CINXE.COM
Fish do not feel pain and its implications for understanding phenomenal consciousness - PMC
<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-b3a36f11.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-d4f8bd56.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Fish do not feel pain and its implications for understanding phenomenal consciousness - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="993C89F57B3F86D30D89F5003350DDF2.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="preconnect" href="https://cdn.ncbi.nlm.nih.gov" /> <!-- Include USWDS Init Script --> <script src="/static/assets/uswds-init.js"></script> <meta name="ncbi_domain" content="springeropen"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4356734/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Biology & Philosophy"> <meta name="citation_title" content="Fish do not feel pain and its implications for understanding phenomenal consciousness"> <meta name="citation_author" content="Brian Key"> <meta name="citation_author_institution" content="School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Australia"> <meta name="citation_publication_date" content="2014 Dec 16"> <meta name="citation_volume" content="30"> <meta name="citation_issue" content="2"> <meta name="citation_firstpage" content="149"> <meta name="citation_doi" content="10.1007/s10539-014-9469-4"> <meta name="citation_pmid" content="25798021"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC4356734/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC4356734/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC4356734/pdf/10539_2014_Article_9469.pdf"> <meta name="description" content="Phenomenal consciousness or the subjective experience of feeling sensory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental ..."> <meta name="og:title" content="Fish do not feel pain and its implications for understanding phenomenal consciousness"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Phenomenal consciousness or the subjective experience of feeling sensory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC4356734/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="https://www.ncbi.nlm.nih.gov/"> <img alt=" NCBI home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="https://pmc.ncbi.nlm.nih.gov/autocomp/search/autocomp/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="4356734"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.1007/s10539-014-9469-4" class="usa-link display-flex usa-tooltip" role="button" target="_blank" rel="noreferrer noopener" title="View on publisher site" data-position="bottom" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/10539_2014_Article_9469.pdf" class="usa-link display-flex usa-tooltip" role="button" title="Download PDF" data-position="bottom" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled usa-tooltip collections-dialog-trigger collections-button display-flex collections-button-empty" title="Add to Collections" data-position="bottom" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC4356734%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled usa-tooltip citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" title="Cite" data-position="bottom" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/4356734/" data-citation-style="nlm" data-download-format-link="/resources/citations/4356734/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled usa-tooltip display-flex" title="Permalink" data-position="bottom" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC4356734/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-springeropen.png" alt="Springer logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to Springer" title="Link to Springer" shape="default" href="https://doi.org/10.1007/s10539-014-9469-4" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">Biol Philos</button></div>. 2014 Dec 16;30(2):149–165. doi: <a href="https://doi.org/10.1007/s10539-014-9469-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.1007/s10539-014-9469-4</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22Biol%20Philos%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Biol%20Philos%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22Biol%20Philos%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22Biol%20Philos%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Fish do not feel pain and its implications for understanding phenomenal consciousness</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Key%20B%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Brian Key</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Brian Key</span></h3> <div class="p"> <sup>1</sup>School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Australia</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Key%20B%22%5BAuthor%5D" class="usa-link"><span class="name western">Brian Key</span></a> </div> </div> <sup>1,</sup><sup>✉</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="Aff1"> <sup>1</sup>School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Australia</div> <div class="author-notes p"><div class="fn" id="_fncrsp93pmc__"> <sup>✉</sup><p class="display-inline">Corresponding author.</p> </div></div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2014 Apr 14; Accepted 2014 Dec 6; Issue date 2015.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>© The Author(s) 2014</div> <p> <strong>Open Access</strong>This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.</p> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC4356734 PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/25798021/" class="usa-link">25798021</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="Abs1"><h2>Abstract</h2> <p>Phenomenal consciousness or the subjective experience of feeling sensory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental states to other animals. Humans will typically extrapolate feelings of pain to animals if they respond physiologically and behaviourally to noxious stimuli. The alternative view that fish instead respond to noxious stimuli reflexly and with a limited behavioural repertoire is defended within the context of our current understanding of the neuroanatomy and neurophysiology of mental states. Consequently, a set of fundamental properties of neural tissue necessary for feeling pain or experiencing affective states in vertebrates is proposed. While mammals and birds possess the prerequisite neural architecture for phenomenal consciousness, it is concluded that fish lack these essential characteristics and hence do not feel pain.</p> <section id="kwd-group1" lang="en" class="kwd-group"><p><strong>Keywords:</strong> Fish, Pain, Phenomenal consciousness, Affective states, Avoidance learning, Neocortex, Pallium</p></section></section><section id="Sec1"><h2 class="pmc_sec_title">Introduction</h2> <p>There is a belief in some scientific and lay communities that because fish respond behaviourally to noxious stimuli, then <em>ipso facto</em>, fish feel pain. Sneddon (<a href="#CR113" class="usa-link" aria-describedby="CR113">2011</a>) clearly articulates the logic by stating: “to explore the possibility of pain perception in nonhumans we use indirect measures similar to those used for human infants who cannot convey whether they are in pain. We measure physiological responses (e.g., cardiovascular) and behavioral changes (e.g. withdrawal) to assess whether a tissue-damaging event is painful to an animal”. In some cases, the inference that fish have affective states arises because of conflation of nociception with pain (Demski <a href="#CR23" class="usa-link" aria-describedby="CR23">2013</a>; Kittilsen <a href="#CR130" class="usa-link" aria-describedby="CR130">2013</a>; Malafoglia et al. <a href="#CR62" class="usa-link" aria-describedby="CR62">2013</a>). Interestingly, sometimes the difference between nociception and pain is recognized but it is still considered safer to err on the side of caution and accept that fish feel pain (Jones <a href="#CR45" class="usa-link" aria-describedby="CR45">2013</a>). Unfortunately, endowing fish with the subjective ability to experience pain is typically undertaken without reference to its neurophysiological bases (Rose <a href="#CR98" class="usa-link" aria-describedby="CR98">2002</a>, <a href="#CR99" class="usa-link" aria-describedby="CR99">2007</a>; Browman and Skiftesvik <a href="#CR13" class="usa-link" aria-describedby="CR13">2011</a>).</p> <p>Before interrogating the issue of fish feeling pain and its implications for phenomenal consciousness, I will briefly define several key terms. When I refer to fish it is with the knowledge that this is a highly diverse paraphyletic group consisting of ~30,000 species. Since most of the behavioural and neuroanatomical investigations discussed here have been undertaken only on a small number of ray-finned fish, there is considerable extrapolation involved when I use the generic term fish. A noxious stimulus is one that is considered to be physically harmful to an animal without reference to feelings. For example, excessive heat, a skin incision, toxic chemical exposure and extreme mechanical pressure are all stimuli that can perturb normal tissue morphology, and are hence considered to be noxious. Nociception is referred to as the neurobiological processes associated with the activation of peripheral sensory neurons and their upstream neural pathways by noxious stimuli in the absence of conscious feeling. In contrast, pain is the subjective experience of feeling a noxious stimulus (however, in certain central neuropathies in humans it can arise without external stimuli). The subjective “feeling” associated with a sensory stimulus is also referred to as a “quale” or “phenomenal consciousness” (Kanai and Tsuchiya <a href="#CR50" class="usa-link" aria-describedby="CR50">2012</a>). Given the above, I acknowledge the tautology in the manuscript’s title since the word “pain” is already defined as “to feel a noxious stimuli”. However, the phrase “feel pain” within the title was chosen to over-emphasize the subjective or qualitative nature of pain.</p> <p>One of the main proponents in the literature of the thesis that fish do not feel pain has been John D. Rose. In a series of comprehensive articles (Rose <a href="#CR98" class="usa-link" aria-describedby="CR98">2002</a>, <a href="#CR99" class="usa-link" aria-describedby="CR99">2007</a>; Rose et al. <a href="#CR100" class="usa-link" aria-describedby="CR100">2014</a>) it was argued that fish do not experience the sensation of pain. Anthropomorphism was considered as a hindrance to understanding the underlying causes of behavioural responses of animals to sensory stimuli (Rose <a href="#CR98" class="usa-link" aria-describedby="CR98">2002</a>, <a href="#CR99" class="usa-link" aria-describedby="CR99">2007</a>). Rose advocated attention to the evolution, development and organization of the nervous system in order to understand fish behaviour. He initially drew attention to three key issues (Rose <a href="#CR98" class="usa-link" aria-describedby="CR98">2002</a>). First, behavioural responses to sensory stimuli must be distinguished from psychological experiences. Second, the cerebral cortex in humans is fundamental for the awareness of sensory stimuli. Third, fish lack a cerebral cortex or its homologue and hence cannot experience pain or fear. In 2007, Rose highlighted the problems of anthropomorphic thinking in respect to fish behaviour and how it influenced welfare issues. He stressed that pain and emotion were not primitive feelings that arose early in vertebrate evolution but were rather more recent acquisitions, associated with the emergence of the cerebral cortex (Rose <a href="#CR99" class="usa-link" aria-describedby="CR99">2007</a>). In 2014, Rose et al. (<a href="#CR100" class="usa-link" aria-describedby="CR100">2014</a>) rebutted experimental evidence supposedly supporting claims that fish feel pain. They demonstrated deficiencies in methodological approaches and highlighted problems in concluding pain experience from behavioural responses. Moreover, they recognized that teleosts typically lack nociceptors responsible for transmission of pain but instead have an abundance of A-delta fibres that are most likely subserving escape and avoidance responses rather than the experience of pain.</p> <p>Despite the work of Rose et al. (Rose <a href="#CR98" class="usa-link" aria-describedby="CR98">2002</a>, <a href="#CR99" class="usa-link" aria-describedby="CR99">2007</a>; Rose et al. <a href="#CR100" class="usa-link" aria-describedby="CR100">2014</a>) there remains a strong trend in the literature to bestow fish with the ability to feel pain and to experience fear and other emotions. The alternate view that fish do not feel pain or experience affective states needs more careful consideration, particularly as it has consequences for understanding the neuroanatomical basis of phenomenal consciousness. Here I consolidate the arguments for why fish are believed to feel pain into six main reasons. By undertaking a deeper analysis of the behavioural observations in the light of our understanding of neurophysiology and neuroanatomy, I subsequently propose that it is more plausible and probable to reason that fish do not feel pain. Concluding that fish do not feel pain affords an opportunity to define the basic architectural properties of the neural circuitry necessary for phenomenal consciousness through comparisons of fish and mammalian neuroanatomies. These properties then provide a simple tool for assessing the likelihood that a vertebrate animal will experience “feelings” such as pain.</p></section><section id="Sec2"><h2 class="pmc_sec_title">What are the reasons for the anthropomorphic view that fish feel pain?</h2> <p>There are six principal reasons that account for why some people believe that fish feel pain. One, fish demonstrate behaviours consistent with the way humans might react to noxious stimuli that cause pain. For example, fish will either attempt to rapidly escape or display anomalous behaviour (Reilly et al. <a href="#CR95" class="usa-link" aria-describedby="CR95">2008</a>) in response to noxious stimuli, such as electric shock or a chemical irritant. Two, medicating fish with an analgesic (a drug that attenuates pain in humans) reduces the escape response to electric shock (Sneddon <a href="#CR111" class="usa-link" aria-describedby="CR111">2003</a>; Sneddon et al. <a href="#CR114" class="usa-link" aria-describedby="CR114">2003</a>; Jones et al. <a href="#CR47" class="usa-link" aria-describedby="CR47">2012</a>). Three, fish display classic physiological indicators of stress such as increased ventilation and heart rate and elevated blood levels of the stress hormone cortisol during and after exposure to supposedly stressful stimuli (Reilly et al. <a href="#CR95" class="usa-link" aria-describedby="CR95">2008</a>; Filk et al. <a href="#CR31" class="usa-link" aria-describedby="CR31">2006</a>; Wolkers et al. <a href="#CR125" class="usa-link" aria-describedby="CR125">2013</a>). Four, fish have nociceptive nerve fibres and have increased neural activity in the spinal cord, hindbrain and pallium that is specifically associated with a noxious stimulus (Dunlop and Laming <a href="#CR26" class="usa-link" aria-describedby="CR26">2005</a>). Five, fish can be trained to associate a neutral signal with an impending noxious stimulus and so learn to escape prior to experiencing the noxious stimuli (Dunlop et al. <a href="#CR27" class="usa-link" aria-describedby="CR27">2006</a>). Six, it is evolutionarily advantageous to feel pain in order to prevent body injury.</p> <section id="Sec3"><h3 class="pmc_sec_title">Behavioural responses to noxious stimuli are not necessarily evidence of pain</h3> <p>It is common to attribute inner mental states or feelings to organisms or even inanimate objects on the basis of observed behavior. When a noxious stimulus is applied either to the plantar surface of the human foot, or directly to the nerves innervating this region, there is a reflex withdrawal of the lower limb involving contraction of the hip and knee flexors, and relaxation of the extensors. This reflex is protective and enables the rapid removal of the limb from a harmful stimulus. Complete spinal cord injury patients, who lack sensations arising from the lower limb, continue to exhibit the withdrawal flexion reflex (Dimitrijevic and Nathan <a href="#CR24" class="usa-link" aria-describedby="CR24">1968</a>). Thus, reflexes are neither good evidence for, nor a measure of feeling pain. Nonetheless, simple reflex behaviours in response to noxious stimuli continue to be inappropriately used to suggest that fish feel pain.</p> <p>Fish exhibit behavioural responses to somatosensory stimulation from a very early stage of development. For example, within the first few days of fertilisation, zebrafish embryos response to touch by initially exhibiting a twitch of their tail, and then slightly later in development, by a few strokes of their tail that elicits a short burst of swimming. While it is tempting to attribute feelings to these embryos, it must be remembered that the telencephalon is not yet morphologically distinct when the touch response first appears at around 21 h post-fertilisation (Hjorth and Key <a href="#CR40" class="usa-link" aria-describedby="CR40">2001</a>; Saint-Amant <a href="#CR102" class="usa-link" aria-describedby="CR102">2006</a>). Moreover, a lesion to the anterior spinal cord, that isolates the cord from the brain, does not affect the execution of the touch-induced swimming escape response (Pietri et al. <a href="#CR86" class="usa-link" aria-describedby="CR86">2009</a>). Thus, simple reflex escape behaviours of fish that can be activated by somatosensory stimuli are best not used as evidence for fish experiencing phenomenal consciousness.