -1.203125 0.828125 -1.203125 0.984375 -1.203125 Z M 7.25 -1.203125 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph5-2"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph5-3"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> </g> </defs> <g id="nJiqwf8-d3kH4CmUAa2DcU9GhFI=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-1" x="6.434" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-1" x="17.93275" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-2" x="23.624" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-2" x="35.494" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-1" x="110.241" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-1" x="121.73975" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-3" x="127.431" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-1" x="138.93475" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-1" x="144.626" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-1" x="156.12475" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-2" x="161.81475" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-2" x="173.68475" y="18.799"></use> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-2" x="179.375425" y="18.799"></use> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-2" x="185.0661" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-1" x="133.124" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-1" x="144.62275" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph0-2" x="150.31275" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph1-2" x="162.18275" y="86.823"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.727812 34.0125 L 4.483125 34.0125 " transform="matrix(1,0,0,-1,98.595,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486759 2.867387 C -2.033634 1.148637 -1.018009 0.336137 0.0015225 0.0002 C -1.018009 -0.335738 -2.033634 -1.148238 -2.486759 -2.870894 " transform="matrix(1,0,0,-1,103.31879,15.0627)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph2-1" x="61.973" y="7.507"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph3-1" x="67.2855" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph4-1" x="74.353" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph3-2" x="77.9505" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph4-2" x="85.23175" y="9.6795"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.727812 21.110156 L 27.424531 -20.870313 " transform="matrix(1,0,0,-1,98.595,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485319 2.867848 C -2.034168 1.147285 -1.018922 0.335392 0.00155854 -0.000649686 C -1.02198 -0.333812 -2.031499 -1.145746 -2.484587 -2.870133 " transform="matrix(0.88358,0.47461,0.47461,-0.88358,126.2294,70.05728)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph5-1" x="75.405" y="56.349"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 51.905 20.821094 L 51.905 -20.342969 " transform="matrix(1,0,0,-1,98.595,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486082 2.867388 C -2.032923 1.148647 -1.021188 0.336167 -0.00165 0.000249967 C -1.021175 -0.335708 -2.032877 -1.148228 -2.485968 -2.870893 " transform="matrix(-0.00002,1,1,0.00002,150.49975,69.6579)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph2-2" x="154.016" y="51.566"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph5-2" x="162.2385" y="51.566"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph2-3" x="166.35475" y="51.566"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph3-2" x="170.6335" y="53.23975"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#nJiqwf8-d3kH4CmUAa2DcU9GhFI=-glyph5-3" x="178.53725" y="51.566"></use> </g> </g> </svg> By putting <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>=</mo><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B=F(A)</annotation></semantics></math>, we obtain the second part of the unitality of the monad: <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="241.159pt" height="96.028pt" viewBox="0 0 241.159 96.028" version="1.1"> <defs> <g> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-1"> <path style="stroke:none;" d="M 7.5625 -3.4375 C 7.03125 -1.34375 5.296875 -0.125 3.90625 -0.125 C 2.828125 -0.125 2.09375 -0.84375 2.09375 -2.078125 C 2.09375 -2.140625 2.09375 -2.578125 2.25 -3.234375 L 3.71875 -9.109375 C 3.859375 -9.625 3.890625 -9.765625 4.9375 -9.765625 C 5.21875 -9.765625 5.359375 -9.765625 5.359375 -10.03125 C 5.359375 -10.203125 5.234375 -10.203125 5.140625 -10.203125 C 4.875 -10.203125 4.5625 -10.171875 4.265625 -10.171875 L 2.515625 -10.171875 C 2.21875 -10.171875 1.90625 -10.203125 1.625 -10.203125 C 1.53125 -10.203125 1.34375 -10.203125 1.34375 -9.921875 C 1.34375 -9.765625 1.453125 -9.765625 1.734375 -9.765625 C 2.625 -9.765625 2.625 -9.65625 2.625 -9.484375 C 2.625 -9.390625 2.53125 -8.96875 2.453125 -8.703125 L 1.15625 -3.484375 C 1.109375 -3.3125 1.015625 -2.90625 1.015625 -2.515625 C 1.015625 -0.859375 2.203125 0.3125 3.828125 0.3125 C 5.328125 0.3125 7 -0.875 7.765625 -2.78125 C 7.875 -3.03125 8 -3.5625 8.09375 -3.953125 C 8.25 -4.5 8.5625 -5.8125 8.65625 -6.203125 L 9.234375 -8.4375 C 9.421875 -9.21875 9.546875 -9.703125 10.859375 -9.765625 C 10.984375 -9.78125 11.03125 -9.90625 11.03125 -10.03125 C 11.03125 -10.203125 10.90625 -10.203125 10.84375 -10.203125 C 10.640625 -10.203125 10.359375 -10.171875 10.15625 -10.171875 L 9.453125 -10.171875 C 8.53125 -10.171875 8.046875 -10.203125 8.03125 -10.203125 C 7.953125 -10.203125 7.765625 -10.203125 7.765625 -9.921875 C 7.765625 -9.765625 7.890625 -9.765625 7.984375 -9.765625 C 8.890625 -9.734375 8.953125 -9.390625 8.953125 -9.125 C 8.953125 -9 8.953125 -8.953125 8.890625 -8.734375 Z M 7.5625 -3.4375 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-2"> <path style="stroke:none;" d="M 4.4375 -4.875 L 5.875 -4.875 C 7 -4.875 7.09375 -4.609375 7.09375 -4.1875 C 7.09375 -3.984375 7.0625 -3.78125 6.984375 -3.453125 C 6.953125 -3.390625 6.953125 -3.3125 6.953125 -3.28125 C 6.953125 -3.1875 7 -3.125 7.109375 -3.125 C 7.234375 -3.125 7.25 -3.1875 7.296875 -3.421875 L 8.171875 -6.90625 C 8.171875 -6.953125 8.125 -7.046875 8.015625 -7.046875 C 7.890625 -7.046875 7.875 -6.984375 7.8125 -6.734375 C 7.5 -5.609375 7.203125 -5.296875 5.90625 -5.296875 L 4.546875 -5.296875 L 5.515625 -9.171875 C 5.640625 -9.6875 5.671875 -9.734375 6.28125 -9.734375 L 8.296875 -9.734375 C 10.15625 -9.734375 10.421875 -9.1875 10.421875 -8.125 C 10.421875 -8.03125 10.421875 -7.703125 10.375 -7.3125 C 10.359375 -7.265625 10.34375 -7.0625 10.34375 -7 C 10.34375 -6.890625 10.40625 -6.84375 10.5 -6.84375 C 10.609375 -6.84375 10.671875 -6.90625 10.6875 -7.171875 L 11.015625 -9.78125 C 11.015625 -9.828125 11.03125 -9.984375 11.03125 -10.015625 C 11.03125 -10.171875 10.90625 -10.171875 10.640625 -10.171875 L 3.5625 -10.171875 C 3.265625 -10.171875 3.125 -10.171875 3.125 -9.90625 C 3.125 -9.734375 3.21875 -9.734375 3.484375 -9.734375 C 4.40625 -9.734375 4.40625 -9.640625 4.40625 -9.46875 C 4.40625 -9.390625 4.390625 -9.328125 4.34375 -9.171875 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.828125 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.71875 -0.03125 C 4.046875 -0.03125 4.40625 0 4.734375 0 C 4.875 0 5.046875 0 5.046875 -0.265625 C 5.046875 -0.4375 4.953125 -0.4375 4.625 -0.4375 C 3.453125 -0.4375 3.421875 -0.53125 3.421875 -0.765625 C 3.421875 -0.84375 3.453125 -0.953125 3.484375 -1.0625 Z M 4.4375 -4.875 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-3"> <path style="stroke:none;" d="M 2.546875 -1.65625 C 2.015625 -0.78125 1.515625 -0.484375 0.796875 -0.4375 C 0.625 -0.421875 0.515625 -0.421875 0.515625 -0.15625 C 0.515625 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.625 -0.03125 1.890625 -0.03125 C 2.328125 -0.03125 2.8125 0 3.21875 0 C 3.3125 0 3.5 0 3.5 -0.28125 C 3.5 -0.421875 3.375 -0.4375 3.28125 -0.4375 C 2.9375 -0.46875 2.65625 -0.578125 2.65625 -0.9375 C 2.65625 -1.15625 2.75 -1.3125 2.9375 -1.640625 L 4.078125 -3.53125 L 7.890625 -3.53125 C 7.90625 -3.390625 7.90625 -3.265625 7.921875 -3.140625 C 7.96875 -2.75 8.140625 -1.1875 8.140625 -0.90625 C 8.140625 -0.46875 7.375 -0.4375 7.140625 -0.4375 C 6.96875 -0.4375 6.8125 -0.4375 6.8125 -0.171875 C 6.8125 0 6.953125 0 7.03125 0 C 7.296875 0 7.59375 -0.03125 7.84375 -0.03125 L 8.6875 -0.03125 C 9.609375 -0.03125 10.265625 0 10.28125 0 C 10.375 0 10.546875 0 10.546875 -0.28125 C 10.546875 -0.4375 10.40625 -0.4375 10.1875 -0.4375 C 9.359375 -0.4375 9.34375 -0.5625 9.3125 -1.015625 L 8.390625 -10.34375 C 8.359375 -10.640625 8.3125 -10.671875 8.140625 -10.671875 C 7.984375 -10.671875 7.90625 -10.640625 7.765625 -10.40625 Z M 4.328125 -3.953125 L 7.328125 -8.984375 L 7.84375 -3.953125 Z M 4.328125 -3.953125 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1"> <path style="stroke:none;" d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2"> <path style="stroke:none;" d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph2-1"> <path style="stroke:none;" d="M 5.1875 -2.75 C 5.234375 -2.90625 5.28125 -3.078125 5.28125 -3.296875 C 5.28125 -4.03125 4.75 -4.390625 4.03125 -4.390625 C 3.234375 -4.390625 2.71875 -3.90625 2.421875 -3.53125 C 2.359375 -4.078125 1.90625 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.46875 1.640625 -3.28125 1.5625 -2.953125 C 1.546875 -2.875 1.390625 -2.28125 1.359375 -2.140625 L 0.984375 -0.640625 C 0.953125 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.390625 0.09375 1.53125 -0.015625 1.609375 -0.140625 C 1.640625 -0.203125 1.71875 -0.53125 1.765625 -0.75 L 2 -1.640625 C 2.03125 -1.78125 2.125 -2.15625 2.15625 -2.3125 C 2.296875 -2.84375 2.296875 -2.859375 2.515625 -3.1875 C 2.84375 -3.671875 3.3125 -4.109375 3.984375 -4.109375 C 4.34375 -4.109375 4.5625 -3.90625 4.5625 -3.4375 C 4.5625 -3.25 4.46875 -2.875 4.46875 -2.875 L 3.34375 1.609375 C 3.3125 1.75 3.3125 1.8125 3.3125 1.828125 C 3.3125 2.078125 3.515625 2.140625 3.625 2.140625 C 3.984375 2.140625 4.0625 1.8125 4.09375 1.6875 Z M 5.1875 -2.75 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph2-2"> <path style="stroke:none;" d="M 6.65625 -5.71875 C 6.765625 -6.203125 7 -6.453125 7.703125 -6.484375 C 7.8125 -6.484375 7.890625 -6.546875 7.890625 -6.671875 C 7.890625 -6.734375 7.828125 -6.8125 7.734375 -6.8125 C 7.6875 -6.8125 7.46875 -6.78125 6.75 -6.78125 C 5.953125 -6.78125 5.828125 -6.8125 5.734375 -6.8125 C 5.578125 -6.8125 5.546875 -6.703125 5.546875 -6.625 C 5.546875 -6.484375 5.671875 -6.484375 5.765625 -6.484375 C 6.375 -6.453125 6.375 -6.1875 6.375 -6.046875 C 6.375 -5.984375 6.359375 -5.9375 6.34375 -5.875 C 6.328125 -5.8125 5.5 -2.46875 5.46875 -2.34375 C 5.109375 -0.90625 3.84375 -0.125 2.859375 -0.125 C 2.171875 -0.125 1.5625 -0.53125 1.5625 -1.453125 C 1.5625 -1.609375 1.578125 -1.890625 1.625 -2.046875 L 2.625 -6.03125 C 2.71875 -6.390625 2.734375 -6.484375 3.453125 -6.484375 C 3.65625 -6.484375 3.78125 -6.484375 3.78125 -6.671875 C 3.78125 -6.671875 3.765625 -6.8125 3.609375 -6.8125 C 3.421875 -6.8125 3.1875 -6.78125 2.984375 -6.78125 L 2.359375 -6.78125 C 1.40625 -6.78125 1.140625 -6.8125 1.078125 -6.8125 C 1.03125 -6.8125 0.875 -6.8125 0.875 -6.625 C 0.875 -6.484375 1 -6.484375 1.171875 -6.484375 C 1.5 -6.484375 1.78125 -6.484375 1.78125 -6.3125 C 1.78125 -6.265625 1.6875 -5.90625 1.640625 -5.703125 L 1.421875 -4.828125 L 0.890625 -2.71875 C 0.75 -2.15625 0.71875 -2.015625 0.71875 -1.75 C 0.71875 -0.578125 1.640625 0.203125 2.828125 0.203125 C 4.171875 0.203125 5.453125 -0.9375 5.765625 -2.21875 Z M 6.65625 -5.71875 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph2-3"> <path style="stroke:none;" d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-1"> <path style="stroke:none;" d="M 5.59375 -4.25 C 5.6875 -4.578125 5.8125 -4.78125 6.421875 -4.796875 C 6.515625 -4.796875 6.578125 -4.859375 6.578125 -4.984375 C 6.578125 -5.0625 6.53125 -5.09375 6.453125 -5.09375 C 6.28125 -5.09375 5.828125 -5.078125 5.65625 -5.078125 L 5.25 -5.078125 C 5.109375 -5.078125 4.953125 -5.09375 4.828125 -5.09375 C 4.703125 -5.09375 4.671875 -5 4.671875 -4.921875 C 4.671875 -4.796875 4.78125 -4.796875 4.84375 -4.796875 C 5.203125 -4.796875 5.34375 -4.703125 5.34375 -4.5 C 5.34375 -4.484375 5.34375 -4.4375 5.328125 -4.390625 L 4.65625 -1.71875 C 4.421875 -0.796875 3.5 -0.140625 2.609375 -0.140625 C 2.171875 -0.140625 1.515625 -0.328125 1.515625 -1.15625 C 1.515625 -1.328125 1.53125 -1.5 1.578125 -1.671875 L 2.28125 -4.5 C 2.34375 -4.75 2.359375 -4.796875 2.953125 -4.796875 C 3.09375 -4.796875 3.203125 -4.796875 3.203125 -4.984375 C 3.203125 -5.0625 3.140625 -5.09375 3.0625 -5.09375 C 2.90625 -5.09375 2.734375 -5.078125 2.5625 -5.078125 C 2.40625 -5.078125 2.234375 -5.078125 2.0625 -5.078125 C 1.890625 -5.078125 1.71875 -5.078125 1.546875 -5.078125 C 1.390625 -5.078125 1.203125 -5.09375 1.03125 -5.09375 C 1 -5.09375 0.859375 -5.09375 0.859375 -4.921875 C 0.859375 -4.796875 0.984375 -4.796875 1.109375 -4.796875 C 1.25 -4.796875 1.4375 -4.796875 1.59375 -4.75 L 1.578125 -4.609375 C 1.5625 -4.53125 1.5 -4.25 1.453125 -4.078125 L 1.28125 -3.421875 L 0.859375 -1.71875 C 0.8125 -1.53125 0.8125 -1.4375 0.8125 -1.34375 C 0.8125 -0.453125 1.5625 0.15625 2.5625 0.15625 C 3.578125 0.15625 4.6875 -0.59375 4.96875 -1.71875 Z M 5.59375 -4.25 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-2"> <path style="stroke:none;" d="M 2.71875 -2.390625 L 3.578125 -2.390625 C 4.171875 -2.390625 4.265625 -2.296875 4.265625 -2.046875 C 4.265625 -1.9375 4.234375 -1.71875 4.203125 -1.625 C 4.203125 -1.609375 4.21875 -1.515625 4.34375 -1.515625 C 4.4375 -1.515625 4.453125 -1.546875 4.484375 -1.6875 L 4.9375 -3.453125 C 4.9375 -3.46875 4.921875 -3.5625 4.796875 -3.5625 C 4.6875 -3.5625 4.671875 -3.515625 4.640625 -3.40625 C 4.484375 -2.828125 4.296875 -2.6875 3.59375 -2.6875 L 2.796875 -2.6875 L 3.25 -4.515625 C 3.3125 -4.75 3.328125 -4.765625 3.640625 -4.765625 L 4.859375 -4.765625 C 5.84375 -4.765625 6.109375 -4.578125 6.109375 -3.90625 C 6.109375 -3.734375 6.078125 -3.46875 6.078125 -3.453125 C 6.078125 -3.328125 6.1875 -3.328125 6.21875 -3.328125 C 6.34375 -3.328125 6.34375 -3.390625 6.359375 -3.515625 L 6.5 -4.84375 C 6.515625 -5.078125 6.453125 -5.078125 6.28125 -5.078125 L 2.078125 -5.078125 C 1.9375 -5.078125 1.828125 -5.078125 1.828125 -4.890625 C 1.828125 -4.765625 1.9375 -4.765625 2.0625 -4.765625 C 2.203125 -4.765625 2.390625 -4.765625 2.546875 -4.71875 C 2.546875 -4.640625 2.546875 -4.59375 2.515625 -4.484375 L 1.546875 -0.625 C 1.484375 -0.34375 1.46875 -0.296875 0.90625 -0.296875 C 0.734375 -0.296875 0.71875 -0.296875 0.6875 -0.28125 C 0.65625 -0.25 0.625 -0.15625 0.625 -0.109375 C 0.640625 -0.078125 0.640625 0 0.765625 0 C 0.921875 0 1.09375 -0.015625 1.265625 -0.015625 C 1.4375 -0.015625 1.609375 -0.03125 1.796875 -0.03125 C 2 -0.03125 2.203125 -0.015625 2.40625 -0.015625 C 2.59375 -0.015625 2.796875 0 2.984375 0 C 3.03125 0 3.15625 0 3.15625 -0.1875 C 3.15625 -0.296875 3.0625 -0.296875 2.890625 -0.296875 C 2.859375 -0.296875 2.671875 -0.296875 2.5 -0.3125 C 2.265625 -0.328125 2.234375 -0.34375 2.234375 -0.4375 C 2.234375 -0.4375 2.234375 -0.484375 2.265625 -0.59375 Z M 2.71875 -2.390625 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-3"> <path style="stroke:none;" d="M 1.6875 -0.90625 C 1.40625 -0.484375 1.15625 -0.328125 0.734375 -0.296875 C 0.625 -0.296875 0.53125 -0.28125 0.53125 -0.109375 