</p> <p>It is important here to draw attention to the fact that pain in humans arises in the forebrain, and is distinct from unconscious behavioural responses mediated by lower brain levels. The forebrain also plays an essential role in pain perception in other mammals. This is elegantly illustrated in a rat model of pain that uses injection of a dilute solution of formalin into the paw. This chemical irritant induces a variety of body movements such as paw shaking, licking and grooming. Animals also exhibit a protective response and attempt to reduce contact of the affected limb with the floor. These behaviours are sometimes considered as indicators of pain. However, rats continued to exhibit such behavioural responses following surgical decerebration (Matthies and Franklin <a href="#CR66" class="usa-link" aria-describedby="CR66">1992</a>, <a href="#CR67" class="usa-link" aria-describedby="CR67">1995</a>). One interpretation of these results is that pain is actually experienced in the brainstem, and not in the forebrain in rats. However, this is most unlikely given that systemic administration of an analgesic (morphine) does not attenuate behavioural responses to formalin in decerebrated animals. Morphine was only effective in inhibiting behaviours when connections between the forebrain and brainstem were left intact in sham-operated rats (Matthies and Franklin <a href="#CR66" class="usa-link" aria-describedby="CR66">1992</a>). Moreover, local application of morphine into either the somatosensory, prefrontal orbital or agranular insular cortices attenuates behavioural responses in the formalin pain model in rats (Soto-Moyano et al. <a href="#CR115" class="usa-link" aria-describedby="CR115">1988</a>; Xie et al. <a href="#CR126" class="usa-link" aria-describedby="CR126">2004</a>). Thus, morphine is active in the rat forebrain, which is consistent with it modulating the subjective experience of the noxious stimuli, as in humans (Jones et al. <a href="#CR46" class="usa-link" aria-describedby="CR46">1991</a>; Taylor et al. <a href="#CR117" class="usa-link" aria-describedby="CR117">2013</a>).</p> <p>Fish are known to swim away from noxious electric shock and this behavioural response has been used to indicate that these animals feel pain. However, this interpretation is simplistic and can be dismissed given the extensive evidence that fish continue to exhibit escape behaviour following ablation of the entire telencephalon (Hainsworth et al. <a href="#CR39" class="usa-link" aria-describedby="CR39">1967</a>; Davis et al. <a href="#CR22" class="usa-link" aria-describedby="CR22">1976</a>). Forebrainless fish display no clear evidence of deficits in normal behaviours. For example, forebrainless fish continue to flee from capture by a small fish net with similar locomotor agility as their unoperated counterparts (Kaplan and Aronson <a href="#CR51" class="usa-link" aria-describedby="CR51">1967</a>). The ability to escape or respond to an electric shock is unaffected by removal of either the forebrain or telencephalon in goldfish (Hainsworth et al. <a href="#CR39" class="usa-link" aria-describedby="CR39">1967</a>; Savage <a href="#CR104" class="usa-link" aria-describedby="CR104">1969</a>; Portavella et al. <a href="#CR90" class="usa-link" aria-describedby="CR90">2004a</a>, <a href="#CR91" class="usa-link" aria-describedby="CR91">b</a>) or telencephalon in <em>Tilapia mossambica</em> (Overmier and Gross <a href="#CR82" class="usa-link" aria-describedby="CR82">1974</a>).</p> <p>In summary, the idea that fish flee noxious stimuli because they experience phenomenal consciousness (feel pain) is not the best explanation for this behaviour. It is more probable that fish demonstrate these behaviours because they have evolved innate reflexes associated with specific spinal and sub-telencephalic neural circuits.</p></section><section id="Sec4"><h3 class="pmc_sec_title">Modification of behaviour with drugs does not necessarily demonstrate pain</h3> <p>It has been proposed that if an animal’s behavioural response to a noxious stimulus is attenuated following administration of a drug known to be an analgesic in humans, then it is likely that the animal can feel pain. However, it needs to be pointed out that analgesics can be active at multiple sites in the neuroanatomical pathways associated with noxious stimuli. If an analgesic blocks or reduces neural activity in the spinal cord (Yaksh and Rudy <a href="#CR128" class="usa-link" aria-describedby="CR128">1976</a>) it can subsequently attenuate neural responses in the brainstem and telencephalon. Similarly, if an analgesic works at the level of the brainstem it can modulate both brainstem and higher-order brain responses (Pert and Yaksh <a href="#CR85" class="usa-link" aria-describedby="CR85">1975</a>). If an analgesic is active at the level of the telencephalon and reduces behavioural responses (Xie et al. <a href="#CR126" class="usa-link" aria-describedby="CR126">2004</a>) then the animal, at least, has the possibility of feeling a noxious stimulus as painful (however this interpretation is dependent first, on the behaviour being non-reflexive and second, on the existence of the necessary neural hardware; see below). At present, the inference that fish feel pain because behavioural responses to noxious stimuli are attenuated following systemic administration of morphine (Sneddon <a href="#CR111" class="usa-link" aria-describedby="CR111">2003</a>) is weak, particularly given that both the site of action as well as the physiological role of this drug in fish are unknown.</p></section><section id="Sec5"><h3 class="pmc_sec_title">Physiological stress is not pain</h3> <p>Physiological stress as determined by plasma cortisol levels and opercula beat rate have been used as indicators of feeling pain by fish (Chandroo et al. <a href="#CR18" class="usa-link" aria-describedby="CR18">2004</a>; Braithwaite and Boulcott <a href="#CR11" class="usa-link" aria-describedby="CR11">2007</a>; Scott Weber <a href="#CR106" class="usa-link" aria-describedby="CR106">2011</a>). The underlying assumption in these cases is that if a fish is exposed to a stimulus that triggers both increased cortisol and behavioural responses, then that fish must be consciously feeling that stimulus as a mental state such as fear and/or pain. If pain was felt by a fish exposed to a physiological stressor, and cortisol was an indicator of the level of discomfort that fish experienced, then one would predict increased cortisol levels in fish as a noxious stimulus was increased. However, this does not appear to be the case. There is no relationship between the apparent “stressful” stimulus and the level of cortisol in fish (Roques et al. <a href="#CR97" class="usa-link" aria-describedby="CR97">2010</a>). Even when the stimulus causes increased behavioural responses there was no relationship to the level of plasma cortisol. The cortisol response to increased stress seems to be highly variable (Fatira et al. <a href="#CR30" class="usa-link" aria-describedby="CR30">2014</a>; Quillet et al. <a href="#CR93" class="usa-link" aria-describedby="CR93">2014</a>) and context specific (Manek et al. <a href="#CR64" class="usa-link" aria-describedby="CR64">2014</a>). Surprisingly, exposure to multiple stressors simultaneously can lead to decreased rather than an expected increase in cortisol levels (Manek et al. <a href="#CR64" class="usa-link" aria-describedby="CR64">2014</a>). Thus, changes in cortisol levels in fish are better explained by autonomic responses to external environmental stresses rather than by internally generated mental states such as fear or pain.</p></section><section id="Sec6"><h3 class="pmc_sec_title">Brain activity in response to noxious activity is not equivalent to pain</h3> <p>It has been proposed that fish can feel pain both because they have peripheral nociceptors and because neural responses to noxious stimuli have been recorded in the spinal cord, cerebellum, tectum and telencephalon of fish (Sneddon <a href="#CR112" class="usa-link" aria-describedby="CR112">2004</a>; Dunlop and Laming <a href="#CR26" class="usa-link" aria-describedby="CR26">2005</a>). Nordgreen et al. (<a href="#CR75" class="usa-link" aria-describedby="CR75">2007</a>) reported neural activity in the telencephalon following electrical stimulation of the tail of Atlanic salmon. While these authors indicated that this activity is a necessary prerequisite for feeling pain, they realised that it does not necessarily provide evidence for the ability of fish to feel pain. Unfortunately, the neuroanatomical localisation of electrical activity recorded in the telencephalon has not been described. If activity was recorded in the dorsal pallium (homologous to the neocortex; Mueller and Wullimann <a href="#CR71" class="usa-link" aria-describedby="CR71">2009</a>; Mueller et al. <a href="#CR72" class="usa-link" aria-describedby="CR72">2011</a>) of the telencephalon, it would, at least, provide some phylogenetic insight into neural pathways underlying nociception. It would not, however, be evidence of pain or emotion.</p></section><section id="Sec7"><h3 class="pmc_sec_title">Associative learning using noxious stimuli is possible without feeling pain</h3> <p>Considering the problems with using simple behavioural responses to noxious stimuli as a measure of pain sensation, avoidance learning has instead been adopted as a means for assessing pain in animals. Rats can easily learn to avoid locations in a cage where electric shocks are delivered and to push a lever that terminates the shock. This learning is viewed as requiring the animal to initially decipher the stimulus (i.e. feeling the stimulus as painful and assessing the intensity using the cerebral cortex; Baastrup et al. <a href="#CR4" class="usa-link" aria-describedby="CR4">2010</a>) and then to plan and perform a relatively complex motor task (Vierck <a href="#CR123" class="usa-link" aria-describedby="CR123">2006</a>). Higher-level brain activity (involving the cerebrum) is essential for avoidance learning since decerebrate rats fail to learn to avoid electric shock (Vierck <a href="#CR123" class="usa-link" aria-describedby="CR123">2006</a>). Interestingly, rats exhibit an escape response substantially faster than a brainstem reflex (such as paw licking or jumping) in response to a noxious stimulus (Vierck <a href="#CR123" class="usa-link" aria-describedby="CR123">2006</a>). In addition, the rat threshold for escape response from cold temperatures is approximately 16 °C whereas the threshold for brainstem reflexes is <5 °C (Vierck <a href="#CR123" class="usa-link" aria-describedby="CR123">2006</a>). These comparisons between brainstem reflexes and higher-level escape responses suggest that the cerebrum quickly perceives noxious stimuli as potentially harmful before they are actually physically damaging. Taken together, these results are consistent with rats feeling pain.</p> <p>Operant conditioning with negative reinforcement demonstrates that fish can also learn to associate a conditioned stimulus (light cue) with an impending unconditioned stimulus (electric shock) administered in one chamber of a two-chamber holding tank (Hurtado-Parrado <a href="#CR41" class="usa-link" aria-describedby="CR41">2010</a>). Fish typically learn to terminate their exposure to the electric shock by escaping to the chamber where the shock is not present. With more and more trials, the fish learn to associate the light stimulus with the temporally delayed electric shock and hence begin to escape prior to the delivery of the shock. However, as pointed out above, the escape response in fish is a reflex behaviour and does not equate to the more complex escape routines used in rodent models of pain (Cain et al. <a href="#CR16" class="usa-link" aria-describedby="CR16">2010</a>). Thus, the better explanation is that fish reflexively associate the stimulus with the shock.</p> <p>It has been reasoned that if a behavioural response was modifiable under different circumstances, then it was not a reflex. This vague distinction between reflex and non-reflexive (or flexible) behaviours in fish relies on the notion that higher-level brain activity was associated with the latter and not the former (Dunlop et al. <a href="#CR27" class="usa-link" aria-describedby="CR27">2006</a>; Braithwaite et al. <a href="#CR12" class="usa-link" aria-describedby="CR12">2013</a>). Evidence for this activity was purported to come from numerous observations that telencephalon ablation perturbed avoidance learning in fish. However, it has been consistently reported that although avoidance learning by fish is perturbed by full or partial forebrain ablations, these animals continue to exhibit escape responses (and many continue to learn to avoid) as a result of electric shock (Hainsworth et al. <a href="#CR39" class="usa-link" aria-describedby="CR39">1967</a>; Kaplan and Aronson <a href="#CR51" class="usa-link" aria-describedby="CR51">1967</a>; Savage <a href="#CR103" class="usa-link" aria-describedby="CR103">1968</a>; Overmier and Gross <a href="#CR82" class="usa-link" aria-describedby="CR82">1974</a>; Flood et al. <a href="#CR32" class="usa-link" aria-describedby="CR32">1976</a>; Overmier and Papini <a href="#CR83" class="usa-link" aria-describedby="CR83">1985</a>; Portavella et al. <a href="#CR89" class="usa-link" aria-describedby="CR89">2003</a>, <a href="#CR90" class="usa-link" aria-describedby="CR90">2004a</a>, <a href="#CR91" class="usa-link" aria-describedby="CR91">b</a>; Portavella and Vargas <a href="#CR88" class="usa-link" aria-describedby="CR88">2005</a>; Vargas et al. <a href="#CR131" class="usa-link" aria-describedby="CR131">2009</a>). Thus, forebrainless fish are still able to either escape from, or learn (albeit more slowly) to avoid, an electric shock. Fish with, or without, the forebrain had similar latencies of escape. Escape latency was the time taken for a fish to escape from the chamber once it received a shock. Clearly, the forebrain was not needed for fish to exhibit escape behaviour, but it was important for learning the association between the light and the unconditioned stimulus (shock).</p> <p>Taken together, the above results demonstrate that the escape responses used in the avoidance learning paradigms for fish involve sub-forebrain regions associated with instinctive and/or reflexive behaviours. Thus, the avoidance learning paradigms typically used in fish studies are more informative about learning processes in fish, then about the sensation of pain experienced by these animals. It is most likely that the sorts of avoidance learning exhibited to date in fish studies is better explained by innate neural circuitry mediating reflex behaviour.</p></section><section id="Sec8"><h3 class="pmc_sec_title">Pain is not essential for reducing injury</h3> <p>The idea that nociception has an evolutionary survival advantage for animals is well established in the scientific literature (Kavaliers <a href="#CR52" class="usa-link" aria-describedby="CR52">1988</a>). However, the significance of feeling pain in animals is less well understood since the nociception-pain axis has not been carefully interrogated. It has been assumed that pain enables animals to adopt longer-term protective behaviours in order to facilitate tissue repair and to prevent compounding injuries (Bolles and Faneslow <a href="#CR8" class="usa-link" aria-describedby="CR8">1980</a>).</p> <p>If fish were to feel pain then one would, at least, expect them to exhibit a longer-term protective response to injury. The fins of fish are densely innervated by sensory axons and are one of the most highly sensitive regions of the fish body surface to noxious stimulation (Chervova <a href="#CR21" class="usa-link" aria-describedby="CR21">1997</a>). If fish were experiencing pain, and if pain was serving a protective function, then fish should respond to fin injury either by not using that fin or by altering swimming behaviour until the injury was repaired. However, after either partial or complete tail fin amputation, fish show no evidence of protecting their fins by reducing their swimming behaviour; they are instead quite capable of swimming continuously against a current (Fu et al. <a href="#CR33" class="usa-link" aria-describedby="CR33">2013</a>). These observations are also consistent with the normal behaviour of fish with bacterial tail or fin rot. This disease causes progressive erosion of the affected fins/tail and yet these fish swim and eat normally. The consensus in the fish welfare literature is that fin rot, despite its ability to cause loss of most of the tail fin, does not affect the behaviour of fish. These animals continue to eat and swim like their healthy counterparts (Ellis et al. <a href="#CR29" class="usa-link" aria-describedby="CR29">2008</a>). The most plausible interpretation of these observations is that fish do not modulate long-term behaviour in order to allow injury repair. This conclusion is more consistent with fish not feeling pain.</p></section></section><section id="Sec9"><h2 class="pmc_sec_title">What is the neural basis of pain?</h2> <p>I have suggested above that the behavioural responses of fish to noxious stimuli is best explained by sub-telencephalic reflexes mediated by innate neural circuits rather then by fish experiencing phenomenal consciousness. By accepting this argument it now becomes possible to better address the necessary anatomical prerequisites underlying phenomenal consciousness. All chordates possess a central nervous system consisting of an enlarged anterior end and a posterior cord-like structure. The differences in neuroanatomy that have emerged during evolution within this phylum reflect specialised functions (Butler <a href="#CR14" class="usa-link" aria-describedby="CR14">2000</a>). While the posterior cord has typically preserved a simple morphology that subserves basic locomotor behaviours, the rostral nervous system has instead undergone extensive structural modifications that have led to devise functional consequences. For instance, the evolution of the neocortex in humans has allowed us to experience our environment through subjective mental states such as pain, smell, hearing and vision. By understanding how our environment subjectively “feels” it has become possible for humans to appreciate and predict how other people would respond in certain situations. Consequently by manipulating our environment we are able to affect the behaviour of others to achieve specific outcomes. The human neocortex is particularly adept at this function and it is clearly an important driving force in our cultural evolution.</p> <p>What is so unique about the cortex that enables inner mental states? First, the cortex is parcellated into discrete anatomically structures or cortical areas that process information related to specific functions. It is estimated that there are about 200 cortical areas in humans (Kaas <a href="#CR49" class="usa-link" aria-describedby="CR49">2012</a>). For instance, the cortical visual system consists of over a dozen distinct regions with diverse subfunctions that are strongly interconnected by reciprocal axon pathways. One of the defining features of these subregions is that they become simultaneously active. Both recurrent activity and binding of neural activity across cortical regions are believed to be essential prerequisites for the subjective experience of vision (Sillito et al. <a href="#CR110" class="usa-link" aria-describedby="CR110">2006</a>; Pollen <a href="#CR87" class="usa-link" aria-describedby="CR87">2011</a>; Koivisto and Silvanto <a href="#CR54" class="usa-link" aria-describedby="CR54">2012</a>). It has been shown that when neural processing of recurrent signalling from higher cortical regions entering the V1 visual cortex is perturbed by transcranial magnetic stimulation, the subjective awareness of a visual stimulus is disrupted (Koivisto et al. <a href="#CR55" class="usa-link" aria-describedby="CR55">2010</a>, <a href="#CR56" class="usa-link" aria-describedby="CR56">2011</a>; Jacobs et al. <a href="#CR43" class="usa-link" aria-describedby="CR43">2012</a>; Railo and Koivisto <a href="#CR94" class="usa-link" aria-describedby="CR94">2012</a>; Avanzini et al. <a href="#CR2" class="usa-link" aria-describedby="CR2">2013</a>).</p> <p>The subregionalisation of the neocortex also allows the formation of spatial maps of the sensory world, such as those associated with the representations of the surface of the body or the visual field. These topographical maps are important for the multiscale processing of sensory information (Kaas <a href="#CR48" class="usa-link" aria-describedby="CR48">1997</a>; Thivierge and Marcus <a href="#CR118" class="usa-link" aria-describedby="CR118">2007</a>). Variation in the size of the maps alters the sensitivity of responses to stimuli while spatial segregation of neurons responding to selective parts of a stimulus allows for finer perceptual discrimination. Painful and non-painful somatosensory stimuli are topographically mapped to overlying regions in the primary somatosensory cortex (SI) in humans (Mancini et al. <a href="#CR63" class="usa-link" aria-describedby="CR63">2012</a>). These results are consistent with the known point-to-point topography from the body surface to SI (called somatotopy) that underlies spatial acuity. However, by using high resolution mapping in the squirrel monkey SI (sub-millimetre level) it was revealed that there were slight differences in the localisation of different somatosensory modalities (Chen et al. <a href="#CR19" class="usa-link" aria-describedby="CR19">2001</a>). This slight physical separation of cortical neurons responding to different peripheral stimuli suggests that differences in the subjective quality of somatosensory sensations may arise as early as in SI. Somatotopic maps for painful stimuli are also present in the human SII and insular cortices (Baumgartner et al. <a href="#CR150" class="usa-link" aria-describedby="CR150">2010</a>). Interestingly, different qualities of painful stimuli (such as heat and pinprick) are more distinctly mapped topographically to different regions of SII and the insular cortex than in SI. Similarly, painful and non-painful stimuli are mapped to separate regions in human SII (Torquati et al. <a href="#CR120" class="usa-link" aria-describedby="CR120">2005</a>). This separation of cortical processing of heat and tactile stimuli within different cortical areas has also been observed in non-human primates (Chen et al. <a href="#CR20" class="usa-link" aria-describedby="CR20">2011</a>). These multiple neural maps suggests that SII and the insular cortex play important roles in discriminating differences in the subjective quality of somatosensory stimuli, particularly painful from non-painful (Tommerdahl et al. <a href="#CR119" class="usa-link" aria-describedby="CR119">1996</a>; Baumgartner et al. <a href="#CR150" class="usa-link" aria-describedby="CR150">2010</a>; Chen et al. <a href="#CR20" class="usa-link" aria-describedby="CR20">2011</a>; Mazzola et al. <a href="#CR68" class="usa-link" aria-describedby="CR68">2012</a>). This idea is supported by evidence from direct electrical stimulation of discrete areas in the human insular cortex (Afif et al. <a href="#CR1" class="usa-link" aria-describedby="CR1">2010</a>).</p> <p>Second, the cortex is a laminated structure that enables the efficient processing and integration of different types of neural information by unique subpopulations of neurons (Schubert et al. <a href="#CR105" class="usa-link" aria-describedby="CR105">2007</a>; Maier et al. <a href="#CR61" class="usa-link" aria-describedby="CR61">2010</a>; Larkum <a href="#CR59" class="usa-link" aria-describedby="CR59">2013</a>). Lamination appears to facilitate complex wiring patterns during development. If two populations of neurons were randomly distributed within a specific brain region and incoming axons were required to synapse with only one subpopulation, then those axons would need to rely on stochastic and hence error-prone searching to complete wiring. On the other hand, when similar neurons are partitioned together in a single lamina then a small set of molecular cues is able to guide axons with high precision to their appropriate post-synaptic target. Two principal afferent inputs (from the neocortex itself, and the thalamus) enter the neocortex and separately innervate distinct layers (Nieuwenhuys <a href="#CR74" class="usa-link" aria-describedby="CR74">1994</a>). The main thalamic fibres terminate densely in layer IV (called the granular layer) while the neocortical fibres innervate different pyramidal neurons in layers I–III (supragranular layers) (Opris <a href="#CR80" class="usa-link" aria-describedby="CR80">2013</a>). By selectively ablating Pax6, a developmentally significant patterning gene, in the cortex of mice it is possible to disrupt the laminar organisation of this structure (Tuoc et al. <a href="#CR121" class="usa-link" aria-describedby="CR121">2009</a>). This altered cortical layering causes neurological deficits that are similar to those observed in humans with Pax6 haploinsufficiency (Tuoc et al. <a href="#CR121" class="usa-link" aria-describedby="CR121">2009</a>) and provides strong experimental evidence of the importance of lamination to cortical function. A number of human brain disorders involve defects in cortical lamination that are detrimental to brain function (Guerrini et al. <a href="#CR36" class="usa-link" aria-describedby="CR36">2008</a>; Guerrini and Parrini <a href="#CR35" class="usa-link" aria-describedby="CR35">2010</a>; Bozzi et al. <a href="#CR9" class="usa-link" aria-describedby="CR9">2012</a>).</p> <p>Third, lamination facilitates the economical establishment of microcircuitry between neurons processing different properties of the stimulus. A vertical canonical microcircuit is established which leads to the emergence of functionally interconnected columns and minicolumns of neurons (Mountcastle <a href="#CR70" class="usa-link" aria-describedby="CR70">1997</a>). For example, a hexagonal column in the primate somatosensory cortex is about 400 μm in width and contains populations of neurons that respond to the same stimulus (e.g. light touch or joint stimulation) arising from a specific topographical zone of the body. Columns can be associated with processing information related to a specific function (e.g. “visual tracking” and “arm reach” columns in the parietal cortex; Kass <a href="#CR49" class="usa-link" aria-describedby="CR49">2012</a>). Each column itself consists of minicolumns (80–100 neurons) that are ~30–50 μm in diameter and interconnected by short-range horizontal processes (Buxhoeveden and Casanova <a href="#CR15" class="usa-link" aria-describedby="CR15">2002</a>). While columns are most clearly distinguished in the sensory and motor cortices of primates, minicolumns appear to be ubiquitous in all animals with a neocortex (Kaas <a href="#CR49" class="usa-link" aria-describedby="CR49">2012</a>). Minicolumns have a small receptive field within the larger receptive field of the column. The correlated activity in the fine-scale networks of minicolumns produces concentrated bursts of neural activity that may enable the cortex to transmit signals in the face of background noise (Ohiorhenuan et al. <a href="#CR79" class="usa-link" aria-describedby="CR79">2010</a>). The function of the cortex seems to depend on the ability of canonical circuitry within the minicolumns to rapidly switch from feedforward to feedback processing between layers. During learned tasks in responses to cues in the awake monkey, information flows from layer 4 to layer 2/3 and then down to layer 5 in a feedforward loop in the temporal neocortex (Takeuchi et al. <a href="#CR116" class="usa-link" aria-describedby="CR116">2011</a>; Bastos et al. <a href="#CR5" class="usa-link" aria-describedby="CR5">2012</a>). This is followed shortly afterwards by a feedback loop from layer 5 to layer 2/3. Correlated firing of layer 2/3 and layer 5 neurons in minicolumns occurs during decision making in the monkey prefrontal cortex, an area responsible for executive control in primates (Opris et al. <a href="#CR81" class="usa-link" aria-describedby="CR81">2012</a>). The accuracy of error-prone tasks was increased when layer 5 neurons were artificially stimulated by activity recorded during successful task execution. These results provide evidence for the role of the minicolumn as the fundamental processing unit of the neocortex associated with higher order behaviour (Bastos et al. <a href="#CR5" class="usa-link" aria-describedby="CR5">2012</a>; Opris et al. <a href="#CR81" class="usa-link" aria-describedby="CR81">2012</a>).</p> <p>In summary, the unique morphology of the mammalian cortex facilitates multiscale processing of sensory information. Initially there is course scaling at the level of gross anatomical cortical regions specialising, for example, in processing of visual or somatosensory information. Some of these regions are then topographically mapped in order to preserve spatial relationships and facilitate selective processing of specific sensory features. Importantly, to preserve the holistic quality of a sensory stimulus, these subregions are strongly interconnected via axon pathways that create synchronized re-entrant loops of neural activity. Cortical regions are laminated which supports finer scale sensitivity in the processing of specific features. Finally, canonical microcircuits (minicolumns) bridge across layers to enhance signal contrast (Casanova <a href="#CR17" class="usa-link" aria-describedby="CR17">2010</a>). Local connectivity between minicolumns enables the lowest level of stimulus binding that contributes to the holistic nature of the stimulus (Buxhoeveden and Casanova <a href="#CR15" class="usa-link" aria-describedby="CR15">2002</a>).</p> <p>I propose that only animals possessing the above neuroanatomical features (i.e. discrete cortical sensory regions, topographical maps, multiple cortical layers, columns/minicolumns and strong local and long-range interconnections), or their functionally analogous counterparts, have the necessary morphological prerequisites for experiencing subjective inner mental states such as pain. It has been argued that since the avian pallium is non-laminated, and yet these animals exhibit high levels of cognitive ability and behaviours rivalling those of primates, that lamination is not an essential prerequisite for consciousness (Gunturkun <a href="#CR37" class="usa-link" aria-describedby="CR37">2005</a>; Kirsch et al. <a href="#CR53" class="usa-link" aria-describedby="CR53">2008</a>; Gunturkun <a href="#CR38" class="usa-link" aria-describedby="CR38">2012</a>; Veit and Nieder <a href="#CR122" class="usa-link" aria-describedby="CR122">2013</a>). However, the classic view of the organisation of the avian telencephalon has been revised and previous subpallial regions are now recognised as pallial in nature (Shimizu <a href="#CR107" class="usa-link" aria-describedby="CR107">2009</a>). Careful examination of pallial neuroanatomy has further revealed that distinct regions of the avian pallium act like layers of the neocortex (Dugas-Ford et al. <a href="#CR25" class="usa-link" aria-describedby="CR25">2012</a>). Moreover, columnar processing units appear to operate across these brain regions in the processing of sensory and motor information (Jarvis et al. <a href="#CR44" class="usa-link" aria-describedby="CR44">2013</a>). When this is combined with complex parcellation, the presence of topographical maps and strong interconnectivity in the avian pallium (Shimizu et al. <a href="#CR109" class="usa-link" aria-describedby="CR109">1995</a>; Shimizu and Bowers <a href="#CR108" class="usa-link" aria-describedby="CR108">1999</a>; Bingman and Able <a href="#CR7" class="usa-link" aria-describedby="CR7">2002</a>; Manger et al. <a href="#CR65" class="usa-link" aria-describedby="CR65">2002</a>; Nguyen et al. <a href="#CR73" class="usa-link" aria-describedby="CR73">2004</a>; Watanabe and Masuda <a href="#CR124" class="usa-link" aria-describedby="CR124">2010</a>), it appears that birds possess the necessary neural machinery for phenomenal consciousness.</p> <p>The pallium of fish is non-laminated. It is partitioned into five broad nuclear regions (dorsomedial, dorsolateral, dorsodorsal, dorsoposterior and ventral; Northcutt <a href="#CR77" class="usa-link" aria-describedby="CR77">2011</a>). While the dorsodorsal pallium is believed to be homologous to the neocortex there remains some controversy as to the definitive homology between these structures (Echleter and Saidel <a href="#CR28" class="usa-link" aria-describedby="CR28">1981</a>; Northcutt <a href="#CR76" class="usa-link" aria-describedby="CR76">2008</a>; Braford <a href="#CR10" class="usa-link" aria-describedby="CR10">2009</a>; Northcutt <a href="#CR77" class="usa-link" aria-describedby="CR77">2011</a>). There is converging evidence from electrophysiological recordings (Precht et al. <a href="#CR92" class="usa-link" aria-describedby="CR92">1998</a>; Saidel et al. <a href="#CR101" class="usa-link" aria-describedby="CR101">2001</a>; Northcutt et al. <a href="#CR78" class="usa-link" aria-describedby="CR78">2004</a>) and neuroanatomical tracing (Yamamoto and Ito <a href="#CR129" class="usa-link" aria-describedby="CR129">2008</a>) that, unlike in the neocortex, sensory information such as visual input, is diffusely processed across the fish dorsal pallium, and certainly not localised to multiple interconnected areas that are topographically mapped (Giassi et al. <a href="#CR34" class="usa-link" aria-describedby="CR34">2012</a>). Evidence is also lacking for canonical microcircuitry subserving fine scale processing of sensory information in the dorsal pallium. This lack of contrast in signal processing does not support the ability of the fish pallium to differentiate sensory modalities with sufficient resolution to allow the emergence of distinct feelings for different sensory modalities.</p> <p>It has been suggested that sub-forebrain structures in fish may somehow take over the function of phenomenal consciousness in the neocortex. While parcellated sensory processing, laminated cytoarchitecture and columnar-like modules are present in the mid- and hindbrains of some fish (Meek <a href="#CR69" class="usa-link" aria-describedby="CR69">1983</a>; Krahe and Maler <a href="#CR57" class="usa-link" aria-describedby="CR57">2014</a>), these structures lack the necessary local and long-range feedforward and recurrent pathways associated with information binding underlying phenomenal consciousness (Baars et al. <a href="#CR3" class="usa-link" aria-describedby="CR3">2013</a>). Instead, the vertebrate midbrain optic tectum has conserved structural features across a variety of species such as fish, frogs, birds and mammals that subserve common functionalities (e.g. orienting, direction-sensitivity, and spatial relationships; Ingle <a href="#CR42" class="usa-link" aria-describedby="CR42">1973</a>). Furthermore, while ablation of the tecta perturbs visual function, startle responses in tectumless fish are preserved (Yager et al. <a href="#CR127" class="usa-link" aria-describedby="CR127">1977</a>; Roeser and Naier <a href="#CR96" class="usa-link" aria-describedby="CR96">2003</a>). Thus, the tectum is not needed to respond to somatosensory stimuli and certainly does not possess novel circuitry responsible for pain. On the basis of our current understanding of the structure and function of the “fish” brain, it most likely that fish do not have the necessary neural machinery for phenomenal consciousness.