C 0.53125 -0.03125 0.59375 0 0.65625 0 C 0.859375 0 1.109375 -0.03125 1.328125 -0.03125 C 1.5 -0.03125 1.9375 0 2.125 0 C 2.203125 0 2.28125 -0.03125 2.28125 -0.1875 C 2.28125 -0.296875 2.1875 -0.296875 2.15625 -0.296875 C 1.984375 -0.3125 1.8125 -0.34375 1.8125 -0.515625 C 1.8125 -0.609375 1.890625 -0.734375 1.921875 -0.78125 L 2.53125 -1.703125 L 4.78125 -1.703125 L 4.96875 -0.5 C 4.96875 -0.296875 4.546875 -0.296875 4.46875 -0.296875 C 4.375 -0.296875 4.25 -0.296875 4.25 -0.109375 C 4.25 -0.078125 4.28125 0 4.375 0 C 4.59375 0 5.140625 -0.03125 5.375 -0.03125 C 5.515625 -0.03125 5.65625 -0.015625 5.8125 -0.015625 C 5.953125 -0.015625 6.125 0 6.265625 0 C 6.3125 0 6.4375 0 6.4375 -0.1875 C 6.4375 -0.296875 6.328125 -0.296875 6.21875 -0.296875 C 5.765625 -0.296875 5.75 -0.34375 5.71875 -0.53125 L 4.96875 -5.125 C 4.953125 -5.265625 4.9375 -5.328125 4.78125 -5.328125 C 4.625 -5.328125 4.578125 -5.265625 4.515625 -5.171875 Z M 2.71875 -2 L 4.34375 -4.421875 L 4.734375 -2 Z M 2.71875 -2 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-1"> <path style="stroke:none;" d="M 2.96875 1.6875 C 2.15625 1.0625 1.484375 -0.125 1.484375 -1.859375 C 1.484375 -3.59375 2.140625 -4.78125 2.96875 -5.421875 C 2.96875 -5.4375 3 -5.453125 3 -5.5 C 3 -5.546875 2.96875 -5.59375 2.875 -5.59375 C 2.734375 -5.59375 0.9375 -4.421875 0.9375 -1.859375 C 0.9375 0.6875 2.734375 1.859375 2.875 1.859375 C 2.96875 1.859375 3 1.8125 3 1.765625 C 3 1.71875 2.96875 1.703125 2.96875 1.6875 Z M 2.96875 1.6875 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-2"> <path style="stroke:none;" d="M 2.640625 -1.859375 C 2.640625 -4.421875 0.84375 -5.59375 0.703125 -5.59375 C 0.625 -5.59375 0.59375 -5.53125 0.59375 -5.5 C 0.59375 -5.453125 0.609375 -5.4375 0.734375 -5.328125 C 1.40625 -4.75 2.109375 -3.640625 2.109375 -1.859375 C 2.109375 -0.28125 1.546875 0.90625 0.703125 1.609375 C 0.609375 1.703125 0.59375 1.71875 0.59375 1.765625 C 0.59375 1.796875 0.625 1.859375 0.703125 1.859375 C 0.84375 1.859375 2.640625 0.6875 2.640625 -1.859375 Z M 2.640625 -1.859375 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph5-1"> <path style="stroke:none;" d="M 7.28125 -3.3125 C 7.4375 -3.3125 7.640625 -3.3125 7.640625 -3.546875 C 7.640625 -3.78125 7.390625 -3.78125 7.25 -3.78125 L 0.984375 -3.78125 C 0.828125 -3.78125 0.59375 -3.78125 0.59375 -3.546875 C 0.59375 -3.3125 0.78125 -3.3125 0.9375 -3.3125 Z M 7.25 -1.203125 C 7.390625 -1.203125 7.640625 -1.203125 7.640625 -1.4375 C 7.640625 -1.671875 7.4375 -1.671875 7.28125 -1.671875 L 0.9375 -1.671875 C 0.78125 -1.671875 0.59375 -1.671875 0.59375 -1.4375 C 0.59375 -1.203125 0.828125 -1.203125 0.984375 -1.203125 Z M 7.25 -1.203125 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph5-2"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph5-3"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> </g> </defs> <g id="0SG6c7JbV7k2dSkqpJ84nqjil-M=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-1" x="6.434" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="17.93275" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-2" x="23.624" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="35.12775" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-3" x="40.81775" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="51.78775" y="18.799"></use> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="57.478425" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-1" x="132.225" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="143.72375" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-2" x="149.415" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="160.91875" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-1" x="166.61" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="178.10875" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-2" x="183.79875" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="195.30375" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-3" x="200.99375" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="211.9625" y="18.799"></use> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="217.653175" y="18.799"></use> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="223.34385" y="18.799"></use> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="229.034526" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-1" x="155.108" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="166.60675" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-2" x="172.29675" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-1" x="183.80175" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph0-3" x="189.49175" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="200.46175" y="86.823"></use> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph1-2" x="206.152425" y="86.823"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.727437 34.0125 L 4.4835 34.0125 " transform="matrix(1,0,0,-1,120.579,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486394 2.867387 C -2.033269 1.148637 -1.02155 0.336137 0.0018875 0.0002 C -1.02155 -0.335738 -2.033269 -1.148238 -2.486394 -2.870894 " transform="matrix(1,0,0,-1,125.3028,15.0627)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph2-1" x="77.047" y="7.507"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-1" x="82.3595" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-1" x="89.427" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-2" x="93.0245" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-1" x="100.027" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-3" x="103.6245" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-2" x="110.52825" y="9.6795"></use> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-2" x="114.126018" y="9.6795"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -56.946187 20.821094 L 33.643656 -20.624219 " transform="matrix(1,0,0,-1,120.579,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486379 2.86799 C -2.033456 1.14762 -1.019231 0.335125 -0.000685677 0.0000756004 C -1.021473 -0.334126 -2.032714 -1.147996 -2.487915 -2.868316 " transform="matrix(0.91193,0.41719,0.41719,-0.91193,154.442,69.79723)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph5-1" x="97.398" y="56.357"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 62.897563 20.821094 L 62.897563 -20.342969 " transform="matrix(1,0,0,-1,120.579,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486082 2.871007 C -2.032923 1.148359 -1.021188 0.33588 -0.00165 -0.000037533 C -1.021175 -0.335995 -2.032877 -1.148516 -2.485968 -2.867275 " transform="matrix(-0.00002,1,1,0.00002,183.4766,69.6579)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph2-2" x="186.993" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph5-2" x="195.2155" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph2-3" x="199.33175" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-2" x="203.6105" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-1" x="210.613" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph3-3" x="214.2105" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph4-2" x="221.11425" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#0SG6c7JbV7k2dSkqpJ84nqjil-M=-glyph5-3" x="225.3355" y="50.791"></use> </g> </g> </svg></p> <p><strong>(3)</strong> The naturality of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi></mrow><annotation encoding="application/x-tex">\epsilon</annotation></semantics></math> is written, for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>B</mi><mo>→</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">f:B \rightarrow B'</annotation></semantics></math>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="167.193pt" height="94.852pt" viewBox="0 0 167.193 94.852" version="1.1"> <defs> <g> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-1"> <path style="stroke:none;" d="M 4.4375 -4.875 L 5.875 -4.875 C 7 -4.875 7.09375 -4.609375 7.09375 -4.1875 C 7.09375 -3.984375 7.0625 -3.78125 6.984375 -3.453125 C 6.953125 -3.390625 6.953125 -3.3125 6.953125 -3.28125 C 6.953125 -3.1875 7 -3.125 7.109375 -3.125 C 7.234375 -3.125 7.25 -3.1875 7.296875 -3.421875 L 8.171875 -6.90625 C 8.171875 -6.953125 8.125 -7.046875 8.015625 -7.046875 C 7.890625 -7.046875 7.875 -6.984375 7.8125 -6.734375 C 7.5 -5.609375 7.203125 -5.296875 5.90625 -5.296875 L 4.546875 -5.296875 L 5.515625 -9.171875 C 5.640625 -9.6875 5.671875 -9.734375 6.28125 -9.734375 L 8.296875 -9.734375 C 10.15625 -9.734375 10.421875 -9.1875 10.421875 -8.125 C 10.421875 -8.03125 10.421875 -7.703125 10.375 -7.3125 C 10.359375 -7.265625 10.34375 -7.0625 10.34375 -7 C 10.34375 -6.890625 10.40625 -6.84375 10.5 -6.84375 C 10.609375 -6.84375 10.671875 -6.90625 10.6875 -7.171875 L 11.015625 -9.78125 C 11.015625 -9.828125 11.03125 -9.984375 11.03125 -10.015625 C 11.03125 -10.171875 10.90625 -10.171875 10.640625 -10.171875 L 3.5625 -10.171875 C 3.265625 -10.171875 3.125 -10.171875 3.125 -9.90625 C 3.125 -9.734375 3.21875 -9.734375 3.484375 -9.734375 C 4.40625 -9.734375 4.40625 -9.640625 4.40625 -9.46875 C 4.40625 -9.390625 4.390625 -9.328125 4.34375 -9.171875 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.828125 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.71875 -0.03125 C 4.046875 -0.03125 4.40625 0 4.734375 0 C 4.875 0 5.046875 0 5.046875 -0.265625 C 5.046875 -0.4375 4.953125 -0.4375 4.625 -0.4375 C 3.453125 -0.4375 3.421875 -0.53125 3.421875 -0.765625 C 3.421875 -0.84375 3.453125 -0.953125 3.484375 -1.0625 Z M 4.4375 -4.875 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-2"> <path style="stroke:none;" d="M 7.5625 -3.4375 C 7.03125 -1.34375 5.296875 -0.125 3.90625 -0.125 C 2.828125 -0.125 2.09375 -0.84375 2.09375 -2.078125 C 2.09375 -2.140625 2.09375 -2.578125 2.25 -3.234375 L 3.71875 -9.109375 C 3.859375 -9.625 3.890625 -9.765625 4.9375 -9.765625 C 5.21875 -9.765625 5.359375 -9.765625 5.359375 -10.03125 C 5.359375 -10.203125 5.234375 -10.203125 5.140625 -10.203125 C 4.875 -10.203125 4.5625 -10.171875 4.265625 -10.171875 L 2.515625 -10.171875 C 2.21875 -10.171875 1.90625 -10.203125 1.625 -10.203125 C 1.53125 -10.203125 1.34375 -10.203125 1.34375 -9.921875 C 1.34375 -9.765625 1.453125 -9.765625 1.734375 -9.765625 C 2.625 -9.765625 2.625 -9.65625 2.625 -9.484375 C 2.625 -9.390625 2.53125 -8.96875 2.453125 -8.703125 L 1.15625 -3.484375 C 1.109375 -3.3125 1.015625 -2.90625 1.015625 -2.515625 C 1.015625 -0.859375 2.203125 0.3125 3.828125 0.3125 C 5.328125 0.3125 7 -0.875 7.765625 -2.78125 C 7.875 -3.03125 8 -3.5625 8.09375 -3.953125 C 8.25 -4.5 8.5625 -5.8125 8.65625 -6.203125 L 9.234375 -8.4375 C 9.421875 -9.21875 9.546875 -9.703125 10.859375 -9.765625 C 10.984375 -9.78125 11.03125 -9.90625 11.03125 -10.03125 C 11.03125 -10.203125 10.90625 -10.203125 10.84375 -10.203125 C 10.640625 -10.203125 10.359375 -10.171875 10.15625 -10.171875 L 9.453125 -10.171875 C 8.53125 -10.171875 8.046875 -10.203125 8.03125 -10.203125 C 7.953125 -10.203125 7.765625 -10.203125 7.765625 -9.921875 C 7.765625 -9.765625 7.890625 -9.765625 7.984375 -9.765625 C 8.890625 -9.734375 8.953125 -9.390625 8.953125 -9.125 C 8.953125 -9 8.953125 -8.953125 8.890625 -8.734375 Z M 7.5625 -3.4375 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-3"> <path style="stroke:none;" d="M 5.46875 -9.1875 C 5.59375 -9.734375 5.65625 -9.765625 6.25 -9.765625 L 8.1875 -9.765625 C 9.875 -9.765625 9.875 -8.328125 9.875 -8.203125 C 9.875 -6.984375 8.65625 -5.453125 6.6875 -5.453125 L 4.546875 -5.453125 Z M 7.984375 -5.328125 C 9.625 -5.625 11.09375 -6.765625 11.09375 -8.140625 C 11.09375 -9.3125 10.0625 -10.203125 8.375 -10.203125 L 3.578125 -10.203125 C 3.296875 -10.203125 3.171875 -10.203125 3.171875 -9.921875 C 3.171875 -9.765625 3.296875 -9.765625 3.53125 -9.765625 C 4.4375 -9.765625 4.4375 -9.65625 4.4375 -9.484375 C 4.4375 -9.453125 4.4375 -9.359375 4.375 -9.140625 L 2.359375 -1.109375 C 2.21875 -0.578125 2.203125 -0.4375 1.15625 -0.4375 C 0.859375 -0.4375 0.71875 -0.4375 0.71875 -0.171875 C 0.71875 0 0.8125 0 1.109375 0 L 6.234375 0 C 8.515625 0 10.28125 -1.734375 10.28125 -3.234375 C 10.28125 -4.46875 9.203125 -5.21875 7.984375 -5.328125 Z M 5.875 -0.4375 L 3.859375 -0.4375 C 3.640625 -0.4375 3.609375 -0.4375 3.53125 -0.453125 C 3.359375 -0.46875 3.34375 -0.5 3.34375 -0.609375 C 3.34375 -0.71875 3.375 -0.8125 3.40625 -0.9375 L 4.453125 -5.15625 L 7.265625 -5.15625 C 9.015625 -5.15625 9.015625 -3.515625 9.015625 -3.390625 C 9.015625 -1.953125 7.71875 -0.4375 5.875 -0.4375 Z M 5.875 -0.4375 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-1"> <path style="stroke:none;" d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-2"> <path style="stroke:none;" d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph2-1"> <path style="stroke:none;" d="M 2.640625 -4.71875 C 2.6875 -4.859375 2.734375 -4.921875 2.734375 -5.03125 C 2.734375 -5.359375 2.4375 -5.578125 2.15625 -5.578125 C 1.75 -5.578125 1.640625 -5.21875 1.609375 -5.078125 L 0.34375 -0.78125 C 0.296875 -0.671875 0.296875 -0.640625 0.296875 -0.625 C 0.296875 -0.53125 0.359375 -0.515625 0.453125 -0.484375 C 0.640625 -0.40625 0.65625 -0.40625 0.671875 -0.40625 C 0.703125 -0.40625 0.765625 -0.40625 0.84375 -0.578125 Z M 2.640625 -4.71875 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-1"> <path style="stroke:none;" d="M 3.15625 -3.234375 L 4.1875 -3.234375 C 5 -3.234375 5.046875 -3.078125 5.046875 -2.78125 C 5.046875 -2.71875 5.046875 -2.609375 4.96875 -2.359375 C 4.96875 -2.3125 4.953125 -2.234375 4.953125 -2.203125 C 4.953125 -2.1875 4.953125 -2.0625 5.109375 -2.0625 C 5.21875 -2.0625 5.25 -2.15625 5.28125 -2.296875 L 5.8125 -4.421875 C 5.828125 -4.453125 5.859375 -4.578125 5.859375 -4.578125 C 5.859375 -4.625 5.828125 -4.71875 5.6875 -4.71875 C 5.578125 -4.71875 5.546875 -4.640625 5.515625 -4.515625 C 5.328125 -3.734375 5.09375 -3.5625 4.203125 -3.5625 L 3.234375 -3.5625 L 3.875 -6.078125 C 3.953125 -6.4375 3.96875 -6.453125 4.375 -6.453125 L 5.84375 -6.453125 C 7.03125 -6.453125 7.359375 -6.203125 7.359375 -5.34375 C 7.359375 -5.140625 7.3125 -4.875 7.3125 -4.6875 C 7.3125 -4.5625 7.390625 -4.515625 7.46875 -4.515625 C 7.609375 -4.515625 7.609375 -4.609375 7.640625 -4.78125 L 7.8125 -6.46875 C 7.828125 -6.515625 7.828125 -6.59375 7.828125 -6.640625 C 7.828125 -6.78125 7.703125 -6.78125 7.53125 -6.78125 L 2.40625 -6.78125 C 2.234375 -6.78125 2.109375 -6.78125 2.109375 -6.59375 C 2.109375 -6.453125 2.21875 -6.453125 2.390625 -6.453125 C 2.46875 -6.453125 2.609375 -6.453125 2.765625 -6.4375 C 2.984375 -6.40625 3.015625 -6.390625 3.015625 -6.296875 C 3.015625 -6.234375 3 -6.203125 2.96875 -6.09375 L 1.640625 -0.78125 C 1.5625 -0.40625 1.53125 -0.328125 0.796875 -0.328125 C 0.609375 -0.328125 0.484375 -0.328125 0.484375 -0.140625 C 0.484375 -0.09375 0.515625 0 0.640625 0 C 0.859375 0 1.09375 -0.03125 1.3125 -0.03125 L 2.6875 -0.03125 C 2.875 -0.015625 3.234375 0 3.421875 0 C 3.5 0 3.640625 0 3.640625 -0.1875 C 3.640625 -0.328125 3.515625 -0.328125 3.3125 -0.328125 C 3.09375 -0.328125 3.015625 -0.328125 2.796875 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.53125 C 2.5 -0.53125 2.5 -0.59375 2.53125 -0.75 Z M 3.15625 -3.234375 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-2"> <path style="stroke:none;" d="M 6.65625 -5.71875 C 6.765625 -6.203125 7 -6.453125 7.703125 -6.484375 C 7.8125 -6.484375 7.890625 -6.546875 7.890625 -6.671875 C 7.890625 -6.734375 7.828125 -6.8125 7.734375 -6.8125 C 7.6875 -6.8125 7.46875 -6.78125 6.75 -6.78125 C 5.953125 -6.78125 5.828125 -6.8125 5.734375 -6.8125 C 5.578125 -6.8125 5.546875 -6.703125 5.546875 -6.625 C 5.546875 -6.484375 5.671875 -6.484375 5.765625 -6.484375 C 6.375 -6.453125 6.375 -6.1875 6.375 -6.046875 C 6.375 -5.984375 6.359375 -5.9375 6.34375 -5.875 C 6.328125 -5.8125 5.5 -2.46875 5.46875 -2.34375 C 5.109375 -0.90625 3.84375 -0.125 2.859375 -0.125 C 2.171875 -0.125 1.5625 -0.53125 1.5625 -1.453125 C 1.5625 -1.609375 1.578125 -1.890625 1.625 -2.046875 L 2.625 -6.03125 C 2.71875 -6.390625 2.734375 -6.484375 3.453125 -6.484375 C 3.65625 -6.484375 3.78125 -6.484375 3.78125 -6.671875 C 3.78125 -6.671875 3.765625 -6.8125 3.609375 -6.8125 C 3.421875 -6.8125 3.1875 -6.78125 2.984375 -6.78125 L 2.359375 -6.78125 C 1.40625 -6.78125 1.140625 -6.8125 1.078125 -6.8125 C 1.03125 -6.8125 0.875 -6.8125 0.875 -6.625 C 0.875 -6.484375 1 -6.484375 1.171875 -6.484375 C 1.5 -6.484375 1.78125 -6.484375 1.78125 -6.3125 C 1.78125 -6.265625 1.6875 -5.90625 1.640625 -5.703125 L 1.421875 -4.828125 L 0.890625 -2.71875 C 0.75 -2.15625 0.71875 -2.015625 0.71875 -1.75 C 0.71875 -0.578125 1.640625 0.203125 2.828125 0.203125 C 4.171875 0.203125 5.453125 -0.9375 5.765625 -2.21875 Z M 6.65625 -5.71875 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-3"> <path style="stroke:none;" d="M 3.8125 -3.96875 L 4.75 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.9375 -4.296875 4.765625 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.140625 -5.765625 4.234375 -6.203125 C 4.28125 -6.375 4.3125 -6.484375 4.453125 -6.609375 C 4.578125 -6.71875 4.671875 -6.734375 4.78125 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.21875 -6.625 C 5.15625 -6.609375 5.109375 -6.578125 5.046875 -6.546875 C 4.890625 -6.453125 4.765625 -6.28125 4.765625 -6.078125 C 4.765625 -5.859375 4.9375 -5.71875 5.15625 -5.71875 C 5.453125 -5.71875 5.71875 -5.96875 5.71875 -6.3125 C 5.71875 -6.78125 5.25 -7.015625 4.765625 -7.015625 C 4.421875 -7.015625 3.796875 -6.859375 3.484375 -5.9375 C 3.390625 -5.71875 3.390625 -5.6875 3.125 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.109375 C 2.046875 -3.96875 2.1875 -3.96875 2.359375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.453125 1.75 1.234375 1.75 1.046875 1.640625 C 1.5 1.53125 1.5 1.109375 1.5 1.09375 C 1.5 0.875 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.984375 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-4"> <path style="stroke:none;" d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph4-1"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph4-2"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph5-1"> <path style="stroke:none;" d="M 1.5625 -0.625 C 1.5 -0.34375 1.484375 -0.296875 0.921875 -0.296875 C 0.765625 -0.296875 0.75 -0.296875 0.71875 -0.28125 C 0.671875 -0.25 0.65625 -0.15625 0.65625 -0.109375 C 0.671875 0 0.734375 0 0.890625 0 L 3.921875 0 C 5.21875 0 6.234375 -0.84375 6.234375 -1.59375 C 6.234375 -2.046875 5.828125 -2.546875 4.90625 -2.671875 C 5.765625 -2.8125 6.609375 -3.359375 6.609375 -4.03125 C 6.609375 -4.578125 6.015625 -5.09375 4.96875 -5.09375 L 2.109375 -5.09375 C 1.96875 -5.09375 1.859375 -5.09375 1.859375 -4.921875 C 1.859375 -4.796875 1.96875 -4.796875 2.09375 -4.796875 C 2.234375 -4.796875 2.421875 -4.796875 2.578125 -4.75 C 2.578125 -4.671875 2.578125 -4.625 2.546875 -4.515625 Z M 2.796875 -2.78125 L 3.234375 -4.546875 C 3.296875 -4.78125 3.296875 -4.796875 3.609375 -4.796875 L 4.84375 -4.796875 C 5.625 -4.796875 5.84375 -4.328125 5.84375 -4.015625 C 5.84375 -3.40625 5.078125 -2.78125 4.15625 -2.78125 Z M 2.4375 -0.296875 C 2.296875 -0.296875 2.28125 -0.296875 2.1875 -0.328125 L 2.71875 -2.53125 L 4.359375 -2.53125 C 5.296875 -2.53125 5.453125 -1.921875 5.453125 -1.625 C 5.453125 -0.90625 4.65625 -0.296875 3.734375 -0.296875 Z M 2.4375 -0.296875 "></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph6-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="t4Q1ThnitE74b7BAw04QY30qvhM=-glyph6-1"> <path style="stroke:none;" d="M 2.34375 -3.515625 C 2.390625 -3.625 2.40625 -3.703125 2.40625 -3.75 C 2.40625 -3.984375 2.203125 -4.171875 1.953125 -4.171875 C 1.65625 -4.171875 1.5625 -3.90625 1.53125 -3.8125 L 0.5 -0.609375 C 0.484375 -0.5625 0.453125 -0.515625 0.453125 -0.484375 C 0.453125 -0.34375 0.75 -0.296875 0.765625 -0.296875 C 0.828125 -0.296875 0.859375 -0.359375 0.890625 -0.421875 Z M 2.34375 -3.515625 "></path> </symbol> </g> </defs> <g id="t4Q1ThnitE74b7BAw04QY30qvhM=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-1" x="16.955" y="16.677"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-1" x="28.46" y="16.677"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-2" x="34.15" y="16.677"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-1" x="45.64875" y="16.677"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-3" x="51.33875" y="16.677"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-2" x="63.21" y="16.677"></use> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-2" x="68.900675" y="16.677"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-3" x="147.141" y="16.677"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-1" x="15.208" y="84.701"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-1" x="26.713" y="84.701"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-2" x="32.403" y="84.701"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-1" x="43.90175" y="84.701"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-3" x="49.59175" y="84.701"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph2-1" x="61.463" y="79.2785"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-2" x="64.95675" y="84.701"></use> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph1-2" x="70.647425" y="84.701"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph0-3" x="145.394" y="84.701"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph2-1" x="157.26525" y="79.2785"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -42.209563 20.820187 L -42.209563 -20.343875 " transform="matrix(1,0,0,-1,87.983,46.953)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485119 2.867615 C -2.031994 1.148865 -1.020275 0.336365 -0.00074375 0.0004275 C -1.020275 -0.33551 -2.031994 -1.14801 -2.485119 -2.870666 " transform="matrix(0,1,1,0,45.77301,67.5359)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-1" x="3.217" y="49.444"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph4-1" x="11.38575" y="49.444"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-2" x="15.50325" y="49.444"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph4-1" x="23.7245" y="49.444"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-3" x="27.842" y="49.444"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph4-2" x="34.0245" y="49.444"></use> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph4-2" x="38.141057" y="49.444"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -6.709563 34.011594 L 51.997469 34.011594 " transform="matrix(1,0,0,-1,87.983,46.953)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484895 2.870387 C -2.03177 1.147731 -1.020051 0.335231 -0.00052 -0.00070625 C -1.020051 -0.336644 -2.03177 -1.149144 -2.484895 -2.867894 " transform="matrix(1,0,0,-1,140.21927,12.9407)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-4" x="104.775" y="7.751"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph5-1" x="109.05375" y="9.426"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 65.095125 24.558469 L 65.095125 -20.593875 " transform="matrix(1,0,0,-1,87.983,46.953)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485229 2.868182 C -2.032104 1.149432 -1.020385 0.333026 -0.00085375 0.000995 C -1.020385 -0.334943 -2.032104 -1.147443 -2.485229 -2.870099 " transform="matrix(0,1,1,0,153.07713,67.78601)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-3" x="156.593" y="47.701"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -4.963469 -34.011844 L 50.251375 -34.011844 " transform="matrix(1,0,0,-1,87.983,46.953)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487955 2.867644 C -2.030924 1.148894 -1.019205 0.336394 0.00032625 0.00045625 C -1.019205 -0.335481 -2.030924 -1.147981 -2.487955 -2.870638 " transform="matrix(1,0,0,-1,138.47233,80.9653)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph3-4" x="103.097" y="88.771"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph5-1" x="107.37575" y="91.63475"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#t4Q1ThnitE74b7BAw04QY30qvhM=-glyph6-1" x="114.657" y="89.48975"></use> </g> </g> </svg> <p>We apply it to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>=</mo><msub><mi>ϵ</mi> <mrow><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">f=\epsilon_{F(A)}</annotation></semantics></math> and it gives:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="286.929pt" height="98.15pt" viewBox="0 0 286.929 98.15" version="1.1"> <defs> <g> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1"> <path style="stroke:none;" d="M 4.4375 -4.875 L 5.875 -4.875 C 7 -4.875 7.09375 -4.609375 7.09375 -4.1875 C 7.09375 -3.984375 7.0625 -3.78125 6.984375 -3.453125 C 6.953125 -3.390625 6.953125 -3.3125 6.953125 -3.28125 C 6.953125 -3.1875 7 -3.125 7.109375 -3.125 C 7.234375 -3.125 7.25 -3.1875 7.296875 -3.421875 L 8.171875 -6.90625 C 8.171875 -6.953125 8.125 -7.046875 8.015625 -7.046875 C 7.890625 -7.046875 7.875 -6.984375 7.8125 -6.734375 C 7.5 -5.609375 7.203125 -5.296875 5.90625 -5.296875 L 4.546875 -5.296875 L 5.515625 -9.171875 C 5.640625 -9.6875 5.671875 -9.734375 6.28125 -9.734375 L 8.296875 -9.734375 C 10.15625 -9.734375 10.421875 -9.1875 10.421875 -8.125 C 10.421875 -8.03125 10.421875 -7.703125 10.375 -7.3125 C 10.359375 -7.265625 10.34375 -7.0625 10.34375 -7 C 10.34375 -6.890625 10.40625 -6.84375 10.5 -6.84375 C 10.609375 -6.84375 10.671875 -6.90625 10.6875 -7.171875 L 11.015625 -9.78125 C 11.015625 -9.828125 11.03125 -9.984375 11.03125 -10.015625 C 11.03125 -10.171875 10.90625 -10.171875 10.640625 -10.171875 L 3.5625 -10.171875 C 3.265625 -10.171875 3.125 -10.171875 3.125 -9.90625 C 3.125 -9.734375 3.21875 -9.734375 3.484375 -9.734375 C 4.40625 -9.734375 4.40625 -9.640625 4.40625 -9.46875 C 4.40625 -9.390625 4.390625 -9.328125 4.34375 -9.171875 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.828125 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.71875 -0.03125 C 4.046875 -0.03125 4.40625 0 4.734375 0 C 4.875 0 5.046875 0 5.046875 -0.265625 C 5.046875 -0.4375 4.953125 -0.4375 4.625 -0.4375 C 3.453125 -0.4375 3.421875 -0.53125 3.421875 -0.765625 C 3.421875 -0.84375 3.453125 -0.953125 3.484375 -1.0625 Z M 4.4375 -4.875 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-2"> <path style="stroke:none;" d="M 7.5625 -3.4375 C 7.03125 -1.34375 5.296875 -0.125 3.90625 -0.125 C 2.828125 -0.125 2.09375 -0.84375 2.09375 -2.078125 C 2.09375 -2.140625 2.09375 -2.578125 2.25 -3.234375 L 3.71875 -9.109375 C 3.859375 -9.625 3.890625 -9.765625 4.9375 -9.765625 C 5.21875 -9.765625 5.359375 -9.765625 5.359375 -10.03125 C 5.359375 -10.203125 5.234375 -10.203125 5.140625 -10.203125 C 4.875 -10.203125 4.5625 -10.171875 4.265625 -10.171875 L 2.515625 -10.171875 C 2.21875 -10.171875 1.90625 -10.203125 1.625 -10.203125 C 1.53125 -10.203125 1.34375 -10.203125 1.34375 -9.921875 C 1.34375 -9.765625 1.453125 -9.765625 1.734375 -9.765625 C 2.625 -9.765625 2.625 -9.65625 2.625 -9.484375 C 2.625 -9.390625 2.53125 -8.96875 2.453125 -8.703125 L 1.15625 -3.484375 C 1.109375 -3.3125 1.015625 -2.90625 1.015625 -2.515625 C 1.015625 -0.859375 2.203125 0.3125 3.828125 0.3125 C 5.328125 0.3125 7 -0.875 7.765625 -2.78125 C 7.875 -3.03125 8 -3.5625 8.09375 -3.953125 C 8.25 -4.5 8.5625 -5.8125 8.65625 -6.203125 L 9.234375 -8.4375 C 9.421875 -9.21875 9.546875 -9.703125 10.859375 -9.765625 C 10.984375 -9.78125 11.03125 -9.90625 11.03125 -10.03125 C 11.03125 -10.203125 10.90625 -10.203125 10.84375 -10.203125 C 10.640625 -10.203125 10.359375 -10.171875 10.15625 -10.171875 L 9.453125 -10.171875 C 8.53125 -10.171875 8.046875 -10.203125 8.03125 -10.203125 C 7.953125 -10.203125 7.765625 -10.203125 7.765625 -9.921875 C 7.765625 -9.765625 7.890625 -9.765625 7.984375 -9.765625 C 8.890625 -9.734375 8.953125 -9.390625 8.953125 -9.125 C 8.953125 -9 8.953125 -8.953125 8.890625 -8.734375 Z M 7.5625 -3.4375 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-3"> <path style="stroke:none;" d="M 2.546875 -1.65625 C 2.015625 -0.78125 1.515625 -0.484375 0.796875 -0.4375 C 0.625 -0.421875 0.515625 -0.421875 0.515625 -0.15625 C 0.515625 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.625 -0.03125 1.890625 -0.03125 C 2.328125 -0.03125 2.8125 0 3.21875 0 C 3.3125 0 3.5 0 3.5 -0.28125 C 3.5 -0.421875 3.375 -0.4375 3.28125 -0.4375 C 2.9375 -0.46875 2.65625 -0.578125 2.65625 -0.9375 C 2.65625 -1.15625 2.75 -1.3125 2.9375 -1.640625 L 4.078125 -3.53125 L 7.890625 -3.53125 C 7.90625 -3.390625 7.90625 -3.265625 7.921875 -3.140625 C 7.96875 -2.75 8.140625 -1.1875 8.140625 -0.90625 C 8.140625 -0.46875 7.375 -0.4375 7.140625 -0.4375 C 6.96875 -0.4375 6.8125 -0.4375 6.8125 -0.171875 C 6.8125 0 6.953125 0 7.03125 0 C 7.296875 0 7.59375 -0.03125 7.84375 -0.03125 L 8.6875 -0.03125 C 9.609375 -0.03125 10.265625 0 10.28125 0 C 10.375 0 10.546875 0 10.546875 -0.28125 C 10.546875 -0.4375 10.40625 -0.4375 10.1875 -0.4375 C 9.359375 -0.4375 9.34375 -0.5625 9.3125 -1.015625 L 8.390625 -10.34375 C 8.359375 -10.640625 8.3125 -10.671875 8.140625 -10.671875 C 7.984375 -10.671875 7.90625 -10.640625 7.765625 -10.40625 Z M 4.328125 -3.953125 L 7.328125 -8.984375 L 7.84375 -3.953125 Z M 4.328125 -3.953125 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1"> <path style="stroke:none;" d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2"> <path style="stroke:none;" d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-1"> <path style="stroke:none;" d="M 3.15625 -3.234375 L 4.1875 -3.234375 C 5 -3.234375 5.046875 -3.078125 5.046875 -2.78125 C 5.046875 -2.71875 5.046875 -2.609375 4.96875 -2.359375 C 4.96875 -2.3125 4.953125 -2.234375 4.953125 -2.203125 C 4.953125 -2.1875 4.953125 -2.0625 5.109375 -2.0625 C 5.21875 -2.0625 5.25 -2.15625 5.28125 -2.296875 L 5.8125 -4.421875 C 5.828125 -4.453125 5.859375 -4.578125 5.859375 -4.578125 C 5.859375 -4.625 5.828125 -4.71875 5.6875 -4.71875 C 5.578125 -4.71875 5.546875 -4.640625 5.515625 -4.515625 C 5.328125 -3.734375 5.09375 -3.5625 4.203125 -3.5625 L 3.234375 -3.5625 L 3.875 -6.078125 C 3.953125 -6.4375 3.96875 -6.453125 4.375 -6.453125 L 5.84375 -6.453125 C 7.03125 -6.453125 7.359375 -6.203125 7.359375 -5.34375 C 7.359375 -5.140625 7.3125 -4.875 7.3125 -4.6875 C 7.3125 -4.5625 7.390625 -4.515625 7.46875 -4.515625 C 7.609375 -4.515625 7.609375 -4.609375 7.640625 -4.78125 L 7.8125 -6.46875 C 7.828125 -6.515625 7.828125 -6.59375 7.828125 -6.640625 C 7.828125 -6.78125 7.703125 -6.78125 7.53125 -6.78125 L 2.40625 -6.78125 C 2.234375 -6.78125 2.109375 -6.78125 2.109375 -6.59375 C 2.109375 -6.453125 2.21875 -6.453125 2.390625 -6.453125 C 2.46875 -6.453125 2.609375 -6.453125 2.765625 -6.4375 C 2.984375 -6.40625 3.015625 -6.390625 3.015625 -6.296875 C 3.015625 -6.234375 3 -6.203125 2.96875 -6.09375 L 1.640625 -0.78125 C 1.5625 -0.40625 1.53125 -0.328125 0.796875 -0.328125 C 0.609375 -0.328125 0.484375 -0.328125 0.484375 -0.140625 C 0.484375 -0.09375 0.515625 0 0.640625 0 C 0.859375 0 1.09375 -0.03125 1.3125 -0.03125 L 2.6875 -0.03125 C 2.875 -0.015625 3.234375 0 3.421875 0 C 3.5 0 3.640625 0 3.640625 -0.1875 C 3.640625 -0.328125 3.515625 -0.328125 3.3125 -0.328125 C 3.09375 -0.328125 3.015625 -0.328125 2.796875 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.53125 C 2.5 -0.53125 2.5 -0.59375 2.53125 -0.75 Z M 3.15625 -3.234375 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-2"> <path style="stroke:none;" d="M 6.65625 -5.71875 C 6.765625 -6.203125 7 -6.453125 7.703125 -6.484375 C 7.8125 -6.484375 7.890625 -6.546875 7.890625 -6.671875 C 7.890625 -6.734375 7.828125 -6.8125 7.734375 -6.8125 C 7.6875 -6.8125 7.46875 -6.78125 6.75 -6.78125 C 5.953125 -6.78125 5.828125 -6.8125 5.734375 -6.8125 C 5.578125 -6.8125 5.546875 -6.703125 5.546875 -6.625 C 5.546875 -6.484375 5.671875 -6.484375 5.765625 -6.484375 C 6.375 -6.453125 6.375 -6.1875 6.375 -6.046875 C 6.375 -5.984375 6.359375 -5.9375 6.34375 -5.875 C 6.328125 -5.8125 5.5 -2.46875 5.46875 -2.34375 C 5.109375 -0.90625 3.84375 -0.125 2.859375 -0.125 C 2.171875 -0.125 1.5625 -0.53125 1.5625 -1.453125 C 1.5625 -1.609375 1.578125 -1.890625 1.625 -2.046875 L 2.625 -6.03125 C 2.71875 -6.390625 2.734375 -6.484375 3.453125 -6.484375 C 3.65625 -6.484375 3.78125 -6.484375 3.78125 -6.671875 C 3.78125 -6.671875 3.765625 -6.8125 3.609375 -6.8125 C 3.421875 -6.8125 3.1875 -6.78125 2.984375 -6.78125 L 2.359375 -6.78125 C 1.40625 -6.78125 1.140625 -6.8125 1.078125 -6.8125 C 1.03125 -6.8125 0.875 -6.8125 0.875 -6.625 C 0.875 -6.484375 1 -6.484375 1.171875 -6.484375 C 1.5 -6.484375 1.78125 -6.484375 1.78125 -6.3125 C 1.78125 -6.265625 1.6875 -5.90625 1.640625 -5.703125 L 1.421875 -4.828125 L 0.890625 -2.71875 C 0.75 -2.15625 0.71875 -2.015625 0.71875 -1.75 C 0.71875 -0.578125 1.640625 0.203125 2.828125 0.203125 C 4.171875 0.203125 5.453125 -0.9375 5.765625 -2.21875 Z M 6.65625 -5.71875 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-3"> <path style="stroke:none;" d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph3-1"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph3-2"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-1"> <path style="stroke:none;" d="M 2.71875 -2.390625 L 3.578125 -2.390625 C 4.171875 -2.390625 4.265625 -2.296875 4.265625 -2.046875 C 4.265625 -1.9375 4.234375 -1.71875 4.203125 -1.625 C 4.203125 -1.609375 4.21875 -1.515625 4.34375 -1.515625 C 4.4375 -1.515625 4.453125 -1.546875 4.484375 -1.6875 L 4.9375 -3.453125 C 4.9375 -3.46875 4.921875 -3.5625 4.796875 -3.5625 C 4.6875 -3.5625 4.671875 -3.515625 4.640625 -3.40625 C 4.484375 -2.828125 4.296875 -2.6875 3.59375 -2.6875 L 2.796875 -2.6875 L 3.25 -4.515625 C 3.3125 -4.75 3.328125 -4.765625 3.640625 -4.765625 L 4.859375 -4.765625 C 5.84375 -4.765625 6.109375 -4.578125 6.109375 -3.90625 C 6.109375 -3.734375 6.078125 -3.46875 6.078125 -3.453125 C 6.078125 -3.328125 6.1875 -3.328125 6.21875 -3.328125 C 6.34375 -3.328125 6.34375 -3.390625 6.359375 -3.515625 L 6.5 -4.84375 C 6.515625 -5.078125 6.453125 -5.078125 6.28125 -5.078125 L 2.078125 -5.078125 C 1.9375 -5.078125 1.828125 -5.078125 1.828125 -4.890625 C 1.828125 -4.765625 1.9375 -4.765625 2.0625 -4.765625 C 2.203125 -4.765625 2.390625 -4.765625 2.546875 -4.71875 C 2.546875 -4.640625 2.546875 -4.59375 2.515625 -4.484375 L 1.546875 -0.625 C 1.484375 -0.34375 1.46875 -0.296875 0.90625 -0.296875 C 0.734375 -0.296875 0.71875 -0.296875 0.6875 -0.28125 C 0.65625 -0.25 0.625 -0.15625 0.625 -0.109375 C 0.640625 -0.078125 0.640625 0 0.765625 0 C 0.921875 0 1.09375 -0.015625 1.265625 -0.015625 C 1.4375 -0.015625 1.609375 -0.03125 1.796875 -0.03125 C 2 -0.03125 2.203125 -0.015625 2.40625 -0.015625 C 2.59375 -0.015625 2.796875 0 2.984375 0 C 3.03125 0 3.15625 0 3.15625 -0.1875 C 3.15625 -0.296875 3.0625 -0.296875 2.890625 -0.296875 C 2.859375 -0.296875 2.671875 -0.296875 2.5 -0.3125 C 2.265625 -0.328125 2.234375 -0.34375 2.234375 -0.4375 C 2.234375 -0.4375 2.234375 -0.484375 2.265625 -0.59375 Z M 2.71875 -2.390625 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-2"> <path style="stroke:none;" d="M 1.6875 -0.90625 C 1.40625 -0.484375 1.15625 -0.328125 0.734375 -0.296875 C 0.625 -0.296875 0.53125 -0.28125 0.53125 -0.109375 C 0.53125 -0.03125 0.59375 0 0.65625 0 C 0.859375 0 1.109375 -0.03125 1.328125 -0.03125 C 1.5 -0.03125 1.9375 0 2.125 0 C 2.203125 0 2.28125 -0.03125 2.28125 -0.1875 C 2.28125 -0.296875 2.1875 -0.296875 2.15625 -0.296875 C 1.984375 -0.3125 1.8125 -0.34375 1.8125 -0.515625 C 1.8125 -0.609375 1.890625 -0.734375 1.921875 -0.78125 L 2.53125 -1.703125 L 4.78125 -1.703125 L 4.96875 -0.5 C 4.96875 -0.296875 4.546875 -0.296875 4.46875 -0.296875 C 4.375 -0.296875 4.25 -0.296875 4.25 -0.109375 C 4.25 -0.078125 4.28125 0 4.375 0 C 4.59375 0 5.140625 -0.03125 5.375 -0.03125 C 5.515625 -0.03125 5.65625 -0.015625 5.8125 -0.015625 C 5.953125 -0.015625 6.125 0 6.265625 0 C 6.3125 0 6.4375 0 6.4375 -0.1875 C 6.4375 -0.296875 6.328125 -0.296875 6.21875 -0.296875 C 5.765625 -0.296875 5.75 -0.34375 5.71875 -0.53125 L 4.96875 -5.125 C 4.953125 -5.265625 4.9375 -5.328125 4.78125 -5.328125 C 4.625 -5.328125 4.578125 -5.265625 4.515625 -5.171875 Z M 2.71875 -2 L 4.34375 -4.421875 L 4.734375 -2 Z M 2.71875 -2 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-3"> <path style="stroke:none;" d="M 5.59375 -4.25 C 5.6875 -4.578125 5.8125 -4.78125 6.421875 -4.796875 C 6.515625 -4.796875 6.578125 -4.859375 6.578125 -4.984375 C 6.578125 -5.0625 6.53125 -5.09375 6.453125 -5.09375 C 6.28125 -5.09375 5.828125 -5.078125 5.65625 -5.078125 L 5.25 -5.078125 C 5.109375 -5.078125 4.953125 -5.09375 4.828125 -5.09375 C 4.703125 -5.09375 4.671875 -5 4.671875 -4.921875 C 4.671875 -4.796875 4.78125 -4.796875 4.84375 -4.796875 C 5.203125 -4.796875 5.34375 -4.703125 5.34375 -4.5 C 5.34375 -4.484375 5.34375 -4.4375 5.328125 -4.390625 L 4.65625 -1.71875 C 4.421875 -0.796875 3.5 -0.140625 2.609375 -0.140625 C 2.171875 -0.140625 1.515625 -0.328125 1.515625 -1.15625 C 1.515625 -1.328125 1.53125 -1.5 1.578125 -1.671875 L 2.28125 -4.5 C 2.34375 -4.75 2.359375 -4.796875 2.953125 -4.796875 C 3.09375 -4.796875 3.203125 -4.796875 3.203125 -4.984375 C 3.203125 -5.0625 3.140625 -5.09375 3.0625 -5.09375 C 2.90625 -5.09375 2.734375 -5.078125 2.5625 -5.078125 C 2.40625 -5.078125 2.234375 -5.078125 2.0625 -5.078125 C 1.890625 -5.078125 1.71875 -5.078125 1.546875 -5.078125 C 1.390625 -5.078125 1.203125 -5.09375 1.03125 -5.09375 C 1 -5.09375 0.859375 -5.09375 0.859375 -4.921875 C 0.859375 -4.796875 0.984375 -4.796875 1.109375 -4.796875 C 1.25 -4.796875 1.4375 -4.796875 1.59375 -4.75 L 1.578125 -4.609375 C 1.5625 -4.53125 1.5 -4.25 1.453125 -4.078125 L 1.28125 -3.421875 L 0.859375 -1.71875 C 0.8125 -1.53125 0.8125 -1.4375 0.8125 -1.34375 C 0.8125 -0.453125 1.5625 0.15625 2.5625 0.15625 C 3.578125 0.15625 4.6875 -0.59375 4.96875 -1.71875 Z M 5.59375 -4.25 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-1"> <path style="stroke:none;" d="M 2.96875 1.6875 C 2.15625 1.0625 1.484375 -0.125 1.484375 -1.859375 C 1.484375 -3.59375 2.140625 -4.78125 2.96875 -5.421875 C 2.96875 -5.4375 3 -5.453125 3 -5.5 C 3 -5.546875 2.96875 -5.59375 2.875 -5.59375 C 2.734375 -5.59375 0.9375 -4.421875 0.9375 -1.859375 C 0.9375 0.6875 2.734375 1.859375 2.875 1.859375 C 2.96875 1.859375 3 1.8125 3 1.765625 C 3 1.71875 2.96875 1.703125 2.96875 1.6875 Z M 2.96875 1.6875 "></path> </symbol> <symbol overflow="visible" id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-2"> <path style="stroke:none;" d="M 2.640625 -1.859375 C 2.640625 -4.421875 0.84375 -5.59375 0.703125 -5.59375 C 0.625 -5.59375 0.59375 -5.53125 0.59375 -5.5 C 0.59375 -5.453125 0.609375 -5.4375 0.734375 -5.328125 C 1.40625 -4.75 2.109375 -3.640625 2.109375 -1.859375 C 2.109375 -0.28125 1.546875 0.90625 0.703125 1.609375 C 0.609375 1.703125 0.59375 1.71875 0.59375 1.765625 C 0.59375 1.796875 0.625 1.859375 0.703125 1.859375 C 0.84375 1.859375 2.640625 0.6875 2.640625 -1.859375 Z M 2.640625 -1.859375 "></path> </symbol> </g> </defs> <g id="RPJsAsLqJNT25S3Wqn6iSDHmmGo=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="6.434" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="17.939" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-2" x="23.629" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="35.12775" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="40.81775" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="52.32275" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-2" x="58.01275" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="69.5115" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="75.20275" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="86.7065" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-3" x="92.39775" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="103.3665" y="18.799"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="109.057175" y="18.799"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="114.74785" y="18.799"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="120.438526" y="18.799"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="126.129201" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="200.876" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="212.37975" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-2" x="218.071" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="229.56975" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="235.25975" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="246.76475" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-3" x="252.45475" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="263.4235" y="18.799"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="269.114175" y="18.799"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="274.80485" y="18.799"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="29.317" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="40.82075" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-2" x="46.512" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="58.01075" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="63.70075" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="75.20575" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-3" x="80.89575" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="91.8645" y="86.823"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="97.555175" y="86.823"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="103.24585" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-1" x="223.758" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-1" x="235.263" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph0-3" x="240.953" y="86.823"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph1-2" x="251.92175" y="86.823"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -74.336094 20.821094 L -74.336094 -20.342969 " transform="matrix(1,0,0,-1,143.465,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486111 2.868669 C -2.032934 1.146027 -1.021191 0.333557 -0.00165005 0.0015562 C -1.021171 -0.334412 -2.032866 -1.146942 -2.485939 -2.869612 " transform="matrix(-0.00003,1,1,0.00003,69.12735,69.6579)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-1" x="6.752" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph3-1" x="14.922" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-2" x="19.03825" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph3-1" x="27.26075" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-3" x="31.377" y="50.791"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-1" x="35.65575" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-1" x="42.65825" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-2" x="46.25575" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-2" x="53.1595" y="52.9635"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph3-2" x="57.3795" y="50.791"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph3-2" x="61.496057" y="50.791"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -4.961094 34.0125 L 50.249844 34.0125 " transform="matrix(1,0,0,-1,143.465,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48557 2.867387 C -2.032445 1.148637 -1.020726 0.336137 -0.001195 0.0002 C -1.020726 -0.335738 -2.032445 -1.148238 -2.48557 -2.870894 " transform="matrix(1,0,0,-1,193.95432,15.0627)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-3" x="139.116" y="7.507"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-1" x="143.39475" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-1" x="150.396" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-3" x="153.9935" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-1" x="161.06225" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-1" x="164.65975" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-1" x="171.661" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-2" x="175.2585" y="9.6795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-2" x="182.1635" y="9.6795"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-2" x="185.761268" y="9.6795"></use> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-2" x="189.359036" y="9.6795"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 97.2225 20.821094 L 97.2225 -20.342969 " transform="matrix(1,0,0,-1,143.465,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486082 2.870944 C -2.032923 1.148297 -1.021188 0.335817 -0.00165 -0.000100033 C -1.021175 -0.336058 -2.032877 -1.148578 -2.485968 -2.867337 " transform="matrix(-0.00002,1,1,0.00002,240.6876,69.6579)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-3" x="244.203" y="49.2"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-1" x="248.48175" y="51.3725"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-1" x="255.483" y="51.3725"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-2" x="259.0805" y="51.3725"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-2" x="265.9855" y="51.3725"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -27.843906 -34.010938 L 73.132656 -34.010938 " transform="matrix(1,0,0,-1,143.465,49.075)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485537 2.86855 C -2.032412 1.145894 -1.020694 0.333394 -0.0011625 0.0013625 C -1.020694 -0.334575 -2.032412 -1.147075 -2.485537 -2.869731 " transform="matrix(1,0,0,-1,216.8371,83.0873)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph2-3" x="153.346" y="90.892"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-1" x="157.62475" y="93.0645"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-1" x="164.626" y="93.0645"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph4-2" x="168.2235" y="93.0645"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#RPJsAsLqJNT25S3Wqn6iSDHmmGo=-glyph5-2" x="175.1285" y="93.0645"></use> </g> </g> </svg> <p>Finally apply <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> to this diagram to obtain:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="314.238pt" height="104.515pt" viewBox="0 0 314.238 104.515" version="1.1"> <defs> <g> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1"> <path style="stroke:none;" d="M 7.5625 -3.4375 C 7.03125 -1.34375 5.296875 -0.125 3.90625 -0.125 C 