</p> <p>In summary, I have demonstrated how misleading it is to infer that fish have feelings on the basis of behavioural responses to sensory stimulation. It is essential that our anthropomorphic tendencies to bestow animals with feelings does not hinder the progress of scientific enquiry into the evolution of phenomenal consciousness. I propose that there are a number of fundamental neural building blocks that are necessary prerequisites for phenomenal consciousness in the vertebrate lineage. The possession of this hardware sets the minimal requirements for the sensation of noxious stimuli as painful. The idea that other neural architectures that have been specifically wired for fundamentally different functions in vertebrates (such as the mid- and hindbrains) could also subserve pain in fish is incongruent with evolutionary biology and neuroscience. While there is some degree of plasticity of function in the mammalian neocortex (Kupers and Pitto <a href="#CR58" class="usa-link" aria-describedby="CR58">2013</a>), the very notion that either the fish tectum as well as the mid- and hindbrain reticular formations (that are reciprocally interconnected with the tectum; Perez-Perez et al. <a href="#CR84" class="usa-link" aria-describedby="CR84">2003</a>; Luque et al. <a href="#CR60" class="usa-link" aria-describedby="CR60">2005</a>) has some hidden neural circuitry that allows for the processing of somatosensory inputs into discrete feelings of pinprick, heat, cold, scratch, cutting and stabbing is difficult to defend.</p></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Conflict of interest</h2> <p>The author states that he has not been paid for this work and has no conflict of interest.</p></section><section id="Bib1" class="ref-list"><h2 class="pmc_sec_title">References</h2> <section id="Bib1_sec2"><ol class="ref-list font-sm"> <li id="CR1"> <cite>Afif A, Minotti L, Kahane P, Hoffman D. Anatomofunctional organization of the insular cortex: a study using intracerebral electrical stimulation in epileptic patients. Epilepsia. 2010;51:2305–2315. doi: 10.1111/j.1528-1167.2010.02755.x.</cite> [<a href="https://doi.org/10.1111/j.1528-1167.2010.02755.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20946128/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Epilepsia&title=Anatomofunctional%20organization%20of%20the%20insular%20cortex:%20a%20study%20using%20intracerebral%20electrical%20stimulation%20in%20epileptic%20patients&author=A%20Afif&author=L%20Minotti&author=P%20Kahane&author=D%20Hoffman&volume=51&publication_year=2010&pages=2305-2315&pmid=20946128&doi=10.1111/j.1528-1167.2010.02755.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR2"> <cite>Avanzini P, Fabbri-Destro M, Campi C, Pascarella A, Barchiesi G, Cattaneo L, Rizzolatti G. Spatioptemporal dynamics in understanding hand-object interactions. PNAS. 2013;110:15878–15885. doi: 10.1073/pnas.1314420110.</cite> [<a href="https://doi.org/10.1073/pnas.1314420110" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3791766/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24043805/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PNAS&title=Spatioptemporal%20dynamics%20in%20understanding%20hand-object%20interactions&author=P%20Avanzini&author=M%20Fabbri-Destro&author=C%20Campi&author=A%20Pascarella&author=G%20Barchiesi&volume=110&publication_year=2013&pages=15878-15885&pmid=24043805&doi=10.1073/pnas.1314420110&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR3"> <cite>Baars BJ, Franklin S, Ramsoy TZ. Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front Psychol. 2013 doi: 10.3389/fpsyg.2013.00200.</cite> [<a href="https://doi.org/10.3389/fpsyg.2013.00200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3664777/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23974723/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Psychol&title=Global%20workspace%20dynamics:%20cortical%20%E2%80%9Cbinding%20and%20propagation%E2%80%9D%20enables%20conscious%20contents&author=BJ%20Baars&author=S%20Franklin&author=TZ%20Ramsoy&publication_year=2013&pmid=23974723&doi=10.3389/fpsyg.2013.00200&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR4"> <cite>Baastrup C, Maersk-Moller CC, Nyengaard JR, Jensen TS, Finnerup NB. Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: evaluation of pain-like behavior. Pain. 2010;151:670–679. doi: 10.1016/j.pain.2010.08.024.</cite> [<a href="https://doi.org/10.1016/j.pain.2010.08.024" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20863621/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Pain&title=Spinal-,%20brainstem-%20and%20cerebrally%20mediated%20responses%20at-%20and%20below-level%20of%20a%20spinal%20cord%20contusion%20in%20rats:%20evaluation%20of%20pain-like%20behavior&author=C%20Baastrup&author=CC%20Maersk-Moller&author=JR%20Nyengaard&author=TS%20Jensen&author=NB%20Finnerup&volume=151&publication_year=2010&pages=670-679&pmid=20863621&doi=10.1016/j.pain.2010.08.024&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR5"> <cite>Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. 2012;76:695–711. doi: 10.1016/j.neuron.2012.10.038.</cite> [<a href="https://doi.org/10.1016/j.neuron.2012.10.038" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3777738/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23177956/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuron&title=Canonical%20microcircuits%20for%20predictive%20coding&author=AM%20Bastos&author=WM%20Usrey&author=RA%20Adams&author=GR%20Mangun&author=P%20Fries&volume=76&publication_year=2012&pages=695-711&pmid=23177956&doi=10.1016/j.neuron.2012.10.038&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR150"> <cite>Baumgartner U, Iannetti GD, Zambreanu L, Stoeter P, Treede R-D, Tracey I. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol. 2010;104:2863–2872. doi: 10.1152/jn.00253.2010.</cite> [<a href="https://doi.org/10.1152/jn.00253.2010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2997041/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20739597/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurophysiol&title=Multiple%20somatotopic%20representations%20of%20heat%20and%20mechanical%20pain%20in%20the%20operculo-insular%20cortex:%20a%20high-resolution%20fMRI%20study&author=U%20Baumgartner&author=GD%20Iannetti&author=L%20Zambreanu&author=P%20Stoeter&author=R-D%20Treede&volume=104&publication_year=2010&pages=2863-2872&pmid=20739597&doi=10.1152/jn.00253.2010&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR7"> <cite>Bingman VP, Able KP. Maps in birds: representational mechanisms and neural bases. Curr Opin Neurobiol. 2002;12:745–750. doi: 10.1016/s0959-4388(02)00375-6.</cite> [<a href="https://doi.org/10.1016/s0959-4388(02)00375-6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12490268/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Opin%20Neurobiol&title=Maps%20in%20birds:%20representational%20mechanisms%20and%20neural%20bases&author=VP%20Bingman&author=KP%20Able&volume=12&publication_year=2002&pages=745-750&pmid=12490268&doi=10.1016/s0959-4388(02)00375-6&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR8"> <cite>Bolles RC, Faneslow MS. A perceptual-defensive-recuperative model of fear and pain. Behav Brain Sci. 1980;3:291–323.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Brain%20Sci&title=A%20perceptual-defensive-recuperative%20model%20of%20fear%20and%20pain&author=RC%20Bolles&author=MS%20Faneslow&volume=3&publication_year=1980&pages=291-323&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR9"> <cite>Bozzi Y, Casarosa S, Caleo M. Epilepsy as a neurodevelopmental disorder. Front Psychol. 2012 doi: 10.3389/fpsyt.2012.00019.</cite> [<a href="https://doi.org/10.3389/fpsyt.2012.00019" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3306997/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22457654/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Psychol&title=Epilepsy%20as%20a%20neurodevelopmental%20disorder&author=Y%20Bozzi&author=S%20Casarosa&author=M%20Caleo&publication_year=2012&pmid=22457654&doi=10.3389/fpsyt.2012.00019&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR10"> <cite>Braford MR. Stalking the everted telencephalon: comparisons of forebrain organization in basal ray-finned fishes and teleosts. Brain Behav Evol. 2009;74:56–76. doi: 10.1159/000229013.</cite> [<a href="https://doi.org/10.1159/000229013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19729896/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Behav%20Evol&title=Stalking%20the%20everted%20telencephalon:%20comparisons%20of%20forebrain%20organization%20in%20basal%20ray-finned%20fishes%20and%20teleosts&author=MR%20Braford&volume=74&publication_year=2009&pages=56-76&pmid=19729896&doi=10.1159/000229013&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR11"> <cite>Braithwaite VA, Boulcott P. Pain perception, aversion and fear in fish. Dis Aquat Org. 2007;75:131–138. doi: 10.3354/dao075131.</cite> [<a href="https://doi.org/10.3354/dao075131" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17578252/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dis%20Aquat%20Org&title=Pain%20perception,%20aversion%20and%20fear%20in%20fish&author=VA%20Braithwaite&author=P%20Boulcott&volume=75&publication_year=2007&pages=131-138&pmid=17578252&doi=10.3354/dao075131&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR12"> <cite>Braithwaite VA, Huntingford F, van den Bos R. Variation in emotion and cognition in fish. J Agric Environ Ethics. 2013;26:7–23.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Agric%20Environ%20Ethics&title=Variation%20in%20emotion%20and%20cognition%20in%20fish&author=VA%20Braithwaite&author=F%20Huntingford&author=R%20van%20den%20Bos&volume=26&publication_year=2013&pages=7-23&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR13"> <cite>Browman HI, Skiftesvik AB. Welfare in aquatic organisms—is there some faith-based HAR-King going on here? Dis Aquat Org. 2011;94:255–257. doi: 10.3354/dao02366.</cite> [<a href="https://doi.org/10.3354/dao02366" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21790074/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dis%20Aquat%20Org&title=Welfare%20in%20aquatic%20organisms%E2%80%94is%20there%20some%20faith-based%20HAR-King%20going%20on%20here?&author=HI%20Browman&author=AB%20Skiftesvik&volume=94&publication_year=2011&pages=255-257&pmid=21790074&doi=10.3354/dao02366&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR14"> <cite>Butler AB. Chordate evolution and the origin of the craniates: an old brain in a new head. Anat Rec. 2000;261:111–125. doi: 10.1002/1097-0185(20000615)261:3<111::AID-AR6>3.0.CO;2-F.</cite> [<a href="https://doi.org/10.1002/1097-0185(20000615)261:3<111::AID-AR6>3.0.CO;2-F" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10867629/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anat%20Rec&title=Chordate%20evolution%20and%20the%20origin%20of%20the%20craniates:%20an%20old%20brain%20in%20a%20new%20head&author=AB%20Butler&volume=261&publication_year=2000&pages=111-125&pmid=10867629&doi=10.1002/1097-0185(20000615)261:3<111::AID-AR6>3.0.CO;2-F&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR15"> <cite>Buxhoeveden DP, Casanova MF. The minicolumn hypothesis in neuroscience. Brain. 2002;125:935–951. doi: 10.1093/brain/awf110.</cite> [<a href="https://doi.org/10.1093/brain/awf110" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11960884/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain&title=The%20minicolumn%20hypothesis%20in%20neuroscience&author=DP%20Buxhoeveden&author=MF%20Casanova&volume=125&publication_year=2002&pages=935-951&pmid=11960884&doi=10.1093/brain/awf110&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR16"> <cite>Cain CK, Choi J-S, LeDoux JE. Active avoidance and escape learning. Encycl Behav Neurosci. 2010;1:1–9.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Encycl%20Behav%20Neurosci&title=Active%20avoidance%20and%20escape%20learning&author=CK%20Cain&author=J-S%20Choi&author=JE%20LeDoux&volume=1&publication_year=2010&pages=1-9&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR17"> <cite>Casanova MF. Cortical organization: anatomical findings based on systems theory. Transl Neurosci. 2010;1:62–71. doi: 10.2478/v10134-010-0002-2.</cite> [<a href="https://doi.org/10.2478/v10134-010-0002-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3384515/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22754693/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Transl%20Neurosci&title=Cortical%20organization:%20anatomical%20findings%20based%20on%20systems%20theory&author=MF%20Casanova&volume=1&publication_year=2010&pages=62-71&pmid=22754693&doi=10.2478/v10134-010-0002-2&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR18"> <cite>Chandroo KP, Duncan IJH, Moccia RD. Can fish suffer? Perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci. 2004;86:225–250.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Appl%20Anim%20Behav%20Sci&title=Can%20fish%20suffer?%20Perspectives%20on%20sentience,%20pain,%20fear%20and%20stress&author=KP%20Chandroo&author=IJH%20Duncan&author=RD%20Moccia&volume=86&publication_year=2004&pages=225-250&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR19"> <cite>Chen LM, Friedman RM, Ramsden BM, LaMotte RH, Roe AW. Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol. 2001;86:3011–3029. doi: 10.1152/jn.2001.86.6.3011.</cite> [<a href="https://doi.org/10.1152/jn.2001.86.6.3011" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11731557/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurophysiol&title=Fine-scale%20organization%20of%20SI%20(area%203b)%20in%20the%20squirrel%20monkey%20revealed%20with%20intrinsic%20optical%20imaging&author=LM%20Chen&author=RM%20Friedman&author=BM%20Ramsden&author=RH%20LaMotte&author=AW%20Roe&volume=86&publication_year=2001&pages=3011-3029&pmid=11731557&doi=10.1152/jn.2001.86.6.3011&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR20"> <cite>Chen LM, Dillenburger BC, Wang F, Friedman RM, Avison MJ. High-resolution functional magnetic resonance imaging of noxious heat and activations along the central sulcus in New World monkeys. Pain. 2011;152:522–532. doi: 10.1016/j.pain.2010.10.048.</cite> [<a href="https://doi.org/10.1016/j.pain.2010.10.048" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3039029/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21177033/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Pain&title=High-resolution%20functional%20magnetic%20resonance%20imaging%20of%20noxious%20heat%20and%20activations%20along%20the%20central%20sulcus%20in%20New%20World%20monkeys&author=LM%20Chen&author=BC%20Dillenburger&author=F%20Wang&author=RM%20Friedman&author=MJ%20Avison&volume=152&publication_year=2011&pages=522-532&pmid=21177033&doi=10.1016/j.pain.2010.10.048&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR21"> <cite>Chervova LS. Pain sensitivity of behavior of fishes. J Ichthyol. 1997;37:98–102.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Ichthyol&title=Pain%20sensitivity%20of%20behavior%20of%20fishes&author=LS%20Chervova&volume=37&publication_year=1997&pages=98-102&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR22"> <cite>Davis RE, Kassel J, Schwagmeyer P. Telencephalic lesions and behavior in the teleost, macropodus opercularis: reproductive, startle reaction, and operant behavior in the male. Behav Biol. 1976;18:165–177. doi: 10.1016/s0091-6773(76)92054-x.</cite> [<a href="https://doi.org/10.1016/s0091-6773(76)92054-x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/999575/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Biol&title=Telencephalic%20lesions%20and%20behavior%20in%20the%20teleost,%20macropodus%20opercularis:%20reproductive,%20startle%20reaction,%20and%20operant%20behavior%20in%20the%20male&author=RE%20Davis&author=J%20Kassel&author=P%20Schwagmeyer&volume=18&publication_year=1976&pages=165-177&pmid=999575&doi=10.1016/s0091-6773(76)92054-x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR23"> <cite>Demski LS. The pallium and mind/behavior relationships in teleost fishes. Brain Behav Evol. 2013;82:31–44. doi: 10.1159/000351994.</cite> [<a href="https://doi.org/10.1159/000351994" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23979454/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Behav%20Evol&title=The%20pallium%20and%20mind/behavior%20relationships%20in%20teleost%20fishes&author=LS%20Demski&volume=82&publication_year=2013&pages=31-44&pmid=23979454&doi=10.1159/000351994&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR24"> <cite>Dimitrijevic MR, Nathan PW. Studies of spasticity in man. 3. Analysis of reflex activity evoked by noxious cutaneous stimulation. Brain. 1968;91:349–368. doi: 10.1093/brain/91.2.349.</cite> [<a href="https://doi.org/10.1093/brain/91.2.349" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/5721935/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain&title=Studies%20of%20spasticity%20in%20man.%203.%20Analysis%20of%20reflex%20activity%20evoked%20by%20noxious%20cutaneous%20stimulation&author=MR%20Dimitrijevic&author=PW%20Nathan&volume=91&publication_year=1968&pages=349-368&pmid=5721935&doi=10.1093/brain/91.2.349&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR25"> <cite>Dugas-Ford J, Rowell JJ, Ragsdale CW. Cell-type homologies and the origins of the neocortex. PNAS. 2012;109:16974–16979. doi: 10.1073/pnas.1204773109.</cite> [<a href="https://doi.org/10.1073/pnas.1204773109" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3479531/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23027930/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PNAS&title=Cell-type%20homologies%20and%20the%20origins%20of%20the%20neocortex&author=J%20Dugas-Ford&author=JJ%20Rowell&author=CW%20Ragsdale&volume=109&publication_year=2012&pages=16974-16979&pmid=23027930&doi=10.1073/pnas.1204773109&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR26"> <cite>Dunlop R, Laming P. Mechanoreceptive and nociceptive responses in the central nervous system of goldfish (Carassius auratus) and trout (Oncorrhynchus mykiss) J Pain. 2005;6:561–568. doi: 10.1016/j.jpain.2005.02.010.</cite> [<a href="https://doi.org/10.1016/j.jpain.2005.02.010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16139775/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Pain&title=Mechanoreceptive%20and%20nociceptive%20responses%20in%20the%20central%20nervous%20system%20of%20goldfish%20(Carassius%20auratus)%20and%20trout%20(Oncorrhynchus%20mykiss)&author=R%20Dunlop&author=P%20Laming&volume=6&publication_year=2005&pages=561-568&pmid=16139775&doi=10.1016/j.jpain.2005.02.010&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR27"> <cite>Dunlop R, Millsopp S, Laming P. Avoidance learning in goldfish (Carassius auratus) and implications for pain perception. Appl Anim Behav Sci. 2006;976:255–271.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Appl%20Anim%20Behav%20Sci&title=Avoidance%20learning%20in%20goldfish%20(Carassius%20auratus)%20and%20implications%20for%20pain%20perception&author=R%20Dunlop&author=S%20Millsopp&author=P%20Laming&volume=976&publication_year=2006&pages=255-271&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR28"> <cite>Echleter SM, Saidel WM. Forebrain connections in the goldfish support telencephalic homologies with land vertebrates. Science. 1981;212:683–685. doi: 10.1126/science.6971493.</cite> [<a href="https://doi.org/10.1126/science.6971493" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6971493/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&title=Forebrain%20connections%20in%20the%20goldfish%20support%20telencephalic%20homologies%20with%20land%20vertebrates&author=SM%20Echleter&author=WM%20Saidel&volume=212&publication_year=1981&pages=683-685&pmid=6971493&doi=10.1126/science.6971493&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR29"> <cite>Ellis T, Oidtmann B, St Hilaire S, Turnbull JF, North BP, MacIntyre CM, Nikolaidis J, Hoyle I, Kestin SC, Knowles TG. Fin erosion in farmed fish. In: Branson EJ, editor. Fish welfare, chapter 9. New York: Wiley; 2008. </cite> [<a href="https://scholar.google.com/scholar_lookup?title=Fish%20welfare,%20chapter%209&author=T%20Ellis&author=B%20Oidtmann&author=S%20St%20Hilaire&author=JF%20Turnbull&author=BP%20North&publication_year=2008&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR30"> <cite>Fatira E, Papandroulakis N, Pavlidis M. Diel changes in plasma cortisol and effects of size and stress duration on the cortisol response in European sea bass (Dicentrarchus labrax) Fish Physiol Biochem. 2014 doi: 10.1007/s10695-013-9896-1.</cite> [<a href="https://doi.org/10.1007/s10695-013-9896-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24343759/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Fish%20Physiol%20Biochem&title=Diel%20changes%20in%20plasma%20cortisol%20and%20effects%20of%20size%20and%20stress%20duration%20on%20the%20cortisol%20response%20in%20European%20sea%20bass%20(Dicentrarchus%20labrax)&author=E%20Fatira&author=N%20Papandroulakis&author=M%20Pavlidis&publication_year=2014&pmid=24343759&doi=10.1007/s10695-013-9896-1&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR31"> <cite>Filk G, Klaren PHM, Van den Burg EH, Metz JR, Huising MO. CRF and stress in fish. Gen Comp Endocrinol. 2006;146:36–44. doi: 10.1016/j.ygcen.2005.11.005.</cite> [<a href="https://doi.org/10.1016/j.ygcen.2005.11.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16403502/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Gen%20Comp%20Endocrinol&title=CRF%20and%20stress%20in%20fish&author=G%20Filk&author=PHM%20Klaren&author=EH%20Van%20den%20Burg&author=JR%20Metz&author=MO%20Huising&volume=146&publication_year=2006&pages=36-44&pmid=16403502&doi=10.1016/j.ygcen.2005.11.005&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR32"> <cite>Flood NC, Overmier JB, Savage GE. Teleost telencephalon and learning: an interpretive review of data and hypotheses. Physiol Behav. 1976;16:783–798. doi: 10.1016/0031-9384(76)90251-1.</cite> [<a href="https://doi.org/10.1016/0031-9384(76)90251-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/981374/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Physiol%20Behav&title=Teleost%20telencephalon%20and%20learning:%20an%20interpretive%20review%20of%20data%20and%20hypotheses&author=NC%20Flood&author=JB%20Overmier&author=GE%20Savage&volume=16&publication_year=1976&pages=783-798&pmid=981374&doi=10.1016/0031-9384(76)90251-1&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR33"> <cite>Fu C, Cao ZD, Fu SJ. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes. Comp Biochem Physiol A: Mol Integr Physiol. 2013;164:456–465. doi: 10.1016/j.cbpa.2012.12.015.</cite> [<a href="https://doi.org/10.1016/j.cbpa.2012.12.015" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23269108/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Comp%20Biochem%20Physiol%20A:%20Mol%20Integr%20Physiol&title=The%20effects%20of%20caudal%20fin%20amputation%20on%20metabolic%20interaction%20between%20digestion%20and%20locomotion%20in%20juveniles%20of%20three%20cyprinid%20fish%20species%20with%20different%20metabolic%20modes&author=C%20Fu&author=ZD%20Cao&author=SJ%20Fu&volume=164&publication_year=2013&pages=456-465&pmid=23269108&doi=10.1016/j.cbpa.2012.12.015&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR34"> <cite>Giassi ACC, Ellis W, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: III. Intrinsic connections. J Comp Neurol. 2012;520:3369–3394. doi: 10.1002/cne.23108.</cite> [<a href="https://doi.org/10.1002/cne.23108" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22434647/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Neurol&title=Organization%20of%20the%20gymnotiform%20fish%20pallium%20in%20relation%20to%20learning%20and%20memory:%20III.%20Intrinsic%20connections&author=ACC%20Giassi&author=W%20Ellis&author=L%20Maler&volume=520&publication_year=2012&pages=3369-3394&pmid=22434647&doi=10.1002/cne.23108&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR35"> <cite>Guerrini R, Parrini E. Neuronal migration disorders. Neurobiol Dis. 2010;38:154–166. doi: 10.1016/j.nbd.2009.02.008.</cite> [<a href="https://doi.org/10.1016/j.nbd.2009.02.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19245832/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neurobiol%20Dis&title=Neuronal%20migration%20disorders&author=R%20Guerrini&author=E%20Parrini&volume=38&publication_year=2010&pages=154-166&pmid=19245832&doi=10.1016/j.nbd.2009.02.008&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR36"> <cite>Guerrini R, Dobyns WB, Barkovich AJ. Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. TINS. 2008;31:154–162. doi: 10.1016/j.tins.2007.12.004.</cite> [<a href="https://doi.org/10.1016/j.tins.2007.12.004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18262290/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=TINS&title=Abnormal%20development%20of%20the%20human%20cerebral%20cortex:%20genetics,%20functional%20consequences%20and%20treatment%20options&author=R%20Guerrini&author=WB%20Dobyns&author=AJ%20Barkovich&volume=31&publication_year=2008&pages=154-162&pmid=18262290&doi=10.1016/j.tins.2007.12.004&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR37"> <cite>Gunturkun O. The avian ‘prefrontal cortex’ and cognition. Curr Opin Neurobiol. 2005;15:686–693. doi: 10.1016/j.conb.2005.10.003.</cite> [<a href="https://doi.org/10.1016/j.conb.2005.10.003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16263260/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Opin%20Neurobiol&title=The%20avian%20%E2%80%98prefrontal%20cortex%E2%80%99%20and%20cognition&author=O%20Gunturkun&volume=15&publication_year=2005&pages=686-693&pmid=16263260&doi=10.1016/j.conb.2005.10.003&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR38"> <cite>Gunturkun O. The convergent evolution of neural substrates for cognition. Psychol Res. 2012;76:212–219. doi: 10.1007/s00426-011-0377-9.</cite> [<a href="https://doi.org/10.1007/s00426-011-0377-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21881941/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Psychol%20Res&title=The%20convergent%20evolution%20of%20neural%20substrates%20for%20cognition&author=O%20Gunturkun&volume=76&publication_year=2012&pages=212-219&pmid=21881941&doi=10.1007/s00426-011-0377-9&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR39"> <cite>Hainsworth FR, Overmier JB, Snowdon CT. Specific and permanent deficits in instrumental avoidance responding following forebrain ablation in the goldfish. J Comp Physiol Psychol. 1967;63:111–116. doi: 10.1037/h0024143.</cite> [<a href="https://doi.org/10.1037/h0024143" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6029700/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Physiol%20Psychol&title=Specific%20and%20permanent%20deficits%20in%20instrumental%20avoidance%20responding%20following%20forebrain%20ablation%20in%20the%20goldfish&author=FR%20Hainsworth&author=JB%20Overmier&author=CT%20Snowdon&volume=63&publication_year=1967&pages=111-116&pmid=6029700&doi=10.1037/h0024143&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR40"> <cite>Hjorth JT, Key B. Are pioneer axons guided by regulatory gene expression domains in the zebrafish forebrain? High-resolution analysis of the patterning of the zebrafish brain during axon tract formation. Dev Biol. 2001;229:271–286. doi: 10.1006/dbio.2000.9980.</cite> [<a href="https://doi.org/10.1006/dbio.2000.9980" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11203695/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dev%20Biol&title=Are%20pioneer%20axons%20guided%20by%20regulatory%20gene%20expression%20domains%20in%20the%20zebrafish%20forebrain?%20High-resolution%20analysis%20of%20the%20patterning%20of%20the%20zebrafish%20brain%20during%20axon%20tract%20formation&author=JT%20Hjorth&author=B%20Key&volume=229&publication_year=2001&pages=271-286&pmid=11203695&doi=10.1006/dbio.2000.9980&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR41"> <cite>Hurtado-Parrado C. Neuronal mechanisms of learning in teleost fish. Univ Psychol. 2010;9:663–672.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Univ%20Psychol&title=Neuronal%20mechanisms%20of%20learning%20in%20teleost%20fish&author=C%20Hurtado-Parrado&volume=9&publication_year=2010&pages=663-672&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR42"> <cite>Ingle D. Evolutionary perspectives on the function of the optic tectum. Brain Behav Evol. 1973;8:211–237. doi: 10.1159/000124355.</cite> [<a href="https://doi.org/10.1159/000124355" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/4359378/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Behav%20Evol&title=Evolutionary%20perspectives%20on%20the%20function%20of%20the%20optic%20tectum&author=D%20Ingle&volume=8&publication_year=1973&pages=211-237&pmid=4359378&doi=10.1159/000124355&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR43"> <cite>Jacobs C, de Gaff TA, Goebel R, Sack AT. The temporal dynamics of early visual cortex involvement in behavioral priming. PLoS ONE. 2012;7:e48808. doi: 10.1371/journal.pone.0048808.</cite> [<a href="https://doi.org/10.1371/journal.pone.0048808" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3498241/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23155408/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=The%20temporal%20dynamics%20of%20early%20visual%20cortex%20involvement%20in%20behavioral%20priming&author=C%20Jacobs&author=TA%20de%20Gaff&author=R%20Goebel&author=AT%20Sack&volume=7&publication_year=2012&pages=e48808&pmid=23155408&doi=10.1371/journal.pone.0048808&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR44"> <cite>Jarvis ED, Yu J, Rivas MV, Horita H, Feenders G, Whitney O, Jarvis SC, Jarvis ER, Kubikova L, Puck AEP, Siang-Bakshi C, Martin S, McElroy M, Hara E, Howard J, Pfenning A, Mouritsen H, Chen C-C, Wada K. Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J Comp Neurol. 2013;521:3614–3665. doi: 10.1002/cne.23404.</cite> [<a href="https://doi.org/10.1002/cne.23404" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4145244/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23818122/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Neurol&title=Global%20view%20of%20the%20functional%20molecular%20organization%20of%20the%20avian%20cerebrum:%20mirror%20images%20and%20functional%20columns&author=ED%20Jarvis&author=J%20Yu&author=MV%20Rivas&author=H%20Horita&author=G%20Feenders&volume=521&publication_year=2013&pages=3614-3665&pmid=23818122&doi=10.1002/cne.23404&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR45"> <cite>Jones RC. Science, sentience, and animal welfare. Biol Philos. 2013;28:1–30.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Biol%20Philos&title=Science,%20sentience,%20and%20animal%20welfare&author=RC%20Jones&volume=28&publication_year=2013&pages=1-30&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR46"> <cite>Jones AKP, Friston KJ, Qi LY, Harris M, Cunningham VJ, Jones T, Feinman C, Frackowiak RSJ. Sites of action of morphine in the brain. Lancet. 1991;338:825. doi: 10.1016/0140-6736(91)90717-4.</cite> [<a href="https://doi.org/10.1016/0140-6736(91)90717-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1681197/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet&title=Sites%20of%20action%20of%20morphine%20in%20the%20brain&author=AKP%20Jones&author=KJ%20Friston&author=LY%20Qi&author=M%20Harris&author=VJ%20Cunningham&volume=338&publication_year=1991&pages=825&pmid=1681197&doi=10.1016/0140-6736(91)90717-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR47"> <cite>Jones SG, Kamunde C, Lemke K, Stevens ED. The dose-response relation for the antinociceptive effect of morphine in a fish, rainbow trout. J Vet Pharmacol Ther. 2012;35:563–570. doi: 10.1111/j.1365-2885.2011.01363.x.</cite> [<a href="https://doi.org/10.1111/j.1365-2885.2011.01363.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22229842/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Vet%20Pharmacol%20Ther&title=The%20dose-response%20relation%20for%20the%20antinociceptive%20effect%20of%20morphine%20in%20a%20fish,%20rainbow%20trout&author=SG%20Jones&author=C%20Kamunde&author=K%20Lemke&author=ED%20Stevens&volume=35&publication_year=2012&pages=563-570&pmid=22229842&doi=10.1111/j.1365-2885.2011.01363.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR48"> <cite>Kaas JH. Topographic maps are fundamental to sensory processing. Brain Res Bull. 1997;44:107–112. doi: 10.1016/s0361-9230(97)00094-4.</cite> [<a href="https://doi.org/10.1016/s0361-9230(97)00094-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9292198/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res%20Bull&title=Topographic%20maps%20are%20fundamental%20to%20sensory%20processing&author=JH%20Kaas&volume=44&publication_year=1997&pages=107-112&pmid=9292198&doi=10.1016/s0361-9230(97)00094-4&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR49"> <cite>Kaas JH. Evolution of columns, modules, and domains in the neocortex of primates. PNAS. 2012;109:10655–10660. doi: 10.1073/pnas.1201892109.</cite> [<a href="https://doi.org/10.1073/pnas.1201892109" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3386869/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22723351/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PNAS&title=Evolution%20of%20columns,%20modules,%20and%20domains%20in%20the%20neocortex%20of%20primates&author=JH%20Kaas&volume=109&publication_year=2012&pages=10655-10660&pmid=22723351&doi=10.1073/pnas.1201892109&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR50"> <cite>Kanai R, Tsuchiya N. Qualia. Curr Biol. 2012;22:R392–R396. doi: 10.1016/j.cub.2012.03.033.</cite> [<a href="https://doi.org/10.1016/j.cub.2012.03.033" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22625852/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Biol&title=Qualia&author=R%20Kanai&author=N%20Tsuchiya&volume=22&publication_year=2012&pages=R392-R396&pmid=22625852&doi=10.1016/j.cub.2012.03.033&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR51"> <cite>Kaplan H, Aronson LR. Effect of forebrain ablation on the performance of a conditioned avoidance response in the teleost fish, Tilapia H. Macrocephala. Anim Behav. 1967;15:438–448. doi: 10.1016/0003-3472(67)90042-5.</cite> [<a href="https://doi.org/10.1016/0003-3472(67)90042-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6055098/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anim%20Behav&title=Effect%20of%20forebrain%20ablation%20on%20the%20performance%20of%20a%20conditioned%20avoidance%20response%20in%20the%20teleost%20fish,%20Tilapia%20H.%20Macrocephala&author=H%20Kaplan&author=LR%20Aronson&volume=15&publication_year=1967&pages=438-448&pmid=6055098&doi=10.1016/0003-3472(67)90042-5&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR52"> <cite>Kavaliers M. Evolutionary and comparative aspects of nociception. Brain Res Bull. 1988;21:923–931. doi: 10.1016/0361-9230(88)90030-5.</cite> [<a href="https://doi.org/10.1016/0361-9230(88)90030-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2906273/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res%20Bull&title=Evolutionary%20and%20comparative%20aspects%20of%20nociception&author=M%20Kavaliers&volume=21&publication_year=1988&pages=923-931&pmid=2906273&doi=10.1016/0361-9230(88)90030-5&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR53"> <cite>Kirsch JA, Gunturkun O, Rose J. Insight without cortex: lessons from the avian brain. Conscious Cogn. 2008;17:475–483. doi: 10.1016/j.concog.2008.03.018.</cite> [<a href="https://doi.org/10.1016/j.concog.2008.03.018" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18440242/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Conscious%20Cogn&title=Insight%20without%20cortex:%20lessons%20from%20the%20avian%20brain&author=JA%20Kirsch&author=O%20Gunturkun&author=J%20Rose&volume=17&publication_year=2008&pages=475-483&pmid=18440242&doi=10.1016/j.concog.2008.03.018&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR130"> <cite>Kittilsen S (2013) Functional aspects of emotions in fish. Behav Process 100:153–159</cite> [<a href="https://doi.org/10.1016/j.beproc.2013.09.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24056239/" class="usa-link">PubMed</a>]</li> <li id="CR54"> <cite>Koivisto M, Silvanto J. Visual feature binding: the critical time windows of V1/V2 and parietal activity. Neuroimage. 2012;59:1608–1614. doi: 10.1016/j.neuroimage.2011.08.089.