2.828125 -0.125 2.09375 -0.84375 2.09375 -2.078125 C 2.09375 -2.140625 2.09375 -2.578125 2.25 -3.234375 L 3.71875 -9.109375 C 3.859375 -9.625 3.890625 -9.765625 4.9375 -9.765625 C 5.21875 -9.765625 5.359375 -9.765625 5.359375 -10.03125 C 5.359375 -10.203125 5.234375 -10.203125 5.140625 -10.203125 C 4.875 -10.203125 4.5625 -10.171875 4.265625 -10.171875 L 2.515625 -10.171875 C 2.21875 -10.171875 1.90625 -10.203125 1.625 -10.203125 C 1.53125 -10.203125 1.34375 -10.203125 1.34375 -9.921875 C 1.34375 -9.765625 1.453125 -9.765625 1.734375 -9.765625 C 2.625 -9.765625 2.625 -9.65625 2.625 -9.484375 C 2.625 -9.390625 2.53125 -8.96875 2.453125 -8.703125 L 1.15625 -3.484375 C 1.109375 -3.3125 1.015625 -2.90625 1.015625 -2.515625 C 1.015625 -0.859375 2.203125 0.3125 3.828125 0.3125 C 5.328125 0.3125 7 -0.875 7.765625 -2.78125 C 7.875 -3.03125 8 -3.5625 8.09375 -3.953125 C 8.25 -4.5 8.5625 -5.8125 8.65625 -6.203125 L 9.234375 -8.4375 C 9.421875 -9.21875 9.546875 -9.703125 10.859375 -9.765625 C 10.984375 -9.78125 11.03125 -9.90625 11.03125 -10.03125 C 11.03125 -10.203125 10.90625 -10.203125 10.84375 -10.203125 C 10.640625 -10.203125 10.359375 -10.171875 10.15625 -10.171875 L 9.453125 -10.171875 C 8.53125 -10.171875 8.046875 -10.203125 8.03125 -10.203125 C 7.953125 -10.203125 7.765625 -10.203125 7.765625 -9.921875 C 7.765625 -9.765625 7.890625 -9.765625 7.984375 -9.765625 C 8.890625 -9.734375 8.953125 -9.390625 8.953125 -9.125 C 8.953125 -9 8.953125 -8.953125 8.890625 -8.734375 Z M 7.5625 -3.4375 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2"> <path style="stroke:none;" d="M 4.4375 -4.875 L 5.875 -4.875 C 7 -4.875 7.09375 -4.609375 7.09375 -4.1875 C 7.09375 -3.984375 7.0625 -3.78125 6.984375 -3.453125 C 6.953125 -3.390625 6.953125 -3.3125 6.953125 -3.28125 C 6.953125 -3.1875 7 -3.125 7.109375 -3.125 C 7.234375 -3.125 7.25 -3.1875 7.296875 -3.421875 L 8.171875 -6.90625 C 8.171875 -6.953125 8.125 -7.046875 8.015625 -7.046875 C 7.890625 -7.046875 7.875 -6.984375 7.8125 -6.734375 C 7.5 -5.609375 7.203125 -5.296875 5.90625 -5.296875 L 4.546875 -5.296875 L 5.515625 -9.171875 C 5.640625 -9.6875 5.671875 -9.734375 6.28125 -9.734375 L 8.296875 -9.734375 C 10.15625 -9.734375 10.421875 -9.1875 10.421875 -8.125 C 10.421875 -8.03125 10.421875 -7.703125 10.375 -7.3125 C 10.359375 -7.265625 10.34375 -7.0625 10.34375 -7 C 10.34375 -6.890625 10.40625 -6.84375 10.5 -6.84375 C 10.609375 -6.84375 10.671875 -6.90625 10.6875 -7.171875 L 11.015625 -9.78125 C 11.015625 -9.828125 11.03125 -9.984375 11.03125 -10.015625 C 11.03125 -10.171875 10.90625 -10.171875 10.640625 -10.171875 L 3.5625 -10.171875 C 3.265625 -10.171875 3.125 -10.171875 3.125 -9.90625 C 3.125 -9.734375 3.21875 -9.734375 3.484375 -9.734375 C 4.40625 -9.734375 4.40625 -9.640625 4.40625 -9.46875 C 4.40625 -9.390625 4.390625 -9.328125 4.34375 -9.171875 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.828125 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.71875 -0.03125 C 4.046875 -0.03125 4.40625 0 4.734375 0 C 4.875 0 5.046875 0 5.046875 -0.265625 C 5.046875 -0.4375 4.953125 -0.4375 4.625 -0.4375 C 3.453125 -0.4375 3.421875 -0.53125 3.421875 -0.765625 C 3.421875 -0.84375 3.453125 -0.953125 3.484375 -1.0625 Z M 4.4375 -4.875 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-3"> <path style="stroke:none;" d="M 2.546875 -1.65625 C 2.015625 -0.78125 1.515625 -0.484375 0.796875 -0.4375 C 0.625 -0.421875 0.515625 -0.421875 0.515625 -0.15625 C 0.515625 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.625 -0.03125 1.890625 -0.03125 C 2.328125 -0.03125 2.8125 0 3.21875 0 C 3.3125 0 3.5 0 3.5 -0.28125 C 3.5 -0.421875 3.375 -0.4375 3.28125 -0.4375 C 2.9375 -0.46875 2.65625 -0.578125 2.65625 -0.9375 C 2.65625 -1.15625 2.75 -1.3125 2.9375 -1.640625 L 4.078125 -3.53125 L 7.890625 -3.53125 C 7.90625 -3.390625 7.90625 -3.265625 7.921875 -3.140625 C 7.96875 -2.75 8.140625 -1.1875 8.140625 -0.90625 C 8.140625 -0.46875 7.375 -0.4375 7.140625 -0.4375 C 6.96875 -0.4375 6.8125 -0.4375 6.8125 -0.171875 C 6.8125 0 6.953125 0 7.03125 0 C 7.296875 0 7.59375 -0.03125 7.84375 -0.03125 L 8.6875 -0.03125 C 9.609375 -0.03125 10.265625 0 10.28125 0 C 10.375 0 10.546875 0 10.546875 -0.28125 C 10.546875 -0.4375 10.40625 -0.4375 10.1875 -0.4375 C 9.359375 -0.4375 9.34375 -0.5625 9.3125 -1.015625 L 8.390625 -10.34375 C 8.359375 -10.640625 8.3125 -10.671875 8.140625 -10.671875 C 7.984375 -10.671875 7.90625 -10.640625 7.765625 -10.40625 Z M 4.328125 -3.953125 L 7.328125 -8.984375 L 7.84375 -3.953125 Z M 4.328125 -3.953125 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1"> <path style="stroke:none;" d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2"> <path style="stroke:none;" d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-1"> <path style="stroke:none;" d="M 6.65625 -5.71875 C 6.765625 -6.203125 7 -6.453125 7.703125 -6.484375 C 7.8125 -6.484375 7.890625 -6.546875 7.890625 -6.671875 C 7.890625 -6.734375 7.828125 -6.8125 7.734375 -6.8125 C 7.6875 -6.8125 7.46875 -6.78125 6.75 -6.78125 C 5.953125 -6.78125 5.828125 -6.8125 5.734375 -6.8125 C 5.578125 -6.8125 5.546875 -6.703125 5.546875 -6.625 C 5.546875 -6.484375 5.671875 -6.484375 5.765625 -6.484375 C 6.375 -6.453125 6.375 -6.1875 6.375 -6.046875 C 6.375 -5.984375 6.359375 -5.9375 6.34375 -5.875 C 6.328125 -5.8125 5.5 -2.46875 5.46875 -2.34375 C 5.109375 -0.90625 3.84375 -0.125 2.859375 -0.125 C 2.171875 -0.125 1.5625 -0.53125 1.5625 -1.453125 C 1.5625 -1.609375 1.578125 -1.890625 1.625 -2.046875 L 2.625 -6.03125 C 2.71875 -6.390625 2.734375 -6.484375 3.453125 -6.484375 C 3.65625 -6.484375 3.78125 -6.484375 3.78125 -6.671875 C 3.78125 -6.671875 3.765625 -6.8125 3.609375 -6.8125 C 3.421875 -6.8125 3.1875 -6.78125 2.984375 -6.78125 L 2.359375 -6.78125 C 1.40625 -6.78125 1.140625 -6.8125 1.078125 -6.8125 C 1.03125 -6.8125 0.875 -6.8125 0.875 -6.625 C 0.875 -6.484375 1 -6.484375 1.171875 -6.484375 C 1.5 -6.484375 1.78125 -6.484375 1.78125 -6.3125 C 1.78125 -6.265625 1.6875 -5.90625 1.640625 -5.703125 L 1.421875 -4.828125 L 0.890625 -2.71875 C 0.75 -2.15625 0.71875 -2.015625 0.71875 -1.75 C 0.71875 -0.578125 1.640625 0.203125 2.828125 0.203125 C 4.171875 0.203125 5.453125 -0.9375 5.765625 -2.21875 Z M 6.65625 -5.71875 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-2"> <path style="stroke:none;" d="M 3.15625 -3.234375 L 4.1875 -3.234375 C 5 -3.234375 5.046875 -3.078125 5.046875 -2.78125 C 5.046875 -2.71875 5.046875 -2.609375 4.96875 -2.359375 C 4.96875 -2.3125 4.953125 -2.234375 4.953125 -2.203125 C 4.953125 -2.1875 4.953125 -2.0625 5.109375 -2.0625 C 5.21875 -2.0625 5.25 -2.15625 5.28125 -2.296875 L 5.8125 -4.421875 C 5.828125 -4.453125 5.859375 -4.578125 5.859375 -4.578125 C 5.859375 -4.625 5.828125 -4.71875 5.6875 -4.71875 C 5.578125 -4.71875 5.546875 -4.640625 5.515625 -4.515625 C 5.328125 -3.734375 5.09375 -3.5625 4.203125 -3.5625 L 3.234375 -3.5625 L 3.875 -6.078125 C 3.953125 -6.4375 3.96875 -6.453125 4.375 -6.453125 L 5.84375 -6.453125 C 7.03125 -6.453125 7.359375 -6.203125 7.359375 -5.34375 C 7.359375 -5.140625 7.3125 -4.875 7.3125 -4.6875 C 7.3125 -4.5625 7.390625 -4.515625 7.46875 -4.515625 C 7.609375 -4.515625 7.609375 -4.609375 7.640625 -4.78125 L 7.8125 -6.46875 C 7.828125 -6.515625 7.828125 -6.59375 7.828125 -6.640625 C 7.828125 -6.78125 7.703125 -6.78125 7.53125 -6.78125 L 2.40625 -6.78125 C 2.234375 -6.78125 2.109375 -6.78125 2.109375 -6.59375 C 2.109375 -6.453125 2.21875 -6.453125 2.390625 -6.453125 C 2.46875 -6.453125 2.609375 -6.453125 2.765625 -6.4375 C 2.984375 -6.40625 3.015625 -6.390625 3.015625 -6.296875 C 3.015625 -6.234375 3 -6.203125 2.96875 -6.09375 L 1.640625 -0.78125 C 1.5625 -0.40625 1.53125 -0.328125 0.796875 -0.328125 C 0.609375 -0.328125 0.484375 -0.328125 0.484375 -0.140625 C 0.484375 -0.09375 0.515625 0 0.640625 0 C 0.859375 0 1.09375 -0.03125 1.3125 -0.03125 L 2.6875 -0.03125 C 2.875 -0.015625 3.234375 0 3.421875 0 C 3.5 0 3.640625 0 3.640625 -0.1875 C 3.640625 -0.328125 3.515625 -0.328125 3.3125 -0.328125 C 3.09375 -0.328125 3.015625 -0.328125 2.796875 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.53125 C 2.5 -0.53125 2.5 -0.59375 2.53125 -0.75 Z M 3.15625 -3.234375 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-3"> <path style="stroke:none;" d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-1"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-2"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-1"> <path style="stroke:none;" d="M 2.71875 -2.390625 L 3.578125 -2.390625 C 4.171875 -2.390625 4.265625 -2.296875 4.265625 -2.046875 C 4.265625 -1.9375 4.234375 -1.71875 4.203125 -1.625 C 4.203125 -1.609375 4.21875 -1.515625 4.34375 -1.515625 C 4.4375 -1.515625 4.453125 -1.546875 4.484375 -1.6875 L 4.9375 -3.453125 C 4.9375 -3.46875 4.921875 -3.5625 4.796875 -3.5625 C 4.6875 -3.5625 4.671875 -3.515625 4.640625 -3.40625 C 4.484375 -2.828125 4.296875 -2.6875 3.59375 -2.6875 L 2.796875 -2.6875 L 3.25 -4.515625 C 3.3125 -4.75 3.328125 -4.765625 3.640625 -4.765625 L 4.859375 -4.765625 C 5.84375 -4.765625 6.109375 -4.578125 6.109375 -3.90625 C 6.109375 -3.734375 6.078125 -3.46875 6.078125 -3.453125 C 6.078125 -3.328125 6.1875 -3.328125 6.21875 -3.328125 C 6.34375 -3.328125 6.34375 -3.390625 6.359375 -3.515625 L 6.5 -4.84375 C 6.515625 -5.078125 6.453125 -5.078125 6.28125 -5.078125 L 2.078125 -5.078125 C 1.9375 -5.078125 1.828125 -5.078125 1.828125 -4.890625 C 1.828125 -4.765625 1.9375 -4.765625 2.0625 -4.765625 C 2.203125 -4.765625 2.390625 -4.765625 2.546875 -4.71875 C 2.546875 -4.640625 2.546875 -4.59375 2.515625 -4.484375 L 1.546875 -0.625 C 1.484375 -0.34375 1.46875 -0.296875 0.90625 -0.296875 C 0.734375 -0.296875 0.71875 -0.296875 0.6875 -0.28125 C 0.65625 -0.25 0.625 -0.15625 0.625 -0.109375 C 0.640625 -0.078125 0.640625 0 0.765625 0 C 0.921875 0 1.09375 -0.015625 1.265625 -0.015625 C 1.4375 -0.015625 1.609375 -0.03125 1.796875 -0.03125 C 2 -0.03125 2.203125 -0.015625 2.40625 -0.015625 C 2.59375 -0.015625 2.796875 0 2.984375 0 C 3.03125 0 3.15625 0 3.15625 -0.1875 C 3.15625 -0.296875 3.0625 -0.296875 2.890625 -0.296875 C 2.859375 -0.296875 2.671875 -0.296875 2.5 -0.3125 C 2.265625 -0.328125 2.234375 -0.34375 2.234375 -0.4375 C 2.234375 -0.4375 2.234375 -0.484375 2.265625 -0.59375 Z M 2.71875 -2.390625 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-2"> <path style="stroke:none;" d="M 1.6875 -0.90625 C 1.40625 -0.484375 1.15625 -0.328125 0.734375 -0.296875 C 0.625 -0.296875 0.53125 -0.28125 0.53125 -0.109375 C 0.53125 -0.03125 0.59375 0 0.65625 0 C 0.859375 0 1.109375 -0.03125 1.328125 -0.03125 C 1.5 -0.03125 1.9375 0 2.125 0 C 2.203125 0 2.28125 -0.03125 2.28125 -0.1875 C 2.28125 -0.296875 2.1875 -0.296875 2.15625 -0.296875 C 1.984375 -0.3125 1.8125 -0.34375 1.8125 -0.515625 C 1.8125 -0.609375 1.890625 -0.734375 1.921875 -0.78125 L 2.53125 -1.703125 L 4.78125 -1.703125 L 4.96875 -0.5 C 4.96875 -0.296875 4.546875 -0.296875 4.46875 -0.296875 C 4.375 -0.296875 4.25 -0.296875 4.25 -0.109375 C 4.25 -0.078125 4.28125 0 4.375 0 C 4.59375 0 5.140625 -0.03125 5.375 -0.03125 C 5.515625 -0.03125 5.65625 -0.015625 5.8125 -0.015625 C 5.953125 -0.015625 6.125 0 6.265625 0 C 6.3125 0 6.4375 0 6.4375 -0.1875 C 6.4375 -0.296875 6.328125 -0.296875 6.21875 -0.296875 C 5.765625 -0.296875 5.75 -0.34375 5.71875 -0.53125 L 4.96875 -5.125 C 4.953125 -5.265625 4.9375 -5.328125 4.78125 -5.328125 C 4.625 -5.328125 4.578125 -5.265625 4.515625 -5.171875 Z M 2.71875 -2 L 4.34375 -4.421875 L 4.734375 -2 Z M 2.71875 -2 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-3"> <path style="stroke:none;" d="M 5.59375 -4.25 C 5.6875 -4.578125 5.8125 -4.78125 6.421875 -4.796875 C 6.515625 -4.796875 6.578125 -4.859375 6.578125 -4.984375 C 6.578125 -5.0625 6.53125 -5.09375 6.453125 -5.09375 C 6.28125 -5.09375 5.828125 -5.078125 5.65625 -5.078125 L 5.25 -5.078125 C 5.109375 -5.078125 4.953125 -5.09375 4.828125 -5.09375 C 4.703125 -5.09375 4.671875 -5 4.671875 -4.921875 C 4.671875 -4.796875 4.78125 -4.796875 4.84375 -4.796875 C 5.203125 -4.796875 5.34375 -4.703125 5.34375 -4.5 C 5.34375 -4.484375 5.34375 -4.4375 5.328125 -4.390625 L 4.65625 -1.71875 C 4.421875 -0.796875 3.5 -0.140625 2.609375 -0.140625 C 2.171875 -0.140625 1.515625 -0.328125 1.515625 -1.15625 C 1.515625 -1.328125 1.53125 -1.5 1.578125 -1.671875 L 2.28125 -4.5 C 2.34375 -4.75 2.359375 -4.796875 2.953125 -4.796875 C 3.09375 -4.796875 3.203125 -4.796875 3.203125 -4.984375 C 3.203125 -5.0625 3.140625 -5.09375 3.0625 -5.09375 C 2.90625 -5.09375 2.734375 -5.078125 2.5625 -5.078125 C 2.40625 -5.078125 2.234375 -5.078125 2.0625 -5.078125 C 1.890625 -5.078125 1.71875 -5.078125 1.546875 -5.078125 C 1.390625 -5.078125 1.203125 -5.09375 1.03125 -5.09375 C 1 -5.09375 0.859375 -5.09375 0.859375 -4.921875 C 0.859375 -4.796875 0.984375 -4.796875 1.109375 -4.796875 C 1.25 -4.796875 1.4375 -4.796875 1.59375 -4.75 L 1.578125 -4.609375 C 1.5625 -4.53125 1.5 -4.25 1.453125 -4.078125 L 1.28125 -3.421875 L 0.859375 -1.71875 C 0.8125 -1.53125 0.8125 -1.4375 0.8125 -1.34375 C 0.8125 -0.453125 1.5625 0.15625 2.5625 0.15625 C 3.578125 0.15625 4.6875 -0.59375 4.96875 -1.71875 Z M 5.59375 -4.25 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-1"> <path style="stroke:none;" d="M 2.96875 1.6875 C 2.15625 1.0625 1.484375 -0.125 1.484375 -1.859375 C 1.484375 -3.59375 2.140625 -4.78125 2.96875 -5.421875 C 2.96875 -5.4375 3 -5.453125 3 -5.5 C 3 -5.546875 2.96875 -5.59375 2.875 -5.59375 C 2.734375 -5.59375 0.9375 -4.421875 0.9375 -1.859375 C 0.9375 0.6875 2.734375 1.859375 2.875 1.859375 C 2.96875 1.859375 3 1.8125 3 1.765625 C 3 1.71875 2.96875 1.703125 2.96875 1.6875 Z M 2.96875 1.6875 "></path> </symbol> <symbol overflow="visible" id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-2"> <path style="stroke:none;" d="M 2.640625 -1.859375 C 2.640625 -4.421875 0.84375 -5.59375 0.703125 -5.59375 C 0.625 -5.59375 0.59375 -5.53125 0.59375 -5.5 C 0.59375 -5.453125 0.609375 -5.4375 0.734375 -5.328125 C 1.40625 -4.75 2.109375 -3.640625 2.109375 -1.859375 C 2.109375 -0.28125 1.546875 0.90625 0.703125 1.609375 C 0.609375 1.703125 0.59375 1.71875 0.59375 1.765625 C 0.59375 1.796875 0.625 1.859375 0.703125 1.859375 C 0.84375 1.859375 2.640625 0.6875 2.640625 -1.859375 Z M 2.640625 -1.859375 "></path> </symbol> </g> </defs> <g