</cite> [<a href="https://doi.org/10.1016/j.neuroimage.2011.08.089" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21925610/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroimage&title=Visual%20feature%20binding:%20the%20critical%20time%20windows%20of%20V1/V2%20and%20parietal%20activity&author=M%20Koivisto&author=J%20Silvanto&volume=59&publication_year=2012&pages=1608-1614&pmid=21925610&doi=10.1016/j.neuroimage.2011.08.089&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR55"> <cite>Koivisto M, Mantyla T, Silvanto J. The role of early visual corex (V1/V2) in conscious and unconscious visual perception. Neuroimage. 2010;51:828–834. doi: 10.1016/j.neuroimage.2010.02.042.</cite> [<a href="https://doi.org/10.1016/j.neuroimage.2010.02.042" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20188199/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroimage&title=The%20role%20of%20early%20visual%20corex%20(V1/V2)%20in%20conscious%20and%20unconscious%20visual%20perception&author=M%20Koivisto&author=T%20Mantyla&author=J%20Silvanto&volume=51&publication_year=2010&pages=828-834&pmid=20188199&doi=10.1016/j.neuroimage.2010.02.042&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR56"> <cite>Koivisto M, Railo H, Salminen-Vaparanta N. Transcranial magnetic stimulation of early visual cortex interferes with subjective visual awareness and objective forced-choice performance. Conscious Cogn. 2011;20:288–298. doi: 10.1016/j.concog.2010.09.001.</cite> [<a href="https://doi.org/10.1016/j.concog.2010.09.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20863717/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Conscious%20Cogn&title=Transcranial%20magnetic%20stimulation%20of%20early%20visual%20cortex%20interferes%20with%20subjective%20visual%20awareness%20and%20objective%20forced-choice%20performance&author=M%20Koivisto&author=H%20Railo&author=N%20Salminen-Vaparanta&volume=20&publication_year=2011&pages=288-298&pmid=20863717&doi=10.1016/j.concog.2010.09.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR57"> <cite>Krahe R, Maler L. Neural maps in the electrosensory system of weakly electric fish. Curr Opin Neurobiol. 2014;24:13–21. doi: 10.1016/j.conb.2013.08.013.</cite> [<a href="https://doi.org/10.1016/j.conb.2013.08.013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24492073/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Opin%20Neurobiol&title=Neural%20maps%20in%20the%20electrosensory%20system%20of%20weakly%20electric%20fish&author=R%20Krahe&author=L%20Maler&volume=24&publication_year=2014&pages=13-21&pmid=24492073&doi=10.1016/j.conb.2013.08.013&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR58"> <cite>Kupers R, Pitto M. Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev. 2013 doi: 10.1016/j.neubiorev.2013.08.001.</cite> [<a href="https://doi.org/10.1016/j.neubiorev.2013.08.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23954750/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neurosci%20Biobehav%20Rev&title=Compensatory%20plasticity%20and%20cross-modal%20reorganization%20following%20early%20visual%20deprivation&author=R%20Kupers&author=M%20Pitto&publication_year=2013&pmid=23954750&doi=10.1016/j.neubiorev.2013.08.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR59"> <cite>Larkum M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. TINS. 2013;36:141–151. doi: 10.1016/j.tins.2012.11.006.</cite> [<a href="https://doi.org/10.1016/j.tins.2012.11.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23273272/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=TINS&title=A%20cellular%20mechanism%20for%20cortical%20associations:%20an%20organizing%20principle%20for%20the%20cerebral%20cortex&author=M%20Larkum&volume=36&publication_year=2013&pages=141-151&pmid=23273272&doi=10.1016/j.tins.2012.11.006&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR60"> <cite>Luque MA, Perez-Perez MP, Herrero L, Torres B. Involvement of the optic tectum and mesencephalic reticular formation in the generation of saccadic eye movements in goldfish. Brain Res Rev. 2005;49:388–397. doi: 10.1016/j.brainresrev.2004.10.002.</cite> [<a href="https://doi.org/10.1016/j.brainresrev.2004.10.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16111565/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res%20Rev&title=Involvement%20of%20the%20optic%20tectum%20and%20mesencephalic%20reticular%20formation%20in%20the%20generation%20of%20saccadic%20eye%20movements%20in%20goldfish&author=MA%20Luque&author=MP%20Perez-Perez&author=L%20Herrero&author=B%20Torres&volume=49&publication_year=2005&pages=388-397&pmid=16111565&doi=10.1016/j.brainresrev.2004.10.002&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR61"> <cite>Maier A, Adams GK, Aura C, Leopold DA. Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci. 2010 doi: 10.3389/fnsys.2010.00031.</cite> [<a href="https://doi.org/10.3389/fnsys.2010.00031" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2928665/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20802856/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Syst%20Neurosci&title=Distinct%20superficial%20and%20deep%20laminar%20domains%20of%20activity%20in%20the%20visual%20cortex%20during%20rest%20and%20stimulation&author=A%20Maier&author=GK%20Adams&author=C%20Aura&author=DA%20Leopold&publication_year=2010&pmid=20802856&doi=10.3389/fnsys.2010.00031&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR62"> <cite>Malafoglia V, Bryant B, Raffaeli W, Giordano A, Bellipanni G. The zebrafish as a model for nociception studies. J Cell Physiol. 2013;228:1956–1966. doi: 10.1002/jcp.24379.</cite> [<a href="https://doi.org/10.1002/jcp.24379" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23559073/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Cell%20Physiol&title=The%20zebrafish%20as%20a%20model%20for%20nociception%20studies&author=V%20Malafoglia&author=B%20Bryant&author=W%20Raffaeli&author=A%20Giordano&author=G%20Bellipanni&volume=228&publication_year=2013&pages=1956-1966&pmid=23559073&doi=10.1002/jcp.24379&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR63"> <cite>Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI. Fine-grained nociceptive maps in primary somatosensory cortex. J Neurosci. 2012;32:17155–17162. doi: 10.1523/JNEUROSCI.3059-12.2012.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.3059-12.2012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3529201/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23197708/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&title=Fine-grained%20nociceptive%20maps%20in%20primary%20somatosensory%20cortex&author=F%20Mancini&author=P%20Haggard&author=GD%20Iannetti&author=MR%20Longo&author=MI%20Sereno&volume=32&publication_year=2012&pages=17155-17162&pmid=23197708&doi=10.1523/JNEUROSCI.3059-12.2012&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR64"> <cite>Manek AK, Ferrari MC, Niyogi S, Chivers DP. The interactive effects of multiple stressors on physiological stress responders and club cell investment in fathead minnows. Sci Total Environ. 2014;467–477:90–97. doi: 10.1016/j.scitotenv.2013.12.042.</cite> [<a href="https://doi.org/10.1016/j.scitotenv.2013.12.042" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24463029/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Total%20Environ&title=The%20interactive%20effects%20of%20multiple%20stressors%20on%20physiological%20stress%20responders%20and%20club%20cell%20investment%20in%20fathead%20minnows&author=AK%20Manek&author=MC%20Ferrari&author=S%20Niyogi&author=DP%20Chivers&volume=467%E2%80%93477&publication_year=2014&pages=90-97&pmid=24463029&doi=10.1016/j.scitotenv.2013.12.042&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR65"> <cite>Manger PR, Elston GN, Pettigrew JD. Multiple maps and activity-dependent representational plasticity in the anterior Wust of the adult barn owl (Tyto alba) Eur J Neurosci. 2002;16:743–750. doi: 10.1046/j.1460-9568.2002.02119.x.</cite> [<a href="https://doi.org/10.1046/j.1460-9568.2002.02119.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12270050/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Neurosci&title=Multiple%20maps%20and%20activity-dependent%20representational%20plasticity%20in%20the%20anterior%20Wust%20of%20the%20adult%20barn%20owl%20(Tyto%20alba)&author=PR%20Manger&author=GN%20Elston&author=JD%20Pettigrew&volume=16&publication_year=2002&pages=743-750&pmid=12270050&doi=10.1046/j.1460-9568.2002.02119.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR66"> <cite>Matthies BK, Franklin KBJ. Formalin pain is expressed in decerebrate rats but not attenuated by morphine. Pain. 1992;51:199–206. doi: 10.1016/0304-3959(92)90261-9.</cite> [<a href="https://doi.org/10.1016/0304-3959(92)90261-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1484716/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Pain&title=Formalin%20pain%20is%20expressed%20in%20decerebrate%20rats%20but%20not%20attenuated%20by%20morphine&author=BK%20Matthies&author=KBJ%20Franklin&volume=51&publication_year=1992&pages=199-206&pmid=1484716&doi=10.1016/0304-3959(92)90261-9&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR67"> <cite>Matthies BK, Franklin KBJ. Effects of partial decortication on the opioid analgesia in the formalin test. Behav Brain Res. 1995;67:59–66. doi: 10.1016/0166-4328(94)00104-n.</cite> [<a href="https://doi.org/10.1016/0166-4328(94)00104-n" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7748501/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Brain%20Res&title=Effects%20of%20partial%20decortication%20on%20the%20opioid%20analgesia%20in%20the%20formalin%20test&author=BK%20Matthies&author=KBJ%20Franklin&volume=67&publication_year=1995&pages=59-66&pmid=7748501&doi=10.1016/0166-4328(94)00104-n&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR68"> <cite>Mazzola L, Faillenot I, Barral F-G, Mauguiere F, Peyron R. Spatial segregation of somatosensory and pain activations in the human operculo-insular cortex. Neuroimage. 2012;60:5409–5418. doi: 10.1016/j.neuroimage.2011.12.072.</cite> [<a href="https://doi.org/10.1016/j.neuroimage.2011.12.072" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22245639/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroimage&title=Spatial%20segregation%20of%20somatosensory%20and%20pain%20activations%20in%20the%20human%20operculo-insular%20cortex&author=L%20Mazzola&author=I%20Faillenot&author=F-G%20Barral&author=F%20Mauguiere&author=R%20Peyron&volume=60&publication_year=2012&pages=5409-5418&pmid=22245639&doi=10.1016/j.neuroimage.2011.12.072&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR69"> <cite>Meek J. Functional anatomy of the tectum mesencephala of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res. 1983;287:247–297. doi: 10.1016/0165-0173(83)90008-5.</cite> [<a href="https://doi.org/10.1016/0165-0173(83)90008-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6362772/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res&title=Functional%20anatomy%20of%20the%20tectum%20mesencephala%20of%20the%20goldfish.%20An%20explorative%20analysis%20of%20the%20functional%20implications%20of%20the%20laminar%20structural%20organization%20of%20the%20tectum&author=J%20Meek&volume=287&publication_year=1983&pages=247-297&pmid=6362772&doi=10.1016/0165-0173(83)90008-5&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR70"> <cite>Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–722. doi: 10.1093/brain/120.4.701.</cite> [<a href="https://doi.org/10.1093/brain/120.4.701" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9153131/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain&title=The%20columnar%20organization%20of%20the%20neocortex&author=VB%20Mountcastle&volume=120&publication_year=1997&pages=701-722&pmid=9153131&doi=10.1093/brain/120.4.701&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR71"> <cite>Mueller T, Wullimann MF. An evolutionary interpretation of teleostean forebrain anatomy. Brain Behav Evol. 2009;74:30–42. doi: 10.1159/000229011.</cite> [<a href="https://doi.org/10.1159/000229011" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19729894/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Behav%20Evol&title=An%20evolutionary%20interpretation%20of%20teleostean%20forebrain%20anatomy&author=T%20Mueller&author=MF%20Wullimann&volume=74&publication_year=2009&pages=30-42&pmid=19729894&doi=10.1159/000229011&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR72"> <cite>Mueller T, Dong Z, Berberoglu MA, Guo S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei) Brain Res. 2011;1381:95–105. doi: 10.1016/j.brainres.2010.12.089.</cite> [<a href="https://doi.org/10.1016/j.brainres.2010.12.089" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3052766/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21219890/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res&title=The%20dorsal%20pallium%20in%20zebrafish,%20Danio%20rerio%20(Cyprinidae,%20Teleostei)&author=T%20Mueller&author=Z%20Dong&author=MA%20Berberoglu&author=S%20Guo&volume=1381&publication_year=2011&pages=95-105&pmid=21219890&doi=10.1016/j.brainres.2010.12.089&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR73"> <cite>Nguyen AP, Spetch ML, Crowder NA, Winship IR, Hurd PL, Wylie DR. A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of “visual streams”. J Neurosci. 2004;24:4962–4970. doi: 10.1523/JNEUROSCI.0146-04.2004.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.0146-04.2004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6729365/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15163688/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&title=A%20dissociation%20of%20motion%20and%20spatial-pattern%20vision%20in%20the%20avian%20telencephalon:%20implications%20for%20the%20evolution%20of%20%E2%80%9Cvisual%20streams%E2%80%9D&author=AP%20Nguyen&author=ML%20Spetch&author=NA%20Crowder&author=IR%20Winship&author=PL%20Hurd&volume=24&publication_year=2004&pages=4962-4970&pmid=15163688&doi=10.1523/JNEUROSCI.0146-04.2004&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR74"> <cite>Nieuwenhuys R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol. 1994;190:307–337. doi: 10.1007/BF00187291.</cite> [<a href="https://doi.org/10.1007/BF00187291" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7840420/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anat%20Embryol&title=The%20neocortex.%20An%20overview%20of%20its%20evolutionary%20development,%20structural%20organization%20and%20synaptology&author=R%20Nieuwenhuys&volume=190&publication_year=1994&pages=307-337&pmid=7840420&doi=10.1007/BF00187291&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR75"> <cite>Nordgreen J, Horsberg TE, Ranheim B, Chen ACN. Somatosensory evoked potentials in the telencephalon of Atlanic salmon (Salmo salar) following galvanic stimulation of the tail. J Comp Physiol A. 2007;193:1235–1242. doi: 10.1007/s00359-007-0283-1.</cite> [<a href="https://doi.org/10.1007/s00359-007-0283-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17987296/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Physiol%20A&title=Somatosensory%20evoked%20potentials%20in%20the%20telencephalon%20of%20Atlanic%20salmon%20(Salmo%20salar)%20following%20galvanic%20stimulation%20of%20the%20tail&author=J%20Nordgreen&author=TE%20Horsberg&author=B%20Ranheim&author=ACN%20Chen&volume=193&publication_year=2007&pages=1235-1242&pmid=17987296&doi=10.1007/s00359-007-0283-1&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR76"> <cite>Northcutt RG. Forebrain evolution in bony fishes. Brain Res Bull. 2008;75:191–205. doi: 10.1016/j.brainresbull.2007.10.058.</cite> [<a href="https://doi.org/10.1016/j.brainresbull.2007.10.058" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18331871/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res%20Bull&title=Forebrain%20evolution%20in%20bony%20fishes&author=RG%20Northcutt&volume=75&publication_year=2008&pages=191-205&pmid=18331871&doi=10.1016/j.brainresbull.2007.10.058&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR77"> <cite>Northcutt RG. Do teleost fishes possess a homolog of mammalian isocortex? Brain Behav Evol. 2011;78:136–138. doi: 10.1159/000330830.</cite> [<a href="https://doi.org/10.1159/000330830" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21952091/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Behav%20Evol&title=Do%20teleost%20fishes%20possess%20a%20homolog%20of%20mammalian%20isocortex?&author=RG%20Northcutt&volume=78&publication_year=2011&pages=136-138&pmid=21952091&doi=10.1159/000330830&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR78"> <cite>Northcutt RG, Plassman W, Holmes PH, Saidel WM. A pallial visual area in the telencephalon of the bony fish Polypterus. Brain Behav Evol. 2004;64:1–10. doi: 10.1159/000077538.</cite> [<a href="https://doi.org/10.1159/000077538" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15051962/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Behav%20Evol&title=A%20pallial%20visual%20area%20in%20the%20telencephalon%20of%20the%20bony%20fish%20Polypterus&author=RG%20Northcutt&author=W%20Plassman&author=PH%20Holmes&author=WM%20Saidel&volume=64&publication_year=2004&pages=1-10&pmid=15051962&doi=10.1159/000077538&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR79"> <cite>Ohiorhenuan IE, Mechler F, Purpura KP, Schmid AM, Hu Q, Victor JD. Sparse coding and high-order correlations in fine-scale cortical networks. Nature. 2010;466:617–622. doi: 10.1038/nature09178.</cite> [<a href="https://doi.org/10.1038/nature09178" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2912961/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20601940/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&title=Sparse%20coding%20and%20high-order%20correlations%20in%20fine-scale%20cortical%20networks&author=IE%20Ohiorhenuan&author=F%20Mechler&author=KP%20Purpura&author=AM%20Schmid&author=Q%20Hu&volume=466&publication_year=2010&pages=617-622&pmid=20601940&doi=10.1038/nature09178&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR80"> <cite>Opris I. Inter-laminar microcircuits across neocortex: repair and augmentation. Front Syst Neurosci. 2013;7:80. doi: 10.3389/fnsys.2013.00080.</cite> [<a href="https://doi.org/10.3389/fnsys.2013.00080" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3832795/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24312019/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Syst%20Neurosci&title=Inter-laminar%20microcircuits%20across%20neocortex:%20repair%20and%20augmentation&author=I%20Opris&volume=7&publication_year=2013&pages=80&pmid=24312019&doi=10.3389/fnsys.2013.00080&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR81"> <cite>Opris I, Fuqua JL, Huetti PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA. Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits. 2012;6:1–13. doi: 10.3389/fncir.2012.00088.</cite> [<a href="https://doi.org/10.3389/fncir.2012.00088" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3504312/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23189041/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Neural%20Circuits&title=Closing%20the%20loop%20in%20primate%20prefrontal%20cortex:%20inter-laminar%20processing&author=I%20Opris&author=JL%20Fuqua&author=PF%20Huetti&author=GA%20Gerhardt&author=TW%20Berger&volume=6&publication_year=2012&pages=1-13&pmid=23189041&doi=10.3389/fncir.2012.00088&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR82"> <cite>Overmier JB, Gross D. Effects of telencephalic ablation upon nest-building and avoidance bahaviors in East African mouthbreeding fish, Tilapia mossambica. Behav Biol. 1974;12:211–222. doi: 10.1016/s0091-6773(74)91214-0.</cite> [<a href="https://doi.org/10.1016/s0091-6773(74)91214-0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/4429519/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Biol&title=Effects%20of%20telencephalic%20ablation%20upon%20nest-building%20and%20avoidance%20bahaviors%20in%20East%20African%20mouthbreeding%20fish,%20Tilapia%20mossambica&author=JB%20Overmier&author=D%20Gross&volume=12&publication_year=1974&pages=211-222&pmid=4429519&doi=10.1016/s0091-6773(74)91214-0&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR83"> <cite>Overmier JB, Papini MR. Serial ablations of the telencephalon and avoidance learning by goldfish (Carassius auratus) Behav Neurosci. 1985;99:509–520. doi: 10.1037//0735-7044.99.3.509.</cite> [<a href="https://doi.org/10.1037//0735-7044.99.3.509" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/3843724/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Neurosci&title=Serial%20ablations%20of%20the%20telencephalon%20and%20avoidance%20learning%20by%20goldfish%20(Carassius%20auratus)&author=JB%20Overmier&author=MR%20Papini&volume=99&publication_year=1985&pages=509-520&pmid=3843724&doi=10.1037//0735-7044.99.3.509&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR84"> <cite>Perez-Perez MP, Luque MA, Herrero L, Nunez-Abades PA, Torres B. Connectivity of the goldfish optic tectum with the mesencephalic and rhombencephalic reticular formation. Exp Brain Res. 2003;151:123–135. doi: 10.1007/s00221-003-1432-6.</cite> [<a href="https://doi.org/10.1007/s00221-003-1432-6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12748838/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Exp%20Brain%20Res&title=Connectivity%20of%20the%20goldfish%20optic%20tectum%20with%20the%20mesencephalic%20and%20rhombencephalic%20reticular%20formation&author=MP%20Perez-Perez&author=MA%20Luque&author=L%20Herrero&author=PA%20Nunez-Abades&author=B%20Torres&volume=151&publication_year=2003&pages=123-135&pmid=12748838&doi=10.1007/s00221-003-1432-6&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR85"> <cite>Pert A, Yaksh T. Localization of the antinociceptive action of morphine in primate brain. Pharmacol Biochem Behav. 1975;3:133–138. doi: 10.1016/0091-3057(75)90092-1.</cite> [<a href="https://doi.org/10.1016/0091-3057(75)90092-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1129350/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Pharmacol%20Biochem%20Behav&title=Localization%20of%20the%20antinociceptive%20action%20of%20morphine%20in%20primate%20brain&author=A%20Pert&author=T%20Yaksh&volume=3&publication_year=1975&pages=133-138&pmid=1129350&doi=10.1016/0091-3057(75)90092-1&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR86"> <cite>Pietri T, Manalo E, Ryan J, Saint-Amant L, Washbourne P. Glutamate drives the touch response through a rostral loop in the spinal cord of zebrafish embryos. Dev Neurobiol. 2009;69:780–795. doi: 10.1002/dneu.20741.</cite> [<a href="https://doi.org/10.1002/dneu.20741" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2771646/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19634126/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dev%20Neurobiol&title=Glutamate%20drives%20the%20touch%20response%20through%20a%20rostral%20loop%20in%20the%20spinal%20cord%20of%20zebrafish%20embryos&author=T%20Pietri&author=E%20Manalo&author=J%20Ryan&author=L%20Saint-Amant&author=P%20Washbourne&volume=69&publication_year=2009&pages=780-795&pmid=19634126&doi=10.1002/dneu.20741&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR87"> <cite>Pollen DA. On the emergence of primary visual perception. Cereb Cortex. 2011;21:1941–1953. doi: 10.1093/cercor/bhq285.</cite> [<a href="https://doi.org/10.1093/cercor/bhq285" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21339378/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&title=On%20the%20emergence%20of%20primary%20visual%20perception&author=DA%20Pollen&volume=21&publication_year=2011&pages=1941-1953&pmid=21339378&doi=10.1093/cercor/bhq285&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR88"> <cite>Portavella M, Vargas JP. Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci. 2005;21:2800–2806. doi: 10.1111/j.1460-9568.2005.04114.x.</cite> [<a href="https://doi.org/10.1111/j.1460-9568.2005.04114.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15926927/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Neurosci&title=Emotional%20and%20spatial%20learning%20in%20goldfish%20is%20dependent%20on%20different%20telencephalic%20pallial%20systems&author=M%20Portavella&author=JP%20Vargas&volume=21&publication_year=2005&pages=2800-2806&pmid=15926927&doi=10.1111/j.1460-9568.2005.04114.x&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR89"> <cite>Portavella M, Salas CM, Vargas JP, Papini MR. Involvement of the telencephalon in spaced-trial avoidance learning in the goldfish (Carassius auratus) Physiol Behav. 2003;80:49–56. doi: 10.1016/s0031-9384(03)00208-7.</cite> [<a href="https://doi.org/10.1016/s0031-9384(03)00208-7" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14568307/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Physiol%20Behav&title=Involvement%20of%20the%20telencephalon%20in%20spaced-trial%20avoidance%20learning%20in%20the%20goldfish%20(Carassius%20auratus)&author=M%20Portavella&author=CM%20Salas&author=JP%20Vargas&author=MR%20Papini&volume=80&publication_year=2003&pages=49-56&pmid=14568307&doi=10.1016/s0031-9384(03)00208-7&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR90"> <cite>Portavella M, Torres B, Salas C. Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci. 2004;24:2335–2342. doi: 10.1523/JNEUROSCI.4930-03.2004.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.4930-03.2004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6730421/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14999085/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&title=Avoidance%20response%20in%20goldfish:%20emotional%20and%20temporal%20involvement%20of%20medial%20and%20lateral%20telencephalic%20pallium&author=M%20Portavella&author=B%20Torres&author=C%20Salas&volume=24&publication_year=2004&pages=2335-2342&pmid=14999085&doi=10.1523/JNEUROSCI.4930-03.2004&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR91"> <cite>Portavella M, Torres B, Salas C, Papini MR. Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus) Neurosci Lett. 2004;362:75–78. doi: 10.1016/j.neulet.2004.01.083.</cite> [<a href="https://doi.org/10.1016/j.neulet.2004.01.083" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15193757/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neurosci%20Lett&title=Lesions%20of%20the%20medial%20pallium,%20but%20not%20of%20the%20lateral%20pallium,%20disrupt%20spaced-trial%20avoidance%20learning%20in%20goldfish%20(Carassius%20auratus)&author=M%20Portavella&author=B%20Torres&author=C%20Salas&author=MR%20Papini&volume=362&publication_year=2004&pages=75-78&pmid=15193757&doi=10.1016/j.neulet.2004.01.083&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR92"> <cite>Precht JC, von der Emde G, Wolfart J, Karamursel S, Akoev GN, Andrianov YN, Bullock TH. Sensory processing in the pallium of a Mormyrid fish. J Neurosci. 1998;18:7381–7393. doi: 10.1523/JNEUROSCI.18-18-07381.1998.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.18-18-07381.1998" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6793225/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9736658/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&title=Sensory%20processing%20in%20the%20pallium%20of%20a%20Mormyrid%20fish&author=JC%20Precht&author=G%20von%20der%20Emde&author=J%20Wolfart&author=S%20Karamursel&author=GN%20Akoev&volume=18&publication_year=1998&pages=7381-7393&pmid=9736658&doi=10.1523/JNEUROSCI.18-18-07381.1998&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR93"> <cite>Quillet E, Krieg F, Dechamp N, Hervet C, Bérard A, Le Roy P, Guyomard R, Prunet P, Pottinger TG. Quantitative trait loci for magnitude of the plasma cortisol response to confinement in rainbow trout. Anim: Genet; 2014. </cite> [<a href="https://doi.org/10.1111/age.12126" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24444135/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?title=Quantitative%20trait%20loci%20for%20magnitude%20of%20the%20plasma%20cortisol%20response%20to%20confinement%20in%20rainbow%20trout&author=E%20Quillet&author=F%20Krieg&author=N%20Dechamp&author=C%20Hervet&author=A%20B%C3%A9rard&publication_year=2014&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR94"> <cite>Railo H, Koivisto M. Two means of suppressing visual awareness: a direct comparison of visual masking and transcranial magnetic stimulation. Cortex. 2012;48:333–343. doi: 10.1016/j.cortex.2010.12.001.</cite> [<a href="https://doi.org/10.1016/j.cortex.2010.12.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21232737/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cortex&title=Two%20means%20of%20suppressing%20visual%20awareness:%20a%20direct%20comparison%20of%20visual%20masking%20and%20transcranial%20magnetic%20stimulation&author=H%20Railo&author=M%20Koivisto&volume=48&publication_year=2012&pages=333-343&pmid=21232737&doi=10.1016/j.cortex.2010.12.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR95"> <cite>Reilly SC, Quinn JP, Cossins AR, Sneddon LU. Behavioural analysis of a nociceptive event in fish: comparisons between three species demonstrate specific responses. Appl Anim Behav Sci. 2008;114:248–259.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Appl%20Anim%20Behav%20Sci&title=Behavioural%20analysis%20of%20a%20nociceptive%20event%20in%20fish:%20comparisons%20between%20three%20species%20demonstrate%20specific%20responses&author=SC%20Reilly&author=JP%20Quinn&author=AR%20Cossins&author=LU%20Sneddon&volume=114&publication_year=2008&pages=248-259&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR96"> <cite>Roeser T, Naier H. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. J Neurosci. 2003;23:3726–3734. doi: 10.1523/JNEUROSCI.23-09-03726.2003.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.23-09-03726.2003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6742205/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12736343/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&title=Visuomotor%20behaviors%20in%20larval%20zebrafish%20after%20GFP-guided%20laser%20ablation%20of%20the%20optic%20tectum&author=T%20Roeser&author=H%20Naier&volume=23&publication_year=2003&pages=3726-3734&pmid=12736343&doi=10.1523/JNEUROSCI.23-09-03726.2003&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR97"> <cite>Roques JAC, Abbink W, Geurds F, van de Vis H, Flik G. Tailfin clipping, a painful procedure: studies on Nile tilapia and common carp. Physiol Behav. 2010;101:533–540. doi: 10.1016/j.physbeh.2010.08.001.</cite> [<a href="https://doi.org/10.1016/j.physbeh.2010.08.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20705079/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Physiol%20Behav&title=Tailfin%20clipping,%20a%20painful%20procedure:%20studies%20on%20Nile%20tilapia%20and%20common%20carp&author=JAC%20Roques&author=W%20Abbink&author=F%20Geurds&author=H%20van%20de%20Vis&author=G%20Flik&volume=101&publication_year=2010&pages=533-540&pmid=20705079&doi=10.1016/j.physbeh.2010.08.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR98"> <cite>Rose JD. The neurobiological nature of fishes and the question of awareness and pain. Rev Fish Sci. 2002;10:1–38.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Rev%20Fish%20Sci&title=The%20neurobiological%20nature%20of%20fishes%20and%20the%20question%20of%20awareness%20and%20pain&author=JD%20Rose&volume=10&publication_year=2002&pages=1-38&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR99"> <cite>Rose JD. Anthropomorphism and ‘mental welfare’ of fishes. Dis Aquat Organ. 2007;75:139–154. doi: 10.3354/dao075139.</cite> [<a href="https://doi.org/10.3354/dao075139" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17578253/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dis%20Aquat%20Organ&title=Anthropomorphism%20and%20%E2%80%98mental%20welfare%E2%80%99%20of%20fishes&author=JD%20Rose&volume=75&publication_year=2007&pages=139-154&pmid=17578253&doi=10.3354/dao075139&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR100"> <cite>Rose JD, Arlinghaus R, Cooke SJ, Diggles BK, Sawynok W, Stevens ED, Wynne CDL. Can fish really feel pain? Fish Fish. 2014;15:97–133.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Fish%20Fish&title=Can%20fish%20really%20feel%20pain?&author=JD%20Rose&author=R%20Arlinghaus&author=SJ%20Cooke&author=BK%20Diggles&author=W%20Sawynok&volume=15&publication_year=2014&pages=97-133&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR101"> <cite>Saidel WM, Marquez-Houston K, Butler AB. Identification of visual pallial telencephalon in the goldfish, Carassius auratus: a combined cytochrome oxidase and electrophysiological study. Brain Res. 2001;919:82–93. doi: 10.1016/s0006-8993(01)03001-3.</cite> [<a href="https://doi.org/10.1016/s0006-8993(01)03001-3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11689165/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res&title=Identification%20of%20visual%20pallial%20telencephalon%20in%20the%20goldfish,%20Carassius%20auratus:%20a%20combined%20cytochrome%20oxidase%20and%20electrophysiological%20study&author=WM%20Saidel&author=K%20Marquez-Houston&author=AB%20Butler&volume=919&publication_year=2001&pages=82-93&pmid=11689165&doi=10.1016/s0006-8993(01)03001-3&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR102"> <cite>Saint-Amant L. Development of motor networks in zebrafish embryos. Zebrafish. 2006;3:173–190. doi: 10.1089/zeb.2006.3.173.</cite> [<a href="https://doi.org/10.1089/zeb.2006.3.173" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18248259/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Zebrafish&title=Development%20of%20motor%20networks%20in%20zebrafish%20embryos&author=L%20Saint-Amant&volume=3&publication_year=2006&pages=173-190&pmid=18248259&doi=10.1089/zeb.2006.3.173&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR103"> <cite>Savage GE. Temporal factors in avoidance learning in normal and forebrainless goldfish (Cartassius auratus) Nature. 1968;218:1168–1169. doi: 10.1038/2181168a0.</cite> [<a href="https://doi.org/10.1038/2181168a0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/5690455/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&title=Temporal%20factors%20in%20avoidance%20learning%20in%20normal%20and%20forebrainless%20goldfish%20(Cartassius%20auratus)&author=GE%20Savage&volume=218&publication_year=1968&pages=1168-1169&pmid=5690455&doi=10.1038/2181168a0&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR104"> <cite>Savage GE. Some preliminary observations on the role of the telencephalon in food-reinforced behaviour in the goldfish, Carassius auratus. Anim Behav. 1969;17:760–772. doi: 10.1016/s0003-3472(69)80024-2.</cite> [<a href="https://doi.org/10.1016/s0003-3472(69)80024-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/5378005/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anim%20Behav&title=Some%20preliminary%20observations%20on%20the%20role%20of%20the%20telencephalon%20in%20food-reinforced%20behaviour%20in%20the%20goldfish,%20Carassius%20auratus&author=GE%20Savage&volume=17&publication_year=1969&pages=760-772&pmid=5378005&doi=10.1016/s0003-3472(69)80024-2&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR105"> <cite>Schubert D, Kotter R, Staiger JF. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits. Brain Struct Funct. 2007;212:107–119. doi: 10.1007/s00429-007-0147-z.</cite> [<a href="https://doi.org/10.1007/s00429-007-0147-z" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17717691/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Struct%20Funct&title=Mapping%20functional%20connectivity%20in%20barrel-related%20columns%20reveals%20layer-%20and%20cell%20type-specific%20microcircuits&author=D%20Schubert&author=R%20Kotter&author=JF%20Staiger&volume=212&publication_year=2007&pages=107-119&pmid=17717691&doi=10.1007/s00429-007-0147-z&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR106"> <cite>Scott Weber E., III Fish analgesia: pain, stress, fear aversion or nociception? Vet Clin Exot Anim. 2011;14:21–32. doi: 10.1016/j.cvex.2010.09.002.</cite> [<a href="https://doi.org/10.1016/j.cvex.2010.09.