id="Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1" x="7.914" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="19.41275" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="25.10275" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="36.60775" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1" x="42.29775" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="53.7965" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="59.48775" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="70.9915" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1" x="76.68275" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="88.1815" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="93.8715" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="105.3765" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-3" x="111.0665" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="122.03525" y="21.982"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="127.725925" y="21.982"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="133.4166" y="21.982"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="139.107276" y="21.982"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="144.797951" y="21.982"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="150.488626" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="225.235" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="236.74" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1" x="242.43" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="253.92875" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="259.61875" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="271.12375" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-3" x="276.81375" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="287.78375" y="21.982"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="293.474425" y="21.982"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="299.1651" y="21.982"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1" x="30.796" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="42.29475" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="47.986" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="59.48975" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1" x="65.181" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="76.67975" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="82.36975" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="93.87475" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-3" x="99.56475" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="110.5335" y="90.006"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="116.224175" y="90.006"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="121.91485" y="90.006"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="127.605526" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-1" x="236.678" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="248.17675" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-2" x="253.86675" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-1" x="265.37175" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph0-3" x="271.06175" y="90.006"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="282.0305" y="90.006"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph1-2" x="287.721175" y="90.006"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -74.333219 20.8205 L -74.337125 -20.343562 " transform="matrix(1,0,0,-1,156.384,52.258)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485517 2.870944 C -2.032341 1.148302 -1.020598 0.335832 -0.00105625 -0.0000750317 C -1.020577 -0.336043 -2.032272 -1.148573 -2.485345 -2.867337 " transform="matrix(-0.00003,1,1,0.00003,82.04695,72.8409)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-1" x="3.217" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-1" x="11.4395" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-2" x="15.55575" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-1" x="23.72575" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-1" x="27.842" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-1" x="36.0645" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-3" x="40.18075" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-1" x="44.4595" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-1" x="51.46075" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-2" x="55.0595" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-2" x="61.96325" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-2" x="66.18325" y="53.973"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-2" x="70.299807" y="53.973"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-2" x="74.416363" y="53.973"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.475375 34.011906 L 61.690219 34.011906 " transform="matrix(1,0,0,-1,156.384,52.258)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485155 2.8707 C -2.03203 1.148044 -1.020311 0.335544 -0.00078 -0.00039375 C -1.020311 -0.336331 -2.03203 -1.148831 -2.485155 -2.867581 " transform="matrix(1,0,0,-1,218.31328,18.2457)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-1" x="155.247" y="10.689"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-1" x="163.4695" y="10.689"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-3" x="167.58575" y="10.689"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-1" x="171.86575" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-1" x="178.867" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-3" x="182.4645" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-1" x="189.53325" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-1" x="193.13075" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-1" x="200.132" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-2" x="203.7295" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-2" x="210.6345" y="12.8615"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-2" x="214.232268" y="12.8615"></use> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-2" x="217.830036" y="12.8615"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-2" x="222.0495" y="10.689"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 108.662875 20.8205 L 108.662875 -20.343562 " transform="matrix(1,0,0,-1,156.384,52.258)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485431 2.870819 C -2.032306 1.148163 -1.020588 0.335663 -0.00105625 -0.000275 C -1.020588 -0.336212 -2.032306 -1.148712 -2.485431 -2.867462 " transform="matrix(0,1,1,0,265.04715,72.8409)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-1" x="268.563" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-1" x="276.78425" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-3" x="280.90175" y="53.973"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-1" x="285.1805" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-1" x="292.18175" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-2" x="295.77925" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-2" x="302.68425" y="56.1455"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-2" x="306.90425" y="53.973"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -16.407438 -34.011531 L 73.131625 -34.011531 " transform="matrix(1,0,0,-1,156.384,52.258)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486559 2.867956 C -2.033434 1.149206 -1.021715 0.3328 0.0017225 0.00076875 C -1.021715 -0.335169 -2.033434 -1.147669 -2.486559 -2.870325 " transform="matrix(1,0,0,-1,229.75609,86.2703)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-1" x="163.757" y="97.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-1" x="171.9795" y="97.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph2-3" x="176.09575" y="97.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-1" x="180.37575" y="99.4295"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-1" x="187.377" y="99.4295"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph4-2" x="190.9745" y="99.4295"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph5-2" x="197.8795" y="99.4295"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#Kx1q-eS4FtaVwQDtPtMhTWtd-CM=-glyph3-2" x="202.0995" y="97.257"></use> </g> </g> </svg> <p>which is exactly the associativity of the multiplication of the monad.</p> <p><strong>(4)</strong> The naturality of the multiplication <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><msub><mi>ϵ</mi> <mrow><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mo>:</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">U(\epsilon_{F(A)}):U(F(U(F(A)))) \rightarrow U(F(A))</annotation></semantics></math> is obtained by two <a class="existingWikiWord" href="/nlab/show/whiskerings">whiskerings</a> of the counit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ϵ</mi> <mi>B</mi></msub><mo>:</mo><mi>U</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">\epsilon_{B}:U(F(B)) \rightarrow B</annotation></semantics></math>.</p> </div> </p> <h4 id="CategoryOfAdjunctionResolutionsOfAMonad">Category of adjunction-resolutions of a monad</h4> <p>An adjunction inducing a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> (as <a href="#MonadInducedByAnAdjunction">above</a>) is also called a <em>resolution of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></em>.</p> <p>There is in general more than one such resolution, in fact there is a <a class="existingWikiWord" href="/nlab/show/category">category</a> of adjunctions for a given monad whose morphisms are “<a class="existingWikiWord" href="/nlab/show/comparison+functors">comparison functors</a>” (eg. <a href="#MacLane71">MacLane 1971, §VI.3</a>).</p> <p>In this category:</p> <ul> <li> <p>the <a class="existingWikiWord" href="/nlab/show/initial+object">initial object</a> is the adjunction over the <a class="existingWikiWord" href="/nlab/show/Kleisli+category">Kleisli category</a> of the monad;</p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a> is that over the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Moore+category">Eilenberg-Moore category</a> of algebras, also called the <em><a class="existingWikiWord" href="/nlab/show/monadic+adjunction">monadic adjunction</a></em> (recognized by <em><a class="existingWikiWord" href="/nlab/show/monadicity+theorems">monadicity theorems</a></em>).</p> </li> </ul> <p>(e.g. <a href="monad#Borceux94">Borceux 1994, vol. 2, prop. 4.2.2</a>)</p> <h4 id="SemanticsStructureAdjunction">Semantics-structure adjunction</h4> <p>The above passage from <a class="existingWikiWord" href="/nlab/show/adjunctions">adjunctions</a> to <a class="existingWikiWord" href="/nlab/show/monads">monads</a> and back to their <a class="existingWikiWord" href="/nlab/show/monadic+adjunctions">monadic adjunctions</a> constitutes itself an <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a>, sometimes called the <em><a class="existingWikiWord" href="/nlab/show/semantics-structure+adjunction">semantics-structure adjunction</a></em>.</p> </div> <h2 id="examples">Examples</h2> <h3 id="monads_on_">Monads on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math></h3> <p>Many of these monads also have standard usages as <a class="existingWikiWord" href="/nlab/show/monad+%28computer+science%29">monads in computer science</a>.</p> <div class="num_example" id="MaybeMonad"> <h6 id="example">Example</h6> <p>The free-forgetful <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a> between <a class="existingWikiWord" href="/nlab/show/pointed+sets">pointed sets</a> and <a class="existingWikiWord" href="/nlab/show/sets">sets</a> induces an <a class="existingWikiWord" href="/nlab/show/endofunctor">endofunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mo stretchy="false">)</mo> <mo>*</mo></msub><mo>:</mo><mi>Set</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">(-)_* : Set \to Set</annotation></semantics></math> which adds a new disjoint point. This is called the <a class="existingWikiWord" href="/nlab/show/maybe+monad">maybe monad</a> in computer science.</p> </div> <div class="num_example" id="ListMonad"> <h6 id="example_2">Example</h6> <p>The free-forgetful <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a> between <a class="existingWikiWord" href="/nlab/show/monoids">monoids</a> and <a class="existingWikiWord" href="/nlab/show/sets">sets</a> induces an <a class="existingWikiWord" href="/nlab/show/endofunctor">endofunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo>:</mo><mi>Set</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">T : Set \to Set</annotation></semantics></math> defined by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>TA</mi><mo>:</mo><mo>=</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">⨆</mo> <mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></munder><msup><mi>A</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">TA := \bigsqcup_{n \ge 0} A^n </annotation></semantics></math></div> <p>giving the <strong>free monoid monad</strong>. This also goes by the name <a class="existingWikiWord" href="/nlab/show/list+monad">list monad</a> or <span class="newWikiWord">Kleene-Star<a href="/nlab/new/Kleene-Star">?</a></span> in computer science. The components of the unit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>η</mi> <mi>A</mi></msub><mo>:</mo><mi>A</mi><mo>→</mo><mi>T</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">\eta_A : A \to T A</annotation></semantics></math> give inclusions sending each element of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> to the corresponding singleton list. The components of the multiplication <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>μ</mi> <mi>A</mi></msub><mo>:</mo><msup><mi>T</mi> <mn>2</mn></msup><mi>A</mi><mo>→</mo><mi>T</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">\mu_A : T^2 A \to T A</annotation></semantics></math> are the concatenation functions, sending a list of lists to the corresponding list (Known as flattening in computer science). This monad can be defined in any <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/coproducts">coproducts</a> that distribute over the monoidal product.</p> </div> <div class="num_example" id="StateMonad"> <h6 id="example_3">Example</h6> <p>For a fixed set of “states” <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>, the (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>×</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>⊣</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mi>S</mi></msup></mrow><annotation encoding="application/x-tex">S \times - \dashv (-)^S</annotation></semantics></math>)-adjunction induces a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>S</mi><mo>×</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mi>S</mi></msup></mrow><annotation encoding="application/x-tex">(S \times -)^S</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math> called the <a class="existingWikiWord" href="/nlab/show/state+monad">state monad</a>. This is a commonly used monad in computer science. In functional programming languages such as Haskell, states can be used to model “side effects” of computations.</p> </div> <div class="num_example" id="ContinuationMonad"> <h6 id="example_4">Example</h6> <p>The contravariant <a class="existingWikiWord" href="/nlab/show/power+set">power set</a>-functor is its own <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a>, giving <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Set</mo><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>P</mi><mi>B</mi><mo stretchy="false">)</mo><mo>≅</mo><mo lspace="0em" rspace="thinmathspace">Set</mo><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mi>P</mi><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Set(A,P B) \cong \Set (B, P A)</annotation></semantics></math>. Note that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>P</mi><mi>B</mi><mo stretchy="false">)</mo><mo>=</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mi>Ω</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≅</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo>,</mo><mi>Ω</mi><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\hom(A, P B) = \hom(A, \hom(B,\Omega)) \cong \hom( A \times B, \Omega) = P(A \times B)</annotation></semantics></math> inducing a <strong>double power set monad</strong> taking a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>P</mi> <mn>2</mn></msup><mi>A</mi></mrow><annotation encoding="application/x-tex">P^2 A</annotation></semantics></math>. The components of the <a class="existingWikiWord" href="/nlab/show/unit+of+a+monad">unit</a> are the <a class="existingWikiWord" href="/nlab/show/ultrafilter">principal ultrafilter</a> functions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>η</mi> <mi>A</mi></msub><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><msup><mi>P</mi> <mn>2</mn></msup><mi>A</mi></mrow><annotation encoding="application/x-tex">\eta_A \colon A \to P^2 A</annotation></semantics></math> which send an element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> to the set of subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> that contain <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math>. The components of the multiplication <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>μ</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">\mu_A</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> function for the map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>η</mi> <mrow><mi>P</mi><mi>A</mi></mrow></msub><mo lspace="verythinmathspace">:</mo><mi>P</mi><mi>A</mi><mo>→</mo><msup><mi>P</mi> <mn>3</mn></msup><mi>A</mi></mrow><annotation encoding="application/x-tex">\eta_{P A} \colon P A \to P^3 A</annotation></semantics></math>; which can be painfully stated as: the function taking a set of sets of sets of subsets to the set of subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> with the property that one of the sets of sets of subsets is the set of all sets of subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> that include that particular subset as an element.</p> <p>Replacing the two element <a class="existingWikiWord" href="/nlab/show/power+object">power object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi></mrow><annotation encoding="application/x-tex">\Omega</annotation></semantics></math> with any other set gives similar monads. In <a class="existingWikiWord" href="/nlab/show/monad+in+computer+science">computer science contexts</a> these are known as <em><a class="existingWikiWord" href="/nlab/show/continuation+monad">continuation monads</a></em>. This construction can also be generalised for any other <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">bi-closed monoidal category</a>. For example there is a similar <strong>double dual monad</strong> on <a class="existingWikiWord" href="/nlab/show/Vect"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mo lspace="0em" rspace="thinmathspace">Vect</mo> <mi>k</mi></msub> </mrow> <annotation encoding="application/x-tex">\Vect_k</annotation> </semantics> </math></a>.</p> </div> <div class="num_example"> <h6 id="example_5">Example</h6> <p><a class="existingWikiWord" href="/nlab/show/function+monad">function monad</a> (also “<a class="existingWikiWord" href="/nlab/show/reader+monad">reader monad</a>”, cf. <a class="existingWikiWord" href="/nlab/show/coreader+comonad">coreader comonad</a>)</p> </div> <div class="num_example"> <h6 id="example_6">Example</h6> <p><a class="existingWikiWord" href="/nlab/show/possibility">possibility</a></p> </div> <div class="num_example"> <h6 id="example_7">Example</h6> <p><a class="existingWikiWord" href="/nlab/show/selection+monad">selection monad</a></p> </div> <h3 id="algebra">Algebra</h3> <div class="num_example" id="FreeRModMonad"> <h6 id="example_8">Example</h6> <p>The free-forgetful <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a> between <a class="existingWikiWord" href="/nlab/show/sets">sets</a> and the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/modules">modules</a>. This induces the <strong>free <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monad</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo><mo>:</mo><mi>Set</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">R[-] : Set \to Set</annotation></semantics></math>. The <strong>free abelian group monad</strong> and <strong>free vector space monad</strong> are special cases.</p> </div> <div class="num_example" id="FreeGroupMonad"> <h6 id="example_9">Example</h6> <p>The free-forgetful <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a> between <a class="existingWikiWord" href="/nlab/show/sets">sets</a> and the category of <a class="existingWikiWord" href="/nlab/show/groups">groups</a> gives the <strong>free group monad</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>Set</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">F : Set \to Set</annotation></semantics></math> that sends <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> to the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(A)</annotation></semantics></math> of finite words in the letters <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a \in A</annotation></semantics></math> together with inverses <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>a</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">a^{-1}</annotation></semantics></math>.</p> </div> <h3 id="topology">Topology</h3> <div class="num_example" id="UltrafilterMonad"> <h6 id="example_10">Example</h6> <p>There is a <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>:</mo><mo lspace="0em" rspace="thinmathspace">Top</mo><mo>→</mo><mo lspace="0em" rspace="thinmathspace">Set</mo></mrow><annotation encoding="application/x-tex">U : \Top \to \Set</annotation></semantics></math> taking a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> to its underlying <a class="existingWikiWord" href="/nlab/show/set">set</a>. It is right adjoint to the discrete space functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>:</mo><mo lspace="0em" rspace="thinmathspace">Set</mo><mo>→</mo><mo lspace="0em" rspace="thinmathspace">Top</mo></mrow><annotation encoding="application/x-tex">D: \Set \to \Top</annotation></semantics></math> taking a set to its <a class="existingWikiWord" href="/nlab/show/discrete+topology">discrete topology</a>. There is also an adjoint pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi><mo>⊣</mo><mi>U</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">\beta \dashv U'</annotation></semantics></math> between the category of <a class="existingWikiWord" href="/nlab/show/compact">compact</a> <a class="existingWikiWord" href="/nlab/show/Hausdorff+topological+spaces">Hausdorff topological spaces</a> and the category of <a class="existingWikiWord" href="/nlab/show/topological+spaces">topological spaces</a>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Stone-Cech+compactification">Stone-Cech compactification</a>. The composites of these two adjoint pairs gives a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi><mo>:</mo><mo lspace="0em" rspace="thinmathspace">Set</mo><mo>→</mo><mo lspace="0em" rspace="thinmathspace">Set</mo></mrow><annotation encoding="application/x-tex">\beta : \Set \to \Set</annotation></semantics></math> sending a set to its underlying set of the Stone-Cech compactification of its discrete space. It is also known as the <a class="existingWikiWord" href="/nlab/show/ultrafilter">ultrafilter</a> monad as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math> can be thought of as the functor taking a set to its set of ultrafilters.</p> </div> <h3 id="monads_in_cat">Monads in Cat</h3> <p>Monads are often considered in the 2-category <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> where they are given by <a class="existingWikiWord" href="/nlab/show/endofunctors">endofunctors</a> with a monoid structure on them. In particular, monads <em>in</em> <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> <em>on</em> <a class="existingWikiWord" href="/nlab/show/Set">Set</a> are equivalent to the equational theories studied in universal algebra. In this context, a monad abstracts the concept of an <a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a> (such as “group” or “ring”), giving a general notion of <a class="existingWikiWord" href="/nlab/show/extra+structure">extra structure</a> on an object of a category.</p> <p>Classically, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{T}</annotation></semantics></math> is an algebraic theory (e.g. the theory of groups), a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{T}</annotation></semantics></math>-structure on a set tells us how to interpret various <em>terms</em> (e.g. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>⋅</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a\cdot c)</annotation></semantics></math>) formed from elements of the set, subject to certain <em>axioms</em> (e.g. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>⋅</mo><mo stretchy="false">(</mo><mi>b</mi><mo>⋅</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a\cdot (b\cdot c))=((a\cdot b)\cdot c)</annotation></semantics></math>). A monad collects this up into a functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>. For a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">T X</annotation></semantics></math> is the set of all terms of the theory formed from elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, with terms identified if axioms force them to be equal. For groups, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">T X</annotation></semantics></math> is thus the (underlying set of the) <a class="existingWikiWord" href="/nlab/show/free+group">free group</a> of formal words <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>⋅</mo><mi>b</mi><mo>⋅</mo><mi>⋯</mi><mo>⋅</mo><mi>s</mi></mrow><annotation encoding="application/x-tex">a \cdot b \cdot \cdots \cdot s</annotation></semantics></math> from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>; the fact that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> gives <a class="existingWikiWord" href="/nlab/show/free+object">free</a> structures turns out to be <a class="existingWikiWord" href="/nlab/show/monadic+adjunction">typical</a>.</p> <p>To capture the theory fully, we need to include a little more data: a natural map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>η</mi> <mi>X</mi></msub><mo>:</mo><mi>X</mi><mo>→</mo><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">\eta_X : X \to T X</annotation></semantics></math> recording how each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">a \in X</annotation></semantics></math> gives a trivial term <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math>, and a map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>μ</mi> <mi>X</mi></msub><mo>:</mo><mi>T</mi><mi>T</mi><mi>X</mi><mo>→</mo><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">\mu_X:T T X \to T X</annotation></semantics></math> recording how further terms built from terms are already present as terms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">T X</annotation></semantics></math>.</p> <p>Given a monad in <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> on a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, one can always produce a <a class="existingWikiWord" href="/nlab/show/canonical+resolution">canonical resolution</a> of any object of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> <h3 id="other_examples">Other examples</h3> <ul> <li> <p>Monads on <a class="existingWikiWord" href="/nlab/show/partial+order">posets</a> are particularly simple (in particular, they are always <a class="existingWikiWord" href="/nlab/show/idempotent+monad">idempotent</a>). In fact, monads on <a class="existingWikiWord" href="/nlab/show/power+set">power set</a>s are extremely common throughout mathematics; they are known in less categorially-inclined circles as <a class="existingWikiWord" href="/nlab/show/Moore+closure">Moore closure</a>s, and there are many examples there.</p> </li> <li> <p>An <a class="existingWikiWord" href="/nlab/show/internalization">internal</a> monad on the <a class="existingWikiWord" href="/nlab/show/subobject+classifier">subobject classifier</a> of a <a class="existingWikiWord" href="/nlab/show/topos">topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/Lawvere-Tierney+topology">Lawvere-Tierney topology</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>.</p> </li> <li> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a category with <a class="existingWikiWord" href="/nlab/show/finite+limits">finite limits</a>, then a monad in the bicategory of <a class="existingWikiWord" href="/nlab/show/spans">spans</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is the same thing as an <a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> </li> <li> <p>A monad in the bicategory <a class="existingWikiWord" href="/nlab/show/Prof">Prof</a> of <a class="existingWikiWord" href="/nlab/show/profunctors">profunctors</a> on a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> can be identified with an identity-on-objects functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\to B</annotation></semantics></math>.</p> </li> </ul> <h2 id="monads_in_higher_category_theory">Monads in higher category theory</h2> <p>There is a <a class="existingWikiWord" href="/nlab/show/vertical+categorification">vertical categorification</a> of monads to <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-categories</a>. See <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-monad">(∞,1)-monad</a>.</p> <p>in <a href="http://arxiv.org/PS_cache/math/pdf/0702/0702299v5.pdf#page=93">section 3</a> of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <em>Noncommutative algebra</em> (<a href="http://arxiv.org/abs/math/0702299">arXiv</a>)</li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a>, <a class="existingWikiWord" href="/nlab/show/comonad">comonad</a>, <a class="existingWikiWord" href="/nlab/show/adjoint+monad">adjoint monad</a>, <a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebra over a monad</a>, <a class="existingWikiWord" href="/nlab/show/module+over+a+monad">module over a monad</a>, <a class="existingWikiWord" href="/nlab/show/monad+with+arities">monad with arities</a>, <a class="existingWikiWord" href="/nlab/show/distributive+law">distributive law</a>, <a class="existingWikiWord" href="/nlab/show/monoidal+monad">monoidal monad</a>, <a class="existingWikiWord" href="/nlab/show/cartesian+monad">cartesian monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kleisli+triple">Kleisli triple</a>, <a class="existingWikiWord" href="/nlab/show/extension+system">extension system</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/Lawvere+theory">Lawvere theory</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-algebraic+theory">(∞,1)-algebraic theory</a></p> </li> <li> <p><strong>monad</strong> <a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a>/<a class="existingWikiWord" href="/nlab/show/doctrine">doctrine</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-monad">(∞,1)-monad</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monad+%28in+computer+science%29">monad (in computer science)</a>, <a class="existingWikiWord" href="/nlab/show/monad+%28in+linguistics%29">monad (in linguistics)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lawvere-Tierney+topology">Lawvere-Tierney topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/idempotent+monad">idempotent monad</a>, <a class="existingWikiWord" href="/nlab/show/strong+monad">strong monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/accessible+monad">accessible monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+monad">adjoint monad</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+monad">Frobenius monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finitary+monad">finitary monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+monad">enriched monad</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/additive+monad">additive monad</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strong+monad">strong monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polynomial+monad">polynomial monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relative+monad">relative monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polymonad">polymonad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/promonad">promonad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operad">operad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bar+construction">bar construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadic+descent">monadic descent</a></p> </li> </ul> <h2 id="References">References</h2> <p>The notion of (<a class="existingWikiWord" href="/nlab/show/comonad">co</a>)monads was introduced under the name “standard construction” (namely what is now thought of as their induced <a class="existingWikiWord" href="/nlab/show/canonical+resolution">canonical resolution</a>) in:</p> <ul> <li id="Huber61"><a class="existingWikiWord" href="/nlab/show/Peter+J.