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21074700/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Vet%20Clin%20Exot%20Anim&title=Fish%20analgesia:%20pain,%20stress,%20fear%20aversion%20or%20nociception?&author=E%20Scott%20Weber&volume=14&publication_year=2011&pages=21-32&pmid=21074700&doi=10.1016/j.cvex.2010.09.002&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR107"> <cite>Shimizu T. Why can birds be so smart? Background, significance, and implications of the revised view of the avian brain. Comp Cogn Behav Rev. 2009;4:103–115.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Comp%20Cogn%20Behav%20Rev&title=Why%20can%20birds%20be%20so%20smart?%20Background,%20significance,%20and%20implications%20of%20the%20revised%20view%20of%20the%20avian%20brain&author=T%20Shimizu&volume=4&publication_year=2009&pages=103-115&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR108"> <cite>Shimizu T, Bowers AN. Visual circuits of the avian telencephalon. Behav Brain Res. 1999;98:183–191. doi: 10.1016/s0166-4328(98)00083-7.</cite> [<a href="https://doi.org/10.1016/s0166-4328(98)00083-7" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10683106/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Brain%20Res&title=Visual%20circuits%20of%20the%20avian%20telencephalon&author=T%20Shimizu&author=AN%20Bowers&volume=98&publication_year=1999&pages=183-191&pmid=10683106&doi=10.1016/s0166-4328(98)00083-7&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR109"> <cite>Shimizu T, Cox K, Karten HJ. Intratelencephalic projections of the visual wulst in pigeons (Columba livia) J Comp Neurol. 1995;359:551–572. doi: 10.1002/cne.903590404.</cite> [<a href="https://doi.org/10.1002/cne.903590404" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7499547/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Neurol&title=Intratelencephalic%20projections%20of%20the%20visual%20wulst%20in%20pigeons%20(Columba%20livia)&author=T%20Shimizu&author=K%20Cox&author=HJ%20Karten&volume=359&publication_year=1995&pages=551-572&pmid=7499547&doi=10.1002/cne.903590404&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR110"> <cite>Sillito AM, Cudeiro J, Jones HE. Always returning: feedback and sensory processing in visual cortex and thalamus. TINS. 2006;29:307–316. doi: 10.1016/j.tins.2006.05.001.</cite> [<a href="https://doi.org/10.1016/j.tins.2006.05.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16713635/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=TINS&title=Always%20returning:%20feedback%20and%20sensory%20processing%20in%20visual%20cortex%20and%20thalamus&author=AM%20Sillito&author=J%20Cudeiro&author=HE%20Jones&volume=29&publication_year=2006&pages=307-316&pmid=16713635&doi=10.1016/j.tins.2006.05.001&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR111"> <cite>Sneddon LU. The evidence for pain in fish: the use of morphine as an analgesic. Appl Anim Behave Sci. 2003;83:153–162.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Appl%20Anim%20Behave%20Sci&title=The%20evidence%20for%20pain%20in%20fish:%20the%20use%20of%20morphine%20as%20an%20analgesic&author=LU%20Sneddon&volume=83&publication_year=2003&pages=153-162&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR112"> <cite>Sneddon LU. Evolution of nociception in vertebrates: comparative analysis of lower vertebrates. Brain Res Rev. 2004;46:123–130. doi: 10.1016/j.brainresrev.2004.07.007.</cite> [<a href="https://doi.org/10.1016/j.brainresrev.2004.07.007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15464201/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res%20Rev&title=Evolution%20of%20nociception%20in%20vertebrates:%20comparative%20analysis%20of%20lower%20vertebrates&author=LU%20Sneddon&volume=46&publication_year=2004&pages=123-130&pmid=15464201&doi=10.1016/j.brainresrev.2004.07.007&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR113"> <cite>Sneddon LU. Nociception or pain in fish. In: Farrell A, editor. Encyclopedia of fish physiology. London: Academic Press; 2011. pp. 713–719.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Encyclopedia%20of%20fish%20physiology&author=LU%20Sneddon&publication_year=2011&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR114"> <cite>Sneddon LU, Braithwaite VA, Gentle MJ. Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc R Soc Lond B. 2003;270:1115–1121. doi: 10.1098/rspb.2003.2349.</cite> [<a href="https://doi.org/10.1098/rspb.2003.2349" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1691351/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12816648/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20R%20Soc%20Lond%20B&title=Do%20fishes%20have%20nociceptors?%20Evidence%20for%20the%20evolution%20of%20a%20vertebrate%20sensory%20system&author=LU%20Sneddon&author=VA%20Braithwaite&author=MJ%20Gentle&volume=270&publication_year=2003&pages=1115-1121&pmid=12816648&doi=10.1098/rspb.2003.2349&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR115"> <cite>Soto-Moyano R, Galvez J, Vallejos C, Hernandez A. Topical application of morphine to the rat somatosensory cortex produces analgesia to tonic pain. J Neurosci Res. 1988;19:511–514. doi: 10.1002/jnr.490190416.</cite> [<a href="https://doi.org/10.1002/jnr.490190416" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/3385806/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci%20Res&title=Topical%20application%20of%20morphine%20to%20the%20rat%20somatosensory%20cortex%20produces%20analgesia%20to%20tonic%20pain&author=R%20Soto-Moyano&author=J%20Galvez&author=C%20Vallejos&author=A%20Hernandez&volume=19&publication_year=1988&pages=511-514&pmid=3385806&doi=10.1002/jnr.490190416&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR116"> <cite>Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science. 2011;331:1443–1447. doi: 10.1126/science.1199967.</cite> [<a href="https://doi.org/10.1126/science.1199967" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21415353/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&title=Reversal%20of%20interlaminar%20signal%20between%20sensory%20and%20memory%20processing%20in%20monkey%20temporal%20cortex&author=D%20Takeuchi&author=T%20Hirabayashi&author=K%20Tamura&author=Y%20Miyashita&volume=331&publication_year=2011&pages=1443-1447&pmid=21415353&doi=10.1126/science.1199967&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR117"> <cite>Taylor JJ, Borckardt JJ, Canterberyy M, Li X, Hanlon CA, Brown TR, George MS. Naloxone-reversible modulation of pain circuitry by left prefrontal rTMS. Neuropsychopharmacology. 2013;38:1189–1197. doi: 10.1038/npp.2013.13.</cite> [<a href="https://doi.org/10.1038/npp.2013.13" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3656361/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23314221/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuropsychopharmacology&title=Naloxone-reversible%20modulation%20of%20pain%20circuitry%20by%20left%20prefrontal%20rTMS&author=JJ%20Taylor&author=JJ%20Borckardt&author=M%20Canterberyy&author=X%20Li&author=CA%20Hanlon&volume=38&publication_year=2013&pages=1189-1197&pmid=23314221&doi=10.1038/npp.2013.13&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR118"> <cite>Thivierge J-P, Marcus GF. The topographic brain: from neural connectivity to cognition. TINS. 2007;30:251–258. doi: 10.1016/j.tins.2007.04.004.</cite> [<a href="https://doi.org/10.1016/j.tins.2007.04.004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17462748/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=TINS&title=The%20topographic%20brain:%20from%20neural%20connectivity%20to%20cognition&author=J-P%20Thivierge&author=GF%20Marcus&volume=30&publication_year=2007&pages=251-258&pmid=17462748&doi=10.1016/j.tins.2007.04.004&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR119"> <cite>Tommerdahl M, Delemos KA, Vierck CJ, Favorov OV, Whitsel BL. Anterior parietal cortical response to tactile and skin-heating stimuli applied to the same skin site. J Neurophysiol. 1996;75:2662–2670. doi: 10.1152/jn.1996.75.6.2662.</cite> [<a href="https://doi.org/10.1152/jn.1996.75.6.2662" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8793772/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurophysiol&title=Anterior%20parietal%20cortical%20response%20to%20tactile%20and%20skin-heating%20stimuli%20applied%20to%20the%20same%20skin%20site&author=M%20Tommerdahl&author=KA%20Delemos&author=CJ%20Vierck&author=OV%20Favorov&author=BL%20Whitsel&volume=75&publication_year=1996&pages=2662-2670&pmid=8793772&doi=10.1152/jn.1996.75.6.2662&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR120"> <cite>Torquati K, Pizzella V, Babiloni C, del Gratta C, Della Penna S, Ferretti A, Franciotti R, Rossini PM, Romani GL. Nociceptive and non-nociceptive sub-regions in the human somatosensory cortex: an MEG study using fMRI constraints. Neuroimage. 2005;26:48–56. doi: 10.1016/j.neuroimage.2005.01.012.</cite> [<a href="https://doi.org/10.1016/j.neuroimage.2005.01.012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15862204/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroimage&title=Nociceptive%20and%20non-nociceptive%20sub-regions%20in%20the%20human%20somatosensory%20cortex:%20an%20MEG%20study%20using%20fMRI%20constraints&author=K%20Torquati&author=V%20Pizzella&author=C%20Babiloni&author=C%20del%20Gratta&author=S%20Della%20Penna&volume=26&publication_year=2005&pages=48-56&pmid=15862204&doi=10.1016/j.neuroimage.2005.01.012&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR121"> <cite>Tuoc TC, Radyushkin K, Tonchev AB, Piñon MC, Ashery-Padan R, Molnár Z, Davidoff MS, Stoykova A. Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J Neurosci. 2009;29:8335–8349. doi: 10.1523/JNEUROSCI.5669-08.2009.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.5669-08.2009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6665651/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19571125/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&title=Selective%20cortical%20layering%20abnormalities%20and%20behavioral%20deficits%20in%20cortex-specific%20Pax6%20knock-out%20mice&author=TC%20Tuoc&author=K%20Radyushkin&author=AB%20Tonchev&author=MC%20Pi%C3%B1on&author=R%20Ashery-Padan&volume=29&publication_year=2009&pages=8335-8349&pmid=19571125&doi=10.1523/JNEUROSCI.5669-08.2009&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR131"> <cite>Vargas JP, Lopez JC, Portavella M (2009) What are the functions of fish brain pallium? Brain Res Bull 79:436–440</cite> [<a href="https://doi.org/10.1016/j.brainresbull.2009.05.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19463910/" class="usa-link">PubMed</a>]</li> <li id="CR122"> <cite>Veit L, Nieder A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat Commun. 2013;4:2878. doi: 10.1038/ncomms3878.</cite> [<a href="https://doi.org/10.1038/ncomms3878" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24285080/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Commun&title=Abstract%20rule%20neurons%20in%20the%20endbrain%20support%20intelligent%20behaviour%20in%20corvid%20songbirds&author=L%20Veit&author=A%20Nieder&volume=4&publication_year=2013&pages=2878&pmid=24285080&doi=10.1038/ncomms3878&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR123"> <cite>Vierck CJ. Animal models of pain. In: McMahon S, Koltzenburg M, editors. Wall and Melzack’s textbook of pain. London: Churchill; 2006. </cite> [<a href="https://scholar.google.com/scholar_lookup?title=Wall%20and%20Melzack%E2%80%99s%20textbook%20of%20pain&author=CJ%20Vierck&publication_year=2006&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR124"> <cite>Watanabe S, Masuda S. Integration of auditory and visual information in human face discrimination in pigeons. Behavioral and anatomical study. Behav Brain Res. 2010;207:61–69. doi: 10.1016/j.bbr.2009.09.041.</cite> [<a href="https://doi.org/10.1016/j.bbr.2009.09.041" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19800923/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Brain%20Res&title=Integration%20of%20auditory%20and%20visual%20information%20in%20human%20face%20discrimination%20in%20pigeons.%20Behavioral%20and%20anatomical%20study&author=S%20Watanabe&author=S%20Masuda&volume=207&publication_year=2010&pages=61-69&pmid=19800923&doi=10.1016/j.bbr.2009.09.041&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR125"> <cite>Wolkers CPB, Junior BA, Menescal-de-Oliveira L, Hoffmann A. Stress-induced antinociception in fish reversed by naloxone. PLoS ONE. 2013;8:e71175. doi: 10.1371/journal.pone.0071175.</cite> [<a href="https://doi.org/10.1371/journal.pone.0071175" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3728202/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23936261/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&title=Stress-induced%20antinociception%20in%20fish%20reversed%20by%20naloxone&author=CPB%20Wolkers&author=BA%20Junior&author=L%20Menescal-de-Oliveira&author=A%20Hoffmann&volume=8&publication_year=2013&pages=e71175&pmid=23936261&doi=10.1371/journal.pone.0071175&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR126"> <cite>Xie YF, Wang J, Huo FQ, Jia H, Tang JS. μ but not δ and κ opioid receptor involvement in ventrolateral orbital cortex opioid-evoked antinociception in formalin test rats. Neuroscience. 2004;126:717–726. doi: 10.1016/j.neuroscience.2004.04.013.</cite> [<a href="https://doi.org/10.1016/j.neuroscience.2004.04.013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15183520/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroscience&title=%CE%BC%20but%20not%20%CE%B4%20and%20%CE%BA%20opioid%20receptor%20involvement%20in%20ventrolateral%20orbital%20cortex%20opioid-evoked%20antinociception%20in%20formalin%20test%20rats&author=YF%20Xie&author=J%20Wang&author=FQ%20Huo&author=H%20Jia&author=JS%20Tang&volume=126&publication_year=2004&pages=717-726&pmid=15183520&doi=10.1016/j.neuroscience.2004.04.013&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR127"> <cite>Yager D, Sharma SC, Grover BG. Visual function in goldfish with unilateral and bilateral tectal ablation. Brain Res. 1977;137:267–275. doi: 10.1016/0006-8993(77)90338-9.</cite> [<a href="https://doi.org/10.1016/0006-8993(77)90338-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/589454/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res&title=Visual%20function%20in%20goldfish%20with%20unilateral%20and%20bilateral%20tectal%20ablation&author=D%20Yager&author=SC%20Sharma&author=BG%20Grover&volume=137&publication_year=1977&pages=267-275&pmid=589454&doi=10.1016/0006-8993(77)90338-9&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR128"> <cite>Yaksh TL, Rudy TA. Analgesia mediated by a direct spinal action of narcotics. Science. 1976;192:1357–1358. doi: 10.1126/science.1273597.</cite> [<a href="https://doi.org/10.1126/science.1273597" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1273597/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&title=Analgesia%20mediated%20by%20a%20direct%20spinal%20action%20of%20narcotics&author=TL%20Yaksh&author=TA%20Rudy&volume=192&publication_year=1976&pages=1357-1358&pmid=1273597&doi=10.1126/science.1273597&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR129"> <cite>Yamamoto N, Ito H. Visual, lateral line, and auditory ascending pathways to the dorsal telencephalic area through the rostrolateral region of the lateral preglomerular nucleus in Cyprinids. J Comp Neurol. 2008;508:615–647. doi: 10.1002/cne.21717.</cite> [<a href="https://doi.org/10.1002/cne.21717" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18381599/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Neurol&title=Visual,%20lateral%20line,%20and%20auditory%20ascending%20pathways%20to%20the%20dorsal%20telencephalic%20area%20through%20the%20rostrolateral%20region%20of%20the%20lateral%20preglomerular%20nucleus%20in%20Cyprinids&author=N%20Yamamoto&author=H%20Ito&volume=508&publication_year=2008&pages=615-647&pmid=18381599&doi=10.1002/cne.21717&" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ol></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Biology & Philosophy are provided here courtesy of <strong>Springer</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.1007/s10539-014-9469-4" class="usa-button usa-button--outline width-24 font-xs display-inline-flex flex-align-center flex-justify-start padding-left-1" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 padding-right-2">View on publisher site</span> </a> </li> <li> <a href="pdf/10539_2014_Article_9469.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (245.6 KB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/4356734/" data-citation-style="nlm" data-download-format-link="/resources/citations/4356734/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC4356734%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC4356734/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC4356734/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC4356734/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/25798021/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC4356734/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/25798021/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC4356734/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/4356734/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="yvN5D9yskbhejBbaPEwBSMDd6QwCaEw5Eh6tFaqv4dWiuiPYSorirc9p7uVUNLdi"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^"&=<>/]*" title="The following characters are not allowed in the Name field: "&=<>/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-6f05ef93.js"></script> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/jquery/jquery-3.6.0.min.js"> </script> <script type="text/javascript"> jQuery.getScript("https://cdn.ncbi.nlm.nih.gov/core/alerts/alerts.js", function () { galert(['div.nav_and_browser', 'div.header', '#universal_header', '.usa-banner', 'body > *:nth-child(1)']) }); </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="module" crossorigin="" src="/static/assets/article-69f9d1ae.js"></script> </body> </html>