+Huber">Peter J. Huber</a>, §2 in: <em>Homotopy theory in general categories</em>, Mathematische Annalen <strong>144</strong> (1961) 361–385 [<a href="https://doi.org/10.1007/BF01396534">doi:10.1007/BF01396534</a>]</li> </ul> <p>following:</p> <ul> <li id="Godement58"> <p><a class="existingWikiWord" href="/nlab/show/Roger+Godement">Roger Godement</a>, Appendix of: <em>Topologie algébrique et theorie des faisceaux</em>, Actualités Sci. Ind. <strong>1252</strong>, Hermann, Paris (1958) [<a href="https://www.editions-hermann.fr/livre/topologie-algebrique-et-theorie-des-faisceaux-roger-godement">webpage</a>, <a class="existingWikiWord" href="/nlab/files/Godement-TopologieAlgebrique.pdf" title="pdf">pdf</a>]</p> <blockquote> <p>(where the monad laws appear on p. 272 as part of the structure of the induced <a class="existingWikiWord" href="/nlab/show/canonical+resolution">canonical resolution</a>, called there the “fundamental construction”).</p> </blockquote> </li> </ul> <p>In the early <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>-literature monads were called <em>triples</em>, referring to the fact that (just as for <a class="existingWikiWord" href="/nlab/show/monoids">monoids</a>) their data-<a class="existingWikiWord" href="/nlab/show/structure">structure</a> is that of <a class="existingWikiWord" href="/nlab/show/triples">triples</a> consisting of: (1.) the <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/category">category</a>, (2.) a <a class="existingWikiWord" href="/nlab/show/binary+operation">binary operation</a> and (3.) a <a class="existingWikiWord" href="/nlab/show/unit+of+a+monad">unit operation</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/H.+Applegate">H. Applegate</a>, <a class="existingWikiWord" href="/nlab/show/M.+Barr">M. Barr</a>, <a class="existingWikiWord" href="/nlab/show/J.+Beck">J. Beck</a>, <a class="existingWikiWord" href="/nlab/show/F.+W.+Lawvere">F. W. Lawvere</a>, <a class="existingWikiWord" href="/nlab/show/F.+E.+J.+Linton">F. E. J. Linton</a>, <a class="existingWikiWord" href="/nlab/show/E.+Manes">E. Manes</a>, <a class="existingWikiWord" href="/nlab/show/M.+Tierney">M. Tierney</a>, <a class="existingWikiWord" href="/nlab/show/F.+Ulmer">F. Ulmer</a>: <em><a class="existingWikiWord" href="/nlab/show/Seminar+on+Triples+and+Categorical+Homology+Theory">Seminar on Triples and Categorical Homology Theory</a></em>, ETH 1966/67, edited by <a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a> and <a class="existingWikiWord" href="/nlab/show/Myles+Tierney">Myles Tierney</a>, <strong><a class="existingWikiWord" href="/nlab/show/LNM+80">LNM 80</a></strong>, Springer (1969), reprinted as: Reprints in Theory and Applications of Categories <strong>18</strong> (2008) 1-303 [<a href="http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html">TAC:18</a>, <a href="http://www.tac.mta.ca/tac/reprints/articles/18/tr18.pdf">pdf</a>]</li> </ul> <p>The modern terminology “monad” (and the definition in the generality internal to any <a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a>) is (cf. <a href="Barr09">Barr 2009</a>) due to:</p> <ul> <li id="Bénabou67"><a class="existingWikiWord" href="/nlab/show/Jean+B%C3%A9nabou">Jean Bénabou</a>, §5.4 in: <em>Introduction to Bicategories</em>, Lecture Notes in Mathematics <strong>47</strong> Springer (1967) 1-77 [<a href="http://dx.doi.org/10.1007/BFb0074299">doi:10.1007/BFb0074299</a>]</li> </ul> <p>Further historical comments:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Martin+Hyland">Martin Hyland</a>, <a class="existingWikiWord" href="/nlab/show/John+Power">John Power</a>, <em>The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads</em>, Electronic Notes in Theor. Comp. Sci. <strong>172</strong> (2007) 437-458 [<a href="https://doi.org/10.1016/j.entcs.2007.02.019">doi:10.1016/j.entcs.2007.02.019</a>, <a href="https://www.dpmms.cam.ac.uk/~jmeh1/Research/Publications/2007/hp07.pdf">preprint</a>]</p> </li> <li id="Barr09"> <p><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <em>Re: Where does the term monad come from?</em> (April 1, 2009) [<a href="https://www.mta.ca/~cat-dist/archive/2009/09-4">cat-dist:09-4</a>, <a href="/nlab/files/Barr-HistoryOfMonadTerminology.txt">txt</a>, <a href="/nlab/files/Barr-HistoryOfMonadTerminology.jpg">jpg</a>]</p> </li> <li id="Street09"> <p><a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>Re: monads</em> (April 4, 2009) [<a href="https://www.mta.ca/~cat-dist/archive/2009/09-4">cat-dist:09-4</a>, <a href="/nlab/files/Street-HistoryOfMonadTerminology.txt">txt</a>, <a href="/nlab/files/Street-HistoryOfMonadTerminology.jpg">jpg</a>]</p> </li> </ul> <p>Further original texts:</p> <ul> <li id="Maranda66"> <p><a class="existingWikiWord" href="/nlab/show/Jean-Marie+Maranda">Jean-Marie Maranda</a>, <em>On Fundamental Constructions and Adjoint Functors</em>, Canadian Mathematical Bulletin <strong>9</strong> 5 (1966) 581-591 [<a href="https://doi.org/10.4153/CMB-1966-072-9">doi:10.4153/CMB-1966-072-9</a>]</p> </li> <li id="Maranda68"> <p><a class="existingWikiWord" href="/nlab/show/Jean-Marie+Maranda">Jean-Marie Maranda</a>, <em>Sur les Proprietes Universelles des Foncteurs Adjoints</em>, In: <em>Études sur les Groupes abéliens</em> / <em>Studies on Abelian Groups</em> Springer (1968) [<a href="https://doi.org/10.1007/978-3-642-46146-0_16">doi:10.1007/978-3-642-46146-0_16</a>]</p> </li> <li id="Linton69"> <p><a class="existingWikiWord" href="/nlab/show/Fred+Linton">Fred Linton</a>, <em>An outline of functorial semantics</em>, in <em><a class="existingWikiWord" href="/nlab/show/Seminar+on+Triples+and+Categorical+Homology+Theory">Seminar on Triples and Categorical Homology Theory</a></em>, Lecture Notes in Mathematics <strong>80</strong>, Springer (1969) 7-52 [<a href="https://doi.org/10.1007/BFb0083080">doi:10.1007/BFb0083080</a>]</p> </li> <li id="Linton69b"> <p><a class="existingWikiWord" href="/nlab/show/Fred+Linton">Fred Linton</a>, <em>Applied functorial semantics</em>, in <em><a class="existingWikiWord" href="/nlab/show/Seminar+on+Triples+and+Categorical+Homology+Theory">Seminar on Triples and Categorical Homology Theory</a></em>, Lecture Notes in Mathematics <strong>80</strong>, Springer (1969) 53-74 [<a href="https://doi.org/10.1007/BFb0083080">doi:10.1007/BFb0083080</a>]</p> </li> <li id="Frei69"> <p><a class="existingWikiWord" href="/nlab/show/Armin+Frei">Armin Frei</a>, <em>Some remarks on triples</em>, Mathematische Zeitschrift <strong>109</strong> (1969) 269–272 [<a href="https://doi.org/10.1007/BF01110118">doi:10.1007/BF01110118</a>]</p> </li> <li id="Pumplün70"> <p><a class="existingWikiWord" href="/nlab/show/Dieter+Pumpl%C3%BCn">Dieter Pumplün</a>, <em>Eine Bemerkung über Monaden und adjungierte Funktoren</em>, Mathematische Annalen <strong>185</strong> (1970) 329-337 [<a href="https://eudml.org/doc/161964">eudml:161964</a>, <a class="existingWikiWord" href="/nlab/files/Pumpluen-Monaden.pdf" title="pdf">pdf</a>]</p> </li> <li id="Coppey70"> <p>Laurent Coppey, <em>Morphismes et comorphismes de cotriples</em>, <a class="existingWikiWord" href="/nlab/show/Comptes+rendus+hebdomadaires+des+s%C3%A9ances+de+l%27Acad%C3%A9mie+des+sciences">C. R. Acad. Sc. Paris</a> <strong>271</strong> (1970), [<a href="https://gallica.bnf.fr/ark:/12148/bpt6k5619186c/f27">ark:12148/bpt6k5619186c/f27</a>]</p> </li> <li id="MacLane71"> <p><a class="existingWikiWord" href="/nlab/show/Saunders+MacLane">Saunders MacLane</a>, Ch. VI of: <em><a class="existingWikiWord" href="/nlab/show/Categories+for+the+Working+Mathematician">Categories for the Working Mathematician</a></em>, Graduate Texts in Mathematics <strong>5</strong> Springer (1971) [<a href="https://link.springer.com/book/10.1007/978-1-4757-4721-8">doi:10.1007/978-1-4757-4721-8</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jean+B%C3%A9nabou">Jean Bénabou</a>, <em>Les Triples</em>, Séminaire de mathématiquepure pure <strong>26</strong>, Université de Louvain (1972) [<a class="existingWikiWord" href="/nlab/files/Benabou-LesTriples.pdf" title="pdf">pdf</a>]</p> </li> <li id="Street72"> <p><a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>The formal theory of monads</em>, Journal of Pure and Applied Algebra <strong>2</strong> 2 (1972) 149-168 [<a href="https://doi.org/10.1016/0022-4049(72)90019-9">doi:10.1016/0022-4049(72)90019-9</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Stephen+Lack">Stephen Lack</a>, <a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>The formal theory of monads II</em>, Journal of Pure and Applied Algebra</p> <p><strong>175</strong> 1–3 (2002) 243-265 [<a href="https://doi.org/10.1016/S0022-4049(02)00137-8">doi:10.1016/S0022-4049(02)00137-8</a>]</p> </li> <li id="BarrWells85"> <p><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <a class="existingWikiWord" href="/nlab/show/Charles+Wells">Charles Wells</a>, Chapter 3 of: <em><a class="existingWikiWord" href="/nlab/show/Toposes%2C+Triples%2C+and+Theories">Toposes, Triples, and Theories</a></em>, Grundlehren der math. Wissenschaften <strong>278</strong>, Springer (1985), Reprints in Theory and Applications of Categories <strong>12</strong> (2005) 1-287 [<a href="http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html">tac:tr12</a>]</p> </li> </ul> <p>Further textbook accounts:</p> <ul> <li id="Borceux94"><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, Ch. 4 “Monads” in: <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a></em> vol. 2, Encyclopedia of Mathematics and its Applications <strong>50</strong>, Cambridge University Press (1994)</li> </ul> <p>Expositions:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/The+Catsters">The Catsters</a>, <em>Monads</em>, short video lectures (2007) [1:<a href="https://www.youtube.com/watch?v=9fohXBj2UEI&list=PL0E91279846EC843E&index=1">YT</a>, 2:<a href="https://www.youtube.com/watch?v=Si6_oG7ZdK4&list=PL0E91279846EC843E&index=2">YT</a>, 3:<a href="https://www.youtube.com/watch?v=eBQnysX7oLI&list=PL0E91279846EC843E&index=3">YT</a>, 3A:<a href="https://www.youtube.com/watch?v=uYY5c1kkoIo&list=PL0E91279846EC843E&index=4">YT</a>, 4:<a href="https://www.youtube.com/watch?v=Cm-O_ZWEIGY&list=PL0E91279846EC843E&index=5">YT</a>, 5/6:<a href="https://www.youtube.com/watch?v=g-SCYArh5RY&list=PL0E91279846EC843E&index=6">YT</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/John+Baez">John Baez</a>, <em><a href="http://math.ucr.edu/home/baez/universal/universal_hyper.pdf">Universal Algebra and Diagrammatic Reasoning</a></em> (Introductory slides).</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Emily+Riehl">Emily Riehl</a>, p. 154 of: <em><a class="existingWikiWord" href="/nlab/show/Category+Theory+in+Context">Category Theory in Context</a></em> (2017)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Paolo+Perrone">Paolo Perrone</a>, <em>Notes on Category Theory with examples from basic mathematics</em>, Chapter 5. (<a href="http://arxiv.org/abs/1912.10642">arXiv</a>)</p> </li> </ul> <p>More on the relation to <a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Martin+Hyland">Martin Hyland</a> and <a class="existingWikiWord" href="/nlab/show/John+Power">John Power</a>, <em>The category theoretic understanding of universal algebra: Lawvere theories and monads</em> (<a href="http://www.dpmms.cam.ac.uk/~jmeh1/Research/Publications/2007/hp07.pdf">pdf</a>).</p> </li> <li id="Voutas12"> <p><a class="existingWikiWord" href="/nlab/show/Anthony+Voutas">Anthony Voutas</a>, <em>The basic theory of monads and their connection to universal algebra</em>, (2012) [<a href="https://voutasaur.us/monad-algebra.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Voutas-Monads.pdf" title="pdf">pdf</a>]</p> </li> </ul> <p>An elementary proof of the equivalence between infinitary <a class="existingWikiWord" href="/nlab/show/Lawvere+theories">Lawvere theories</a> and <a class="existingWikiWord" href="/nlab/show/monads">monads</a> on the <a class="existingWikiWord" href="/nlab/show/category+of+sets">category of sets</a> is given in Appendix A of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Martin+Brandenburg">Martin Brandenburg</a>, <em>Large limit sketches and topological space objects</em> [<a href="https://arxiv.org/abs/2106.11115">arXiv:2106.11115</a>]</li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/T.+M.+Fiore">T. M. Fiore</a>, <a class="existingWikiWord" href="/nlab/show/N.+Gambino">N. Gambino</a>, <a class="existingWikiWord" href="/nlab/show/J.+Kock">J. Kock</a>, <em>Monads in double categories</em>, <a href="http://arxiv.org/abs/1006.0797">arxiv/1006.0797</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriella+B%C3%B6hm">Gabriella Böhm</a>, <a class="existingWikiWord" href="/nlab/show/Stephen+Lack">Stephen Lack</a>, <a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>Weak bimonads</em>, <a href="http://arxiv.org/abs/1002.4493">arxiv/1002.4493</a></p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on January 9, 2025 at 16:35:55. See the <a href="/nlab/history/monad" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/monad" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/1563/#Item_102">Discuss</a><span class="backintime"><a href="/nlab/revision/monad/146" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/monad" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/monad" accesskey="S" class="navlink" id="history" rel="nofollow">History (146 revisions)</a> <a href="/nlab/show/monad/cite" style="color: black">Cite</a> <a href="/nlab/print/monad" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/monad" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>